WO2020118551A1 - 三维柔性电容材料及其制备方法和应用 - Google Patents

三维柔性电容材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020118551A1
WO2020118551A1 PCT/CN2018/120534 CN2018120534W WO2020118551A1 WO 2020118551 A1 WO2020118551 A1 WO 2020118551A1 CN 2018120534 W CN2018120534 W CN 2018120534W WO 2020118551 A1 WO2020118551 A1 WO 2020118551A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
fiber
network structure
dimensional network
flexible
Prior art date
Application number
PCT/CN2018/120534
Other languages
English (en)
French (fr)
Inventor
于淑会
罗遂斌
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2018/120534 priority Critical patent/WO2020118551A1/zh
Publication of WO2020118551A1 publication Critical patent/WO2020118551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material

Definitions

  • the invention belongs to the technical field of electronic packaging materials, and more specifically, the invention relates to a flexible capacitor material with a three-dimensional structure that can be built in and printed circuit boards and a preparation method thereof.
  • dielectric materials are widely used in printed circuit boards. Ceramic-based dielectric materials have high dielectric constants, but require high processing temperatures and poor mechanical properties. Polymer dielectric materials have excellent mechanical properties and processing properties, but low dielectric constants. Based on the advantages and disadvantages of ceramic-based dielectric materials and polymer dielectric materials, adding ceramic particles into a polymer matrix to prepare a composite material can not only improve the dielectric constant of the polymer, but also maintain good processing and mechanical properties. However, the addition of ceramic particles does not significantly increase the dielectric constant of the composite material. However, when the addition amount of ceramic particles is 50 vol%, the dielectric constant of the composite material is generally lower than 50.
  • the study found that adding certain conductive particles to the composite material can significantly increase the dielectric constant of the composite material, but the dielectric loss of the composite material also increases accordingly.
  • the composite material with conductive particles has poor high-frequency dielectric properties, and the high-frequency dielectric constant is significantly lower than the low-frequency dielectric constant, which is not conducive to practical application.
  • the present invention provides a flexible capacitor material with a three-dimensional structure that can be built into a printed circuit board and a preparation method thereof.
  • a flexible capacitive material with a three-dimensional network structure By performing surface treatment on the fiber material in the three-dimensional structure and filling a certain polymer dielectric material, a capacitive material with excellent mechanical properties and dielectric properties can be obtained.
  • This capacitor material can be built into the printed circuit board to form a capacitor.
  • the present invention adopts the following technical solutions.
  • One aspect of the present invention provides a flexible dielectric material, which includes a three-dimensional network structure skeleton, the surface of the three-dimensional network structure skeleton has a coating layer with enhanced dielectric properties, and the voids in the three-dimensional network structure skeleton are made of dielectric paste or polymer resin dielectric To fill.
  • the three-dimensional network structure skeleton is composed of fiber cloth or fiber paper composed of one or more of ceramic fibers, glass fibers, and organic fibers.
  • the main components of the ceramic fiber include aluminum silicate fiber, zirconium-containing aluminum silicate fiber, silicon carbide fiber, titanium carbide fiber, tantalum carbide fiber, boron nitride fiber, aluminum nitride fiber, silicon nitride fiber, zirconium boride Fiber, titanium boride fiber, hafnium boride fiber, alumina fiber, silica fiber, zirconia fiber, magnesium oxide fiber, barium titanate fiber, barium strontium titanate fiber, strontium titanate fiber, lead titanate fiber, zirconium One or more of barium strontium titanate fiber, lead zirconate titanate fiber, lead niobate magnesium fiber, copper calcium titanate fiber, etc.
  • the main components of the glass fiber include silica, alumina, calcium oxide, boron oxide, magnesium oxide, sodium oxide and the like.
  • the glass fiber is selected from non-alkali glass fiber (sodium oxide 0% ⁇ 2%, belongs to aluminoborosilicate glass), medium-alkali glass fiber (sodium oxide 8% ⁇ 12%, belongs to sodium calcium calcium with or without boron Salt glass) and high-alkali glass fiber (more than 13% of sodium oxide, soda lime silicate glass), can be one or more of them.
  • organic fibers include polyester, acrylic, nylon, polypropylene, aramid, ultra-high molecular weight polyethylene fibers (UHMWPE fibers), polyparaphenylene benzobisoxazole fibers (PBO fibers), polyparaben One or more of imidazole fiber (PBI fiber), polyphenylene pyridodiimidazole fiber (M5 fiber), polyimide fiber (PI fiber), and the like.
  • UHMWPE fibers ultra-high molecular weight polyethylene fibers
  • PBO fibers polyparaphenylene benzobisoxazole fibers
  • PBI fiber polyparaben One or more of imidazole fiber
  • M5 fiber polyphenylene pyridodiimidazole fiber
  • PI fiber polyimide fiber
  • the surface of the fiber cloth or fiber paper is treated to form a coating layer with enhanced dielectric properties.
  • the method for forming the coating with enhanced dielectric properties is a physical or chemical method, specifically, selected from sputtering, sol-gel method, chemical vapor deposition, co-precipitation method and the like.
  • the coating layer with enhanced dielectric properties is a layer of high dielectric constant ceramic material with a thickness of 1 nm to 20 ⁇ m formed on the fiber surface of the fiber cloth or fiber paper.
  • composition of the high dielectric constant ceramic material is selected from barium titanate, strontium titanate, barium strontium titanate, barium zirconate titanate, lead titanate, lead zirconate titanate, lead niobate and titanate
  • the fiber surface treatment may be a layer treatment or multiple surface treatments, and the composition of each treatment is the same or different.
  • the gaps between ceramic fibers, glass fibers, and organic fibers in the three-dimensional network structure skeleton are filled with dielectrics, and the dielectrics include dielectric pastes or polymer resin dielectrics.
  • the dielectric slurry includes a polymer, a solvent, and filler particles.
  • the dielectric paste further includes an auxiliary agent.
  • the polymer includes thermosetting resin and thermoplastic resin.
  • thermosetting resins include resins such as epoxy resins, polyimide resins, polyacrylic resins, phenolic resins, unsaturated polyester resins, melamine formaldehyde resins, furan resins, polybutadiene resins, silicone resins, etc. One or more mixed use.
  • thermoplastic resin includes, for example, polyvinylidene fluoride resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polystyrene resin, polyamide resin, polyoxymethylene resin, polycarbonate resin, polyphenylene ether resin, One or more of polysulfone resin, rubber, etc. are mixed and used.
  • thermosetting resin can be mixed with the thermoplastic resin.
  • the purpose of the solvent used is to dissolve the polymer, reduce the viscosity, and facilitate the preparation of the dielectric slurry.
  • the solvent mainly includes butanone, methyl isobutyl ketone, N,N-dimethylformamide, benzene, toluene, xylene, pentane, hexane, octane, cyclohexane, cyclohexanone, Cyclohexanone, chlorobenzene, dichlorobenzene, dichloromethane, methanol, ethanol, isopropanol, ether, propylene oxide, methyl acetate, ethyl acetate, propyl acetate, acetone, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, acetonitrile, pyridine, phenol, ethanol, styrene, perchloroethylene, trichloroethylene, ethylene glycol ether and triethanolamine, etc. use.
  • the filler particles are one or more of oxides, carbides, nitrides, metals, carbon materials, other conductive materials, and the like, which are used in combination.
  • the oxides include barium titanate, strontium titanate, barium strontium titanate, barium strontium titanate, barium zirconate titanate, lead titanate, lead zirconate titanate, lead niobate magnesium, copper calcium titanate, magnesium oxide, silicon oxide , Alumina, manganese oxide, iron oxide, iron oxide, iron oxide, manganese oxide, zinc oxide, copper oxide, zirconium oxide, tungsten oxide, tin oxide, nickel oxide, titanium oxide, potassium sodium niobate, titanium Calcium barium, calcium calcium titanate, etc.
  • Carbides include calcium carbide, chromium carbide, tantalum carbide, vanadium carbide, zirconium carbide, tungsten carbide, boron carbide, silicon carbide, molybdenum carbide, chromium carbide, manganese carbide, iron carbide, and the like.
  • the nitride includes magnesium nitride, aluminum nitride, titanium nitride, tantalum nitride, boron nitride, phosphorus nitride, silicon nitride, manganese nitride, tungsten nitride, zirconium nitride, and the like.
  • Metals include gold, silver, copper, iron, aluminum, zinc, magnesium, tin, lead, etc.
  • Carbon materials include carbon nanotubes, carbon nanowires, graphene, graphite, fullerenes, carbon fibers, carbon nanosheets, and the like.
  • the amount of the filler particles added to the dielectric slurry is 0.1% to 85% by weight of the total mass of the polymer and the filler particles.
  • the amount of filler particles added is mainly related to the characteristics of the filler particles. For filler particles with good insulation and easy dispersion, the addition amount is higher, which can be 30wt% to 85%wt. For filler particles with poor insulation or not easy to disperse, the added amount is generally low, which may be 0.1 wt% to 40 wt%.
  • the auxiliary agent is mainly used to adjust the thermal curing performance of the dielectric slurry, such as curing agent, catalyst, etc., adjust the rheological properties of the dielectric slurry such as rheological agent, leveling properties such as leveling agent, eliminate bubbles such as defoaming Agent, preventing filler precipitation such as anti-settling agent, improving the dispersibility of filler particles such as dispersing agent, etc. are used to improve the processability, processing stability of dielectric slurry and the dielectric properties and mechanical properties of dielectric materials.
  • the choice of additives depends on the type of filler particles used, particle size, particle size distribution, particle morphology, surface state, and the choice of solvent and polymer used.
  • the dielectric paper or polymer resin dielectric is used to fill the fiber paper or fiber cloth by dipping, coating, hot pressing and other methods.
  • the fiber paper or fiber cloth is completely immersed in the prepared dielectric slurry, and then the solvent is dried at a certain temperature, and then heat-treated at an appropriate temperature to obtain a stable dielectric material.
  • the drying temperature of the solvent is related to the selected solvent, which is generally in the range of plus or minus 30 degrees Celsius of the boiling point of the solvent.
  • the heat treatment temperature and time after drying the solvent are related to the selected polymer and related additives, and the purpose is to obtain a structurally stable dielectric material.
  • the dielectric slurry is coated on the fiber paper or fiber cloth, and then the solvent is dried at a certain temperature, and then heat-treated at an appropriate temperature to obtain a stable dielectric material.
  • the drying temperature of the solvent is related to the selected solvent, which is generally in the range of plus or minus 30 degrees Celsius of the boiling point of the solvent.
  • the heat treatment temperature and time after drying the solvent are related to the selected polymer and related additives, and the purpose is to obtain a structurally stable dielectric material.
  • the polymer resin dielectric and the fiber paper or fiber cloth are laminated together, and a suitable pressure is applied at a certain temperature to melt the resin and apply pressure to the fiber paper or fiber under the pressure
  • the cloth is filled.
  • the hot pressing temperature is related to the melting point of the resin used, which is generally within the range of plus or minus 20 degrees Celsius.
  • the hot pressing pressure is related to the thickness of the fiber paper or fiber cloth.
  • the polymer resin dielectric is selected from polytetrafluoroethylene, epoxy resin, polyimide resin, bismaleimide triazine resin and the like.
  • the capacitor material is characterized in that the capacitor material is composed of a dielectric layer and an electrode, the dielectric layer is composed of the above-mentioned flexible dielectric material, and electrodes are provided on both sides thereof.
  • the thickness of the dielectric layer is 1 micrometer to 1000 micrometers.
  • the thickness of the dielectric layer is less than 1 micrometer, the processing difficulty of the material becomes greater and the production cost increases, which is not conducive to practical application.
  • the thickness of the dielectric layer is higher than 1000 microns, the capacitance density of the prepared capacitor material is low.
  • the electrode is selected from a mixture of one or more materials among copper, gold, silver, conductive alloys, and carbon materials.
  • electrodes are prepared on both sides of the dielectric layer by means of electroplating, sputtering, and pressing.
  • the thickness of the electrode is 200 nm to 70 ⁇ m.
  • the dielectric layer is sandwiched between two metal foils and stacked, and then pressed at a certain temperature to make the dielectric layer and the metal foil Bond together to form a solid structure.
  • the fiber paper or fiber cloth filled with thermosetting dielectric is post-cured to completely cure the dielectric material.
  • the invention discloses a method for preparing a flexible capacitor material with a three-dimensional structure, which is characterized in that
  • the three-dimensional network structure skeleton is processed to form a coating layer with enhanced dielectric properties on the existing surface of the three-dimensional network structure skeleton,
  • the electrode is formed on the surface by electroplating, sputtering and pressing; forming a flexible capacitor material;
  • step 1) a coating with enhanced dielectric properties is formed on the fiber surface of the three-dimensional network structure skeleton by sputtering, sol-gel method, chemical vapor deposition, co-precipitation method to achieve a high dielectric constant
  • the ceramic material of the three-dimensional network structure is processed.
  • the heat treatment temperature in step (3) is 60 degrees Celsius to 180 degrees Celsius, and the treatment time is 0.5 minutes to 60 minutes;
  • the electrode in step (3) is one or more of copper, gold, silver, aluminum, conductive alloy, carbon material, and the like.
  • the fully cured thermal curing temperature of step (4) is 60 degrees Celsius to 300 degrees Celsius.
  • Another aspect of the present invention provides the use of the flexible dielectric material according to the present invention in the preparation of three-dimensional structure flexible capacitor materials.
  • the flexible capacitor material with a three-dimensional structure disclosed in the present invention has a three-dimensional network structure as a supporting material and as a dielectric reinforcing material, has good mechanical properties and dielectric properties, and can be embedded in a printed circuit board to form a capacitor.
  • FIG. 1 Schematic diagram of three-dimensional structure fiber cloth or fiber paper. 11 means fiber cloth or fiber paper, 12 means fiber;
  • FIG. 2 is a schematic structural diagram of a flexible capacitive material with a three-dimensional structure.
  • 21 and 22 represent electrode materials, and 23 represents a dielectric layer;
  • FIG. 3 is a schematic diagram of a preparation process of a flexible capacitor material with a three-dimensional structure.
  • 31 is fiber cloth or fiber paper
  • 32 is fiber cloth or fiber paper after surface treatment
  • 33 is fiber cloth or fiber paper after dipping
  • 34 and 35 are electrode materials
  • 36 is dielectric layer
  • 37 is capacitor material;
  • FIG. 4 is a schematic diagram of the preparation process of a flexible capacitor material with a three-dimensional structure.
  • 41 is fiber cloth or fiber paper
  • 42 is fiber cloth or fiber paper after surface treatment
  • 43 and 44 are electrode materials
  • 45 is polymer resin dielectric
  • 46 is fiber cloth or fiber paper after surface treatment
  • 47 is capacitor material.
  • This embodiment provides a flexible capacitor material with a three-dimensional network structure that can be built in and printed circuit boards, a preparation method, and applications thereof, which are prepared by the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开一种具有三维结构的柔性电容材料及其制备方法,其特征在于,电容材料由电介质层和两层电极组成,电介质层具有三维网络结构。制备过程中预先使用物理、化学的方法对陶瓷纤维布、玻璃纤维布或有机纤维布进行表面处理,再用电介质浆料对纤维布中的孔隙进行填充,经热处理后,采用电镀、溅射或压合的方式在电介质表面制备金属电极,形成柔性电容材料。该电容材料具有良好的机械强度和介电性能,可内埋至印制电路板中形成电容。

Description

三维柔性电容材料及其制备方法和应用 技术领域
本发明属于电子封装材料技术领域,更具体地,本发明涉及一种可内置与印制线路板的具有三维结构的柔性电容材料及其制备方法。
背景技术
随着电子信息技术的发展,特别是近年来以可穿戴电子、智能手机、超薄电脑、无人驾驶、物联网技术和5G通讯技术为主的快速发展,对电子系统的小型化、轻薄化、多功能、高性能等方面提出了越来越高的要求。电介质材料作为电子信息材料中的一个重要组成部分被广泛应用到印制电路板当中。陶瓷基电介质材料具有高的介电常数,但是需要高的加工温度并且机械性能差。聚合物电介质材料机械性能和加工性能优良,但是介电常数低。基于陶瓷基电介质材料和聚合物电介质材料的优缺点,将陶瓷粒子加入聚合物基体中制备成复合材料,既可以提高聚合物的介电常数,又能保持较好的加工性能和机械性能。但是陶瓷粒子的加入,对复合材料的介电常数提高不明显。但陶瓷粒子的添加量为50vol%时,复合材料的介电常数一般低于50。
基于此,研究发现加入一定的导电粒子到复合材料当中,可以较为显著的提高复合材料的介电常数,但是复合材料的介电损耗也相应的增加。另外,加入导电粒子的复合材料的高频介电性能较差,高频介电常数相比低频介电常数下降非常明显,不利于实际应用。
发明内容
为了克服现有技术的缺陷,本发明提供一种可内置于印制线路板的具有三维结构的柔性电容材料及其制备方法。具体公开一种具有三维网络结构的柔性电容材料,通过对三维结构中的纤维材料进行表面处理,并填充一定的聚合物电介质材料,可获得机械性能和介电性能优异的电容材料。此电容材料可内置于印制电路板内部形成电容。
为了实现上述发明目的,本发明采取了以下技术方案。
本发明一个方面提供了一种柔性电介质材料,其包括三维网络结构骨架,三维网络结构骨架表面具有介电性能增强包覆层,且三维网络结构骨架中的空隙由电介质浆料或聚合物树脂电介质进行填充。
在本发明的技术方案中,所述三维网络结构骨架由陶瓷纤维、玻璃纤维、有机纤维中的 一种或多种组成的纤维布或纤维纸构成。
进一步地,陶瓷纤维主要成分包括硅酸铝纤维、含锆硅酸铝纤维、碳化硅纤维、碳化钛纤维、碳化钽纤维、氮化硼纤维、氮化铝纤维、氮化硅纤维、硼化锆纤维、硼化钛纤维、硼化铪纤维、氧化铝纤维、氧化硅纤维、氧化锆纤维、氧化镁纤维、钛酸钡纤维、钛酸锶钡纤维、钛酸锶纤维、钛酸铅纤维、锆钛酸锶钡纤维、锆钛酸铅纤维、铌镁酸铅纤维、钛酸铜钙纤维等中的一种或多种。
进一步地,玻璃纤维的主要成分包括二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。玻璃纤维选自无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃)、中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃)和高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃),可为其中的一种或多种。
进一步地,有机纤维的主要成分包括涤纶、腈纶、锦纶、丙纶、芳纶、超高分子量聚乙烯纤维(UHMWPE纤维)、聚对苯撑苯并双噁唑纤维(PBO纤维)、聚对苯并咪唑纤维(PBI纤维)、聚苯撑吡啶并二咪唑纤维(M5纤维)、聚酰亚胺纤维(PI纤维)等中的一种或多种。
在本发明的技术方案中,所述纤维布或纤维纸的表面经过处理,形成介电性能增强包覆层。
在本发明的技术方案中,形成介电性能增强包覆层的方法为物理或化学的方法,具体地,选自溅射、溶胶凝胶法、化学气相沉积、共沉淀法等方法。
在本发明的技术方案中,介电性能增强包覆层为在纤维布或纤维纸的纤维表面形成的一层厚度为1nm~20μm的高介电常数的陶瓷材料。
进一步地,所述高介电常数的陶瓷材料的成分选自钛酸钡、钛酸锶、钛酸锶钡、锆钛酸钡、钛酸铅、锆钛酸铅、铌镁酸铅、钛酸铜钙等介电常数比纤维高的物质中的一种或多种组合物。
进一步地,纤维表面处理可以为一层处理或多次表面处理,且每次处理成分相同或不同。
三维网络结构骨架中陶瓷纤维、玻璃纤维、有机纤维之间的空隙由电介质进行填充,电介质包括电介质浆料或聚合物树脂电介质。
在本发明的技术方案中,所述电介质浆料包括高分子聚合物、溶剂、填料粒子。
在本发明的技术方案中,所述的电介质浆料还包括助剂。
进一步地,高分子聚合物包括热固性树脂和热塑性树脂。
更进一步地,热固性树脂包括如环氧树脂、聚酰亚胺树脂、聚丙烯酸树脂、酚醛树脂、不饱和聚酯树脂、三聚氰胺甲醛树脂、呋喃树脂、聚丁二烯树脂、有机硅树脂等中的一种或 多种混合使用。
更进一步地,热塑性树脂包括如聚偏氟乙烯树脂、聚乙烯树脂、聚丙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚酰胺树脂、聚甲醛树脂、聚碳酸酯树脂、聚苯醚树脂、聚砜树脂、橡胶等中的一种或多种混合使用。
更进一步地,热固性树脂可与热塑性树脂进行混合使用。
进一步地,所使用的溶剂目的是将聚合物进行溶解,降低粘度,利于更好的实现电介质浆料的制备。
更进一步地,溶剂主要包括丁酮、甲基异丁基甲酮、N,N-二甲基甲酰胺、苯、甲苯、二甲苯、戊烷、己烷、辛烷、环己烷、环己酮、甲苯环己酮、氯苯、二氯苯、二氯甲烷、甲醇、乙醇、异丙醇、乙醚、环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、丙酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙腈、吡啶、苯酚、乙醇、苯乙烯、全氯乙烯、三氯乙烯、乙烯乙二醇醚和三乙醇胺等中的一种或多种混合使用。
进一步地,填料粒子为氧化物、碳化物、氮化物、金属、碳材料和其他导电材料等中的一种或多种混合使用。
更进一步地,其中氧化物有钛酸钡、钛酸锶、钛酸锶钡、锆钛酸钡、钛酸铅、锆钛酸铅、铌镁酸铅、钛酸铜钙、氧化镁、氧化硅、氧化铝、氧化锰、三氧化二铁、四氧化三铁、氧化铁、氧化锰、氧化锌、氧化铜、氧化锆、氧化钨、氧化锡、氧化镍、氧化钛、铌酸钠钾、钛酸钙钡、钛酸钙钠等。碳化物包括碳化钙、碳化铬、碳化钽、碳化钒、碳化锆、碳化钨、碳化硼、碳化硅、碳化钼、碳化铬、碳化锰、碳化铁等。氮化物包括氮化镁、氮化铝、氮化钛、氮化钽、氮化硼、氮化磷、氮化硅、氮化锰、氮化钨、氮化锆等。金属包括金、银、铜、铁、铝、锌、镁、锡、铅等。碳材料包括碳纳米管、碳纳米线、石墨烯、石墨、富勒烯、碳纤维、碳纳米片等。
更进一步地,所述填料粒子在电介质浆料中的加入量为聚合物和填料粒子总质量的0.1wt%~85wt%。填料粒子的加入量主要与填料粒子的特性有关。对于绝缘性较好且易分散的填料粒子,加入量较高,可为30wt%~85wt%。对于绝缘性较差或不容易分散的填料粒子,其加入量一般较低,可为0.1wt%~40wt%。
进一步地,助剂主要用于调节电介质浆料的热固化性能,如固化剂、催化剂等,调节电介质浆料的流变性能如流变剂、流平性能如流平剂、消除气泡如消泡剂、防止填料沉淀如防沉剂、改善填料粒子的分散性如分散剂等用于提高电介质浆料的易加工性、加工稳定性和电介质材料的介电性能、机械性能等。助剂的选择与所使用的填料粒子的种类、粒径大小、粒 径分布、颗粒形貌、表面状态以及所选用的溶剂、聚合物的使用有关。
在本发明的技术方案中,使用电介质浆料或聚合物树脂电介质对纤维纸或纤维布进行填充采用浸胶、涂覆、热压等方式。
进一步地,采用浸胶方式时,将纤维纸或纤维布完全浸入所配制的电介质浆料中,之后在一定温度下将溶剂烘干,然后在适当的温度下进行热处理得到稳定的电介质材料。溶剂烘干温度与所选用的溶剂有关,一般为溶剂沸点正负30摄氏度范围内。烘干溶剂后的热处理温度和时间与选用的聚合物和相关助剂有关,目的是为了得到结构稳定的电介质材料。
进一步地,使用涂覆的方式时,将电介质浆料涂覆纤维纸或纤维布上面,之后在一定温度下将溶剂烘干,然后在适当的温度下进行热处理得到稳定的电介质材料。溶剂烘干温度与所选用的溶剂有关,一般为溶剂沸点正负30摄氏度范围内。烘干溶剂后的热处理温度和时间与选用的聚合物和相关助剂有关,目的是为了得到结构稳定的电介质材料。
进一步地,采用热压的方式时,将聚合物树脂电介质与纤维纸或纤维布叠合在一起,在一定的温度下施加合适的压力,将树脂熔融并在压力的作用下对纤维纸或纤维布进行填充。热压温度与所使用的树脂的熔点有关,一般为树脂熔点温度正负20摄氏度范围内。热压压力与纤维纸或纤维布的厚度有关。
在本发明的技术方案中,所述聚合物树脂电介质选自聚四氟乙烯、环氧树脂、聚酰亚胺树脂、双马来亚酰胺三嗪树脂等。
本发明另一个方面提供了一种柔性电容材料。该电容材料的其特征在于,电容材料由电介质层和电极组成,电介质层由上述柔性电介质材料构成,并在其两侧设置电极。
在本发明的技术方案中,所述电介质层的厚度为1微米~1000微米。当电介质层的厚度低于1微米时,材料的加工难度变大,生产成本增加,不利于实际应用。当电介质层的厚度高于1000微米时,制备的电容材料的电容密度较低。
在本发明的技术方案中,电极选自铜、金、银、导电合金、碳材料中的一种或多种材料的混合物。
在本发明的技术方案中,在电介质层的两侧通过电镀、溅射、压合的方式制备电极。
在本发明的技术方案中,电极的厚度为200nm~70μm。
在本发明的技术方案中,采用压合的方式制备电容材料的电极时,将电介质层夹在两片金属箔之间进行堆叠,然后在一定的温度下进行压合,使电介质层与金属箔粘结在一起,形成稳固的结构。压合后,对于使用热固性电介质填充的纤维纸或纤维布,进行后固化,使电介质材料完全固化。
本发明公开一种具有三维结构柔性电容材料的制备方法,其特征在于,
1)对三维网络结构骨架进行处理,在三维网络结构骨架的现有表面形成介电性能增强包覆层,
2)经过浸胶或涂覆方法将电介质浆料填充到三维网络结构骨架中,或经过热压将聚合物树脂电介质填充到三维网络结构骨架中;
3)再经过热处理去除溶剂和半固化后,在其表面通过电镀、溅射、压合形成电极;形成柔性电容材料;
任选地,4)形成电极后,进行完全固化,然后形成柔性电容材料。
在本发明的技术方案中,步骤1)中在三维网络结构骨架的纤维表面形成介电性能增强包覆层为通过溅射、溶胶凝胶法、化学气相沉积、共沉淀法以高介电常数的陶瓷材料对三维网络结构骨架进行处理。
在本发明的技术方案中,步骤(3)中的热处理温度为60摄氏度~180摄氏度,处理时间为0.5分钟~60分钟;
在本发明的技术方案中,步骤(3)中电极为铜、金、银、铝、导电合金、碳材料等中的一种或多种。
在本发明的技术方案中,步骤(4)的完全固化的热固化温度为60摄氏度~300摄氏度。
本发明另一个方面提供了本发明所述的柔性电介质材料在制备三维结构柔性电容材料中的用途。
有益效果
本发明公开的具有三维结构的柔性电容材料由于具有三维网络结构作为支撑材料和作为介电增强材料,具有良好的机械性能和介电性能,可内埋至印制电路板中形成电容。
附图说明
图1三维结构纤维布或纤维纸的结构示意图。11表示纤维布或纤维纸,12表示纤维;
图2具有三维结构柔性电容材料的结构示意图。21和22表示电极材料,23表示电介质层;
图3具有三维结构柔性电容材料的制备过程示意图。31表示纤维布或纤维纸,32表示经过表面处理后的纤维布或纤维纸,33表示浸胶后的纤维布或纤维纸,34和35表示电极材料,36表示电介质层,37表示电容材料;
图4具有三维结构柔性电容材料的制备过程示意图。41表示纤维布或纤维纸,42表示经过表面处理后的纤维布或纤维纸,43和44表示电极材料,45表示聚合物树脂电介质,46表示表面处理后的纤维布或纤维纸,47表示电容材料。
具体实施方式
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明,但不能理解为对本发明的可实施范围的限定。
本实施例提供了一种可内置与印制线路板的具有三维网络结构的柔性电容材料、制备方法及其应用,其是通过以下步骤制备的:
实施例1
1.将柠檬酸溶解于水溶液当中形成3.4mol/L,pH=5的溶液;
2.将1mol钛酸异丙酯加入温度为60摄氏度的上述柠檬酸水溶液当中;
3.称量1.05mol三水醋酸铅溶于无二氧化碳的去离子水后加入钛酸异丙酯溶液当中;
4.称量PEG200 0.03mol加入至上述溶液当中,搅拌10min混合均匀;
5.将玻璃纤维布(上海宏和电子材料股份有限公司,型号1015)浸入上述溶液;
6.玻纤布取出后在90摄氏度烘烤5分钟,然后升温至500摄氏度保温4小时,得到表面处理的玻璃纤维布;
7.称量100nm钛酸钡100g,环氧树脂Epon828 30g,甲基六氢苯酐25g,2-乙基-4-甲基咪唑0.04g,丁酮50g,壬基酚聚氧乙烯醚3g,混合后进行球磨,球磨速度为500rpm,时间为12小时,球磨后获得电介质浆料;
8.将经过表面处理的玻璃纤维布浸入上述电介质浆料中,取出后在100摄氏度烘干5分钟,得到预固化的电介质层;
9.将预固化电介质置于两层厚度35微米厚的铜箔之间,加压力5Mpa,升温至130摄氏度固化1小时后,升温至180摄氏度保温2小时,自然冷却得到具有三维结构的柔性电容材料。
实施例2
1.将柠檬酸溶解于水溶液当中形成3.4mol/L,pH=5的溶液;
2.将1mol钛酸异丙酯加入温度为60摄氏度的上述柠檬酸水溶液当中;
3.称量1.05mol三水醋酸铅溶于无二氧化碳的去离子水后加入钛酸异丙酯溶液当中;
4.称量PEG200 0.03mol加入至上述溶液当中,搅拌10min混合均匀;
5.将玻璃纤维布(上海宏和电子材料股份有限公司,型号1015)浸入上述溶液;
6.玻纤布取出后在90摄氏度烘烤5分钟,然后升温至500摄氏度保温4小时,得到表面处理的玻璃纤维布;
7.取厚度20微米的聚四氟乙烯薄膜作为电介质材料填充玻璃纤维布;
8.将聚四氟乙烯薄膜和经过处理的玻璃纤维布置于两层厚度35微米厚的铜箔之间,加压力10Mpa,升温至250摄氏度保温3小时,自然冷却得到具有三维结构的柔性电容材料。
实施例3
1.称量乙酸钡77.5g,冰乙酸250g,60摄氏度搅拌溶解;
2.称量钛酸异丙酯102g,乙酰丙酮60g,搅拌混合2小时后加入上述溶液中,搅拌2小时;
3.将陶瓷纤维布(淄博辰浩保温材料有限公司,厚度1mm)浸入上述溶液;
4.玻纤布取出后在90摄氏度烘烤5分钟,然后升温至800摄氏度保温4小时,得到表面处理的玻璃纤维布;
5.称量100nm钛酸钡500g,环氧树脂Epon828 30g,甲基六氢苯酐25g,2-乙基-4-甲基咪唑0.04g,丁酮50g,壬基酚聚氧乙烯醚3g,混合后进行球磨,球磨速度为500rpm,时间为12小时,球磨后获得电介质浆料;
6.将经过表面处理的玻璃纤维布浸入上述电介质浆料中,取出后在100摄氏度烘干5分钟,得到预固化的电介质层;
7.将预固化电介质置于两层厚度35微米厚的铜箔之间,加压力5Mpa,升温至130摄氏度固化1小时后,升温至180摄氏度保温2小时,自然冷却得到具有三维结构的柔性电容材料。
实施例4
1.称量乙酸钡77.5g,冰乙酸250g,60摄氏度搅拌溶解;
2.称量钛酸异丙酯102g,乙酰丙酮60g,搅拌混合2小时后加入上述溶液中,搅拌2小时;
3.将陶瓷纤维布(淄博辰浩保温材料有限公司,厚度1mm)浸入上述溶液;
4.玻纤布取出后在90摄氏度烘烤5分钟,然后升温至800摄氏度保温4小时,得到表面处理的玻璃纤维布;
5.取厚度500微米的聚四氟乙烯薄膜作为聚合物树脂电介质材料填充玻璃纤维布;
6.将聚四氟乙烯薄膜和经过处理的玻璃纤维布置于两层厚度35微米厚的铜箔之间,加压力10Mpa,升温至250摄氏度保温3小时,自然冷却得到具有三维结构的柔性电容材料。

Claims (10)

  1. 一种柔性电介质材料,其包括三维网络结构骨架,三维网络结构骨架表面具有介电性能增强包覆层,且三维网络结构骨架中的空隙由电介质浆料或聚合物树脂电介质进行填充;
    优选地,所述三维网络结构骨架由陶瓷纤维、玻璃纤维、有机纤维中的一种或多种组成的纤维布或纤维纸构成;
    优选地,介电性能增强包覆层为在纤维布或纤维纸的纤维表面形成的厚度为1nm~20μm的高介电常数的陶瓷材料;
    更优选地,陶瓷材料的成分具有钙钛矿结构的物质,最优选为钛酸钡、钛酸锶、钛酸锶钡、锆钛酸钡、钛酸铅、锆钛酸铅、铌镁酸铅、钛酸铜钙中的一种或多种组合物;
    更优选地,陶瓷材料的厚度为1nm~20μm。
  2. 根据权利要求1所述的柔性电介质材料,其中
    所述电介质浆料包括高分子聚合物、溶剂、填料粒子;
    优选地,高分子聚合物包括热固性树脂和热塑性树脂;更优选地,热固性树脂可与热塑性树脂进行混合使用;
    优选地,填料粒子为氧化物、碳化物、氮化物、金属、碳材料和其他导电材料等中的一种或多种混合使用;更优选地,填料粒子在电介质浆料中的加入量为聚合物和填料粒子总质量的0.1wt%~85wt%;
    所述聚合物树脂电介质选自聚四氟乙烯、聚四氟乙烯、环氧树脂、聚酰亚胺树脂、双马来亚酰胺三嗪树脂。
  3. 根据权利要求1或2所述的柔性电介质材料,使用电介质浆料或聚合物树脂电介质对纤维纸或纤维布进行填充采用浸胶、涂覆、热压方式。
  4. 一种柔性电容材料。该电容材料的其特征在于,电容材料由电介质层和电极组成,电介质层由权利要求1-3任一项所述的柔性电介质材料构成,并在其两侧设置电极;
    优选地,所述电介质层的厚度为1μm~1000μm;
    优选地,电极选自铜、金、银、导电合金、碳材料中的一种或多种材料的混合物;
    优选地,电极的厚度为200nm~70μm。
  5. 一种具有三维结构柔性电容材料的制备方法,其特征在于,
    1)对三维网络结构骨架进行处理,在三维网络结构骨架的现为表面形成介电性能增强包覆层,
    2)经过浸胶或涂覆方法将电介质浆料填充到三维网络结构骨架中,或经过热压将聚合物树脂电介质填充到三维网络结构骨架中;
    3)再经过热处理去除溶剂和半固化后,在其表面通过电镀、溅射、压合形成电极;形成柔性电容材料;
    任选地,4)形成电极后,进行完全固化,然后形成柔性电容材料。
  6. 根据权利要求5所述的制备方法,步骤1)中在三维网络结构骨架的纤维表面形成介电性能增强包覆层为通过溅射、溶胶凝胶法、化学气相沉积、共沉淀法以高介电常数的陶瓷材料对三维网络结构骨架进行处理。
  7. 根据权利要求6所述的制备方法,采用浸胶方式时,将三维网络结构骨架完全浸入电介质浆料中,之后将溶剂烘干,然后进行热处理得到稳定的电介质材料;
    使用涂覆的方式时,将电介质浆料涂覆纤维纸或纤维布上面,之后将溶剂烘干,然后进行热处理得到稳定的电介质材料。
    采用热压的方式时,将聚合物树脂电介质与纤维纸或纤维布叠合在一起,在一定的温度下施加合适的压力,将树脂熔融并在压力的作用下对纤维纸或纤维布进行填充。
  8. 根据权利要求7所述的制备方法,
    步骤(3)中的热处理温度为60摄氏度~180摄氏度,处理时间为0.5分钟~20分钟;
    优选地,步骤(4)的完全固化的热固化温度为60摄氏度~300摄氏度。
  9. 根据权利要求7所述的制备方法,步骤(3)中电极为铜、金、银、铝、导电合金、碳材料等中的一种或多种。
  10. 根据权利要求1-3任一项所述的柔性电介质材料在制备三维结构柔性电容材料中的用途。
PCT/CN2018/120534 2018-12-12 2018-12-12 三维柔性电容材料及其制备方法和应用 WO2020118551A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120534 WO2020118551A1 (zh) 2018-12-12 2018-12-12 三维柔性电容材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120534 WO2020118551A1 (zh) 2018-12-12 2018-12-12 三维柔性电容材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020118551A1 true WO2020118551A1 (zh) 2020-06-18

Family

ID=71075887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120534 WO2020118551A1 (zh) 2018-12-12 2018-12-12 三维柔性电容材料及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2020118551A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337148A (zh) * 2021-06-09 2021-09-03 黄山钛可磨工业介质有限公司 蒸压加气混凝土板钢筋用环境友好型水性防腐涂料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114489A (ja) * 2004-09-14 2006-04-27 Nagoya Institute Of Technology 誘電体メタマテリアル、および磁性体メタマテリアル
CN102142319A (zh) * 2010-02-02 2011-08-03 三星电机株式会社 电双层电容器及其制造方法
CN102403050A (zh) * 2010-09-08 2012-04-04 中国科学院金属研究所 基于纳米复合材料及其制备方法和在柔性储能器件的应用
CN107722557A (zh) * 2016-08-12 2018-02-23 深圳先进技术研究院 一种超薄电容材料及其制备方法
CN108250677A (zh) * 2016-12-29 2018-07-06 中国科学院深圳先进技术研究院 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114489A (ja) * 2004-09-14 2006-04-27 Nagoya Institute Of Technology 誘電体メタマテリアル、および磁性体メタマテリアル
CN102142319A (zh) * 2010-02-02 2011-08-03 三星电机株式会社 电双层电容器及其制造方法
CN102403050A (zh) * 2010-09-08 2012-04-04 中国科学院金属研究所 基于纳米复合材料及其制备方法和在柔性储能器件的应用
CN107722557A (zh) * 2016-08-12 2018-02-23 深圳先进技术研究院 一种超薄电容材料及其制备方法
CN108250677A (zh) * 2016-12-29 2018-07-06 中国科学院深圳先进技术研究院 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337148A (zh) * 2021-06-09 2021-09-03 黄山钛可磨工业介质有限公司 蒸压加气混凝土板钢筋用环境友好型水性防腐涂料

Similar Documents

Publication Publication Date Title
CN110628155B (zh) 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料
TWI625997B (zh) Circuit substrate and preparation method thereof
WO2015180206A1 (zh) 一种热固性树脂夹心预浸体、制备方法及覆铜板
CN111312518B (zh) 三维柔性电容材料及其制备方法和应用
US9779880B2 (en) Resin composition and dielectric layer and capacitor produced therefrom
WO2016078432A1 (zh) 改性氧化铝复合材料、覆铜基板及其制备方法
Zhou et al. Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites
CN103525014B (zh) 一种三相复合高介电性能材料、制备方法及加工方法
KR101143296B1 (ko) 그라비아 직접 인쇄방식에 적용 가능한 저온 소성용 도전성 페이스트
CN102432201B (zh) 一种镀银玻璃纤维的制备方法及其导电橡胶
CN106626566B (zh) 一种高介电材料、制备方法及其用途
WO2022227517A1 (zh) 一种增强型导电浆料及电子器件
CN110885473B (zh) 一种纳米颗粒、复合薄膜及其制备方法和应用
CN103730195B (zh) 一种铜纳米线基多层结构的复合透明导电薄膜及其制备方法
CN103951976B (zh) 纳米核壳粒子/聚酰亚胺复合薄膜及其制备方法和应用
WO2020118551A1 (zh) 三维柔性电容材料及其制备方法和应用
CN103214795A (zh) 一种高绝缘导热覆铜板的组方及其制备工艺
CN102775704B (zh) 复合电介质材料、制备方法、平板型电容器和印刷电路板
KR101348950B1 (ko) 무소결 세라믹 하이브리드 기판의 층간 접속을 위한 도전성 비아 페이스트 및 그 제조방법
CN112175354A (zh) 一种耐热性环氧树脂组合物、无铅高Tg覆铜板及其制备方法
KR102059824B1 (ko) 광경화성 절연 수지 조성물 및 이를 이용한 인쇄회로기판
CN114292495B (zh) 环氧树脂复合材料及其制备方法与应用
CN101921479B (zh) 一种氰酸酯树脂基复合材料及其制备方法
WO2020232691A1 (zh) 电容器用柔性材料、其制备方法及印制线路板
CN108728029A (zh) 一种导热绝缘介质胶膜的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942980

Country of ref document: EP

Kind code of ref document: A1