WO2020121750A1 - 車両の制御装置及び車両の制御方法 - Google Patents

車両の制御装置及び車両の制御方法 Download PDF

Info

Publication number
WO2020121750A1
WO2020121750A1 PCT/JP2019/045249 JP2019045249W WO2020121750A1 WO 2020121750 A1 WO2020121750 A1 WO 2020121750A1 JP 2019045249 W JP2019045249 W JP 2019045249W WO 2020121750 A1 WO2020121750 A1 WO 2020121750A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
shift
stepwise
upshift
rotation speed
Prior art date
Application number
PCT/JP2019/045249
Other languages
English (en)
French (fr)
Inventor
宗桓 李
知明 本間
石川 洋平
詔生 浅井
佑介 牛久保
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020559885A priority Critical patent/JP7064621B2/ja
Publication of WO2020121750A1 publication Critical patent/WO2020121750A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • a continuously variable transmission capable of continuously changing the output rotation of a drive source is stepwise (stepwise) between a plurality of preset shift speeds. Upshift control is disclosed.
  • step shifting The control is executed when the driver depresses the accelerator pedal to accelerate the vehicle, and performs upshifting stepwise (hereinafter, stepwise upshifting is also referred to as “step shifting”). is there. Therefore, the driving force (torque) transmitted to the driving wheels gradually decreases as the vehicle speed increases.
  • the driving force decreases stepwise during the sequence of the step shift. It is possible that the moment you stall it will stall and the feeling of acceleration will slow down.
  • the running resistance it is possible to calculate the running resistance and predict the stall of the vehicle to prohibit the gradual upshift. In this case, it is possible to deal with it in advance.
  • one of the parameters of the running resistance is the vehicle weight, which varies depending on the number of people to be loaded and the weight of luggage to be loaded, resulting in poor accuracy.
  • a method of estimating the running resistance using only measurable parameters such as the gradient angle is also conceivable, but it is only estimation and the accuracy is poor.
  • the present invention has been made in view of such a technical problem, and an object of the present invention is to accurately and more reliably suppress sudden stalling during a step shift.
  • a control device for a vehicle that controls a vehicle having a continuously variable transmission is configured to perform a stepwise upshift of the continuously variable transmission to accelerate the vehicle.
  • a control unit is provided that prohibits the stepwise shift based on the rate of change of the output shaft rotation speed with time, the speed ratio of the continuously variable transmission at the present time point, and the speed ratio of the continuously variable transmission after the upshift.
  • a vehicle control method for controlling a vehicle having a continuously variable transmission wherein the continuously variable transmission is upshifted in a stepwise manner to accelerate the vehicle.
  • the stepwise shift is prohibited on the basis of the temporal change rate of the output shaft rotation speed, the current gear ratio of the continuously variable transmission, and the gear ratio after the upshift of the continuously variable transmission.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a shift map and shift lines according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a change in driving force in the vehicle according to the embodiment of the present invention.
  • FIG. 4 is a flowchart of shift control according to the embodiment of the present invention.
  • FIG. 5 is a timing chart of the shift control according to the embodiment of the present invention.
  • FIG. 6 is a timing chart of the shift control according to the modified example of the embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a vehicle 100.
  • the vehicle 100 includes an engine 1, an automatic transmission 3 as a continuously variable transmission, an oil pump 5, drive wheels 6, and a controller 10 as a control device.
  • the engine 1 is an internal combustion engine that uses gasoline, light oil, etc. as fuel, and functions as a drive source for traveling.
  • the engine 1 is controlled in rotation speed, torque, etc. based on a command from the controller 10.
  • the automatic transmission 3 includes a torque converter 2, a fastening element 31, a belt type continuously variable transmission mechanism (hereinafter, also referred to as “CVT") 30, and a hydraulic control valve unit 40 (hereinafter, simply “valve unit 40"). (Also referred to as “.”) and an oil pan 32 that stores oil (operating oil).
  • CVT continuously variable transmission mechanism
  • valve unit 40 hydraulic control valve unit 40
  • the torque converter 2 is provided on the power transmission path between the engine 1 and the drive wheels 6.
  • the torque converter 2 transmits power via fluid. Further, the torque converter 2 can enhance the power transmission efficiency of the driving force from the engine 1 by engaging the lockup clutch 2a.
  • the fastening element 31 is arranged on the power transmission path between the torque converter 2 and the CVT 30.
  • the fastening element 31 is controlled by the oil whose pressure is adjusted by the valve unit 40 with the discharge pressure of the oil pump 5 as the original pressure, based on a command from the controller 10.
  • a normally open wet multi-plate clutch is used as the fastening element 31, for example.
  • the fastening element 31 is composed of a forward clutch and a reverse brake (not shown).
  • the CVT 30 is arranged on the power transmission path between the engagement element 31 and the drive wheels 6, and the gear ratio can be continuously changed according to the vehicle speed, the accelerator opening degree, and the like.
  • the CVT 30 includes a primary pulley 30a, a secondary pulley 30b, and a belt 30c wound around the pulleys 30a and 30b.
  • the pulley pressure acting on the primary pulley 30a and the pulley pressure acting on the secondary pulley 30b are regulated by the valve unit 40 with the discharge pressure from the oil pump 5 as the original pressure.
  • the differential 12 is connected to the output shaft of the secondary pulley 30b of the CVT 30 via a final reduction gear mechanism (not shown).
  • Drive wheels 6 are connected to the differential 12 via a drive shaft 13.
  • the oil pump 5 is driven by the rotation of the engine 1 transmitted via a belt.
  • the oil pump 5 is composed of, for example, a vane pump.
  • the oil pump 5 sucks up the oil stored in the oil pan 32 and supplies the oil to the valve unit 40.
  • the oil supplied to the valve unit 40 is used for driving the pulleys 30a and 30b, driving the fastening element 31, and lubricating each element of the automatic transmission 3.
  • the controller 10 is composed of a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input/output interface (I/O interface).
  • the controller 10 can also be composed of a plurality of microcomputers.
  • the controller 10 may be configured by an ATCU that controls the automatic transmission 3, an SCU that controls the shift range, an ECU that controls the engine 1, and the like.
  • the control unit in the present embodiment is a virtual unit having a function of executing stepwise shift control, which will be described later, of the controller 10.
  • a third rotation speed sensor 53 that detects the rotation speed Nsec of the pulley 30b, a vehicle speed sensor 54 that detects the vehicle speed V, and a select range of the CVT 30 (a state of a select lever or a select switch that switches between forward, reverse, neutral, and parking).
  • Signals are input from an inhibitor switch 55, an accelerator opening sensor 56 that detects an accelerator opening, a pedaling force sensor 57 that detects a pedaling force of a brake, an atmospheric pressure sensor 58 that detects an atmospheric pressure, and a gradient sensor 59 that detects a road gradient. It The controller 10 controls various operations of the engine 1, the lockup clutch 2a of the torque converter 2, and the automatic transmission 3 based on these input signals.
  • step shift control by the automatic transmission 3
  • the shift control for upshifting the automatic transmission 3 stepwise between a plurality of preset shift stages.
  • stepwise shift control the shift control for upshifting stepwise (stepwise) is referred to as “stepwise shift control”.
  • stepwise shift control the shift control for upshifting stepwise (stepwise) is referred to as “stepwise shift control”.
  • the shift map shown in FIG. 2 is stored in the controller 10 in advance. Based on the shift map shown in FIG. 2, the controller 10 operates the vehicle 100 (in this embodiment, the vehicle speed V, the primary rotation speed Npri, The CVT 30 is controlled according to the accelerator opening APO). Note that, although FIG. 2 shows only the shift line L1 at a certain accelerator opening APO as an example of the stepwise shift control of the present embodiment, in reality, a plurality of shift lines set for each accelerator opening APO are shown. Exists.
  • the operating point of the automatic transmission 3 is defined by the vehicle speed V and the primary rotation speed Npri.
  • the automatic transmission 3 can perform gear shifting in a region between the highest line obtained by setting the gear ratio of CTV 30 to the lowest gear ratio and the highest line obtained by setting the gear ratio of CTV 30 to the highest gear ratio.
  • the controller 10 performs a normal shift when the accelerator opening APO is smaller than the step shift start opening corresponding to the vehicle speed V, and when the accelerator opening APO is equal to or larger than the step shift start opening corresponding to the vehicle speed V. Shift gears.
  • the step shift start opening is an accelerator opening that is preset according to the vehicle speed V, and is set to a magnitude that is determined to be intended by the driver for acceleration.
  • the shift is performed based on the shift line set for each accelerator opening APO.
  • the shift suppression phase and the upshift phase are repeatedly performed.
  • the rate of change in the gear ratio (the amount of change in the gear ratio per unit time) is zero, and the vehicle speed V increases as the engine speed (primary speed Npri) increases.
  • the rate of change of the gear ratio may be set to be larger than zero. In this case, the rate of change of the gear ratio is set to a range in which the primary rotation speed Npri does not decrease as the vehicle speed V increases during the gear shift suppression phase.
  • the gear ratio is gradually changed to the High side.
  • the rate of change of the gear ratio in the upshift phase is set within a range in which the primary rotation speed Npri decreases as the vehicle speed V increases.
  • the gear shift in the step gear shift control becomes a gear shift form in which the primary rotation speed Npri is repeatedly increased and decreased as shown in FIG.
  • the upshift phase is executed when the primary rotation speed Npri reaches the first predetermined rotation speed set for each accelerator opening APO, and the second predetermined set for each accelerator opening APO according to the vehicle speed V.
  • the shift suppression phase is executed.
  • the first predetermined rotation speed and the second predetermined rotation speed are values set in advance so as to be on the upshift side as the vehicle speed V increases.
  • a line connecting the first predetermined rotation speeds corresponding to each vehicle speed V is shown as a line L2
  • a line connecting the second predetermined rotation speeds corresponding to each vehicle speed V is shown as a line L3.
  • the primary rotation speed Npri (engine rotation speed) gradually increases as the vehicle speed V increases.
  • this stepwise shift control is executed when the driver depresses the accelerator pedal to accelerate the vehicle 100, and the stepwise upshift is performed.
  • the driving force (torque) transmitted to the drive wheels 6 gradually decreases as the vehicle speed V increases, in other words, as the vehicle shifts up, as shown in FIG. To go.
  • the step shift control of the present embodiment the step shift is prohibited when the vehicle 100 is predicted to stall due to the upshift.
  • the step shift control of the present embodiment will be specifically described below with reference to the flowchart shown in FIG.
  • the stepwise shift control of this embodiment is executed based on a program stored in the controller 10 in advance.
  • step S1 it is determined whether or not the acceleration ⁇ is a predetermined value A or more. Specifically, the controller 10 obtains the acceleration ⁇ from the vehicle speed V detected by the vehicle speed sensor 54 and determines whether or not the acceleration ⁇ is equal to or higher than a predetermined value A. If it is determined that the acceleration ⁇ is equal to or greater than the predetermined value A, the process proceeds to step S2, and the step shift control is instructed. On the other hand, if it is determined that the acceleration ⁇ is less than the predetermined value A, the process proceeds to step S6, and normal shift control is executed.
  • step S3 the controller 10 determines whether the vehicle speed change rate estimated value ⁇ Vs is equal to or greater than the threshold value V1.
  • the estimated vehicle speed change rate ⁇ Vs will be specifically described.
  • the ⁇ V, Rn, and Rp will be described below.
  • the vehicle speed change rate ⁇ V is the time change rate of the output shaft rotation speed of the automatic transmission 3 during the stepwise shift.
  • the vehicle speed change rate ⁇ V is a value obtained by differentiating the rotation speed Nsec of the secondary pulley 30b detected by the third rotation speed sensor 53 with respect to time. Since the rotation speed Nsec of the secondary pulley 30b is proportional to the vehicle speed V, ⁇ V is a parameter proportional to the temporal change rate of the vehicle speed V.
  • the change over time of the vehicle speed V includes all factors such as changes in vehicle weight, road gradient, and running resistance. Therefore, ⁇ V is a parameter that reflects changes in all of these factors.
  • the actual gear ratio Rn is the gear ratio of the current CVT 30.
  • the actual gear ratio Rn is calculated based on the rotation speed Npri of the primary pulley 30a detected by the second rotation speed sensor 52 and the rotation speed Nsec of the secondary pulley 30b detected by the third rotation speed sensor 53. ..
  • the gear ratio Rp after the upshift is the gear ratio of the CVT 30 when the upshift is performed at the present time.
  • the gear ratio at the intersection C between the vehicle speed Va and the second predetermined rotational speed line L3 corresponds to the after-upshift gear ratio Rp.
  • the driving force of the vehicle 100 is proportional to the vehicle speed change rate ⁇ V. Therefore, the vehicle speed change rate estimated value ⁇ Vs also becomes a value proportional to the driving force after the upshift. Therefore, in step S3, it is possible to determine whether or not the driving force after the upshift is insufficient by determining whether or not the estimated vehicle speed change rate ⁇ Vs is equal to or more than the threshold value V1.
  • step S3 If it is determined in step S3 that the vehicle speed change rate estimated value ⁇ Vs is equal to or more than the threshold value V1, the process proceeds to step S4, and if it is determined that the vehicle speed change rate estimated value ⁇ Vs is less than the threshold value V1, the process proceeds to step S5.
  • step S3 if the estimated vehicle speed change rate ⁇ Vs is equal to or more than the threshold value V1 for a predetermined time, the process may proceed to step S4. This can prevent the influence of noise and erroneous determination.
  • step S4 execution of stepped shifting is permitted.
  • the controller 10 executes the stepwise shift (shifts to the upshift phase).
  • step S5 execution of stepped shifting is prohibited. Even if the primary rotation speed Npri reaches the first predetermined rotation speed set for each accelerator opening APO, the controller 10 does not execute the stepped shift (does not shift to the upshift phase), that is, maintains the shift suppression phase. .. Specifically, the controller 10 performs control so as to maintain the gear ratio R at that time.
  • control may be performed so as to shift along the line L2 when the primary rotation speed Npri reaches the first predetermined rotation speed. This can prevent the feeling of acceleration from being impaired.
  • the vehicle speed change is based on the temporal change rate (vehicle speed change rate ⁇ V) of the vehicle speed V, the actual gear ratio Rn, and the gear ratio Rp after the upshift when the upshift is performed at the present time.
  • the estimated rate value ⁇ Vs is calculated, and based on the estimated vehicle speed change rate value ⁇ Vs, it is determined whether the driving force after the upshift is insufficient.
  • the second predetermined rotation speed is set to be on the upshift side as the vehicle speed V increases. Therefore, even if the upshift is performed up to the second predetermined rotation speed at the present time, the gear ratio R does not go to the Low side. Therefore, if the vehicle speed change rate estimated value ⁇ Vs is less than the threshold value V1 at the present time, the vehicle speed change rate estimated value ⁇ Vs will be less than the threshold value V1 even after the next step shift. That is, if the estimated vehicle speed change rate ⁇ Vs at the present time is less than the threshold value V1, the driving force will be insufficient after the next upshift.
  • the vehicle speed change rate estimated value ⁇ Vs is a parameter that reflects all the factors such as changes in vehicle weight, road gradient, and running resistance, as described above, so it is possible to accurately predict changes in driving force. it can.
  • the controller 10 executes the stepwise shift control. Specifically, the controller 10 controls the primary rotation speed Npri (engine rotation speed) along the shift line set for each accelerator opening APO stored in advance. Further, the controller 10 calculates the vehicle speed change rate estimated value ⁇ Vs and determines whether ⁇ Vs is equal to or greater than the threshold value V1.
  • the upshift phase is entered and the stepwise shift is executed. Specifically, the controller 10 switches the gear ratio R to the High side stepwise along the shift line L1 shown in FIG. Then, when the primary rotation speed Npri reaches the second predetermined rotation speed, the controller 10 shifts to the shift suppression phase and increases the primary rotation speed Npri (engine rotation speed) while maintaining the gear ratio. After that, the upshift phase and the shift suppression phase are repeatedly executed until time t5.
  • the controller 10 prohibits execution of stepped shift (shift to upshift phase). At this time, the controller 10 continues the shift suppression phase. Specifically, the controller 10 increases only the primary rotation speed Npri (engine rotation speed) while maintaining the gear ratio R.
  • the controller 10 does not perform the stepwise shift (does not shift to the upshift phase) and maintains the gear ratio R as it is.
  • the thick dotted line in the instruction value of the primary rotation speed in FIG. 5 indicates the case where the stepped shift is executed.
  • the driving force after the upshift is based on the temporal change rate of the vehicle speed V (vehicle speed change rate ⁇ V), the actual gear ratio Rn, and the gear ratio Rp after the upshift. Predict whether there will be a shortage.
  • V vehicle speed change rate
  • Rn gear ratio
  • Rp gear ratio
  • the controller 10 prohibits execution of the stepped shift (transition to the upshift phase). At this time, the controller 10 continues the shift suppression phase and activates a timer (not shown). Then, when the accelerator pedal is continuously depressed at a predetermined accelerator opening or more for a predetermined time, the controller 10 gradually downshifts the CVT 30 and increases the input rotation of the CVT 30 (the rotation speed Ne of the engine 1). (Time t17). Thereby, the vehicle 100 can be accelerated.
  • the controller 10 causes the continuously variable transmission (CVT 30) to be upshifted in a stepwise manner to accelerate the vehicle 100, and during the stepwise shift, the output shaft rotation speed during the stepwise shift (the rotation speed Nsec of the secondary pulley 30b).
  • Change rate vehicle speed change rate ⁇ V
  • the current gear ratio R actual gear ratio Rn
  • a control unit that prohibits the stepped shift.
  • the controller 10 predicts a stall due to a sudden decrease in driving force associated with a step shift, and prohibits the step shift when a stall is predicted, whereby it is possible to suppress a sudden stall during the step shift. Further, the temporal change rate (vehicle speed change rate ⁇ V) of the output shaft rotation speed (rotation speed Nsec of the secondary pulley 30b) during the stepwise shift, and the current speed change ratio R (actual speed change ratio) of the continuously variable transmission (CVT30). Rn) and the gear ratio Rp after the upshift of the continuously variable transmission (CVT 30) are predicted to be insufficient, so that a stepwise upshift is performed when the actual acceleration of the vehicle 100 falls below a predetermined value. Compared with the case of prohibiting, it is possible to more accurately and more surely prevent the sudden stall during the step shift.
  • the gear ratio Rp after the upshift is determined based on the shift line that is set to the upshift side as the vehicle speed V increases.
  • the shift line is changed according to the accelerator opening.
  • the controller 10 (control unit) performs stepwise downshifting after prohibiting the stepwise shifting and increases the input rotation of the continuously variable transmission (CVT30).
  • the driver is requesting acceleration when performing a stepped shift. Therefore, the driver's acceleration request can be satisfied by downshifting and increasing the output of the drive source (engine 1) after the step shift is prohibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)

Abstract

コントローラは、CVTを段階的にアップシフトさせて車両を加速させる段階変速中に、段階変速中の出力軸回転速度の時間的変化率と、CVTの現時点での変速比と、CVTのアップシフト後変速比と、に基づき、段階変速を禁止する。

Description

車両の制御装置及び車両の制御方法
 本発明は、車両の制御装置及び車両の制御方法に関する。
 WO2015/046353A1には、無段変速機の制御方法として、駆動源の出力回転を無段階に変速可能な無段変速機を予め設定された複数の変速段同士の間でステップ的(段階的)にアップシフトする制御が開示されている。
 当該制御はドライバがアクセルペダルを踏んで加速する際に実行されるものであり、段階的にアップシフトをしていくもの(以下では、段階的なアップシフトを「段階変速」ともいう。)である。このため、駆動輪に伝達される駆動力(トルク)は車速が増加するにつれて段階的に減少していくことになる。
 そのため、駆動輪に大きな負荷(例えば、道路勾配の大きい登坂路等)がかかるなど、車両の走行抵抗が高まる要因がある場合に、段階変速のシーケンス途中で駆動力(トルク)が段階的に下がった瞬間に失速し加速感が鈍化してしまうことが考えられる。
 このような状況に対応するために、例えば、実際の車両の加速度が所定値を下回った時に段階的アップシフトを禁止することが考えられる。しかしながら、この場合には、実際に駆動力が足りなくなった後の処理であるので対処として遅きに失するおそれがある。
 そこで、例えば、走行抵抗などを計算して車両の失速を予測して段階的アップシフトを禁止することが考えられる。この場合は、事前に対処が可能となる。しかしながら、走行抵抗のパラメータの一つには車重があり、搭載人数や搭載荷物の重量により変動するため、精度が悪い。また、勾配角度などの計測可能なパラメータのみで走行抵抗を推定する方法も考えられるが、あくまで推定であり精度が悪い。
 本発明は、このような技術的課題に鑑みてなされたもので、段階変速中に急激に失速することを精度良く、より確実に抑制することを目的とする。
 本発明のある態様によれば、無段変速機を有する車両を制御する車両の制御装置は、無段変速機を段階的にアップシフトさせて車両を加速させる段階変速中に、段階変速中の出力軸回転速度の時間的変化率と、無段変速機の現時点での変速比と、無段変速機のアップシフト後変速比と、に基づき、段階変速を禁止する制御部を有する。
 本発明の別の態様によれば、無段変速機を有する車両を制御する車両の制御方法は、無段変速機を段階的にアップシフトさせて車両を加速させる段階変速中に、段階変速中の出力軸回転速度の時間的変化率と、無段変速機の現時点での変速比と、無段変速機のアップシフト後変速比と、に基づき、段階変速を禁止する。
 これらの態様によれば、段階変速中に急激に失速することを精度良く、より確実に抑制できる。
図1は、本発明の実施形態に係る車両の概略構成図である。 図2は、本発明の実施形態に係る変速マップ及び変速線の一例を示す図である。 図3は、本発明の実施形態に係る車両における駆動力の変化を示す図である。 図4は、本発明の実施形態に係る変速制御のフローチャートである。 図5は、本発明の実施形態に係る変速制御のタイミングチャートである。 図6は、本発明の実施形態の変形例に係る変速制御のタイミングチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、車両100の概略構成図である。車両100は、エンジン1と、無段変速機としての自動変速機3と、オイルポンプ5と、駆動輪6と、制御装置としてのコントローラ10と、を備える。
 エンジン1は、ガソリン、軽油等を燃料とする内燃機関であり、走行用駆動源として機能する。エンジン1は、コントローラ10からの指令に基づいて、回転速度、トルク等が制御される。
自動変速機3は、トルクコンバータ2と、締結要素31と、ベルト式無段変速機構(以下、「CVT」ともいう。)30と、油圧コントロールバルブユニット40(以下では、単に「バルブユニット40」ともいう。)と、オイル(作動油)を貯留するオイルパン32と、を備える。
 トルクコンバータ2は、エンジン1と駆動輪6の間の動力伝達経路上に設けられる。トルクコンバータ2は、流体を介して動力を伝達する。また、トルクコンバータ2は、ロックアップクラッチ2aを締結することで、エンジン1からの駆動力の動力伝達効率を高めることができる。
 締結要素31は、トルクコンバータ2とCVT30の間の動力伝達経路上に配置される。締結要素31は、コントローラ10からの指令に基づき、オイルポンプ5の吐出圧を元圧としてバルブユニット40によって調圧されたオイルによって制御される。締結要素31としては、例えば、ノーマルオープンの湿式多板クラッチが用いられる。締結要素31は、図示しない前進クラッチ及び後進ブレーキによって構成される。
 CVT30は、締結要素31と駆動輪6との間の動力伝達経路上に配置され、車速やアクセル開度等に応じて変速比を無段階に変更することができる。CVT30は、プライマリプーリ30aと、セカンダリプーリ30bと、両プーリ30a,30bに巻き掛けられたベルト30cと、を備える。プーリ圧によりプライマリプーリ30aの可動プーリとセカンダリプーリ30bの可動プーリとを軸方向に動かし、ベルト30cのプーリ接触半径を変化させることで、変速比を無段階に変更することができる。なお、プライマリプーリ30aに作用するプーリ圧及びセカンダリプーリ30bに作用するプーリ圧は、オイルポンプ5からの吐出圧を元圧としてバルブユニット40によって調圧される。
 CVT30のセカンダリプーリ30bの出力軸には、図示しない終減速ギア機構を介してディファレンシャル12が接続される。ディファレンシャル12には、ドライブシャフト13を介して駆動輪6が接続される。
 オイルポンプ5は、エンジン1の回転がベルトを介して伝達されることによって駆動される。オイルポンプ5は、例えばベーンポンプによって構成される。オイルポンプ5は、オイルパン32に貯留されるオイルを吸い上げ、バルブユニット40にオイルを供給する。バルブユニット40に供給されたオイルは、各プーリ30a,30bの駆動や、締結要素31の駆動、自動変速機3の各要素の潤滑などに用いられる。
 コントローラ10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ10は、複数のマイクロコンピュータで構成することも可能である。具体的には、コントローラ10は、自動変速機3を制御するATCU、シフトレンジを制御するSCU、エンジン1の制御を行うECU等によって構成することもできる。なお、本実施形態における制御部とは、コントローラ10の後述する段階変速制御を実行する機能を仮想的なユニットとしたものである。
 コントローラ10には、エンジン1の回転速度Neを検出する第1回転速度センサ51、締結要素31の出力回転速度Nout(=プライマリプーリ30aの回転速度Npri)を検出する第2回転速度センサ52、セカンダリプーリ30bの回転速度Nsecを検出する第3回転速度センサ53、車速Vを検出する車速センサ54、CVT30のセレクトレンジ(前進、後進、ニュートラル及びパーキングを切り替えるセレクトレバー又はセレクトスイッチの状態)を検出するインヒビタスイッチ55、アクセル開度を検出するアクセル開度センサ56、ブレーキの踏力を検出する踏力センサ57、気圧を検出する気圧センサ58、及び道路勾配を検出する勾配センサ59等からの信号が入力される。コントローラ10は、入力されるこれらの信号に基づき、エンジン1、トルクコンバータ2のロックアップクラッチ2a、自動変速機3の各種動作を制御する。
 次に、自動変速機3による段階変速制御について説明する。本実施形態では、加速時において、加速度αが所定値A以上である場合に、自動変速機3を予め設定された複数の変速段同士の間でステップ的(段階的)にアップシフトする変速制御を行う(以下では、ステップ的(段階的)にアップシフトする変速制御を「段階変速制御」という。)。以下に、本実施形態の段階変速制御について説明する。
  コントローラ10内には、予め図2に示す変速マップが記憶されており、コントローラ10は、図2に示す変速マップに基づき、車両100の運転状態(本実施形態では車速V、プライマリ回転速度Npri、アクセル開度APO)に応じて、CVT30を制御する。なお、図2では、本実施形態の段階変速制御の一例として、あるアクセル開度APOでの変速線L1のみを示しているが、実際にはアクセル開度APO毎に設定された複数の変速線が存在する。
  変速マップは、自動変速機3の動作点が車速Vとプライマリ回転速度Npriとにより定義される。自動変速機3はCTV30の変速比を最Low変速比にして得られる最Low線とCTV30の変速比を最High変速比にして得られる最High線の間の領域で変速することができる。
  コントローラ10は、アクセル開度APOが車速Vに応じた段階変速開始開度よりも小さい場合に通常変速を行い、アクセル開度APOが車速Vに応じた段階変速開始開度以上となった場合に段階変速を行う。段階変速開始開度は、車速Vに応じて予め設定されたアクセル開度であって、運転者が加速を意図していると判断される大きさに設定される。
  通常変速では、従来のベルト式無段変速機の変速マップと同様に、アクセル開度APO毎に設定された変速線に基づいて変速が行われる。
  段階変速では、変速抑制フェーズと、アップシフトフェーズとが繰り返し行われる。
  変速抑制フェーズでは、変速比の変化率(単位時間あたりの変速比の変化量)はゼロであり、エンジン回転速度(プライマリ回転速度Npri)の上昇に伴って車速Vが上昇する。なお、変速抑制フェーズにおいて、変速比の変化率をゼロよりも大きくしてもよい。この場合、変速比の変化率は、変速抑制フェーズ中に車速Vの増加に伴い、プライマリ回転速度Npriが低下することがない範囲に設定される。
  アップシフトフェーズでは、変速比が段階的にHigh側に変更される。アップシフトフェーズにおける変速比の変化率は、車速Vの増加に伴い、プライマリ回転速度Npriが低下する範囲に設定される。
  変速抑制フェーズとアップシフトフェーズにおける変速比の変化率を上述のように設定することで、段階変速制御における変速は、図2に示すようにプライマリ回転速度Npriの増減を繰り返す変速形態となる。
  段階変速制御では、プライマリ回転速度Npriがアクセル開度APO毎に設定された第1所定回転速度になるとアップシフトフェーズが実行され、車速Vに応じてアクセル開度APO毎に設定された第2所定回転速度になるまでアップシフトされた後は、変速抑制フェーズが実行される。なお、第1所定回転速度及び第2所定回転速度は、車速Vが上がるにつれてアップシフト側になるように予め設定された値である。図2では、各車速Vに対応する第1所定回転速度を結んだ線を線L2とし、各車速Vに対応する第2所定回転速度を結んだ線を線L3として示している。
 変速抑制フェーズでは、車速Vの上昇とともにプライマリ回転速度Npri(エンジン回転速度)が徐々に高くなる。
 この段階変速制御は、上述のように、ドライバがアクセルペダルを踏んで車両100の加速を行う際に実行されるものであり、段階的にアップシフトをしていくものである。この段階変速においては、駆動輪6に伝達される駆動力(トルク)は、図3に示すように、車速Vが増加するにつれて、別の言い方をすると、アップシフトするにつれて、段階的に減少していく。
 駆動輪6に大きな負荷(例えば、道路勾配の大きい登坂路に差し掛かる等)がかかるなど、車両100の走行抵抗が高まる要因がある場合に、段階的にアップシフトしてしまうと、駆動力(トルク)が急激に下がり、車両100が急激に失速してしまう(意図せず減速してしまう)おそれがある。
 そこで、本実施形形態の段階変速制御では、アップシフトによって車両100が失速することが予測される場合には、段階変速を禁止する。以下に、図4に示すフローチャートを参照しながら、本実施形態の段階変速制御について具体的に説明する。本実施形態の段階変速制御は、コントローラ10にあらかじめ記憶されたプログラムに基づいて実行される。
 まず、ステップS1において、加速度αが所定値A以上であるか否かを判定する。具体的には、コントローラ10は、車速センサ54によって検出された車速Vから加速度αを求め、加速度αが所定値A以上であるか否かを判定する。加速度αが所定値A以上であると判定されれば、ステップS2に進み、段階変速制御を指示する。これに対し、加速度αが所定値A未満であると判定されれば、ステップS6に進み、通常の変速制御を実行する。
 ステップS3では、コントローラ10は、車速変化率推定値ΔVsが閾値V1以上であるか否かを判定する。
 ここで、車速変化率推定値ΔVsについて具体的に説明する。車速変化率推定値ΔVsは、ΔVs=ΔV×Rn/Rp・・・(式1)によって求められた値である。以下に、ΔV、Rn、Rpについて説明する。
 車速変化率ΔVは、段階変速中の自動変速機3の出力軸回転速度の時間的変化率である。具体的には、車速変化率ΔVは、第3回転速度センサ53によって検出されたセカンダリプーリ30bの回転速度Nsecを時間で微分した値である。なお、セカンダリプーリ30bの回転速度Nsecは車速Vに比例するので、ΔVは、車速Vの時間的変化率に比例するパラメータとなる。車速Vの時間的変化は、車重、道路勾配、走行抵抗の変化などの全ての要因を含んでいる。したがって、ΔVは、これらの全ての要因の変化が反映されたパラメータとなる。
 実変速比Rnは、現在のCVT30の変速比である。実変速比Rnは、第2回転速度センサ52によって検出されたプライマリプーリ30aの回転速度Npriと、第3回転速度センサ53によって検出されたセカンダリプーリ30bの回転速度Nsecと、に基づいて算出される。
 アップシフト後変速比Rpは、現時点でアップシフトした場合のCVT30の変速比である。図2を用いて説明すると、例えば、車速VがVaであるときには、車速Vaと第2所定回転速度線L3との交点Cにおける変速比が、アップシフト後変速比Rpに相当する。
 車両100の駆動力は、車速変化率ΔVに比例する。このため、車速変化率推定値ΔVsもアップシフト後の駆動力に比例した値になる。よって、ステップS3において、車速変化率推定値ΔVsが閾値V1以上であるか否かを判定することによって、アップシフト後の駆動力が不足するか否かを判定することができる。
 ステップS3において、車速変化率推定値ΔVsが閾値V1以上であると判定されれば、ステップS4に進み、車速変化率推定値ΔVsが閾値V1未満であると判定されれば、ステップS5に進む。なお、ステップS3において、車速変化率推定値ΔVsが閾値V1以上である状態が所定時間継続した場合に、ステップS4に進むようにしてもよい。これにより、ノイズによる影響や誤判定を防止できる。
 ステップS4では、段階変速の実行を許可する。コントローラ10は、プライマリ回転速度Npriがアクセル開度APO毎に設定された第1所定回転速度になると、段階変速を実行する(アップシフトフェーズへ移行する)。
 ステップS5では、段階変速の実行を禁止する。コントローラ10は、プライマリ回転速度Npriがアクセル開度APO毎に設定された第1所定回転速度になっても、段階変速を実行しない(アップシフトフェーズへ移行しない)、つまり、変速抑制フェーズを維持する。具体的には、コントローラ10は、その時点での変速比Rを維持するように制御を行う。
 なお、このように段階変速の実行が禁止された場合において、プライマリ回転速度Npriが第1所定回転速度に達した場合に、線L2に沿って変速するように制御を行ってもよい。これにより、加速感が損なわれることを抑制できる。
 このように、本実施形態では、車速Vの時間的変化率(車速変化率ΔV)と、実変速比Rnと、現時点でアップシフトした場合のアップシフト後変速比Rpと、に基づいて車速変化率推定値ΔVsを算出し、さらに、この車速変化率推定値ΔVsに基づいて、アップシフト後の駆動力が不足するか否かを判定する。
 上述のように、第2所定回転速度は、車速Vが上がるにつれてアップシフト側になるように設定されている。このため、現時点で第2所定回転速度までアップシフトしたとしても、変速比RがLow側になることはない。したがって、現時点で車速変化率推定値ΔVsが閾値V1未満であると、次の段階変速後も車速変化率推定値ΔVsが閾値V1未満になる。つまり、現時点での車速変化率推定値ΔVsが閾値V1未満であると、次のアップシフト後に駆動力が不足することになる。したがって、車速変化率推定値ΔVsを用いて判定を行うことにより、車両100の実際の加速度が所定値を下回った時に段階的アップシフトを禁止する場合に比べて、精度良く、より早い段階で段階変速を禁止することができる。よって、車両100が急激に失速することをより確実に抑制することができる。
 また、車速変化率推定値ΔVsは、上述のように、車重、道路勾配、走行抵抗の変化などの全ての要因が反映されたパラメータであるので、正確に駆動力の変化を予測することができる。
 次に、図5に示すタイミングチャートを参照しながら、本実施形態の段階変速制御について説明する。
 時刻t1において、アクセルペダルが踏み込まれると、車両100が加速を開始する。加速度αが所定値A以上であると、コントローラ10は、段階変速制御を実行する。具体的には、コントローラ10は、予め記憶されたアクセル開度APO毎に設定された変速線に沿うように、プライマリ回転速度Npri(エンジン回転速度)を制御する。また、コントローラ10は、車速変化率推定値ΔVsを算出し、ΔVsが閾値V1以上であるか否かを判定する。
 時刻t2において、プライマリ回転速度Npriが第1所定回転速度になると、アップシフトフェーズに移行し段階変速を実行する。具体的には、コントローラ10は、図2に示す変速線L1に沿って、変速比RをHigh側に段階的に切り替える。そして、プライマリ回転速度Npriが第2所定回転速度になると、コントローラ10は、変速抑制フェーズに移行し、変速比を維持しながら、プライマリ回転速度Npri(エンジン回転速度)を上昇させる。以降、時刻t5まで、アップシフトフェーズと変速抑制フェーズとを繰り返し実行する。
 時刻t6において、車速変化率推定値ΔVsが閾値V1未満になると、コントローラ10は、段階変速の実行(アップシフトフェーズへの移行)を禁止する。なお、このとき、コントローラ10は、変速抑制フェーズを継続する。具体的には、コントローラ10は、変速比Rを維持したままプライマリ回転速度Npri(エンジン回転速度)のみを増加させる。
 そして、時刻t7において、プライマリ回転速度Npriが第1所定回転速度となった場合に、コントローラ10は、段階変速を実行せず(アップシフトフェーズへ移行せず)、変速比Rをそのまま維持する。なお、図5のプライマリ回転速度の指示値における太い点線は、段階変速が実行された場合を示している。
 このように、本実施形態によれば、車速Vの時間的変化率(車速変化率ΔV)と、実変速比Rnと、アップシフト後変速比Rpと、に基づいて、アップシフト後の駆動力が不足するか否かを予測する。本実施形態の段階変速制御によれば、実際の車両100の加速度が所定値を下回った時に段階的アップシフトを禁止する場合に比べて、より早い段階で駆動力不測の判定を行うことができるので、車両100が急激に失速することをより確実に抑制することができる。
 なお、このように段階変速の実行が禁止された場合において、段階的なダウンシフトを行うとともにCVT30の入力回転を上昇させるようにしてもよい。この変形例について図6に示すタイミングチャートを参照しながら説明する。なお、時刻t1~t5までは、図5に示すタイミングチャートと同様なので説明を省略する。
 時刻t16において、車速変化率推定値ΔVsが閾値V1未満になると、コントローラ10は、段階変速の実行(アップシフトフェーズへの移行)を禁止する。このとき、コントローラ10は、変速抑制フェーズを継続するとともに、図示しないタイマーを作動させる。そして、コントローラ10は、所定時間、所定のアクセル開度以上でアクセルペダルが踏まれ続けた場合には、CVT30を段階的にダウンシフトさせるとともにCVT30の入力回転(エンジン1の回転速度Ne)を上昇させる(時刻t17)。これにより、車両100を加速させることができる。
 この変形例によれば、段階変速が禁止された後に、ダウンシフト及びエンジン1の出力アップを行うので、運転者の加速要求を損なうことを防止できる。
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 コントローラ10(制御装置)は、無段変速機(CVT30)を段階的にアップシフトさせて車両100を加速させる段階変速中に、段階変速中の出力軸回転速度(セカンダリプーリ30bの回転速度Nsec)の時間的変化率(車速変化率ΔV)と、無段変速機(CVT30)の現時点での変速比R(実変速比Rn)と、無段変速機(CVT30)のアップシフト後変速比Rpと、に基づき、段階変速を禁止する制御部を有する。
 コントローラ10によって段階変速に伴う急激な駆動力低下による失速を予測し、失速が予測される場合に段階変速を禁止することで、段階変速中に急激に失速することを抑制することができる。また、段階変速中の出力軸回転速度(セカンダリプーリ30bの回転速度Nsec)の時間的変化率(車速変化率ΔV)と、無段変速機(CVT30)の現時点での変速比R(実変速比Rn)と、無段変速機(CVT30)のアップシフト後変速比Rpと、に基づいて駆動力の不足を予測するので、実際の車両100の加速度が所定値を下回った時に段階的アップシフトを禁止する場合に比べて、段階変速中に急激に失速することを精度良く、より確実に抑制することができる。
 本実施形態では、アップシフト後変速比Rpは、車速Vが上がるほどアップシフト側になるように設定された変速線に基づき決定される。
 アップシフト直前に次回のアップシフト(段階変速)後の駆動力を予測して段階変速の禁止の有無を判定した場合には、非連続的な判定となるとともにアップシフト禁止の判断が間に合わなくなるおそれもある。そこで、車速Vが上がるほどアップシフト側になるように設定された変速線(線L3)を設定して、この変速線(線L3)に基づきアップシフト後変速比Rpを決定することで、リアルタイムに段階変速の実行判定(駆動力予測の演算)を行うことができる。
 本実施形態では、変速線は、アクセル開度に応じて変更される。
 アクセル開度に応じてエンジン駆動力が変化するのでアクセル開度に応じて変速線を変更することにより、段階変速中にアクセル開度APOの変化が起きた場合であっても適切に失速予測ができる。つまり、段階変速の禁止判断をアクセル開度APOの変化に応じて精密にすることができる。
 コントローラ10(制御部)は、段階変速の禁止した後に段階的なダウンシフトを行うと共に無段変速機(CVT30)の入力回転を上昇させる。
 段階変速を行う場合は運転者は加速要求をしている。このため、段階変速が禁止された後に、ダウンシフト及び駆動源(エンジン1)の出力アップを行うことで、運転者の加速要求を満足させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2018年12月14日に日本国特許庁に出願された特願2018-234830号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  無段変速機を有する車両を制御する車両の制御装置であって、
     前記無段変速機を段階的にアップシフトさせて前記車両を加速させる段階変速中に、前記段階変速中の出力軸回転速度の時間的変化率と、前記無段変速機の現時点での変速比と、前記無段変速機のアップシフト後変速比と、に基づき、前記段階変速を禁止する制御部を有する車両の制御装置。
  2.  請求項1に記載された車両の制御装置において、
     前記アップシフト後変速比は、車速が上がるほどアップシフト側になるように設定された変速線に基づき決定される車両の制御装置。
  3.  請求項2に記載された車両の制御装置において、
     前記変速線は、アクセル開度に応じて変更される車両の制御装置。
  4.  請求項1から請求項3のいずれか1つに記載された車両の制御装置において、
     前記制御部は、前記段階変速の禁止した後に段階的なダウンシフトを行うと共に前記無段変速機の入力回転を上昇させる車両の制御装置。
  5.  無段変速機を有する車両を制御する車両の制御方法であって、
     前記無段変速機を段階的にアップシフトさせて前記車両を加速させる段階変速中に、前記段階変速中の出力軸回転速度の時間的変化率と、前記無段変速機の現時点での変速比と、前記無段変速機のアップシフト後変速比と、に基づき、前記段階変速を禁止する車両の制御方法。
PCT/JP2019/045249 2018-12-14 2019-11-19 車両の制御装置及び車両の制御方法 WO2020121750A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559885A JP7064621B2 (ja) 2018-12-14 2019-11-19 車両の制御装置及び車両の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018234830 2018-12-14
JP2018-234830 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020121750A1 true WO2020121750A1 (ja) 2020-06-18

Family

ID=71076898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045249 WO2020121750A1 (ja) 2018-12-14 2019-11-19 車両の制御装置及び車両の制御方法

Country Status (2)

Country Link
JP (1) JP7064621B2 (ja)
WO (1) WO2020121750A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101549A (ja) * 1986-10-20 1988-05-06 Toyota Motor Corp 車両の自動変速制御方法
JPH09269063A (ja) * 1996-03-29 1997-10-14 Nissan Diesel Motor Co Ltd 車両の自動変速装置
JP2004125072A (ja) * 2002-10-03 2004-04-22 Fuji Heavy Ind Ltd 無段変速機の変速制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101549A (ja) * 1986-10-20 1988-05-06 Toyota Motor Corp 車両の自動変速制御方法
JPH09269063A (ja) * 1996-03-29 1997-10-14 Nissan Diesel Motor Co Ltd 車両の自動変速装置
JP2004125072A (ja) * 2002-10-03 2004-04-22 Fuji Heavy Ind Ltd 無段変速機の変速制御装置

Also Published As

Publication number Publication date
JPWO2020121750A1 (ja) 2020-06-18
JP7064621B2 (ja) 2022-05-10

Similar Documents

Publication Publication Date Title
JP5941882B2 (ja) 無段変速機の変速制御装置
JP4306713B2 (ja) 車両の制御装置、制御方法、その制御方法をコンピュータで実現するプログラムおよびそのプログラムを記録した記録媒体
US10221941B2 (en) Control device for automatic transmission
US9523400B2 (en) Lockup clutch control device
JP2007263262A (ja) 自動変速機の変速制御装置
JP2012117424A (ja) 車両の制御装置
WO2015060051A1 (ja) 無段変速機の制御装置
CN108463655B (zh) 车辆用变速器的变速控制装置及变速控制方法
JP4109426B2 (ja) 自動変速機の変速制御装置
US11236824B2 (en) Continuously variable transmission control device and control method
JP7303826B2 (ja) 車両の制御装置及び車両の制御方法
JP5140147B2 (ja) 車両の駆動力制御装置
JP2006256611A (ja) 自動車の制御装置及び制御方法
JP6567782B2 (ja) 無段変速機の変速制御装置および変速制御方法
JP7064621B2 (ja) 車両の制御装置及び車両の制御方法
JP6982544B2 (ja) 車両の制御装置及び車両の制御方法
JP5977271B2 (ja) 無段変速機及びその制御方法
JP7225077B2 (ja) 車両用有段自動変速機の制御装置
JP7029550B2 (ja) 車両の制御装置及び車両の制御方法
JP5500243B2 (ja) 車両、変速機の制御方法および制御装置
JP2019027542A (ja) 自動変速機の変速制御装置
JP2021032305A (ja) 車両の制御装置及び車両の制御方法
KR101966536B1 (ko) 무단변속기 차량의 후진시 제어방법
JP6855119B2 (ja) 無段変速機の制御装置
JP2021032304A (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559885

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896593

Country of ref document: EP

Kind code of ref document: A1