WO2020232691A1 - 电容器用柔性材料、其制备方法及印制线路板 - Google Patents

电容器用柔性材料、其制备方法及印制线路板 Download PDF

Info

Publication number
WO2020232691A1
WO2020232691A1 PCT/CN2019/088092 CN2019088092W WO2020232691A1 WO 2020232691 A1 WO2020232691 A1 WO 2020232691A1 CN 2019088092 W CN2019088092 W CN 2019088092W WO 2020232691 A1 WO2020232691 A1 WO 2020232691A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
resin
solution
dielectric layer
flexible material
Prior art date
Application number
PCT/CN2019/088092
Other languages
English (en)
French (fr)
Inventor
罗遂斌
于淑会
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2019/088092 priority Critical patent/WO2020232691A1/zh
Publication of WO2020232691A1 publication Critical patent/WO2020232691A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the invention relates to the technical field of electronic packaging materials, in particular to a flexible material for capacitors, a preparation method thereof and a printed circuit board.
  • Compounding polymer materials with filler particles can adjust various electrical, mechanical, thermal, and magnetic properties of the composite material. Ceramic particles with a high dielectric constant are combined with a polymer material, and a high dielectric constant can be obtained at a higher filling amount, but the leakage current at this time is relatively large. A small amount of conductive particles are compounded with a polymer, and the filling amount is near the percolation threshold to obtain a high dielectric constant, but the dielectric loss and leakage current are relatively large at this time. A small amount of conductive particles are compounded with a polymer, and the filling amount is near the percolation threshold to obtain a high dielectric constant, but the dielectric loss and leakage current are relatively large at this time.
  • the purpose of the present invention is to provide a flexible material for capacitors, a preparation method thereof and a printed circuit board in view of the above-mentioned defects in the prior art.
  • the present invention provides a flexible material for capacitors, the flexible material includes:
  • the electrode layer is copper foil
  • the thickness of the copper foil is 1 ⁇ m to 70 ⁇ m
  • the surface roughness of the copper foil is 0.1 ⁇ m to 10 ⁇ m.
  • the high dielectric constant dielectric layer includes a first polymer material and first filler particles
  • the high insulation dielectric layer includes (i) a second polymer material or (ii) a second polymer material and second filler particles.
  • the first polymer and/or the second polymer include epoxy resin, polyimide resin, polyetherimide, bismaleimide cyanate resin, polyacrylic resin, Phenolic resin, unsaturated polyester resin, melamine formaldehyde resin, furan resin, polybutadiene resin, silicone resin, polyvinylidene fluoride resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polystyrene resin, One or more of polyamide resin, polyacetal resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, or polytetrafluoroethylene resin.
  • the first filler particles are ceramic particles
  • the high dielectric constant dielectric layer includes 100 parts by weight of the first polymer material and 20 to 85 parts by weight of ceramic particles;
  • the first filler particles are conductive particles
  • the high dielectric constant dielectric layer includes 100 parts by weight of the first polymer material and 0.1-30 parts by weight of conductive particles.
  • the second filler particles are ceramic particles
  • the high-insulation dielectric layer includes 100 parts by weight of the second polymer material and 0-20 parts by weight of ceramic particles.
  • the ceramic particles include barium titanate, barium strontium titanate, barium strontium zirconate titanate, lead titanate, lead zirconate titanate, lead magnesium niobate, strontium titanate, copper calcium titanate, boron nitride or One or more of alumina;
  • the conductive particles include metal particles and/or carbon conductive particles, and the metal particles are selected from one or more of gold particles, silver particles, copper particles, iron particles, aluminum particles, zinc particles or magnesium particles,
  • the carbon conductive particles are selected from one or more of carbon nanotubes, carbon black, graphene or carbon fibers;
  • the particle size of the ceramic particles is 20 nm to 1 ⁇ m;
  • the particle size of the conductive particles is 20 nm to 1 ⁇ m;
  • the thickness of the high dielectric constant dielectric layer is 0.5 ⁇ m to 20 ⁇ m
  • the thickness of the high insulation dielectric layer is 0.5 ⁇ m to 20 ⁇ m.
  • the present invention also provides a method for preparing a flexible material for capacitors, the method including:
  • the two electrode layers are laminated so that the semi-cured high-dielectric constant dielectric layers of the two electrode layers are close to each other, and the resulting laminate is sequentially heat-pressed and heat-cured to obtain a flexible material for capacitors.
  • the step of "dispersing the second filler particles in the solution of the second polymer material to prepare a high-insulation polymer slurry" includes:
  • the step of "dispersing the second filler particles in the solution of the second polymer material to prepare a high-insulation polymer slurry" includes:
  • the step of "dispersing the first filler particles in a solution of the first polymer material to prepare a high dielectric constant polymer slurry” includes:
  • the drying temperature is 115°C to 125°C;
  • the temperature of the hot pressing is 115°C to 125°C;
  • the step of thermally curing the obtained laminate includes:
  • the present invention also provides a printed circuit board with the above-mentioned flexible material for capacitors or the flexible material for capacitors prepared by the above-mentioned preparation method.
  • the flexible material for the capacitor of the present invention is provided with a composite dielectric layer including a high dielectric constant dielectric layer and a high insulating dielectric layer, which reduces dielectric loss and leakage current and improves the capacitance density of the flexible material.
  • FIG. 1 is a schematic diagram of the structure of a flexible material for a capacitor according to a first embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the structure of a flexible material for a capacitor according to a second embodiment of the present invention.
  • the embodiment of the present invention provides a flexible material for a capacitor. Please refer to FIG. 1 and FIG. 2.
  • the flexible material includes: a first electrode layer 11, a composite dielectric layer 13 and a second electrode layer 12 stacked in sequence, Among them, the composite dielectric layer 13 includes a high dielectric constant dielectric layer 131 and a high insulating dielectric layer 132.
  • the high dielectric constant layer 132 may be provided on both sides of the high dielectric constant dielectric layer 131, as shown in FIG. 1; A high insulation dielectric layer 132 is provided on one side of the high dielectric constant dielectric layer 131, as shown in FIG. 2.
  • both the first electrode layer 11 and the second electrode layer 12 are copper foils, the thickness of the copper foil is 1 ⁇ m to 70 ⁇ m, and the surface roughness of the copper foil is 0.1 ⁇ m to 10 ⁇ m.
  • the high dielectric constant dielectric layer 131 includes a first polymer material and first filler particles, and is formed by filling the first polymer material with the first filler particles.
  • the high-insulation dielectric layer 132 may only include the second polymer material and be formed of the second polymer material; the high-insulation dielectric layer 132 may also include or the second polymer material and second filler particles, and the second polymer material is filled with the second polymer material.
  • Two filler particles are formed. Further, both the first filler particles and the second filler particles may be spherical particles, linear nanoparticles, nanofibers, rod-shaped nanoparticles, sheet-shaped nanoparticles or irregularly shaped particles.
  • first polymer and the second polymer may be the same or different.
  • the first polymer or the second polymer may be a thermosetting resin, a thermoplastic resin, or a mixture of a thermosetting resin and a thermoplastic resin.
  • the first polymer and/or the second polymer include epoxy resin, polyimide resin, polyetherimide, bismaleimide cyanate resin, polyacrylic resin , Phenolic resin, unsaturated polyester resin, melamine formaldehyde resin, furan resin, polybutadiene resin, silicone resin, polyvinylidene fluoride resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polystyrene resin , Polyamide resin, polyoxymethylene resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin or polytetrafluoroethylene resin.
  • the first filler particles are ceramic particles, and the high dielectric constant dielectric layer 131 includes 100 parts by weight of the first polymer material and 20 to 85 parts by weight of ceramic particles.
  • the first filler particles are conductive particles, and the high dielectric constant dielectric layer 131 includes 100 parts by weight of the first polymer material and 0.1-30 parts by weight of conductive particles.
  • the second filler particles are ceramic particles, and the high-insulation dielectric layer 132 includes 100 parts by weight of the second polymer material and 0-20 parts by weight of ceramic particles.
  • the filling amount of ceramic particles in the high dielectric constant layer 131 is higher than the filling amount of ceramic particles in the high insulating dielectric layer 132 .
  • the ceramic particles may include barium titanate, barium strontium titanate, barium strontium zirconate titanate, lead titanate, lead zirconate titanate, lead magnesium niobate, strontium titanate, copper calcium titanate, boron nitride Or one or more of alumina.
  • the conductive particles include metal particles and/or carbon conductive particles, and the metal particles are selected from one or more of gold particles, silver particles, copper particles, iron particles, aluminum particles, zinc particles, or magnesium particles.
  • the carbon conductive particles are selected from one or more of carbon nanotubes, carbon black, graphene, or carbon fibers.
  • the particle size of the ceramic particles is 20 nm to 1 ⁇ m.
  • the size of the ceramic particles is lower than 20 nm or higher than 1 ⁇ m, the dispersion of the ceramic particles in the polymer is difficult, which is not conducive to obtaining a uniformly dispersed composite material.
  • the particle diameter of the conductive particles is 20 nm to 1 m.
  • the size of the conductive particles is lower than 20 nm or higher than 1 ⁇ m, the dispersion of the conductive particles in the polymer is difficult, which is not conducive to obtaining a uniformly dispersed composite material.
  • the amount of conductive particles added depends on the morphology and size of the selected conductive particles.
  • the particle size of the ceramic particles is 20 nm to 1 ⁇ m.
  • the size of the ceramic particles is lower than 20 nm or higher than 1 ⁇ m, the dispersion of the ceramic particles in the polymer is difficult, which is not conducive to obtaining a uniformly dispersed composite material.
  • the thickness of the high dielectric constant dielectric layer 131 is 0.5 ⁇ m-20 ⁇ m
  • the thickness of the high insulation dielectric layer 132 is 0.5 ⁇ m-20 ⁇ m.
  • the thickness of the polymer material is less than 0.5 ⁇ , the processing of the composite material is difficult and defects are easily formed.
  • the thickness of the polymer material is higher than 20 ⁇ m, the capacitance density of the composite material is low, which is not conducive to its practical application.
  • an embodiment of the present invention also provides a method for preparing a flexible material for a capacitor, including the following steps:
  • S101 Disperse the first filler particles in a solution of the first polymer material to prepare a high dielectric constant polymer slurry.
  • S102 Disperse the second filler particles in the solution of the second polymer material to prepare a high-insulation polymer slurry.
  • step S101 first, under an ice bath, 4,4,-diaminodiphenyl ether is dissolved in N,N-dimethylformamide to obtain a first solution, and pyromellitic anhydride Add them to the first solution several times and stir at low temperature to obtain the second solution; then, the ceramic particles or conductive particles, nonylphenol polyoxyethylene ether and N,N-dimethylformamide are mixed and dispersed by ball milling. Obtain a second dispersion liquid; finally, add the first dispersion liquid to the second solution, and ball mill to disperse to obtain a high dielectric constant polymer slurry;
  • step S102 when the high insulation dielectric layer 132 does not contain ceramic particles, first, 4,4,-diaminodiphenyl ether is dissolved in N,N-dimethylformamide under an ice bath to obtain the first A solution; then, pyromellitic anhydride is added to the first solution in multiple times, and stirred at low temperature to obtain a high-insulation polymer slurry.
  • step S102 when the high insulating dielectric layer 132 contains ceramic particles, first, 4,4,-diaminodiphenyl ether is dissolved in N,N-dimethylformamide under an ice bath to obtain the first Solution, add pyromellitic anhydride to the first solution in multiple times, and stir at low temperature to obtain the second solution; then, the ceramic particles, nonylphenol polyoxyethylene ether and N,N-dimethylformamide Mixing, ball milling and dispersing to obtain a first dispersion; finally, adding the first dispersion to the second solution and ball milling to disperse to obtain a high-insulation polymer slurry.
  • the drying temperature is 115°C to 125°C, preferably, the drying temperature is 110°C.
  • step S104 the temperature of the hot pressing is 115°C to 125°C, preferably, the temperature of the hot pressing is 110°C.
  • step S104 the step of thermally curing the obtained laminate includes:
  • the lamination is kept at 245°C to 255°C for 50 minutes to 70 minutes.
  • the laminate in the first stage, the laminate is kept at 120°C for 30 minutes; in the second stage, the laminate is kept at 150°C for 30 minutes; in the third stage, the laminate is kept at 250°C Keep it warm for 60 minutes.
  • the embodiment of the present invention also provides a printed circuit board, the printed circuit board is built with the above-mentioned flexible material for capacitors or the flexible material for capacitors obtained according to the above-mentioned preparation method.
  • This embodiment provides a method for preparing a flexible material for capacitors, including the following steps:
  • Step 1 Weigh 1.5g of 4,4,-diaminodiphenyl ether, and dissolve it in 15ml N,N-dimethylformamide in an ice bath;
  • Step 2 Weigh 1.635 g of pyromellitic anhydride, add them to the above solution in multiple times, and stir at low temperature for 10 hours to obtain a highly insulating polyimide resin solution;
  • Step 3 Weigh 20g of 300nm barium titanate, 0.06g of nonylphenol polyoxyethylene ether, and 20ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm and ball milling for 3 hours;
  • Step 4 Weigh 2.4g of 4,4,-diaminodiphenyl ether, and dissolve it in 10ml of N,N-dimethylformamide in an ice bath; weigh 2.6g of pyromellitic anhydride and add it in several portions To the above solution, stir at low temperature for 10 hours;
  • Step 5 Add the above solution to the dispersion of barium titanate, and perform ball milling dispersion at a speed of 500 rpm for 12 hours to obtain a polyimide resin slurry with a high dielectric constant;
  • Step 6 Coat the high-insulation polyimide resin solution on two pieces of copper foil, and then apply a layer of high-dielectric constant polyimide resin slurry on one of the copper foils after drying at 110°C. °C drying;
  • Step 7 the two pieces of copper foil materials are compounded, and the compounding temperature is 120°C;
  • Step 8 The composite material is thermally cured, and the thermal curing temperature rise curve is 120°C for 30 minutes, 150°C for 30 minutes, 250°C for 1 hour, and the flexible capacitor material is obtained after cooling.
  • This embodiment provides a method for preparing a flexible material for capacitors, including the following steps:
  • Step 1 Weigh 1.5g of 4,4,-diaminodiphenyl ether, and dissolve it in 15ml N,N-dimethylformamide in an ice bath;
  • Step 2 Weigh 1.635 g of pyromellitic anhydride, add them to the above solution in multiple times, and stir at low temperature for 10 hours to obtain a highly insulating polyimide resin solution;
  • Step 3 Weigh 20g of 50nm barium titanate, 0.06g of nonylphenol polyoxyethylene ether, and 20ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm and ball milling for 3 hours;
  • Step 4 Weigh 2.4g of 4,4,-diaminodiphenyl ether, and dissolve it in 10ml of N,N-dimethylformamide in an ice bath; weigh 2.6g of pyromellitic anhydride and add it in several portions To the above solution, stir at low temperature for 10 hours;
  • Step 5 Add the above solution to the dispersion of barium titanate, and perform ball milling dispersion at a speed of 500 rpm for 12 hours to obtain a polyimide resin slurry with a high dielectric constant;
  • Step 6 Coat the high-insulation polyimide resin solution on the two pieces of copper foil, and after drying at 110 °C, coat the two pieces of copper foil coated with the high-insulation polyimide resin with a layer of Electric constant polyimide resin slurry, dried at 110°C;
  • Step 7 the two pieces of copper foil materials are compounded, and the compounding temperature is 120°C;
  • Step 8 The composite material is thermally cured.
  • the thermal curing temperature rise curve is 120°C for 30 minutes, 150°C for 30 minutes, 250°C for 1 hour, and cooling to obtain a flexible capacitor material.
  • This embodiment provides a method for preparing a flexible material for capacitors, including the following steps:
  • Step 1 Weigh 1.5g of 4,4,-diaminodiphenyl ether, and dissolve it in 15ml N,N-dimethylformamide in an ice bath;
  • Step 2 Weigh 1.635 g of pyromellitic anhydride, add them to the above solution in multiple times, and stir at low temperature for 10 hours to obtain a highly insulating polyimide resin solution;
  • Step 3 Weigh 20g of 600nm barium titanate, 0.06g of nonylphenol polyoxyethylene ether, and 20ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm and ball milling for 3 hours;
  • Step 4 Weigh 2.4g of 4,4,-diaminodiphenyl ether, and dissolve it in 10ml of N,N-dimethylformamide in an ice bath; weigh 2.6g of pyromellitic anhydride and add it in several portions To the above solution, stir at low temperature for 10 hours;
  • Step 5 Add the above solution to the dispersion of barium titanate, and perform ball milling dispersion at a speed of 500 rpm for 12 hours to obtain a high dielectric constant polyimide resin slurry;
  • Step 6 Coat the high-insulating polyimide resin solution on a piece of copper foil and dry at 110°C, and coat the high-dielectric constant polyimide resin slurry on the other piece of copper foil, and dry at 110°C ;
  • Step 7 the two pieces of copper foil materials are compounded, and the compounding temperature is 120°C;
  • Step 8 The composite material is thermally cured.
  • the thermal curing temperature rise curve is 120°C for 30 minutes, 150°C for 30 minutes, 250°C for 1 hour, and cooling to obtain a flexible capacitor material.
  • This embodiment provides a method for preparing a flexible material for capacitors, including the following steps:
  • Step 1 Weigh 1.5g of 4,4,-diaminodiphenyl ether, and dissolve it in 15ml N,N-dimethylformamide in an ice bath;
  • Step 2 Weigh 1.635 g of pyromellitic anhydride, add it to the above solution in multiple times, and stir at low temperature for 10 hours;
  • Step 3 Weigh 1g of 10nm barium titanate, 0.03g of nonylphenol polyoxyethylene ether, and 5ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500rpm and ball milling for 3 hours;
  • Step 4 Add the above-mentioned barium titanate dispersion to the solution prepared in Step 2 for ball milling dispersion, the ball milling speed is 500 rpm, and the ball milling is 12 hours to obtain a highly insulating polyimide resin solution;
  • Step 5 Weigh 20g of 50nm barium titanate, 0.06g of nonylphenol polyoxyethylene ether, and 20ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm and ball milling for 3 hours;
  • Step 6 Weigh 2.4g of 4,4,-diaminodiphenyl ether, and dissolve it in 10ml N,N-dimethylformamide in an ice bath; weigh 2.6g of pyromellitic anhydride and add it in several portions To the above solution, stir at low temperature for 10 hours;
  • Step 7 adding the above solution to the dispersion of barium titanate, and performing ball milling dispersion at a speed of 500 rpm for 12 hours to obtain a high dielectric constant polyimide resin slurry;
  • Step 8 Coat the high-insulation polyimide resin solution on the two pieces of copper foil, and after drying at 110°C, coat the two pieces of copper foil coated with the high-insulation polyimide resin. Electric constant polyimide resin slurry, dried at 110°C;
  • Step 9 The two pieces of copper foil materials are compounded, and the compounding temperature is 120°C;
  • Step 10 Perform thermal curing of the composite material.
  • the thermal curing temperature rise curve is 120°C for 30 minutes, 150°C for 30 minutes, 250°C for 1 hour, and cooling to obtain a flexible capacitor material.
  • This embodiment provides a method for preparing a flexible material for capacitors, including the following steps:
  • Step 1 Weigh 1.5g of 4,4,-diaminodiphenyl ether, and dissolve it in 15ml N,N-dimethylformamide in an ice bath;
  • Step 2 Weigh 1.635 g of pyromellitic anhydride, add it to the above solution in multiple times, and stir at low temperature for 10 hours;
  • Step 3 Weigh 1g of 500nm barium titanate, 0.03g of nonylphenol polyoxyethylene ether, and 5ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion at a speed of 500 rpm for ball milling for 3 hours;
  • Step 4 Add the above-mentioned barium titanate dispersion to the solution prepared in Step 2 for ball milling dispersion, the ball milling speed is 500 rpm, and the ball milling is 12 hours to obtain a highly insulating polyimide resin solution;
  • Step 5 Weigh 20g of 500nm barium titanate, 0.06g of nonylphenol polyoxyethylene ether, and 20ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm and ball milling for 3 hours;
  • Step 6 Weigh 2.4g of 4,4,-diaminodiphenyl ether, and dissolve it in 10ml N,N-dimethylformamide in an ice bath; weigh 2.6g of pyromellitic anhydride and add it in several portions To the above solution, stir at low temperature for 10 hours;
  • Step 7 adding the above solution to the dispersion of barium titanate, and performing ball milling dispersion at a speed of 500 rpm for 12 hours to obtain a high dielectric constant polyimide resin slurry;
  • Step 8 Coat the high-insulation polyimide resin solution on two pieces of copper foil, and then apply a layer of high-dielectric constant polyimide resin slurry on one of the copper foils after drying at 110°C, 110 °C drying;
  • Step 9 The two pieces of copper foil materials are compounded, and the compounding temperature is 120°C;
  • Step 10 Perform thermal curing of the composite material.
  • the thermal curing temperature rise curve is 120°C for 30 minutes, 150°C for 30 minutes, 250°C for 1 hour, and cooling to obtain a flexible capacitor material.
  • This embodiment provides a method for preparing a flexible material for capacitors, including the following steps:
  • Step 1 Weigh 1.5g of 4,4,-diaminodiphenyl ether, and dissolve it in 15ml N,N-dimethylformamide in an ice bath;
  • Step 2 Weigh 1.635 g of pyromellitic anhydride, add it to the above solution in multiple times, and stir at low temperature for 10 hours;
  • Step 3 Weigh 1g of 100nm barium titanate, 0.03g of nonylphenol polyoxyethylene ether, and 5ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm and ball milling for 3 hours;
  • Step 4 Add the above-mentioned barium titanate dispersion to the solution prepared in Step 2 for ball milling dispersion, the ball milling speed is 500 rpm, and the ball milling is 12 hours to obtain a highly insulating polyimide resin solution;
  • Step 5 Weigh 20g of 200nm barium titanate, 0.06g of nonylphenol polyoxyethylene ether, and 20ml of N,N-dimethylformamide. After mixing, perform ball milling and dispersion, with a ball milling speed of 500 rpm, and ball milling for 3 hours;
  • Step 6 Weigh 2.4g of 4,4,-diaminodiphenyl ether, and dissolve it in 10ml N,N-dimethylformamide in an ice bath; weigh 2.6g of pyromellitic anhydride and add it in several portions To the above solution, stir at low temperature for 10 hours;
  • Step 7 adding the above solution to the dispersion of barium titanate, and performing ball milling dispersion at a speed of 500 rpm for 12 hours to obtain a high dielectric constant polyimide resin slurry;
  • Step 8 Coat the high-insulating polyimide resin solution on a piece of copper foil and dry at 110°C, and coat the high-dielectric constant polyimide resin slurry on the other piece of copper foil, and dry at 110°C ;
  • Step 9 The two pieces of copper foil materials are compounded, and the compounding temperature is 120°C;
  • Step 10 Perform thermal curing of the composite material.
  • the thermal curing temperature rise curve is 120°C for 30 minutes, 150°C for 30 minutes, 250°C for 1 hour, and cooling to obtain a flexible capacitor material.

Landscapes

  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明涉及电子封装材料技术领域,具体涉及一种电容器用柔性材料、其制备方法及印制线路板。所述柔性材料包括:两个电极层;以及设于所述两个电极层之间的复合型电介质层,所述复合型电介质层包括高介电常数介质层、和设于所述高介电常数介质层一侧或两侧的高绝缘介质层。本发明的电容器用柔性材料设置了包含高介电常数介质层和高绝缘介质层的复合型电介质层,减小了介电损耗和漏电流,提高了柔性材料的电容密度。

Description

电容器用柔性材料、其制备方法及印制线路板 技术领域
本发明涉及电子封装材料技术领域,具体涉及一种电容器用柔性材料、其制备方法及印制线路板。
背景技术
随着电子信息技术的发展,特别是近年来以可穿戴电子、智能手机、超薄电脑、无人驾驶、物联网技术和5G通讯技术为主的快速发展,对电子系统的小型化、轻薄化、多功能、高性能等方面提出了越来越高的要求。驱使传统以贴片电容为主的陶瓷电介质材料迅速减薄,引起电介质材料出现易开裂、缺陷多、漏电流大等问题。
由于聚合物材料的易加工性,在很多领域已有广泛的应用。将聚合物材料与填料粒子复合,可调节复合材料的各种电学、力学、热学、磁学等性能。将具有高介电常数的陶瓷粒子与聚合物材料进行复合,在较高填充量时可获得高介电常数,但是此时的漏电流较大。将少量的导电粒子与聚合物复合,填充量在渗流阈值附近可得到高介电常数,但是此时的介电损耗和漏电流都较大。将少量的导电粒子与聚合物复合,填充量在渗流阈值附近可得到高介电常数,但是此时的介电损耗和漏电流都较大。
鉴于此,克服以上现有技术中的缺陷,提供一种新的电容器用柔性材料成为本领域亟待解决的技术问题。
发明内容
本发明的目的在于针对现有技术的上述缺陷,提供一种电容器用柔性材料、其制备方法及印制线路板。
本发明的目的可通过以下的技术措施来实现:
本发明提供了一种电容器用柔性材料,所述柔性材料包括:
两个电极层;以及
设于所述两个电极层之间的复合型电介质层,所述复合型电介质层包括高介电常数介质层、和设于所述高介电常数介质层一侧或两侧的高绝缘介质层。
优选地,所述电极层为铜箔,所述铜箔的厚度为1μm~70μm,所述铜箔的表面粗糙度为0.1μm~10μm。
优选地,所述高介电常数介质层包括第一聚合物材料和第一填料颗粒;
所述高绝缘介质层包括(i)第二聚合材料或(ii)第二聚合物材料和第二填料颗粒。
优选地,所述第一聚合物和/或所述第二聚合物包括环氧树脂、聚酰亚胺树脂、聚醚酰亚胺、双马来酰亚胺氰酸酯树脂、聚丙烯酸树脂、酚醛树脂、不饱和聚酯树脂、三聚氰胺甲醛树脂、呋喃树脂、聚丁二烯树脂、有机硅树脂、聚偏氟乙烯树脂、聚乙烯树脂、聚丙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚酰胺树脂、聚甲醛树脂、聚碳酸酯树脂、聚苯醚树脂、聚砜树脂或聚四氟乙烯树脂中的一种或多种。
优选地,所述第一填料颗粒为陶瓷颗粒,所述高介电常数介质层包括100重量份的第一聚合物材料和20~85重量份的陶瓷颗粒;
或,所述第一填料颗粒为导电颗粒,所述高介电常数介质层包括100重量份的第一聚合物材料和0.1~30重量份的导电颗粒。
优选地,所述第二填料颗粒为陶瓷颗粒,所述高绝缘介质层包括100重量份的第二聚合物材料和0~20重量份的陶瓷颗粒。
优选地,所述陶瓷颗粒包括钛酸钡、钛酸锶钡、锆钛酸锶钡、钛酸铅、锆钛酸铅、铌镁酸铅、钛酸锶、钛酸铜钙、氮化硼或氧化铝中的一种或多种;
或,所述导电颗粒包括金属颗粒和/或碳导电颗粒,所述金属颗粒选自金粒子、银粒子、铜粒子、铁粒子、铝粒子、锌粒子或镁粒子中的一种或多种,所 述碳导电颗粒选自碳纳米管、炭黑、石墨烯或碳纤维中的一种或多种;
或,所述陶瓷颗粒的粒径为20nm~1μm;
或,所述导电颗粒的粒径为20nm~1μm;
或,所述高介电常数介质层的厚度为0.5μm~20μm,所述高绝缘介质层的厚度为0.5μm~20μm。
本发明还提供了一种电容器用柔性材料的制备方法,所述制备方法包括:
将第一填料颗粒分散于第一聚合物材料的溶液中,以制备高介电常数聚合物浆料;
将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料;
在一个或两个电极层的内侧涂覆所述高绝缘聚合物浆料,烘干所述高绝缘聚合物浆料以得到半固化的高绝缘介质层;
在两个电极层的内侧继续涂覆所述高介电常数聚合物浆料,烘干所述高介电常数聚合物浆料以得到半固化的高介电常数介质层;
叠合两个电极层以使两个电极层的半固化的高介电常数介质层相互靠近,将所得叠片依次进行热压和热固化,以得到电容器用柔性材料。
优选地,所述“将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料”的步骤包括:
在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液;
将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到高绝缘聚合物浆料;
或,所述“将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料”的步骤包括:
在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液,将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到第二溶液;
将陶瓷颗粒、壬基酚聚氧乙烯醚和N,N-二甲基甲酰胺混合,球磨分散,得到第一分散液;
将第一分散液加入至第二溶液中,球磨分散,得到高绝缘聚合物浆料;
或,所述“将第一填料颗粒分散于第一聚合物材料的溶液中,以制备高介电常数聚合物浆料”的步骤包括:
在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液,将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到第二溶液;
将陶瓷颗粒或导电颗粒、壬基酚聚氧乙烯醚和N,N-二甲基甲酰胺混合,球磨分散,得到第二分散液;
将第一分散液加入至第二溶液中,球磨分散,得到高介电常数聚合物浆料;
或,所述烘干的温度为115℃~125℃;
或,所述热压的温度为115℃~125℃;
或,将所得叠片进行热固化的步骤包括:
将叠片在115℃~125℃下保温20分钟~40分钟;
将叠片在145℃~155℃下保温20分钟~40分钟;
将叠片在245℃~255℃下保温50分钟~70分钟。
本发明还提供了一种印制线路板,所述印制线路板内置有上述的电容器用柔性材料或用上述制备方法所制备的电容器用柔性材料。
本发明的电容器用柔性材料设置了包含高介电常数介质层和高绝缘介质层的复合型电介质层,减小了介电损耗和漏电流,提高了柔性材料的电容密度。
附图说明
图1是本发明第一种实施方式的电容器用柔性材料的结构示意图。
图2是本发明第二种实施方式的电容器用柔性材料的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了使本揭示内容的叙述更加详尽与完备,下文针对本发明的实施方式与具体实施例提出了说明性的描述;但这并非实施或运用本发明具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其它具体实施例来达成相同或均等的功能与步骤顺序。
本发明实施例提供了一种电容器用柔性材料,请参阅图1和图2所示,所述柔性材料包括:依次层叠的第一电极层11、复合型电介质层13和第二电极层12,其中,复合型电介质层13包括高介电常数介质层131和高绝缘介质层132,可以在高介电常数介质层131的两侧均设置高绝缘介质层132,如图1所示;也可以在高介电常数介质层131的其中一侧设置高绝缘介质层132,如图2所示。
在一些优选实施方式中,第一电极层11和第二电极层12均为铜箔,所述铜箔的厚度为1μm~70μm,所述铜箔的表面粗糙度为0.1μm~10μm。
在一些优选实施方式中,高介电常数介质层131包括第一聚合物材料和第一填料颗粒,在第一聚合物材料中填充第一填料颗粒形成。高绝缘介质层132可以仅包括第二聚合材料,由第二聚合物材料形成;高绝缘介质层132还可以包括或第二聚合物材料和第二填料颗粒,在第二聚合物材料中填充第二填料颗粒形成。进一步地,第一填料颗粒和第二填料颗粒均可以为球状颗粒、线状纳米颗粒、纳米纤维、棒状纳米颗粒、片状纳米颗粒或不规则形状颗粒。
进一步地,第一聚合物和第二聚合物可以相同或不同,第一聚合物或第二 聚合物可以为热固性树脂,也可以为热塑性树脂,也可以为热固性树脂和热塑性树脂的混合使用。更进一步地,所述第一聚合物和/或所述第二聚合物包括环氧树脂、聚酰亚胺树脂、聚醚酰亚胺、双马来酰亚胺氰酸酯树脂、聚丙烯酸树脂、酚醛树脂、不饱和聚酯树脂、三聚氰胺甲醛树脂、呋喃树脂、聚丁二烯树脂、有机硅树脂、聚偏氟乙烯树脂、聚乙烯树脂、聚丙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚酰胺树脂、聚甲醛树脂、聚碳酸酯树脂、聚苯醚树脂、聚砜树脂或聚四氟乙烯树脂中的一种或多种。
在一些优选实施方式中,所述第一填料颗粒为陶瓷颗粒,所述高介电常数介质层131包括100重量份的第一聚合物材料和20~85重量份的陶瓷颗粒。或者,所述第一填料颗粒为导电颗粒,所述高介电常数介质层131包括100重量份的第一聚合物材料和0.1~30重量份的导电颗粒。所述第二填料颗粒为陶瓷颗粒,所述高绝缘介质层132包括100重量份的第二聚合物材料和0~20重量份的陶瓷颗粒。也就是说,当高介电常数介质层131和高绝缘介质层132均填充陶瓷颗粒时,高介电常数介质层131中陶瓷颗粒的填充量高于高绝缘介质层132中陶瓷颗粒的填充量。
进一步地,所述陶瓷颗粒可以包括钛酸钡、钛酸锶钡、锆钛酸锶钡、钛酸铅、锆钛酸铅、铌镁酸铅、钛酸锶、钛酸铜钙、氮化硼或氧化铝中的一种或多种。所述导电颗粒包括金属颗粒和/或碳导电颗粒,所述金属颗粒选自金粒子、银粒子、铜粒子、铁粒子、铝粒子、锌粒子或镁粒子中的一种或多种,所述碳导电颗粒选自碳纳米管、炭黑、石墨烯或碳纤维中的一种或多种。
进一步地,当高介电常数介质层131填充陶瓷颗粒时,所述陶瓷颗粒的粒径为20nm~1μm。当陶瓷颗粒的尺寸低于20nm或高于1μm时,陶瓷颗粒在聚合物中的分散困难,不利于获得均匀分散的复合材料。
进一步地,当高介电常数介质层131填充导电颗粒时,所述导电颗粒的粒 径为20nm~1μm。当导电粒子的尺寸低于20nm或高于1μm时,导电颗粒在聚合物中的分散困难,不利于获得均匀分散的复合材料。同时,导电颗粒的添加量取决于所选用的导电颗粒的形貌和尺寸。
进一步地,当高绝缘介质层132填充陶瓷颗粒时,所述陶瓷颗粒的粒径为20nm~1μm。当陶瓷颗粒的尺寸低于20nm或高于1μm时,陶瓷颗粒在聚合物中的分散困难,不利于获得均匀分散的复合材料。
进一步地,所述高介电常数介质层131的厚度为0.5μm~20μm,所述高绝缘介质层132的厚度为0.5μm~20μm。当聚合物材料的厚度低于0.5μ时,复合材料的加工困难,容易形成缺陷。当聚合物材料的厚度高于20μm时,复合材料的电容密度较低,不利于其实际应用。
相应地,本发明实施例还提供了一种电容器用柔性材料的制备方法,包括如下步骤:
S101,将第一填料颗粒分散于第一聚合物材料的溶液中,以制备高介电常数聚合物浆料。
S102,将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料。
S103,在一个或两个电极层的内侧涂覆所述高绝缘聚合物浆料,烘干所述高绝缘聚合物浆料以得到半固化的高绝缘介质层。
S104,在两个电极层的内侧继续涂覆所述高介电常数聚合物浆料,烘干所述高介电常数聚合物浆料以得到半固化的高介电常数介质层。
S105,叠合两个电极层以使两个电极层的半固化的高介电常数介质层相互靠近,将所得叠片依次进行热压和热固化,以得到电容器用柔性材料。
具体地,在步骤S101中,首先,在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液,将均苯四甲酸酐分多次加入第一溶液中, 低温下进行搅拌,得到第二溶液;然后,将陶瓷颗粒或导电颗粒、壬基酚聚氧乙烯醚和N,N-二甲基甲酰胺混合,球磨分散,得到第二分散液;最后,将第一分散液加入至第二溶液中,球磨分散,得到高介电常数聚合物浆料;
在步骤S102中,当高绝缘介质层132不含陶瓷颗粒时,首先,在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液;然后,将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到高绝缘聚合物浆料。
在步骤S102中,当高绝缘介质层132含有陶瓷颗粒时,首先,在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液,将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到第二溶液;然后,将陶瓷颗粒、壬基酚聚氧乙烯醚和N,N-二甲基甲酰胺混合,球磨分散,得到第一分散液;最后,将第一分散液加入至第二溶液中,球磨分散,得到高绝缘聚合物浆料。
在步骤S103和步骤S104中,烘干温度为115℃~125℃,优选地,烘干温度为110℃。
在步骤S104中,所述热压的温度为115℃~125℃,优选地,热压温度为110℃。
在步骤S104中,将所得叠片进行热固化的步骤包括:
第一阶段,将叠片在115℃~125℃下保温20分钟~40分钟;
第二阶段,将叠片在145℃~155℃下保温20分钟~40分钟;
第三阶段,将叠片在245℃~255℃下保温50分钟~70分钟。
优选地,在第一阶段中,将叠片在120℃下保温30分钟;在第二阶段中,将叠片在150℃下保温30分钟;在第三阶段中,将叠片在250℃下保温60分钟。
本发明实施例还提供了一种印制线路板,所述印制线路板内置有上述的电容器用柔性材料或按照上述制备方法得到的电容器用柔性材料。
实施例1
本实施例提供了一种电容器用柔性材料的制备方法,包括如下步骤:
步骤1,称量4,4,-二氨基二苯醚1.5g,在冰浴中溶解于15ml N,N-二甲基甲酰胺中;
步骤2,称量均苯四甲酸酐1.635g,分多次加入至上述溶液中,低温搅拌10小时得到高绝缘性聚酰亚胺树脂溶液;
步骤3,称量300nm钛酸钡20g,壬基酚聚氧乙烯醚0.06g,20ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤4,称量4,4,-二氨基二苯醚2.4g,在冰浴中溶解于10ml N,N-二甲基甲酰胺中;称量均苯四甲酸酐2.6g,分多次加入至上述溶液中,低温搅拌10小时;
步骤5,将上述溶液加入到钛酸钡的分散液中,进行球磨分散,球磨转速500rpm,球磨12小时,得到高介电常数聚酰亚胺树脂浆料;
步骤6,将高绝缘性聚酰亚胺树脂溶液涂覆与两片铜箔上,110℃烘干后在其中一片铜箔上涂覆一层高介电常数聚酰亚胺树脂浆料,110℃烘干;
步骤7,将两片铜箔材料进行复合,复合温度为120℃;
步骤8,将复合材料进行热固化,热固化升温曲线为120℃保温30分钟,升温至150℃保温30分钟,升温至250℃保温1小时,冷却后得到柔性电容材料。
实施例2
本实施例提供了一种电容器用柔性材料的制备方法,包括如下步骤:
步骤1,称量4,4,-二氨基二苯醚1.5g,在冰浴中溶解于15ml N,N-二甲基甲酰胺中;
步骤2,称量均苯四甲酸酐1.635g,分多次加入至上述溶液中,低温搅拌 10小时得到高绝缘性聚酰亚胺树脂溶液;
步骤3,称量50nm钛酸钡20g,壬基酚聚氧乙烯醚0.06g,20ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤4,称量4,4,-二氨基二苯醚2.4g,在冰浴中溶解于10ml N,N-二甲基甲酰胺中;称量均苯四甲酸酐2.6g,分多次加入至上述溶液中,低温搅拌10小时;
步骤5,将上述溶液加入到钛酸钡的分散液中,进行球磨分散,球磨转速500rpm,球磨12小时,得到高介电常数聚酰亚胺树脂浆料;
步骤6,将高绝缘性聚酰亚胺树脂溶液涂覆与两片铜箔上,110℃烘干后在涂覆有高绝缘聚酰亚胺树脂的两片铜箔上涂覆一层高介电常数聚酰亚胺树脂浆料,110℃烘干;
步骤7,将两片铜箔材料进行复合,复合温度为120℃;
步骤8,将复合材料进行热固化,热固化升温曲线为120℃保温30分钟,升温至150℃保温30分钟,升温至250℃保温1小时,冷却后得到柔性电容材料。
实施例3
本实施例提供了一种电容器用柔性材料的制备方法,包括如下步骤:
步骤1,称量4,4,-二氨基二苯醚1.5g,在冰浴中溶解于15ml N,N-二甲基甲酰胺中;
步骤2,称量均苯四甲酸酐1.635g,分多次加入至上述溶液中,低温搅拌10小时得到高绝缘性聚酰亚胺树脂溶液;
步骤3,称量600nm钛酸钡20g,壬基酚聚氧乙烯醚0.06g,20ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤4,称量4,4,-二氨基二苯醚2.4g,在冰浴中溶解于10ml N,N-二甲基 甲酰胺中;称量均苯四甲酸酐2.6g,分多次加入至上述溶液中,低温搅拌10小时;
步骤5,将上述溶液加入到钛酸钡的分散液中,进行球磨分散,球磨转速500rpm,球磨12小时,得到高介电常数聚酰亚胺树脂浆料;
步骤6,将高绝缘性聚酰亚胺树脂溶液涂覆与一片铜箔上,110℃烘干,将高介电常数聚酰亚胺树脂浆料涂覆另一片铜箔上,110℃烘干;
步骤7,将两片铜箔材料进行复合,复合温度为120℃;
步骤8,将复合材料进行热固化,热固化升温曲线为120℃保温30分钟,升温至150℃保温30分钟,升温至250℃保温1小时,冷却后得到柔性电容材料。
实施例4
本实施例提供了一种电容器用柔性材料的制备方法,包括如下步骤:
步骤1,称量4,4,-二氨基二苯醚1.5g,在冰浴中溶解于15ml N,N-二甲基甲酰胺中;
步骤2,称量均苯四甲酸酐1.635g,分多次加入至上述溶液中,低温搅拌10小时;
步骤3,称量10nm钛酸钡1g,壬基酚聚氧乙烯醚0.03g,5ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤4,将上述钛酸钡分散液加入至步骤2所制备的溶液中进行球磨分散,球磨转速500rpm,球磨12小时得到高绝缘性聚酰亚胺树脂溶液;
步骤5,称量50nm钛酸钡20g,壬基酚聚氧乙烯醚0.06g,20ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤6,称量4,4,-二氨基二苯醚2.4g,在冰浴中溶解于10ml N,N-二甲基甲酰胺中;称量均苯四甲酸酐2.6g,分多次加入至上述溶液中,低温搅拌10小 时;
步骤7,将上述溶液加入到钛酸钡的分散液中,进行球磨分散,球磨转速500rpm,球磨12小时,得到高介电常数聚酰亚胺树脂浆料;
步骤8,将高绝缘性聚酰亚胺树脂溶液涂覆与两片铜箔上,110℃烘干后在涂覆有高绝缘聚酰亚胺树脂的两片铜箔上涂覆一层高介电常数聚酰亚胺树脂浆料,110℃烘干;
步骤9,将两片铜箔材料进行复合,复合温度为120℃;
步骤10,将复合材料进行热固化,热固化升温曲线为120℃保温30分钟,升温至150℃保温30分钟,升温至250℃保温1小时,冷却后得到柔性电容材料。
实施例5
本实施例提供了一种电容器用柔性材料的制备方法,包括如下步骤:
步骤1,称量4,4,-二氨基二苯醚1.5g,在冰浴中溶解于15ml N,N-二甲基甲酰胺中;
步骤2,称量均苯四甲酸酐1.635g,分多次加入至上述溶液中,低温搅拌10小时;
步骤3,称量500nm钛酸钡1g,壬基酚聚氧乙烯醚0.03g,5ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤4,将上述钛酸钡分散液加入至步骤2所制备的溶液中进行球磨分散,球磨转速500rpm,球磨12小时得到高绝缘性聚酰亚胺树脂溶液;
步骤5,称量500nm钛酸钡20g,壬基酚聚氧乙烯醚0.06g,20ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤6,称量4,4,-二氨基二苯醚2.4g,在冰浴中溶解于10ml N,N-二甲基甲酰胺中;称量均苯四甲酸酐2.6g,分多次加入至上述溶液中,低温搅拌10小 时;
步骤7,将上述溶液加入到钛酸钡的分散液中,进行球磨分散,球磨转速500rpm,球磨12小时,得到高介电常数聚酰亚胺树脂浆料;
步骤8,将高绝缘性聚酰亚胺树脂溶液涂覆与两片铜箔上,110℃烘干后在其中一片铜箔上涂覆一层高介电常数聚酰亚胺树脂浆料,110℃烘干;
步骤9,将两片铜箔材料进行复合,复合温度为120℃;
步骤10,将复合材料进行热固化,热固化升温曲线为120℃保温30分钟,升温至150℃保温30分钟,升温至250℃保温1小时,冷却后得到柔性电容材料。
实施例6
本实施例提供了一种电容器用柔性材料的制备方法,包括如下步骤:
步骤1,称量4,4,-二氨基二苯醚1.5g,在冰浴中溶解于15ml N,N-二甲基甲酰胺中;
步骤2,称量均苯四甲酸酐1.635g,分多次加入至上述溶液中,低温搅拌10小时;
步骤3,称量100nm钛酸钡1g,壬基酚聚氧乙烯醚0.03g,5ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤4,将上述钛酸钡分散液加入至步骤2所制备的溶液中进行球磨分散,球磨转速500rpm,球磨12小时得到高绝缘性聚酰亚胺树脂溶液;
步骤5,称量200nm钛酸钡20g,壬基酚聚氧乙烯醚0.06g,20ml N,N-二甲基甲酰胺,混合后进行球磨分散,球磨转速500rpm,球磨3小时;
步骤6,称量4,4,-二氨基二苯醚2.4g,在冰浴中溶解于10ml N,N-二甲基甲酰胺中;称量均苯四甲酸酐2.6g,分多次加入至上述溶液中,低温搅拌10小时;
步骤7,将上述溶液加入到钛酸钡的分散液中,进行球磨分散,球磨转速500rpm,球磨12小时,得到高介电常数聚酰亚胺树脂浆料;
步骤8,将高绝缘性聚酰亚胺树脂溶液涂覆与一片铜箔上,110℃烘干,将高介电常数聚酰亚胺树脂浆料涂覆另一片铜箔上,110℃烘干;
步骤9,将两片铜箔材料进行复合,复合温度为120℃;
步骤10,将复合材料进行热固化,热固化升温曲线为120℃保温30分钟,升温至150℃保温30分钟,升温至250℃保温1小时,冷却后得到柔性电容材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电容器用柔性材料,其特征在于,所述柔性材料包括:
    两个电极层;以及
    设于所述两个电极层之间的复合型电介质层,所述复合型电介质层包括高介电常数介质层、和设于所述高介电常数介质层一侧或两侧的高绝缘介质层。
  2. 根据权利要求1所述的电容器用柔性材料,其特征在于,所述电极层为铜箔,所述铜箔的厚度为1μm~70μm,所述铜箔的表面粗糙度为0.1μm~10μm。
  3. 根据权利要求1所述的电容器用柔性材料,其特征在于,所述高介电常数介质层包括第一聚合物材料和第一填料颗粒;
    所述高绝缘介质层包括(i)第二聚合材料或(ii)第二聚合物材料和第二填料颗粒。
  4. 根据权利要求3所述的电容器用柔性材料,其特征在于,所述第一聚合物和/或所述第二聚合物包括环氧树脂、聚酰亚胺树脂、聚醚酰亚胺、双马来酰亚胺氰酸酯树脂、聚丙烯酸树脂、酚醛树脂、不饱和聚酯树脂、三聚氰胺甲醛树脂、呋喃树脂、聚丁二烯树脂、有机硅树脂、聚偏氟乙烯树脂、聚乙烯树脂、聚丙烯树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚酰胺树脂、聚甲醛树脂、聚碳酸酯树脂、聚苯醚树脂、聚砜树脂或聚四氟乙烯树脂中的一种或多种。
  5. 根据权利要求3或4所述的电容器用柔性材料,其特征在于,所述第一填料颗粒为陶瓷颗粒,所述高介电常数介质层包括100重量份的第一聚合物材料和20~85重量份的陶瓷颗粒;
    或,所述第一填料颗粒为导电颗粒,所述高介电常数介质层包括100重量份的第一聚合物材料和0.1~30重量份的导电颗粒。
  6. 根据权利要求3或4所述的电容器用柔性材料,其特征在于,所述第二填料颗粒为陶瓷颗粒,所述高绝缘介质层包括100重量份的第二聚合物材料和 0~20重量份的陶瓷颗粒。
  7. 根据权利要求5或6所述的电容器用柔性材料,其特征在于,所述陶瓷颗粒包括钛酸钡、钛酸锶钡、锆钛酸锶钡、钛酸铅、锆钛酸铅、铌镁酸铅、钛酸锶、钛酸铜钙、氮化硼或氧化铝中的一种或多种;
    或,所述导电颗粒包括金属颗粒和/或碳导电颗粒,所述金属颗粒选自金粒子、银粒子、铜粒子、铁粒子、铝粒子、锌粒子或镁粒子中的一种或多种,所述碳导电颗粒选自碳纳米管、炭黑、石墨烯或碳纤维中的一种或多种;
    或,所述陶瓷颗粒的粒径为20nm~1μm;
    或,所述导电颗粒的粒径为20nm~1μm;
    或,所述高介电常数介质层的厚度为0.5μm~20μm,所述高绝缘介质层的厚度为0.5μm~20μm。
  8. 一种电容器用柔性材料的制备方法,其特征在于,所述制备方法包括:
    将第一填料颗粒分散于第一聚合物材料的溶液中,以制备高介电常数聚合物浆料;
    将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料;
    在一个或两个电极层的内侧涂覆所述高绝缘聚合物浆料,烘干所述高绝缘聚合物浆料以得到半固化的高绝缘介质层;
    在两个电极层的内侧继续涂覆所述高介电常数聚合物浆料,烘干所述高介电常数聚合物浆料以得到半固化的高介电常数介质层;
    叠合两个电极层以使两个电极层的半固化的高介电常数介质层相互靠近,将所得叠片依次进行热压和热固化,以得到电容器用柔性材料。
  9. 根据权利要求8所述的电容器用柔性材料的制备方法,其特征在于,所 述“将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料”的步骤包括:
    在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液;
    将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到高绝缘聚合物浆料;
    或,所述“将第二填料颗粒分散于第二聚合物材料的溶液中,以制备高绝缘聚合物浆料”的步骤包括:
    在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液,将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到第二溶液;
    将陶瓷颗粒、壬基酚聚氧乙烯醚和N,N-二甲基甲酰胺混合,球磨分散,得到第一分散液;
    将第一分散液加入至第二溶液中,球磨分散,得到高绝缘聚合物浆料;
    或,所述“将第一填料颗粒分散于第一聚合物材料的溶液中,以制备高介电常数聚合物浆料”的步骤包括:
    在冰浴下,将4,4,-二氨基二苯醚溶解于N,N-二甲基甲酰胺中,得到第一溶液,将均苯四甲酸酐分多次加入第一溶液中,低温下进行搅拌,得到第二溶液;
    将陶瓷颗粒或导电颗粒、壬基酚聚氧乙烯醚和N,N-二甲基甲酰胺混合,球磨分散,得到第二分散液;
    将第一分散液加入至第二溶液中,球磨分散,得到高介电常数聚合物浆料;
    或,所述烘干的温度为115℃~125℃;
    或,所述热压的温度为115℃~125℃;
    或,将所得叠片进行热固化的步骤包括:
    将叠片在115℃~125℃下保温20分钟~40分钟;
    将叠片在145℃~155℃下保温20分钟~40分钟;
    将叠片在245℃~255℃下保温50分钟~70分钟。
  10. 一种印制线路板,其特征在于,所述印制线路板内置有如权利要求1至7任一项所述的电容器用柔性材料或用权利要求8或9所述制备方法所制备的电容器用柔性材料。
PCT/CN2019/088092 2019-05-23 2019-05-23 电容器用柔性材料、其制备方法及印制线路板 WO2020232691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088092 WO2020232691A1 (zh) 2019-05-23 2019-05-23 电容器用柔性材料、其制备方法及印制线路板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088092 WO2020232691A1 (zh) 2019-05-23 2019-05-23 电容器用柔性材料、其制备方法及印制线路板

Publications (1)

Publication Number Publication Date
WO2020232691A1 true WO2020232691A1 (zh) 2020-11-26

Family

ID=73459276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088092 WO2020232691A1 (zh) 2019-05-23 2019-05-23 电容器用柔性材料、其制备方法及印制线路板

Country Status (1)

Country Link
WO (1) WO2020232691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806177A (zh) * 2021-10-08 2022-07-29 中国电力科学研究院有限公司 一种液体硅橡胶的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677033A (zh) * 2008-09-19 2010-03-24 深圳先进技术研究院 一种聚合物基复合电介质材料及平板型电容器
CN102173155A (zh) * 2011-01-14 2011-09-07 北京化工大学 聚合物基陶瓷复合介电材料及其制备方法
CN107107434A (zh) * 2014-12-18 2017-08-29 3M创新有限公司 多层膜电容器
CN108300153A (zh) * 2017-10-13 2018-07-20 深圳市峰泳科技有限公司 高储能密度电介质材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677033A (zh) * 2008-09-19 2010-03-24 深圳先进技术研究院 一种聚合物基复合电介质材料及平板型电容器
CN102173155A (zh) * 2011-01-14 2011-09-07 北京化工大学 聚合物基陶瓷复合介电材料及其制备方法
CN107107434A (zh) * 2014-12-18 2017-08-29 3M创新有限公司 多层膜电容器
CN108300153A (zh) * 2017-10-13 2018-07-20 深圳市峰泳科技有限公司 高储能密度电介质材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806177A (zh) * 2021-10-08 2022-07-29 中国电力科学研究院有限公司 一种液体硅橡胶的制备方法

Similar Documents

Publication Publication Date Title
CN109486106B (zh) 高储能密度电介质材料及其制备方法
Wang et al. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission
US7911029B2 (en) Multilayer electronic devices for imbedded capacitor
CN110303734A (zh) 电容器用柔性材料、其制备方法及印制线路板
TWI738008B (zh) 高頻銅箔基板及其製法
CN111087843B (zh) 一种高介电绝缘胶膜材料及其制备方法
JPWO2018181606A1 (ja) 伝熱部材及びこれを含む放熱構造体
JPWO2009008471A1 (ja) 誘電層付銅箔
CN108281284B (zh) 一种包含串联结构电介质的高电容密度的电容器及其制备方法
WO2004102589A1 (ja) 絶縁材料、フィルム、回路基板及びこれらの製造方法
CN103402311A (zh) 一种埋容材料、制备方法及其用途
Alam et al. Embedded capacitors in printed wiring board: A technological review
CN103358631A (zh) 一种埋容材料用介质层、埋容材料、制备方法及其用途
CN110310829A (zh) 埋入式电容材料、其制备方法及印制线路板
KR20150034380A (ko) 수직 배열된 그래핀을 포함하는 방열 시트 및 이의 제조방법
CN111081863A (zh) 一种柔性复合薄膜纳米发电机及其制备方法
WO2020232691A1 (zh) 电容器用柔性材料、其制备方法及印制线路板
CN104303605A (zh) 金属基印刷电路板
TW200921710A (en) Dielectric compositions containing coated filler and methods relating thereto
CN111312518A (zh) 三维柔性电容材料及其制备方法和应用
Bai Dielectric properties of BaTiO 3/epoxy composites by lamination process for embedded capacitor application
KR101348950B1 (ko) 무소결 세라믹 하이브리드 기판의 층간 접속을 위한 도전성 비아 페이스트 및 그 제조방법
CN102775704B (zh) 复合电介质材料、制备方法、平板型电容器和印刷电路板
CN117301674A (zh) 一种五层复合薄膜及其制备方法和应用
JP2004281169A (ja) ポリマーコンポジット高誘電率材料、多層配線板及びモジュール基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19929775

Country of ref document: EP

Kind code of ref document: A1