WO2020122094A1 - 植生地盤の温度制御方法 - Google Patents
植生地盤の温度制御方法 Download PDFInfo
- Publication number
- WO2020122094A1 WO2020122094A1 PCT/JP2019/048390 JP2019048390W WO2020122094A1 WO 2020122094 A1 WO2020122094 A1 WO 2020122094A1 JP 2019048390 W JP2019048390 W JP 2019048390W WO 2020122094 A1 WO2020122094 A1 WO 2020122094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- irradiation
- ground
- glow light
- control
- Prior art date
Links
- KVZJLSYJROEPSQ-UHFFFAOYSA-N CC1C(C)CCCC1 Chemical compound CC1C(C)CCCC1 KVZJLSYJROEPSQ-UHFFFAOYSA-N 0.000 description 1
- JCZSETXGLMHOIT-UHFFFAOYSA-N CCC=C1CCCC1 Chemical compound CCC=C1CCCC1 JCZSETXGLMHOIT-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/24—Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
- A01G9/249—Lighting means
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G20/00—Cultivation of turf, lawn or the like; Apparatus or methods therefor
- A01G20/30—Apparatus for treating the lawn or grass surface
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/24—Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
- A01G9/245—Conduits for heating by means of liquids, e.g. used as frame members or for soil heating
Definitions
- the present invention relates to a method for controlling the temperature of a vegetation board when growing using glow lights (complementary lighting for growing), especially in a stadium where lawns are planted.
- glow lights have sometimes been used to promote the growth of lawns, and it was unexpectedly discovered that the glow lights may raise the ground temperature and reduce the accuracy of temperature control.
- Fig. 9 shows the results of measuring the temperature of -30 cm in the ground with a thermocouple, by providing a glow light (sodium lamp) irradiation zone and a non-irradiation zone in the shaded area of the stadium.
- the temperature of the glow light irradiation zone is higher than that of the non-irradiation zone by about 1 to 2° C., and it is expected that the temperature control accuracy will decrease.
- glow lights is indispensable for growing lawns in modern stadiums, such as to solve the lack of sunlight due to the weather or to reduce the effect of shade due to the roof of the spectators' seats or the retractable roof. However, it is necessary to reduce the adverse effect on the temperature control.
- the main problem of the present invention is to enable temperature control of the vegetation board with higher accuracy when growing using glow lights.
- the method for controlling the temperature of the vegetation board that has solved the above problems is as follows. ⁇ First mode> A temperature control method for controlling the temperature of the ground surface layer area by irradiating a glow light from above the vegetation board and laying in the vegetation board in the glow light irradiation area and performing at least one of heating and cooling. At Meteorological data including outside air temperature and outside air humidity, and heat conduction analysis including glow light irradiation data as boundary conditions are used to obtain the temperature of the ground surface layer area so that the ground temperature of this ground surface area becomes the target ground temperature. , Controlling the temperature control body while considering the thermal conductivity of the ground, A method for controlling the temperature of a vegetation board, which is characterized in that.
- the meteorological data includes measurement data measured by a pyranometer, Under the environment of sunlight irradiation, while irradiating glow light from above the vegetation board, the temperature control body laid inside the vegetation board in the irradiation area of this glow light controls the temperature of the ground surface layer area, The temperature control method of the vegetation board of a 1st aspect.
- glow light In an outdoor stadium or a stadium with a retractable roof, glow light may be radiated from above the vegetation board for the purpose of supplementing light under the sunlight irradiation environment. In such a case, it is desirable to include the measurement data from the pyranometer in the meteorological data to perform heat conduction analysis.
- the temperature adjusting body is independently arranged in each control zone, and it is possible to control the temperature of the ground surface layer region independently for each control zone, Among the control zones, the irradiation zone for irradiating glow light and the non-irradiation zone for not irradiating glow light are sequentially switched to irradiate the vegetative board with glow light, In the temperature control of the irradiation zone, the temperature control is performed based on heat conduction analysis including irradiation data of the glow light as a boundary condition, In the temperature control of the non-irradiation zone, the heat conduction analysis does not include the irradiation data of the glow light as a boundary condition, or includes the irradiation data of the glow light corrected to an irradiation amount smaller than that of the irradiation zone as a boundary condition. Based on the temperature control, The temperature control method of the vegetation board of the 1st or 2nd
- the irradiation data of the glow light is added in the irradiation zone, and the irradiation data of the glow light is not added in the non-irradiation zone, or Alternatively, even if added, it is preferable to correct the amount of irradiation so that the irradiation amount is smaller than that in the irradiation zone, and to perform temperature control with higher accuracy.
- the temperature control body supplies a heat medium into a pipe laid in the vegetation board, and controls the temperature of the vegetation board by controlling the heat medium supplied to the pipe.
- the method for controlling the temperature of a vegetation board according to any one of the first to third aspects.
- the soccer field is divided into three simultaneous irradiation zones (control zones A to D, E to H, and IL to be described later) in a plane, and the irradiation plan shown in Table 1 ( 1(a) to 1(c) in accordance with the time table), the setting of the installation position of the glow light 10 is repeated for one cycle (the irradiation time in each simultaneous irradiation zone is 8 hours for a total of 24 hours). It is possible to sequentially switch the irradiation zone for irradiating with and the non-irradiation zone for not irradiating the glow light 10 to irradiate the vegetation board with the glow light 10.
- the glow light 10 a commercially available one such as one in which a large number of sodium lamps or LED lights are mounted side by side downward on a mount can be used without particular limitation.
- a temperature control body that performs at least one of heating and cooling is laid.
- a known one such as a heating wire type can be used without particular limitation, but in that it can be applied to both heating and cooling, as in the example shown in FIG.
- the heat medium is supplied into the pipe 1 laid in the ground.
- the ground structure of the field is not particularly limited, for example, in a soccer field, as shown in FIG. 3, water sprinklers, lawn cutters, and other managed vehicles come and go, so ground subsidence and rut excavation are not possible.
- the burial depth of the pipe 1 for circulating the heat medium is not particularly limited, but if it is buried near the surface of the ground, it will be deformed at the time of competition such as loading load by the management vehicle and spear throwing, hammer throwing, Since it may burst, it is desirable to bury it at a safe depth of several tens of cm below the ground surface.
- the depth h from the ground surface to the pipe laying position can be about 15 to 35 cm, preferably about 25 to 30 cm.
- the pipe 1 is laid in the same plane over the entire control zone. Further, it is desirable that the installation interval P of the pipes 1 is normally about 15 to 60 cm.
- a heat medium such as hot water or cold water at a predetermined temperature is supplied and circulated to the pipe 1 by a heat source operating means (not shown).
- a heat source operating means for example, steam, high temperature gas or the like can be used as the high temperature heat medium, and freon gas, brine, ammonia or the like can be used as the low temperature heat medium.
- the heat medium supplied to the pipe 1 gradually increases or decreases in temperature due to heat exchange with the surrounding ground. However, the heat medium having a predetermined temperature was stored in the flow path of the laid pipe 1. The temperature of the heat medium can be restored to the original reference temperature by providing an auxiliary heat medium tank or by providing heating/cooling means for the heat medium such as a heating/cooling coil.
- the vegetative disc is irradiated with the glow light 10 by sequentially switching the irradiation zone for irradiating the glow light 10 and the non-irradiation zone for not irradiating the glow light 10, the effect of the glow light 10 differs depending on the place of the field.
- the effect of sunlight varies depending on the location of the field. Therefore, as shown in FIG. 1, the vegetation board is divided into a plurality of control zones A to L, and temperature control bodies are independently arranged in the respective control zones A to L. It is preferable that the temperature of the ground surface layer region can be controlled independently.
- the simultaneous irradiation zone of the glow light 10 is defined with respect to one or a plurality of adjacent control zones, and the temperature control can be performed independently while taking into account the irradiation of the glow light for each simultaneous irradiation zone. ..
- thermometers such as thermocouples 5 may be embedded at appropriate intervals for comparison with the calculated underground temperature for the purpose of improving analysis accuracy and for identification of thermal conductivity. ..
- the thermocouples 5 should correspond to each zone A to L, for example, 2 to 3 places per zone, and several dozens below the ground surface should be taken into consideration in consideration of a load such as a top load by a management vehicle and competition such as spear throwing and hammer throwing. Since it is better not to bury it in the range of cm (ground surface layer region X), it is desirable to bury a plurality at the same depth position as the pipe 1 and at a position deeper than this position at appropriate intervals. In the illustrated example, a total of three thermocouples 5 are installed in the depth direction. An optical fiber or the like may be used instead of the thermocouple 5.
- weather data measuring device units 9A and 9B are installed to measure various weather data.
- the meteorological data measuring device unit 9A (9B) has a pyranometer 40, an outside air thermometer 41, an outside air hygrometer 42, an anemometer 43, and a wind direction with respect to a pole erected on the ground.
- a total of 44 and a power source 46 are attached, and it is desirable to install a plurality of units so that both the sunlit part and the shaded part can be measured by installing them on the sides of the soccer field, depending on the time.
- one meteorological data measurement device unit 9A, 9B is installed on one side of the field and the other side of the field, but the installation position is not limited to this, depending on different conditions for each stadium. It can be changed appropriately.
- the meteorological data measuring device at least two types of an outside air thermometer 41 and an outside air hygrometer 42 are attached, and other measuring devices are attached as necessary in relation to an analysis formula described later such as considering the amount of solar radiation. ..
- a rain gauge 45 can be installed on the ground near the meteorological data measuring device unit 9A (9B).
- the system configuration for performing temperature control is not particularly limited, but for example, the system configuration shown in FIG. 4 can be adopted. That is, the meteorological data measured by the meteorological data measuring device unit 9A (9B) and the measured data by the thermocouple 5 buried in the ground are input to the control computer 52. Further, the irradiation data (irradiation plan and irradiation amount) of the glow light 10 is input in the control computer 52 in advance.
- the control computer 52 obtains the underground temperature of the ground surface layer region X in which the thermocouple 5 cannot be embedded by the heat conduction analysis described later based on these information, and executes the optimum control calculation described later based on the calculated underground temperature. And make a water flow plan for each zone. Then, based on this water flow plan, the controller 53 issues a command to the control valve that controls the water flow to each zone.
- the temperature of the ground surface region is obtained by the heat conduction analysis including the meteorological data including the outside air temperature and the outside air humidity, and the irradiation data of the glow light 10 as boundary conditions
- the heat medium supplied to the pipe 1 can be controlled in consideration of the thermal conductivity of the ground so that the underground temperature of the ground surface layer region becomes the target ground temperature.
- meteorological data can be used to measure the pyranometer 40 It is possible to perform heat conduction analysis including measurement data by.
- a temperature control body is installed independently for each zone, and the irradiation zone In the temperature control of 1, the temperature control is performed based on the heat conduction analysis including the irradiation data of the glow light 10 as the boundary condition, and in the temperature control of the non-irradiation zone, the irradiation data of the glow light 10 is not included as the boundary condition (or The irradiation data of the glow light 10 corrected to the irradiation amount smaller than that of the zone may be included as the boundary condition.)
- the temperature control can be performed based on the heat conduction analysis. As a result, it becomes possible to control the temperature with higher accuracy.
- the glow light 10 is controlled in the entire time period from the start of irradiation of the glow light 10 to the end of irradiation, and the glow light 10 is added only in part of the time period from the start of irradiation of the glow light 10 to the end of irradiation. It is also possible to perform the controlled control. For example, since the influence of the glow light 10 is small from the start of the irradiation of the glow light 10 until the predetermined time elapses, the control considering the glow light 10 is not performed, and the glow light 10 is not irradiated until the end of the irradiation of the glow light 10. It is possible to perform control in consideration of the light 10.
- the influence of the glow light 10 is taken into consideration in the temperature control described in Patent Document 3, it becomes as follows. That is, when starting the temperature control of the vegetation board, based on the past measurement data stored in the control computer 52 and the irradiation data of the glow light 10, the virtual heat conduction is performed in accordance with the time history from the past predetermined time to the present.
- the temperature of the ground surface area at the present time obtained by performing the analysis is set as the temperature initial condition of the ground surface area X at the start of temperature control, and thereafter, the meteorological data measured by the meteorological data measuring device and the glow light.
- the temperature of the ground surface layer area X in which the thermocouple 5 is not buried is obtained by the heat conduction analysis with the irradiation data of 10 as the boundary condition, and the ground temperature of this ground surface layer area X becomes the target ground temperature so that the ground surface temperature becomes the target ground temperature. It is possible to control the heat medium supplied to the pipe 1 while considering the thermal conductivity of
- the measurement of the meteorological data by the meteorological data measurement device units 9A and 9B is performed not only while the ground temperature control is being performed but also steadily or several days before the start of the ground temperature control, specifically from 2 to 5 days before.
- the irradiation data of the glow light needs to be stored in the control computer 52 in the past.
- Step 1 Virtual heat conduction analysis (meteorological data measurement) At least several days (for example, 3 days) before the start of control, various meteorological observation data by the meteorological data measuring device unit 9A (9B) and the underground temperature measurement by the buried thermocouple 5 are performed and stored in the control computer 52.
- various meteorological observation data by the meteorological data measuring device unit 9A (9B) and the underground temperature measurement by the buried thermocouple 5 are performed and stored in the control computer 52.
- the heat transfer analysis is used to calculate the temperature in the ground for each zone A to L at a predetermined past time (for example, Numerical calculation is performed according to the time history from 3 days ago) to the present.
- T represents temperature
- ⁇ , C, and ⁇ represent density, constant pressure specific heat, and thermal conductivity of the ground material, respectively
- q represents a heat generation term per unit volume.
- T ⁇ (note; ⁇ is coded immediately above) indicates the temperature given at the boundary ⁇ 1
- Q ⁇ shows the heat flux given at the boundary ⁇ 2 .
- n x and n y mean the components of the outward normal vector with respect to ⁇ 2 .
- the above formula (3 ) Becomes the following formula (4).
- the heat flux at the boundary ⁇ 2 can be calculated by the heat balance equation.
- the left side is the heat conduction term
- the first term on the right side is the solar radiation absorption heat
- the second term is the glow light absorption heat
- the third term is the long-wave radiation balance
- the fourth term is the convective heat transfer
- Item 5 is latent heat of vaporization.
- T S ground surface temperature
- the amount of insolation includes direct insolation by sunlight and radiant insolation in the sky, both of which are given as insolation in the sun, and only insolation in the shade. Therefore, as described above, the two meteorological data measuring device units 9A and 9B selectively use the weather observation data in the sun and the weather observation data in the shade.
- t 0 is the outside air temperature (° C.)
- C T is the total cloud amount (a dimensionless number of 0 to 10 represented by 10 minutes)
- x is the outside air absolute humidity (g/kg). It should be noted that the measured outside air temperature is used for t 0 , and x is converted from the measured value by the hygrometer. Further, C T can be predicted by the sunshine ratio SD (sunlight time/lighting time) according to the existing literature, and is calculated by the following formula (7).
- H h is the sun altitude. Further, since h+1 indicates one hour later, C T becomes an instantaneous value on every hour. Also, at night, linear interpolation is performed immediately before sunset and immediately after sunrise.
- (I) Glow light irradiation coefficient; a GL The irradiation coefficient a GL of the glow light is set to 1 when the glow light is on (irradiation) and 0 or a value close to 0 when the glow light is off (non-irradiation).
- the irradiation data is taken into consideration, and the irradiation data of the glow light is not taken into account in the non-irradiation zone, or even if it is taken into account, the irradiation amount is corrected to be smaller than that in the irradiation zone.
- (J) Glow light dose; TH GL The irradiation amount TH GL of the glow light can be set according to the light amount of the glow light arranged for each zone.
- the meteorological observation data includes the amount of solar radiation, the outside air temperature, and the outside air humidity. Three items are enough. Further, in the case of an indoor stadium where there is almost no solar radiation, it is not necessary to consider the solar radiation absorption heat, and in that case, two items of outside air temperature and outside air humidity are sufficient as meteorological observation data.
- thermocouple 5 the temperature at the position where the thermocouple 5 is embedded is known by measurement, so the measured temperature can be substituted for the node position on the analysis model to improve the calculation accuracy.
- the following finite element equation is obtained by applying the normal Galerkin method to the basic equation and discretizing the variables with three-node triangular elements.
- M ⁇ , S ⁇ , and ⁇ (Note; ⁇ and ⁇ are subscripts) represent a mass matrix, a diffusion matrix, and a flux vector, respectively, and ⁇ t is a minute time increment.
- the Crank-Nicolson method is used for discretization in the time direction.
- the temperature of the ground surface layer area X at the current time is calculated.
- the temperature of the ground surface layer area X obtained as a result of the virtual heat conduction analysis is set as a boundary condition of the ground surface layer area X at the start of temperature control, and thereafter every predetermined time. For example, in 2 to 3 hours, the temperature of the ground surface area X is obtained by conducting heat conduction analysis with the meteorological data of the pyranometer, the outside air thermometer, the outside air hygrometer, and the irradiation data of the glow light 10 as boundary conditions. be able to.
- the heat conduction analysis can be performed by the same calculation method as the virtual heat conduction analysis.
- Step 3 -Drafting a water flow plan by optimal control calculation
- the ground temperature of the ground surface layer area X where the temperature cannot be directly measured can be grasped by the procedure up to step 2, so the next step is as follows.
- the adjustment plan of the temperature control body that is, this example, so that the point of interest S set in the area X (see FIG. 3, a point several cm below the ground surface where temperature control is important for lawn growth) becomes the target temperature. Then, make a water flow plan for the heat medium supplied to the pipe 1.
- a cold water tank 31 for storing cold water on the side (b temperature) is separately prepared, and the hot water tank 30 and the cold water tank 31 are switched from the switching control valves 32, 33a, 33b... At predetermined time intervals.
- the cold water tank 31 is prepared in the summer, the cold water is supplied from the cold water tank 31 for a predetermined time, and then the operation of stopping the cold water supply is repeated for a while to supply the cold water. At this time, the ground is cooled, and the ground temperature is warmed to normal temperature by stopping the supply, so that the ground temperature near the ground surface can be changed in a periodic function curve.
- the hot water tank 30 is prepared, and after the hot water is supplied from the hot water tank 30 for a predetermined time, the operation of stopping the hot water supply for a while is repeatedly performed, The soil temperature near the surface of the ground can be changed in a periodic function curve.
- control responsiveness heat exchange responsiveness
- inverter pump When controlling the supply of hot or cold water, control responsiveness (heat exchange responsiveness) can be improved by using an inverter pump and adjusting the amount of supply while considering the load of external conditions.
- thermal conductivity [Identification of physical properties (thermal conductivity)] Next, a method for identifying the thermal conductivity will be shown.
- identifying the thermal conductivity it is easy to determine the thermal conductivity by taking a sample and conducting a laboratory experiment.However, the thermal conductivity at the in-situ site cannot be determined due to the non-uniformity of the ground and the uncertainties of the water content. It is hard to say that it is accurate.
- the thermal conductivity also changes depending on the water content in the ground, it is necessary to calibrate the thermal conductivity in a timely manner in order to improve the analysis accuracy.
- an underground thermometer is installed in the ground surface layer area X or in the vicinity thereof temporarily irregularly or regularly, and the measured underground temperature measured by the underground thermometer and the weather data measuring device are used for measurement.
- the thermal conductivity can be corrected to reduce the residual by comparing the calculated underground temperature of the buried position of the underground thermometer obtained by heat conduction analysis with the meteorological data as boundary conditions. Method).
- Thermal conductivity calibration thermocouple 7 is embedded in a region, etc., and thermal conductivity analysis is performed with the measured underground temperature measured by this thermal conductivity calibration thermocouple 7 and the meteorological data measured by meteorological data measuring equipment as boundary conditions. The thermal conductivity can also be corrected so as to reduce the residual by comparing the calculated underground temperature of the buried position of the underground thermometer obtained by (2nd method).
- thermal conductivities When identifying these thermal conductivities, treat the estimation of thermal conductivities as an inverse problem and use the method of non-linear least square identification. That is, it is obtained by using the time history of the temperature observed in the ground and minimizing the residual between the calculated value and the measured value at the position corresponding to the observation point. In this case, the Gauss-Newton method is used to minimize the residual sum of squares of the calculated value and the observed value, that is, the evaluation function.
- the ground structure is assumed to consist of several layers (partial areas), and the assumption is that the thermal conductivity within each layer is constant. If the thermal conductivity is generally written, the following equation (11) is obtained.
- ⁇ represents the number of thermal conductivity corresponding to the partial area
- n is the total number of partial areas.
- the temperature at the observation point provided in the analysis area is expressed as follows.
- ⁇ means an observation value
- ⁇ means the number of the observation point
- m means the total number of observation points.
- the calculated values at the nodes corresponding to the observation points 1 to m are represented as follows.
- the evaluation function for obtaining the thermal conductivity is expressed by the residual sum of squares of the observed temperature and the calculated value of the corresponding temperature, as shown below.
- t 0 and t f represent the calculation start time and the calculation end time, respectively.
- the evaluation function is a function of the thermal conductivity k ⁇
- the optimum thermal conductivity k ⁇ can be obtained by minimizing the formula (14) by, for example, the Gauss-Newton method. it can.
- the sensitivity matrix of each parameter is obtained by the sensitivity equation method.
- the increment value ⁇ k ⁇ i can be obtained by the following equations (16) and (17).
- FIG. 1 A graph of the temperature analysis value by the heat conduction analysis of (A) above, the temperature analysis value by the heat conduction analysis of above (B), and the measured value is shown in FIG.
- the temperature analysis value differs from the measured value by a maximum of about 5 degrees.
- the method for controlling the temperature of a vegetation board of the present invention is suitable for a natural lawn ground in a sports arena such as a soccer field, a baseball field, and a golf course, but is not limited to this, and another vegetation board in another place is used. Is also available.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Soil Sciences (AREA)
- Cultivation Of Plants (AREA)
Abstract
【課題】グローライトを用いて育成を行う場合に、より高精度での植生地盤の温度制御を可能にする。 【解決手段】上記課題は、植生地盤上からグローライト10を照射しつつ、このグローライト10の照射領域の植生地盤内に敷設されたパイプ中に熱媒体を供給することにより、地盤表層領域の温度を制御する温度制御方法において、外気温度及び外気湿度を含む気象データ、並びにグローライト10の照射データを境界条件として含む熱伝導解析により、地盤表層領域の温度を求め、この地盤表層領域の地中温度が目標地温となるように、地盤の熱伝導率を考慮しながらパイプに供給される熱媒体を制御する、植生地盤の温度制御方法により解決される。
Description
本発明は、特に芝生が植えられた競技場などにおいて、グローライト(育成用の補光照明)を用いて育成を行う場合の植生地盤の温度制御方法に関する。
近年、例えばサッカー場、グランド、ゴルフ場などの競技場における芝生が植生された土壌では、日照り不足や季節による気温低下、降雨や夜間等の一時的な温度低下等による芝生への影響や、各種競技による芝荒れ、積雪、霜の影響や除雪などを目的として、地盤中に熱媒体を循環させるパイプを埋設し、芝にとって生育しやすい環境を人工的に作り、芝の育成を助けることが行われている。
この場合、温度制御の精度は芝の育成に直接影響するため重要である。本出願人においても、よりよい温度制御を実現する技術を開発してきた(例えば、特許文献1~3参照)。
しかし、近年では、芝生の育成を促進するためにグローライトが用いられることがあり、予想外なことにこのグローライトにより地温が上昇して、温度制御の精度が低下するおそれを知見した。
図9は、競技場の日陰ゾーンに、グローライト(ナトリウムランプ)の照射ゾーン及び非照射ゾーンを設け、それぞれの地中-30cmの温度を熱電対により測定した結果である。グローライトの照射ゾーンは非照射ゾーンに比べて1~2℃程度温度が上昇しており、温度制御の精度低下が予測される。
グローライトの利用は、天候による日照不足を解消するため、あるいは観客席の屋根や開閉式の屋根等による日陰の影響を低減するためなど、現代の競技場での芝生の育成には必要不可欠なものとなっており、温度制御への悪影響は低減する必要がある。
そこで、本発明の主たる課題は、グローライトを用いて育成を行う場合に、より高精度での植生地盤の温度制御を可能にすることにある。
上記課題を解決した植生地盤の温度制御方法は以下のとおりである。
<第1の態様>
植生地盤上からグローライトを照射しつつ、このグローライトの照射領域の植生地盤内に敷設された、加熱及び冷却の少なくとも一方を行う温度調節体により、地盤表層領域の温度を制御する温度制御方法において、
外気温度及び外気湿度を含む気象データ、並びにグローライトの照射データを境界条件として含む熱伝導解析により、前記地盤表層領域の温度を求め、この地盤表層領域の地中温度が目標地温となるように、地盤の熱伝導率を考慮しながら前記温度調節体を制御する、
ことを特徴とする植生地盤の温度制御方法。
<第1の態様>
植生地盤上からグローライトを照射しつつ、このグローライトの照射領域の植生地盤内に敷設された、加熱及び冷却の少なくとも一方を行う温度調節体により、地盤表層領域の温度を制御する温度制御方法において、
外気温度及び外気湿度を含む気象データ、並びにグローライトの照射データを境界条件として含む熱伝導解析により、前記地盤表層領域の温度を求め、この地盤表層領域の地中温度が目標地温となるように、地盤の熱伝導率を考慮しながら前記温度調節体を制御する、
ことを特徴とする植生地盤の温度制御方法。
(作用効果)
このように、グローライトの照射領域の植生地盤内に敷設された温度調節体により、地盤表層領域の温度を制御する場合において、グローライトの照射データを境界条件として含む熱伝導解析を行うことにより、より高精度な温度計測を行うことができ、もってより高精度での地盤の温度制御が可能となる。
このように、グローライトの照射領域の植生地盤内に敷設された温度調節体により、地盤表層領域の温度を制御する場合において、グローライトの照射データを境界条件として含む熱伝導解析を行うことにより、より高精度な温度計測を行うことができ、もってより高精度での地盤の温度制御が可能となる。
<第2の態様>
前記気象データは、日射計により計測される計測データを含み、
日光の照射環境下で、植生地盤上からグローライトを照射しつつ、このグローライトの照射領域の植生地盤内に敷設された温度調節体により、地盤表層領域の温度を制御する、
第1の態様の植生地盤の温度制御方法。
前記気象データは、日射計により計測される計測データを含み、
日光の照射環境下で、植生地盤上からグローライトを照射しつつ、このグローライトの照射領域の植生地盤内に敷設された温度調節体により、地盤表層領域の温度を制御する、
第1の態様の植生地盤の温度制御方法。
(作用効果)
屋外競技場や開閉式屋根を有する競技場等では、日光の照射環境下で、補光を目的として植生地盤上からグローライトを照射することがある。このような場合には、日射計による計測データを気象データに含めて熱伝導解析を行うことが望ましい。
屋外競技場や開閉式屋根を有する競技場等では、日光の照射環境下で、補光を目的として植生地盤上からグローライトを照射することがある。このような場合には、日射計による計測データを気象データに含めて熱伝導解析を行うことが望ましい。
<第3の態様>
前記植生地盤を複数の制御ゾーンに区画するとともに、各制御ゾーンに前記温度調節体を独立的に配置し、各制御ゾーンごとに独立して前記地盤表層領域の温度制御を可能とし、
前記制御ゾーンのうち、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、前記植生地盤にグローライトを照射するとともに、
前記照射ゾーンの前記温度制御では、前記グローライトの照射データを境界条件として含む熱伝導解析に基づいて前記温度制御を行い、
前記非照射ゾーンの前記温度制御では、前記グローライトの照射データを境界条件として含まないか、又は前記照射ゾーンよりも少ない照射量に補正されたグローライトの照射データを境界条件として含む熱伝導解析に基づいて前記温度制御を行う、
第1又は2の態様の植生地盤の温度制御方法。
前記植生地盤を複数の制御ゾーンに区画するとともに、各制御ゾーンに前記温度調節体を独立的に配置し、各制御ゾーンごとに独立して前記地盤表層領域の温度制御を可能とし、
前記制御ゾーンのうち、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、前記植生地盤にグローライトを照射するとともに、
前記照射ゾーンの前記温度制御では、前記グローライトの照射データを境界条件として含む熱伝導解析に基づいて前記温度制御を行い、
前記非照射ゾーンの前記温度制御では、前記グローライトの照射データを境界条件として含まないか、又は前記照射ゾーンよりも少ない照射量に補正されたグローライトの照射データを境界条件として含む熱伝導解析に基づいて前記温度制御を行う、
第1又は2の態様の植生地盤の温度制御方法。
(作用効果)
競技場のような広大な面積の植生地盤に対しグローライトを照射する場合、植生地盤の全体にグローライトを設置することは不可能ではないが、通常は、効率及び経済性を考慮して、植生地盤を複数のゾーンに区画し、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライトを照射することが一般的である。したがって、このような場合にグローライトを加味した温度制御を行う場合、本態様のように、照射ゾーンではグローライトの照射データを加味し、非照射ゾーンではグローライトの照射データを加味しないか、又は加味するとしても照射ゾーンよりも少ない照射量に補正して加味すると、より高精度での温度制御が可能となるため好ましい。
競技場のような広大な面積の植生地盤に対しグローライトを照射する場合、植生地盤の全体にグローライトを設置することは不可能ではないが、通常は、効率及び経済性を考慮して、植生地盤を複数のゾーンに区画し、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライトを照射することが一般的である。したがって、このような場合にグローライトを加味した温度制御を行う場合、本態様のように、照射ゾーンではグローライトの照射データを加味し、非照射ゾーンではグローライトの照射データを加味しないか、又は加味するとしても照射ゾーンよりも少ない照射量に補正して加味すると、より高精度での温度制御が可能となるため好ましい。
<第4の態様>
前記温度調節体は、前記植生地盤内に敷設されたパイプ中に熱媒体を供給するものであり、このパイプに供給される熱媒体を制御することにより植生地盤の温度制御を行うものである、
第1~3のいずれか1つの態様の植生地盤の温度制御方法。
前記温度調節体は、前記植生地盤内に敷設されたパイプ中に熱媒体を供給するものであり、このパイプに供給される熱媒体を制御することにより植生地盤の温度制御を行うものである、
第1~3のいずれか1つの態様の植生地盤の温度制御方法。
本発明によれば、グローライトを用いて育成を行う場合に、より高精度での植生地盤の温度制御が可能になる。
〔植生地盤及び装置等の構成〕
前述のように、競技場のような広大な面積の植生地盤に対しグローライトを照射する場合、植生地盤の全体にグローライトを設置することは不可能ではないが、通常は、効率及び経済性を考慮して、植生地盤を複数のゾーンに区画し、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライトを照射することが一般的である。これにより、グローライトの使用数を減らしつつ、効率よく植生地盤の育成促進を図ることができる。グローライトの照射パターンは公知のものを限定なく利用できる。例えば、図1に示すサッカーフィールドの場合、サッカーフィールドを平面的に3つの同時照射ゾーン(後述する制御ゾーンA~D、E~H、I~L)に区画し、表1に示す照射計画(タイムテーブル)に従って、図1(a)~(c)のグローライト10の設置位置の変更を1周期(各同時照射ゾーンにおける照射時間を8時間として合計24時間)として繰り返すことにより、グローライト10を照射する照射ゾーン及びグローライト10を照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライト10を照射することができる。
前述のように、競技場のような広大な面積の植生地盤に対しグローライトを照射する場合、植生地盤の全体にグローライトを設置することは不可能ではないが、通常は、効率及び経済性を考慮して、植生地盤を複数のゾーンに区画し、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライトを照射することが一般的である。これにより、グローライトの使用数を減らしつつ、効率よく植生地盤の育成促進を図ることができる。グローライトの照射パターンは公知のものを限定なく利用できる。例えば、図1に示すサッカーフィールドの場合、サッカーフィールドを平面的に3つの同時照射ゾーン(後述する制御ゾーンA~D、E~H、I~L)に区画し、表1に示す照射計画(タイムテーブル)に従って、図1(a)~(c)のグローライト10の設置位置の変更を1周期(各同時照射ゾーンにおける照射時間を8時間として合計24時間)として繰り返すことにより、グローライト10を照射する照射ゾーン及びグローライト10を照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライト10を照射することができる。
グローライト10としては、架台に下向きに多数のナトリウムランプ又はLEDライトが横並びで取り付けられたもの等、市販のものを特に限定なく用いることができる。
グローライト10の照射領域の植生地盤内には、加熱及び冷却の少なくとも一方を行う温度調節体が敷設される。温度調節体は、電熱線式のもの等、公知の物を特に限定なく用いることができるが、加熱及び冷却のいずれにも適用可能である点で、図3等に示す例のように、植生地盤内に敷設されたパイプ1中に熱媒体を供給するものであると好ましい。フィールドの地盤構成は特に限定されるものではないが、例えばサッカーフィールドでは、図3に示されるように、散水車、芝生カッター車などの管理車が往来するため、地盤の沈下や轍掘などを防止するとともに、水はけを考慮して、上層側より細砂層2、粗砂層3、玉砂利層4の3層構成となっていると好ましい。熱媒体を循環させるためのパイプ1の埋設深さは特に限定されるものではないが、地盤の表層近傍に埋設したのでは管理車による上載荷重や槍投げ、ハンマー投げなどの競技の際に変形、破裂することがあるため、地表面下数十cmの安全な深さに埋設することが望ましい。通常の場合、地盤表面からパイプの敷設位置までの深さhは、概ね15~35cm、好ましくは25~30cm程度とすることができる。またパイプ1は、制御ゾーンの全体を可能な限り均一に加熱するために、制御ゾーンの全体にわたり同一平面内で敷き巡らすようにして敷設することが望ましい。また、パイプ1の設置間隔Pは通常の場合15~60cm程度とすることが望ましい。
パイプ1には、図示しない熱源操作手段により所定温度の温水又は冷水等の熱媒体(熱媒及び冷媒の両者を指す。)が供給循環されるようになっている。他の熱媒体としては、例えば高温熱媒体としては、蒸気、高温ガスなどを用いることができるし、また低温熱媒体としてはフロンガス、ブライン、アンモニアなどを用いることができる。パイプ1に供給される熱媒体は、周囲の地盤との熱交換により次第に温度上昇又は温度降下することになるが、敷設されたパイプ1の流路途中に、所定温度の熱媒体が貯留された補助熱媒体槽を設けたり、あるいは加熱/冷却コイル等の熱媒体に対する加熱/冷却手段を設けることにより熱媒体の温度を元の基準温度に回復させることができる。
フィールドの全体に対して温度調節体を一系統のみ設け、サッカーフィールド全体を共通的に温度制御することもできる。しかし、グローライト10を照射する照射ゾーン及びグローライト10を照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライト10を照射する場合、グローライト10の影響はフィールドの場所によって異なる。また、日照の影響もフィールドの場所によって異なる。そこで、図1に示されるように、植生地盤を複数の制御ゾーンA~Lに区画するとともに、各制御ゾーンA~Lに温度調節体を独立的に配置し、各制御ゾーンA~Lごとに独立して地盤表層領域の温度制御を可能とするのは好ましい。これにより、一つ又は複数隣接する制御ゾーンに対して、グローライト10の同時照射ゾーンを定め、各同時照射ゾーンごとにグローライトの照射の有無を加味しつつ独立に温度制御を行うことができる。
また、地盤深さ方向には、解析精度向上のために計算地中温度との比較や熱伝導率の同定のために適宜の間隔で熱電対5などの地中温度計を埋設してもよい。この場合、熱電対5は、各ゾーンA~Lに対応させて1ゾーン当り、例えば2~3箇所とし、管理車による上載荷重や槍投げ、ハンマー投げなどの競技を考慮して地表面下数十cmの範囲(地盤表層領域X)には埋設しない方がよいため、パイプ1と同じ深さ位置とこれより深い位置に適宜の間隔で複数個埋設することが望ましい。図示例では、深さ方向に計3個の熱電対5を設置してある。なお、熱電対5に代えて光ファイバーなどを使用することもできる。
また、サッカーフィールド脇の地盤上には、種々の気象データを測定するために気象データ計測機器ユニット9A,9Bが設置される。気象データ計測機器ユニット9A(9B)は、例えば図2に示されるように、地盤上に立設されたポールに対して日射計40、外気温度計41、外気湿度計42、風速計43、風向計44、電源46を取り付けたものであり、サッカーフィールド脇にそれぞれ設置することによって、時刻にもよるが日向部と日陰部との両方を計測できるように複数台設置することが望ましい。図示例では、フィールドの一方の脇及び他方の脇に各1台、気象データ計測機器ユニット9A,9Bを設置しているが、設置位置はこれに限られず、競技場ごとに異なる条件に応じて適宜変更することができる。気象データ計測機器としては、少なくとも外気温度計41及び外気湿度計42の2種類が取り付けられ、日射量を考慮する等、後述する解析式との関係で必要に応じて他の計測機器が取り付けられる。なお、気象データ計測機器ユニット9A(9B)に近接する地盤上には雨量計45を設置することができる。
温度制御を行うためのシステム構成は特に限定されるものではないが、例えば図4に示すシステム構成を採用することができる。すなわち、気象データ計測機器ユニット9A(9B)によって計測された気象データや、地中に埋設された熱電対5による計測データは制御コンピュータ52に入力される。また、グローライト10の照射データ(照射計画及び照射量)が制御コンピュータ52に予め入力される。制御コンピュータ52では、これらの情報を基に、後述する熱伝導解析により熱電対5を埋設できない地盤表層領域Xの地中温度を求め、この計算地中温度に基づいて後述する最適制御計算を実行して各ゾーンの通水計画を立案する。そして、この通水計画に基づいて制御器53により各ゾーンへの通水を制御する制御弁に対して指令を発する。
例えば、グローライト10の照射領域における温度制御を行う場合、外気温度及び外気湿度を含む気象データ、並びにグローライト10の照射データを境界条件として含む熱伝導解析により、地盤表層領域の温度を求め、この地盤表層領域の地中温度が目標地温となるように、地盤の熱伝導率を考慮しながらパイプ1に供給される熱媒体を制御することができる。屋外競技場や開閉式屋根を有する競技場等で、日光の照射環境下で、補光を目的として植生地盤上からグローライト10を照射する場合等、必要に応じて、気象データに日射計40による計測データを含めて熱伝導解析を行うことができる。
グローライト10を照射する照射ゾーン及びグローライト10を照射しない非照射ゾーンを順次切り替えて、植生地盤にグローライト10を照射する場合、各ゾーンごとに温度調節体を独立的に設置し、照射ゾーンの温度制御では、グローライト10の照射データを境界条件として含む熱伝導解析に基づいて温度制御を行い、非照射ゾーンの温度制御では、グローライト10の照射データを境界条件として含まない(又は照射ゾーンよりも少ない照射量に補正されたグローライト10の照射データを境界条件として含むようにしてもよい)熱伝導解析に基づいて温度制御を行うことができる。これにより、より高精度での温度制御が可能となる。
グローライト10の照射開始から照射終了までの全時間帯で、グローライト10を加味した制御を行うほか、グローライト10の照射開始から照射終了までの一部の時間帯のみ、グローライト10を加味した制御を行うこともできる。例えば、グローライト10の照射開始から所定時間経過するまでは、グローライト10の影響が少ないため、グローライト10を加味した制御を行わず、所定時間経過後からグローライト10の照射終了まで、グローライト10を加味した制御を行うことができる。
以上のように、グローライト10の影響を加味した温度制御を行うこと以外は、特に限定されるものではなく、例えば特許文献1~3記載の温度制御において、グローライト10の影響を加味することもできる。
例えば、特許文献3記載の温度制御において、グローライト10の影響を加味する場合は次のようになる。すなわち、植生地盤の温度制御を開始するに当たって、制御コンピュータ52に記憶された過去の計測データとグローライト10の照射データとに基づいて、過去の所定時刻から現在に至る時刻歴に従って仮想的熱伝導解析を実行し、求められた現時刻での地盤表層領域の温度を温度制御開始時における地盤表層領域Xの温度初期条件として設定し、以降は、気象データ計測機器によって計測した気象データとグローライト10の照射データとを境界条件とする熱伝導解析により、熱電対5を埋設していない地盤表層領域Xの温度を求め、この地盤表層領域Xの地中温度が目標地温となるように、地盤の熱伝導率を考慮しながらパイプ1に供給される熱媒体を制御することができる。
この場合、気象データ計測機器ユニット9A,9Bによる気象データの計測は、地温制御を行っている以外にも、定常的、若しくは地温制御を開始する数日前、具体的には2~5日前から行うようにし、計測された気象データを制御コンピュータ52に記憶しておくことが必要になる。同様に、グローライトの照射データも、過去の分を制御コンピュータ52に記憶しておくことが必要になる。
以下、特許文献3記載の温度制御への適用例の解析・制御手法について、より詳細に説明する。他の温度制御へ適用する際の変更については当業者であれば以下の説明から容易に理解できるであろう。
〔ステップ1〕…仮想的熱伝導解析
(気象データの測定)
少なくとも制御開始より数日前(例えば3日前)から、気象データ計測機器ユニット9A(9B)による各種気象観測データ及び埋設した熱電対5による地中温度測定を行い、制御コンピュータ52に記憶する。
(気象データの測定)
少なくとも制御開始より数日前(例えば3日前)から、気象データ計測機器ユニット9A(9B)による各種気象観測データ及び埋設した熱電対5による地中温度測定を行い、制御コンピュータ52に記憶する。
(地盤表層領域Xの仮想的地温計算)
制御コンピュータ52に記憶されている過去の気象データ、地中温度データ及びグローライト10の照射データに基づいて、熱伝導解析を用いて各ゾーンA~Lについて地盤内温度を過去の所定時刻(例えば3日前)から現在に至る時刻歴に従って数値計算する。
制御コンピュータ52に記憶されている過去の気象データ、地中温度データ及びグローライト10の照射データに基づいて、熱伝導解析を用いて各ゾーンA~Lについて地盤内温度を過去の所定時刻(例えば3日前)から現在に至る時刻歴に従って数値計算する。
(解析方程式)
2次元熱伝導方程式を下式(1)に示す。
2次元熱伝導方程式を下式(1)に示す。
2次元熱伝導方程式としては、伝熱解析の基礎方程式が用いられる。ここで、Tは温度、ρ、C、κは地盤材料の密度、定圧比熱、熱伝導率をそれぞれ表し、qは単位体積当りの熱の発生項を意味する。上記式(1)を解くには、以下に示す境界条件が必要となる。
ここで、T^(注;^は直上に符号される)は境界Γ1で与えられる温度、Q^は境界Γ2で与えられる熱のフラックスをそれぞれ示す。
nX、nyはΓ2に対しての外向き法線ベクトルの成分を意味する。図7に示されるような解析領域を考えると、nX=cos(n、x)=cos90°=0、ny=cos(n、y)=cos0°=1となるため、上記式(3)は下式(4)となる。
境界Γ2の熱フラックスは熱収支方程式により計算することができる。
以下、熱収支方程式から境界条件を計算する手法について詳述する。先ず、熱収支方程式は下式(5)により示される。
上式(5)において、左辺は熱伝導項、右辺第1項は日射吸収熱、第2項はグローライトの吸収熱、第3項は長波長放射収支、第4項は対流熱伝達、第5項は蒸発潜熱である。この場合、各パラメータについては、実測及び既往文献による現実的な数値定義を行う。なお、熱収支方程式において、TS(地表面温度)は計測値ではなく、前回の熱伝導解析による計算温度が代入され計算が実行される。
(a)日射吸収率;a
既往文献により、乾燥芝の場合でa=0.66、湿潤芝の場合でa=0.75とする。
既往文献により、乾燥芝の場合でa=0.66、湿潤芝の場合でa=0.75とする。
(b)日射量;TH
日射量は、太陽光による直接的な直接日射量と、放射的な天空日射量とがあり、日向ではそれらの両方が日射量として与えられ、日陰では天空日射量のみが与えられる。したがって、前述のように、二台の気象データ計測機器ユニット9A,9Bとにより、日向と日陰の気象観測データを夫々使い分ける。
日射量は、太陽光による直接的な直接日射量と、放射的な天空日射量とがあり、日向ではそれらの両方が日射量として与えられ、日陰では天空日射量のみが与えられる。したがって、前述のように、二台の気象データ計測機器ユニット9A,9Bとにより、日向と日陰の気象観測データを夫々使い分ける。
(c)輻射放射率;ε
既往文献により、ε=0.93とする。
既往文献により、ε=0.93とする。
(d)大気放射量;AH-σTs4
既往文献により、下式(6)によって求める。
既往文献により、下式(6)によって求める。
ここで、t0;外気温度(℃)、CT;全雲量(10分数で示され0~10の無次元数)、x;外気絶対湿度(g/kg)である。なお、t0は実測外気温度を使い、xは湿度計よる実測値から変換する。またCTは既往文献により、日照率SD(日照時間/可照時間)で予測可能であり、下式(7)により求める。
ここで、Hhは太陽高度(degree)である。また、h+1は1時間後を示すため、CTは毎正時の瞬間値となる。また、夜間は日没直前と日の出直後とを直線補間する。
(e)表面熱伝達率;αc
既往文献により、下式(8)により任意高さhでの風速Vhから算出する。なお、風速べき指数を0.25と仮定する。
既往文献により、下式(8)により任意高さhでの風速Vhから算出する。なお、風速べき指数を0.25と仮定する。
(f)水分蒸発比;K
既往文献により、K:0.1~0.2(降水量のうちKの割合で蒸発が発生すると考える。
既往文献により、K:0.1~0.2(降水量のうちKの割合で蒸発が発生すると考える。
(g)空気の湿り比熱;Ca
既往文献により、水蒸気の場合はCa=0.501kcal/kg℃、空気の場合はCa=0.241kcal/kg℃とする。
既往文献により、水蒸気の場合はCa=0.501kcal/kg℃、空気の場合はCa=0.241kcal/kg℃とする。
(h)水の蒸発潜熱;L
既往文献により、L=597.5kcal/kgとする。
既往文献により、L=597.5kcal/kgとする。
(i)グローライトの照射係数;aGL
グローライトの照射係数aGLは、グローライトがon(照射)の時は1とし、グローライトがoff(非照射)の時は0又は0に近い数値とすることにより、照射ゾーンではグローライトの照射データを加味し、非照射ゾーンではグローライトの照射データを加味しないか、又は加味するとしても照射ゾーンよりも少ない照射量に補正して加味することとなる。
(j)グローライトの照射量;THGL
グローライトの照射量THGLはゾーンごとに配置されるグローライトの光量に応じて設定することができる。
グローライトの照射係数aGLは、グローライトがon(照射)の時は1とし、グローライトがoff(非照射)の時は0又は0に近い数値とすることにより、照射ゾーンではグローライトの照射データを加味し、非照射ゾーンではグローライトの照射データを加味しないか、又は加味するとしても照射ゾーンよりも少ない照射量に補正して加味することとなる。
(j)グローライトの照射量;THGL
グローライトの照射量THGLはゾーンごとに配置されるグローライトの光量に応じて設定することができる。
ところで、地表面の熱収支方程式において日射を考慮する場合、各パラメータの影響度は日射吸収熱>グローライトの吸収熱>長波長放射収支>対流熱伝達>蒸発潜熱の順であり、少なくとも右辺第1項の日射吸収熱と第2項の長波長放射収支は必ず考慮する必要があるが、例えば第3項の対流熱伝達は、周囲が屋根で囲まれた競技場のように、地面を這う風の影響が小さくなるような条件の下では、これを省略することができる。また、高い精度が要求されない場合などは第4項の蒸発潜熱は無視することもできる。したがって、右辺第1項の日射吸収熱と第2項の長波長放射収支との2つのパラメータを考慮する熱収支方程式とした場合には、気象観測データとしては日射量、外気温度、外気湿度の3項目で十分である。また、日射がほとんどない室内競技場の場合には、日射吸収熱を考慮しなくてもよく、その場合、気象観測データとしては外気温度及び外気湿度の2項目で十分である。
なお、仮想的熱伝導解析において、熱電対5を埋設した位置の温度は計測によって判っているので、解析モデル上の節点位置に計測温度を代入し計算精度の向上を図ることができる。
一方、初期条件は、下式(9)により与えられる。
基礎方程式に対して通常のGalerkin法を適用し、三節点三角形要素で変数を離散化することにより、以下の有限要素方程式が得られる。
ここで、Mαβ、Sαβ、Ωα(注;α及びβは添字)は質量マトリックス、拡散マトリックス、フラックスベクトルをそれぞれ表し、Δtは微小時間増分である。時間方向の離散化には,Crank-Nicolson法を採用する。
以上の仮想的熱伝導解析により、現時刻での地盤表層領域Xの温度が計算により求められる。
〔ステップ2〕…熱伝導解析
上記仮想的熱伝導解析の結果、求められた地盤表層領域Xの温度を温度制御開始時における地盤表層領域Xの境界条件として設定し、以降は、所定の時間毎、例えば2~3時間に、日射計、外気温度計、外気湿度計の気象データ、及びグローライト10の照射データを境界条件とする熱伝導解析を行い地盤表層領域Xの温度を求めるようにすることができる。熱伝導解析は、仮想的熱伝導解析と同様の計算方法により行うことができる。
上記仮想的熱伝導解析の結果、求められた地盤表層領域Xの温度を温度制御開始時における地盤表層領域Xの境界条件として設定し、以降は、所定の時間毎、例えば2~3時間に、日射計、外気温度計、外気湿度計の気象データ、及びグローライト10の照射データを境界条件とする熱伝導解析を行い地盤表層領域Xの温度を求めるようにすることができる。熱伝導解析は、仮想的熱伝導解析と同様の計算方法により行うことができる。
〔ステップ3〕…最適制御計算による通水計画立案
以上、ステップ2までの手順により、直接、温度計測できない地盤表層領域Xの地温が把握できたことになるため、次の手順としては、地盤表層領域X内に設定した着目点S(図3参照、芝生の育成にとって温度管理が重要となる地表面下数cmの点)が目標温度となるように、温度調節体の調節計画、すなわち本例ではパイプ1に供給される熱媒体の通水計画を立てる。
以上、ステップ2までの手順により、直接、温度計測できない地盤表層領域Xの地温が把握できたことになるため、次の手順としては、地盤表層領域X内に設定した着目点S(図3参照、芝生の育成にとって温度管理が重要となる地表面下数cmの点)が目標温度となるように、温度調節体の調節計画、すなわち本例ではパイプ1に供給される熱媒体の通水計画を立てる。
(熱媒体の制御管理)
本例においては、前述した地温制御対象領域の地温計算結果を基に、例えば有限要素法によって地盤の熱伝導率を考慮しながら空間的及び時間的な温度変化を把握して、着目点Sの目標温度と計算温度との差を最小にするようにパイプ通水温度(熱媒体温度)を求めて地温を制御する。したがって、芝生の育成に最も影響の大きい地盤表層域を適切な温度環境にコントロールすることができる。この場合の熱源供給制御としては、所定時間ごとに高温熱媒体と低温熱媒体とを交互に供給する制御とすることにより、その制御が容易かつ現実的なものとなる。
本例においては、前述した地温制御対象領域の地温計算結果を基に、例えば有限要素法によって地盤の熱伝導率を考慮しながら空間的及び時間的な温度変化を把握して、着目点Sの目標温度と計算温度との差を最小にするようにパイプ通水温度(熱媒体温度)を求めて地温を制御する。したがって、芝生の育成に最も影響の大きい地盤表層域を適切な温度環境にコントロールすることができる。この場合の熱源供給制御としては、所定時間ごとに高温熱媒体と低温熱媒体とを交互に供給する制御とすることにより、その制御が容易かつ現実的なものとなる。
熱媒体の供給にあたっては、ヒートポンプにより区間ごとに冷水と温水とを交互に作り出すことができるが、図5に示されるように、高温側(a温度)の温水を貯留する温水槽30と、低温側(b温度)の冷水を貯留する冷水槽31とを別々に用意しておき、切換制御弁32、33a、33b…より温水槽30と冷水槽31との切り換えを行うことにより、所定時間ごとに一定温度の温水又は冷水を制御遅れなく迅速かつ容易に供給するようにすることができる。また、季節に応じて温水槽30又は冷水槽31の一方側のみを用意して1段階制御を行うこともできる。具体的には夏期には冷水槽31のみを用意し、所定時間はこの冷水槽31から冷水を供給した後、しばらくの間は冷水の供給を停止する操作を繰り返して行うことにより、冷水を供給した際には地盤が冷やされるとともに、供給を停止することにより地温が常温化して温められることになり、地盤表面近傍の地温を周期関数曲線状に変化させることができる。逆に、冬季の場合には温水槽30のみを用意し、所定時間はこの温水槽30から温水の供給を行った後、しばらくの間は温水の供給を停止する操作を繰り返して行うことにより、地盤表面近傍の地温を周期関数曲線状に変化させることができる。
これらの温水又は冷水供給制御に際し、インバータポンプを使用して外部条件の負荷を考慮しながらその供給量を調節することにより、制御応答性(熱交換の応答性)を向上させることもできる。
〔物性値(熱伝導率)の同定〕
次いで、熱伝導率の同定手法を示す。熱伝導率の同定に当り、試料を採取して室内実験により熱伝導率を決定することは容易であるが、地盤の不均一性、含水比の未確定性により原位置での熱伝導率を正確に表しているとは言い難い。また、熱伝導率も地盤中の含水状態で変化するため、解析精度を上げるには、適時、熱伝導率の較正を行う必要がある。
次いで、熱伝導率の同定手法を示す。熱伝導率の同定に当り、試料を採取して室内実験により熱伝導率を決定することは容易であるが、地盤の不均一性、含水比の未確定性により原位置での熱伝導率を正確に表しているとは言い難い。また、熱伝導率も地盤中の含水状態で変化するため、解析精度を上げるには、適時、熱伝導率の較正を行う必要がある。
例えば、不定期又は定期に一時的に、地盤表層領域X又はその近傍域に地中温度計を設置し、この地中温度計によって計測された実測地中温度と、気象データ計測機器によって計測した気象データを境界条件として熱伝導解析により求めた地中温度計埋設位置の計算地中温度とを比較して、その残差を少なくするように熱伝導率の補正を行うことができる(第1の手法)。また、地中温度計を埋設できない条件領域以外の地盤表層領域又はその近傍域、具体的には図1に示されるように、サッカー場の例で言えばゴールポスト裏など競技によって荒らされない芝生領域などに熱伝導率較正用熱電対7を埋設し、この熱伝導率較正用熱電対7によって計測された実測地中温度と、気象データ計測機器によって計測した気象データを境界条件として熱伝導解析により求めた地中温度計埋設位置の計算地中温度とを比較して、その残差を少なくするように熱伝導率を補正することもできる(第2の手法)。
これら熱伝導率の同定に際しては、熱伝導率の推定を逆問題として取扱い、非線型最小二乗法を用いて同定する方法を用いる。すなわち、地盤内で観測された温度の時刻歴を用い、観測点に対応する位置における計算値と計測値との残差を最小にすることにより求める。この場合、計算値と観測値の残差平方和すなわち評価関数の最小化には、Gauss-Newton法を用いる。
地盤構造を図6に示すように、いくつかの層(部分領域)からなるものとし、各層内の熱伝導率は一定、という仮定を用いる。熱伝導率を一般的に書き表せば下式(11)となる。
ここで、λは部分領域に対応する熱伝導率の番号を表し、nは部分領域の総数である。
また、解析領域内に設けられた観測点での温度を次のように表す。
ここで、~は観測値であることを意味し、μは観測点の番号、mは観測点の総数を表す。同様に観測点1~mに対応する節点での計算値を以下のように表しておく。
熱伝導率を求めるための評価関数は、以下に示すように、観測された温度と対応する温度の計算値との残差平方和で表される。
ここに、t0、tfは計算開始時刻、計算終了時刻をそれぞれ表す。この式から分かるように、評価関数は熱伝導率kλの関数であるため、最適な熱伝導率kλは、(14)式を、例えばGauss-Newton法により最小化することにより求めることができる。
また、各パラメータの感度マトリックスは感度方程式法により求める。
増分値Δkλ
iは、以下の式(16)(17)によって求めることができる。
以上の手順により、各領域の熱伝導率を求めることができる。
上述の植生地盤及び装置等の構成を有する実際の競技場のフィールドにおいて、グローライト(ナトリウムランプ)を表1のパターンで照射しながら、以下の(A)の熱伝導解析に基づく地表面下5cmの深さの地中温度を求め、この地中温度が目標地温となるように、地盤の熱伝導率を考慮しながら温度制御を行った。また、同時に(B)の熱伝導解析の結果も求めた。また、地表面下5cmの深さに熱電対を設置し、温度を実測した。
(A) 3時間毎に日射計、外気温度計、外気湿度計の気象データ、並びにグローライトの照射データを境界条件とした熱伝導解析を行った場合(解析値:グローライト考慮あり)。
(B) 3時間毎に日射計、外気温度計、外気湿度計の気象データを境界条件とし、グローライトの照射データを境界条件とせずに熱伝導解析を行った場合(解析値:グローライト考慮なし)。
(A) 3時間毎に日射計、外気温度計、外気湿度計の気象データ、並びにグローライトの照射データを境界条件とした熱伝導解析を行った場合(解析値:グローライト考慮あり)。
(B) 3時間毎に日射計、外気温度計、外気湿度計の気象データを境界条件とし、グローライトの照射データを境界条件とせずに熱伝導解析を行った場合(解析値:グローライト考慮なし)。
上記(A)の熱伝導解析による温度解析値、上記(B)の熱伝導解析による温度解析値、及び実測値のグラフを図8に示した。この結果から明らかなように、グローライトの影響を考慮しない場合、温度解析値は実測値に対して最大で5度程度も異なる結果となった。これに対し、グローライトの影響を考慮した場合、実測値に極めて近い温度解析値を求めることが可能であった。よって、グローライトの影響を考慮した熱伝導解析に基づいて地中温度を求め、この地中温度が目標地温となるように、地盤の熱伝導率を考慮しながら温度制御を行うことで、より高精度での植生地盤の温度制御が可能になることが分かった。
本発明の植生地盤の温度制御方法は、サッカー場、野球場、ゴルフ場などのスポーツ競技場における天然芝生地盤に好適なものであるが、これに限定されず、他の場所における他の植生地盤にも利用できるものである。
1…パイプ、2…細砂層、3…粗砂層、4…玉砂利層、5…熱電対、7…熱伝導率較正用熱電対、9A・9B…気象データ計測機器ユニット、10…グローライト、30…温水層、31…冷水層、32・33a~33f…切換制御弁、40…日射計、41…外気温度計、42…外気湿度計、43…風速計、44…風向計、45…雨量計。
Claims (4)
- 植生地盤上からグローライトを照射しつつ、このグローライトの照射領域の植生地盤内に敷設された、加熱及び冷却の少なくとも一方を行う温度調節体により、地盤表層領域の温度を制御する温度制御方法において、
外気温度及び外気湿度を含む気象データ、並びにグローライトの照射データを境界条件として含む熱伝導解析により、前記地盤表層領域の温度を求め、この地盤表層領域の地中温度が目標地温となるように、地盤の熱伝導率を考慮しながら前記温度調節体を制御する、
ことを特徴とする植生地盤の温度制御方法。 - 前記気象データは、日射計により計測される計測データを含み、
日光の照射環境下で、植生地盤上からグローライトを照射しつつ、このグローライトの照射領域の植生地盤内に敷設された温度調節体により、地盤表層領域の温度を制御する、
請求項1記載の植生地盤の温度制御方法。 - 前記植生地盤を複数の制御ゾーンに区画するとともに、各制御ゾーンに前記温度調節体を独立的に配置し、各制御ゾーンごとに独立して前記地盤表層領域の温度制御を可能とし、
前記制御ゾーンのうち、グローライトを照射する照射ゾーン及びグローライトを照射しない非照射ゾーンを順次切り替えて、前記植生地盤にグローライトを照射するとともに、
前記照射ゾーンの前記温度制御では、前記グローライトの照射データを境界条件として含む熱伝導解析に基づいて前記温度制御を行い、
前記非照射ゾーンの前記温度制御では、前記グローライトの照射データを境界条件として含まないか、又は前記照射ゾーンよりも少ない照射量に補正されたグローライトの照射データを境界条件として含む熱伝導解析に基づいて前記温度制御を行う、
請求項1又は2記載の植生地盤の温度制御方法。 - 前記温度調節体は、前記植生地盤内に敷設されたパイプ中に熱媒体を供給するものであり、このパイプに供給される熱媒体を制御することにより植生地盤の温度制御を行うものである、
請求項1~3のいずれか1項に記載の植生地盤の温度制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19895267.3A EP3895522A4 (en) | 2018-12-14 | 2019-12-11 | METHOD OF CONTROLLING THE TEMPERATURE OF A VEGETATED SOIL |
CN201980082599.9A CN113163718A (zh) | 2018-12-14 | 2019-12-11 | 植被地面的温度控制方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-234109 | 2018-12-14 | ||
JP2018234109A JP7187290B2 (ja) | 2018-12-14 | 2018-12-14 | 植生地盤の温度制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020122094A1 true WO2020122094A1 (ja) | 2020-06-18 |
Family
ID=71077296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/048390 WO2020122094A1 (ja) | 2018-12-14 | 2019-12-11 | 植生地盤の温度制御方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3895522A4 (ja) |
JP (1) | JP7187290B2 (ja) |
CN (1) | CN113163718A (ja) |
WO (1) | WO2020122094A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7403603B1 (ja) | 2022-09-29 | 2023-12-22 | 佐藤工業株式会社 | 計測器ホルダーおよび環境データ計測機器ユニット |
JP7370436B1 (ja) * | 2022-09-29 | 2023-10-27 | 佐藤工業株式会社 | 植生地盤の温度制御方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH082216B2 (ja) * | 1989-07-11 | 1996-01-17 | 鹿島建設株式会社 | 芝生生育環境制御装置 |
JPH08196140A (ja) | 1995-01-30 | 1996-08-06 | Mutsuto Kawahara | 植生地盤の温度制御方法 |
JPH1048054A (ja) | 1996-08-05 | 1998-02-20 | Sato Kogyo Co Ltd | 地中温度計測方法および植生地盤の温度制御方法 |
JPH10313676A (ja) * | 1997-05-15 | 1998-12-02 | Sato Kogyo Co Ltd | 芝生育成制御方法、芝生グラウンドの温度制御方法および芝生グラウンド管理装置 |
JP2002084888A (ja) | 2000-09-18 | 2002-03-26 | Sato Kogyo Co Ltd | 植生地盤の温度制御方法 |
JP2016054667A (ja) * | 2014-09-08 | 2016-04-21 | エスペック株式会社 | 植物栽培装置及び植物栽培装置用の空調装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2629128B2 (ja) * | 1993-09-20 | 1997-07-09 | 鹿島建設株式会社 | 芝育成用照明装置 |
US20010035468A1 (en) * | 2000-03-20 | 2001-11-01 | Santa Cruz Cathy D. | Portable accelerated growth system for vegetation |
JP2004229509A (ja) * | 2003-01-28 | 2004-08-19 | Sato Kogyo Co Ltd | 植生地盤の温度制御方法 |
CN103098693A (zh) * | 2013-02-06 | 2013-05-15 | 惠州伟志电子有限公司 | 微型led植物工厂 |
CN104932435A (zh) * | 2014-03-17 | 2015-09-23 | 上海市上海中学 | 调节室内植物生长环境的智能系统及其控制方法 |
-
2018
- 2018-12-14 JP JP2018234109A patent/JP7187290B2/ja active Active
-
2019
- 2019-12-11 EP EP19895267.3A patent/EP3895522A4/en active Pending
- 2019-12-11 CN CN201980082599.9A patent/CN113163718A/zh not_active Withdrawn
- 2019-12-11 WO PCT/JP2019/048390 patent/WO2020122094A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH082216B2 (ja) * | 1989-07-11 | 1996-01-17 | 鹿島建設株式会社 | 芝生生育環境制御装置 |
JPH08196140A (ja) | 1995-01-30 | 1996-08-06 | Mutsuto Kawahara | 植生地盤の温度制御方法 |
JPH1048054A (ja) | 1996-08-05 | 1998-02-20 | Sato Kogyo Co Ltd | 地中温度計測方法および植生地盤の温度制御方法 |
JPH10313676A (ja) * | 1997-05-15 | 1998-12-02 | Sato Kogyo Co Ltd | 芝生育成制御方法、芝生グラウンドの温度制御方法および芝生グラウンド管理装置 |
JP2002084888A (ja) | 2000-09-18 | 2002-03-26 | Sato Kogyo Co Ltd | 植生地盤の温度制御方法 |
JP2016054667A (ja) * | 2014-09-08 | 2016-04-21 | エスペック株式会社 | 植物栽培装置及び植物栽培装置用の空調装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3895522A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7187290B2 (ja) | 2022-12-12 |
CN113163718A (zh) | 2021-07-23 |
JP2020092676A (ja) | 2020-06-18 |
EP3895522A4 (en) | 2022-10-05 |
EP3895522A1 (en) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ahamed et al. | Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses | |
Rahman et al. | Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions | |
Razzaghmanesh et al. | Thermal performance investigation of a living wall in a dry climate of Australia | |
Givoni | Cooled soil as a cooling source for buildings | |
WO2020122094A1 (ja) | 植生地盤の温度制御方法 | |
Gao et al. | The use of water irrigation to mitigate ambient overheating in the built environment: Recent progress | |
Widiastuti et al. | Performance evaluation of vertical gardens | |
JP2004229509A (ja) | 植生地盤の温度制御方法 | |
JP3202608B2 (ja) | 地中温度計測方法および植生地盤の温度制御方法 | |
Kempkes et al. | Heating system position and vertical microclimate distribution in chrysanthemum greenhouse | |
JP3515504B2 (ja) | 植生地盤の温度制御方法 | |
JP7370436B1 (ja) | 植生地盤の温度制御方法 | |
KR101209125B1 (ko) | 동절기 잔디 보호를 위한 지중 온도조절 시스템 | |
Perdigones et al. | Effect of heating control strategies on greenhouse energy efficiency: Experimental results and modeling | |
Mesmoudi et al. | Assessing the daily evolution of the climate inside a greenhouse under semi-arid conditions using field surveys and CFD modelling | |
JPH10313676A (ja) | 芝生育成制御方法、芝生グラウンドの温度制御方法および芝生グラウンド管理装置 | |
KR101311650B1 (ko) | 실외 실험적 온난화 시스템 | |
JP7403603B1 (ja) | 計測器ホルダーおよび環境データ計測機器ユニット | |
Leroux et al. | The Canadian Integrated Northern Greenhouse: A Hybrid Solution for Food Security | |
Sciuto et al. | Numerical simulation of a typical bioclimate greenhouse in winter on cloudy days | |
Betts | Diurnal cycle | |
Elwell et al. | Heat and moisture transfer in heated greenhouse soils and floors | |
Veronica et al. | CONTRIBUTIONS ABOUT THE ENERGY EFFICIENCY USING GREEN ROOFS FOR A SPECIFIC OFFICES BUILDINGS IN OLTENIA | |
Tarafdar et al. | Clothing Urban Heat Islands with a Vegetative Cover to Combat Climate Change | |
Shashua-Bar et al. | Water use considerations and cooling effects of urban landscape strategies in a hot dry region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19895267 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019895267 Country of ref document: EP Effective date: 20210714 |