WO2020114475A1 - 作为免疫调节的芳环衍生物及其制备方法和应用 - Google Patents

作为免疫调节的芳环衍生物及其制备方法和应用 Download PDF

Info

Publication number
WO2020114475A1
WO2020114475A1 PCT/CN2019/123485 CN2019123485W WO2020114475A1 WO 2020114475 A1 WO2020114475 A1 WO 2020114475A1 CN 2019123485 W CN2019123485 W CN 2019123485W WO 2020114475 A1 WO2020114475 A1 WO 2020114475A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
added
residue
preparation
compound
Prior art date
Application number
PCT/CN2019/123485
Other languages
English (en)
French (fr)
Inventor
陆洪福
彭建彪
邢唯强
郭海兵
Original Assignee
上海济煜医药科技有限公司
江西济民可信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海济煜医药科技有限公司, 江西济民可信集团有限公司 filed Critical 上海济煜医药科技有限公司
Priority to CN201980011541.5A priority Critical patent/CN111712484B/zh
Priority to JP2021554786A priority patent/JP7464920B2/ja
Priority to EP19891955.7A priority patent/EP3892616A4/en
Priority to US17/299,515 priority patent/US20220017513A1/en
Publication of WO2020114475A1 publication Critical patent/WO2020114475A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/10Anti-acne agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/16Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to compounds represented by formula (I) and their pharmaceutically effective salts, and the use of the compounds as S1P1 agonists.
  • Sphingosine-1-phosphate is an amphoteric biological signaling molecule belonging to lysophospholipid (LP). S1P can activate complex downstream signals by acting on five G protein-coupled receptor subtypes, sphingosine-1-phosphate receptors (S1PR 1-5 ), thereby regulating important physiological and biochemical functions. S1P binds to different S1P receptors to regulate different physiological functions, and plays an important role in maintaining the health of the body and the occurrence of diseases.
  • LP lysophospholipid
  • S1P1 receptor agonists interfere with lymphocyte trafficking, sequestering them in lymph nodes and other secondary lymphoid tissues. This leads to a decrease in peripheral circulating lymphocytes, and the clinical value of lymphocyte isolation is to exclude them from the sight of inflammation and/or autoimmune reactions in surrounding tissues.
  • This isolation of lymphocytes (for example, in lymph nodes) is believed to be the result of the simultaneous action of: agonist-driven functional antagonism of S1P1 receptors on T cells (thus reducing the outflow of S1P mobilized T cells from lymph nodes Ability) and sustained agonism of the S1P1 receptor on the lymph node endothelium (thereby improving the barrier function against lymphocyte migration). Therefore, S1P 1 receptor agonists reduce the body's autoimmunity by preventing the transport of lymphocytes, and thus can be used as an immunosuppressant to treat various body immune diseases.
  • S1P1 agonist Fingolimod Fingolimod, FTY720
  • Fingolimod FTY720
  • MS Multiple Scleorosis
  • FTY720 is a non-selective S1P receptor agonist.
  • the combination of FTY720 and S1P3 in the body often leads to a series of important side effects, such as bradycardia, which greatly limits its therapeutic immunity
  • the scope of application in the field of disease Therefore, the discovery of the second generation of highly selective S1P1 agonists, making it a therapeutic drug for immune diseases with better efficacy, fewer side effects, and wider application has become one of the hot spots in drug research.
  • shortening the half-life of S1P1 receptor agonists in the body is also the goal of discovering second-generation S1P agonists.
  • a longer half-life will result in the continued suppression of lymphocyte trafficking and a decrease in the number of peripheral blood lymphocytes, thereby making the drug user's immune function low and increasing the risk of viral infection.
  • the half-life of S1P1 receptor agonists such as FTY720 in the human body is as long as 6 to 9 days, so even if the drug is stopped, it will take a long time for the number of lymphocytes to return to normal.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • n is selected from 1, 2, and 3;
  • R 1 is independently selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 , CH 2 CH 3 and CF 3 ;
  • R 4 is independently selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 , CH 2 CH 3 and CF 3 ;
  • R 1 and R 4 are connected together to form a C 3-6 cycloalkyl
  • R 2 is selected from H, halogen, OH, NH 2 , CN, and C 1-3 alkyl, the C 1-3 alkyl The group is optionally substituted with 1, 2 or 3 R;
  • R 3 is selected from C 3-7 cycloalkyl, C 3-7 cycloalkenyl, C 2-6 alkenyl and 3-6 membered heterocycloalkyl, the C 3-7 cycloalkyl, C 3-7 Cycloalkenyl, C 2-6 alkenyl or 3-6 membered heterocycloalkyl is optionally substituted with 1, 2 or 3 R;
  • Ring A is selected from phenyl and 6-membered heteroaryl, said phenyl and 6-membered heteroaryl optionally substituted with 1,2 or 3 substituents R a;
  • Ring B is selected from 5-membered heteroaryl, which is optionally substituted with R b ;
  • R a is independently selected from H, halogen, OH, NH 2 , CN, and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2, or 3 R;
  • R b is selected from H, halogen, OH, NH 2 , CN and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R;
  • R is independently selected from H, F, Cl, Br, OH, NH 2 , CN, C 1-3 alkyl and CF 3 ;
  • T 1 is selected from N and CH;
  • T 2 is selected from N and CH;
  • L 1 is selected from
  • L 2 is selected from single bonds, O and S;
  • the 5-membered heteroaryl group, 6-membered heteroaryl group and 3-6 membered heterocycloalkyl group contain 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, NH, S and N.
  • the aforementioned R is selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 , CH 2 CH 3 and CF 3 , and other variables are as defined in the invention.
  • R 2 is selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 and CH 2 CH 3 , the CH 3 or CH 2 CH 3 is optionally Or 3 R substitutions, other variables are as defined in the present invention.
  • R 2 is selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 , CH 2 CH 3 and CF 3 , and other variables are as defined in the present invention.
  • R 3 is selected from C 3-6 cycloalkyl, C 3-6 cycloalkenyl, C 2-3 alkenyl group and having 3 to 6-membered heterocyclic group, the C 3- 6 Cycloalkyl, C 3-6 cycloalkenyl, C 2-3 alkenyl or 3-6 membered heterocycloalkyl is optionally substituted with 1, 2 or 3 R, and other variables are as defined in the present invention.
  • R 3 is selected from Said It can be optionally substituted with 1, 2 or 3 R, and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R a is selected from H, F, Cl, Br, OH, NH 2, CN, CH 3 and CH 2 CH 3, CH 3 or a CH 2 CH 3 optionally substituted with 1,2 Or 3 R substitutions, other variables are as defined in the present invention.
  • R a is selected from H, F, Cl, Br, OH, NH 2, CN, CH 3, CH 2 CH 3 and CF 3, the other variables are as defined in the present invention.
  • R b is selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 and CH 2 CH 3 , the CH 3 or CH 2 CH 3 is optionally Or 3 R substitutions, other variables are as defined in the present invention.
  • R b is selected from H, F, Cl, Br, OH, NH 2 , CN, CH 3 , CH 2 CH 3 and CF 3 , and other variables are as defined in the present invention.
  • the above-described ring A is selected from phenyl and pyridyl, said phenyl or pyridyl is optionally substituted with 1, 2 or 3 R a, the other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, and oxazolyl
  • the pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, or oxazolyl are optionally Instead of Rb , other variables are as defined in the present invention.
  • the above compound or a pharmaceutically acceptable salt thereof is selected from,
  • T 1, T 2, L 1 , L 2, R 1, R 2, R 4, R a, R b are as defined above;
  • T 3 is selected from N and C(R a );
  • Ring C is selected from C 3-6 cycloalkyl, C 3-6 cycloalkenyl, and 3-6 membered heterocycloalkyl, the C 3-6 cycloalkyl, C 3-6 cycloalkenyl, or 3-6
  • the membered heterocycloalkyl is optionally substituted with 1, 2, or 3 R.
  • the above ring C is selected from Said It is optionally substituted with 1, 2 or 3 R.
  • the above ring C is selected from
  • the above compound or a pharmaceutically acceptable salt thereof is selected from
  • T 3 R 1, R 2, R 4, R a, R b, are as defined above.
  • the present invention provides a compound of the formula or a pharmaceutically acceptable salt thereof,
  • the present invention also provides a pharmaceutical composition containing the above compound or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers, diluents or excipients.
  • the present invention also provides the use of the above compound or a pharmaceutically acceptable salt thereof or the above pharmaceutical composition in the preparation of a medicament for preventing and/or treating S1P1 receptor-related diseases.
  • the above uses, wherein the S1P1 receptor-related diseases are selected from Ulcerative Colitis, Crohn's Disease, Multiple Sclerosis, Systemic Lupus erythematosus (Systemic lupus erythematosus), lupus nephritis (Lupus nephritis), rheumatoid arthritis (Rheumatoid arthritis), primary biliary cholangitis (Primary) Biliary Cholangitis, allergic dermatitis (Atopic Dermatitis), cerebral hemorrhage ( Intracerebral, Hemorrhage, Graft Versus Host Disease, Psoriasis, Type I Diabetes, Acne, Microbial Infection or Microbial Disease and Viral Infection or Viral Disease.
  • S1P1 receptor-related diseases are selected from Ulcerative Colitis, Crohn's Disease, Multiple Sclerosis, Systemic Lupus erythematosus (Systemic lupus erythematosus),
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms, which are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of a compound of the present invention, prepared from a compound having a specific substituent and a relatively non-toxic acid or base found in the present invention.
  • base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of acid in solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Bisulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, such as acetic acid, propionic acid, isobutyric acid, trifluoroacetic acid, maleic acid, malonic acid, benzoic acid, succinic acid, Suberic acid, fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and methanesulfonic acid; also includes amino acids (such as arginine Etc.), and salts of organic acids such as glucuronic acid. Certain compounds of the present invention contain basic and acidic functional groups and can be converted to any
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing acid radicals or bases by conventional chemical methods. Generally, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in the substituents such as alkyl. All these isomers and mixtures thereof are included in the scope of the present invention.
  • tautomer or “tautomeric form” means that at room temperature, isomers of different functional groups are in dynamic equilibrium and can quickly convert to each other. If tautomers are possible (as in solution), the chemical equilibrium of tautomers can be achieved.
  • proton tautomers also known as prototropic tautomers
  • proton tautomers include interconversion through proton migration, such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence tautomer (valence tautomer) includes some recombination of bond-forming electrons for mutual conversion.
  • keto-enol tautomerization is the interconversion between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the compound of the present invention may contain unnatural proportions of atomic isotopes in one or more atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • the hydrogen can be replaced by heavy hydrogen to form a deuterated drug.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon. Compared with undeuterated drugs, deuterated drugs have reduced toxic and side effects and increased drug stability. , Strengthen efficacy, prolong the biological half-life of drugs and other advantages.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, which may include heavy hydrogen and hydrogen variants, as long as the valence state of the particular atom is normal and the compound after substitution is stable of.
  • substituent which may include heavy hydrogen and hydrogen variants, as long as the valence state of the particular atom is normal and the compound after substitution is stable of.
  • optionally substituted means that it may or may not be substituted. Unless otherwise specified, the type and number of substituents may be arbitrary on the basis that they are chemically achievable.
  • any variable (such as R) appears more than once in the composition or structure of a compound, its definition in each case is independent.
  • R in each case has independent options.
  • substituents and/or variants thereof are only allowed if such combinations will produce stable compounds. E.g, Can be selected from Wait.
  • substituents listed do not indicate which atom they are connected to the substituted group, such substituents can be bonded through any of their atoms, for example, pyridyl as a substituent can be through any one of the pyridine rings The carbon atom is attached to the substituted group.
  • connection direction is arbitrary, for example,
  • the linking group L is at this time It can be formed by connecting phenyl and cyclopentyl in the same direction as the reading order from left to right It can also be formed by connecting phenyl and cyclopentyl in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only allowed if such combinations will produce stable compounds.
  • the number of atoms on a ring is usually defined as the number of members of the ring. For example, "3-6 membered ring” refers to a "ring” in which 3-6 atoms are arranged around.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it may be monovalent (such as methyl), divalent (such as methylene), or polyvalent (such as methine) .
  • Examples of C 1-3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 2-6 alkenyl is used to denote a linear or branched hydrocarbon group consisting of 2 to 6 carbon atoms containing at least one carbon-carbon double bond, carbon-carbon double bond It can be located anywhere on the group.
  • the C 2-6 alkenyl group includes C 2-4 , C 2-3 , C 4 , C 3 and C 2 alkenyl groups, etc.; it may be monovalent, divalent or multivalent.
  • Examples of C 2-6 alkenyl include, but are not limited to, vinyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, piperylene, hexadienyl, and the like.
  • C 2-3 alkenyl is used to denote a linear or branched hydrocarbon group consisting of 2 to 3 carbon atoms containing at least one carbon-carbon double bond, carbon-carbon double bond It can be located anywhere on the group.
  • the C 2-3 alkenyl group includes C 3 and C 2 alkenyl groups; the C 2-3 alkenyl group may be monovalent, divalent or multivalent. Examples of C 2-3 alkenyl include, but are not limited to vinyl, propenyl and the like.
  • C 3-7 cycloalkyl means a saturated cyclic hydrocarbon group consisting of 3 to 7 carbon atoms, which is a monocyclic and bicyclic ring system, and the C 3-7 cycloalkyl includes C 4-7 , C 5-7 , C 3-5 , C 4-5 and C 5-6 cycloalkyl, etc.; it may be monovalent, divalent or multivalent.
  • Examples of C 3-6 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • the terms “5-6 membered heteroaryl ring” and “5-6 membered heteroaryl group” of the present invention can be used interchangeably, and the term “5-6 membered heteroaryl group” means from 5 to 6 ring atoms
  • the monocyclic group with a conjugated ⁇ electron system consists of 1, 2, 3, or 4 ring atoms that are heteroatoms independently selected from O, S, and N, and the rest are carbon atoms. Where nitrogen atoms are optionally quaternized, nitrogen and sulfur heteroatoms can be optionally oxidized (ie NO and S(O) p , p is 1 or 2).
  • the 5-6 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or carbon atom.
  • the 5-6 membered heteroaryl group includes 5-membered and 6-membered heteroaryl groups.
  • Examples of the 5-6 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyryl Oxazolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl, and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl, and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4-triazolyl, etc.), tetrazolyl, isoxazolyl (3-isoxazolyl, 4-iso
  • cycloalkenyl in the present invention refers to a cyclic alkenyl group.
  • C 3-7 cycloalkenyl includes C 3 , C 4 , C 5 , C 6 and C 7 cycloalkenyl.
  • Examples of cycloalkenyl include, but are not limited to, cyclobutenyl, cyclopentenyl, and cyclohexenyl.
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , and also includes any range from n to n+m, for example, C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; similarly, n yuan to n +m member means that the number of atoms in the ring is n to n+m, for example, 3-12 member ring includes 3 member ring, 4 member ring, 5 member ring, 6 member ring, 7 member ring, 8 member ring, 9 member ring , 10-membered ring, 11-membered
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (eg, an affinity substitution reaction).
  • substituent groups include triflate; chlorine, bromine, and iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, and p-toluenesulfonate Ester, etc.; acyloxy, such as acetoxy, trifluoroacetoxy, etc.
  • protecting group includes but is not limited to "amino protecting group", “hydroxy protecting group” or “mercapto protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl, or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-methoxyphenyl) methyl; silyl, such as trimethylsilyl (TMS) and tert-butyld
  • hydroxyl protecting group refers to a protecting group suitable for preventing side reactions of hydroxyl groups.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl, such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by the combination with other chemical synthesis methods and well known to those skilled in the art Equivalently, preferred embodiments include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations:
  • EDCI stands for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • Pd(PPh 3 ) 4 stands for tetratriphenylphosphine palladium
  • AntPhos stands for 4-(9-anthryl) -3-(tert-butyl)-2,3-dihydrobenzo[d][1,3]oxy, phosphinopentyl
  • DMF stands for N,N-dimethylformamide
  • EA stands for ethyl acetate
  • FIG 1 shows the effects of compounds 13 and 16 in the peripheral blood lymphocyte (PBL) reduction test in mice
  • Figure 2 is the effect of compounds 13 and 16 in the rat peripheral blood lymphocyte (PBL) reduction test
  • Figure 3 is the role of compound 13 and 16 in DSS-induced mouse colitis model
  • Figure 4 is the role of compound 16 in DNBS-induced rat colitis model
  • Figure 5 is the effect of compound 13 and compound 16 on experimental autoimmune encephalomyelitis (EAE).
  • the residue was dissolved in 100 mL of ethanol, 2 mL of sulfuric acid was added, and stirred at 70°C for 16 hours.
  • the combined organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a residue.
  • the residue was purified by silica gel chromatography to obtain intermediate I-1.
  • Intermediate I-10 (101.5 mg), potassium carbonate (71.2 mg, 0.52 mmol) and cesium carbonate (168.2 mg, 0.52 mmol) were added to an intermediate acetonitrile solution (15 mL) of intermediate I-6 (60 mg, 0.26 mmol), Stir at room temperature for 3 hours. 50 mL of water and 20 mL of ethyl acetate were added to the reaction liquid, and the organic phase was separated by extraction, and the aqueous phase was further extracted with ethyl acetate (20 mL ⁇ 2). The combined organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-11.
  • Ethoxyformylmethylenetriphenylphosphine (480.8 mg, 1.38 mmol) was added to a solution of intermediate I-13 (190.0 mg, 0.69 mmol) in tetrahydrofuran (10 mL), and stirred at 80°C for 16 hours. After the reaction solution was cooled to room temperature, 50 mL of water and 20 mL of ethyl acetate were added, the layers were separated by extraction, and the aqueous phase was further extracted with ethyl acetate (20 mL ⁇ 2). The combined organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-14.
  • reaction solution was diluted with 10 mL of water and extracted with ethyl acetate (20 mL ⁇ 2). The combined organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-18.
  • intermediate I-33 To a toluene solution (30 mL) of intermediate I-33 (1.9 g, 5.38 mmol) was added 4-methylbenzenesulfonic acid (monohydrate, 206.2 mg, 1.08 mmol), and the reaction solution was stirred at 110° C. for 16 hours. After cooling to room temperature, 100 mL of ethyl acetate was added to the reaction solution, and the organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-34.
  • intermediate I-53 To an acetonitrile solution (5 mL) of intermediate I-53 (97 mg, 0.414 mmol) was added intermediate I-21 (127.19 mg, 0.414 mmol) and potassium carbonate (171.68 mg, 1.24 mmol). The reaction solution was stirred at 80°C for 4 hours, and after cooling to room temperature, 8 mL of water was added to the reaction solution, and extracted with ethyl acetate (15 mL). The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain intermediate I-54. This intermediate was used directly in the next reaction without purification.
  • intermediate I-11 (100 mg, 0.22 mmol) was dissolved in dichloromethane (9 mL). The reaction mixture was lowered to -70°C, and a solution of N-chlorosuccinimide (29 mg, 0.22 mmol) in methylene chloride (1 mL) was slowly added dropwise to the reaction system. After the dropwise addition was completed, the reaction solution was stirred at -70°C for half an hour, then warmed to room temperature, and continued to be stirred at room temperature for 2 hours. The reaction solution was concentrated under reduced pressure to remove the organic solvent to obtain a crude product. Purified by silica gel chromatography to obtain intermediate I-57.
  • cycloisopropylidene malonate (15.7 g, 109 mmol) was dissolved in dichloromethane (50 mL). After reducing the reaction temperature to 0°C, pyridine (17.2 g, 218 mmol) was added. While controlling the internal temperature not to exceed 0°C, a solution of monomethyl succinate chloride (18.0 g, 120 mmol) in dichloromethane (50 mL) was slowly added dropwise to the reaction system. After the dropwise addition was completed, the reaction temperature was slowly raised to room temperature, and the reaction was stirred at room temperature for 16 hours. Dilute hydrochloric acid (30 mL) was added to the reaction solution.
  • the reaction mixture was lowered to 0°C, and a saturated aqueous solution of ammonium chloride (200 mL) and ethyl acetate (100 mL) were added for separation and extraction.
  • the organic phase was separated, and the aqueous phase was extracted with ethyl acetate (100 mL ⁇ 2).
  • the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a residue.
  • the residue was purified by silica gel chromatography to obtain intermediate I-59.
  • intermediate I-60 (13.1 g, 46.62 mmol) was dissolved in glacial acetic acid (150 mL), and reduced iron powder (15.7 g, 0.28 mol) was added. Under argon protection, the reaction mixture was stirred at 95°C for 2 hours and then cooled to room temperature. Ethyl acetate (100 mL) was added for dilution and suction filtration, and the filtrate was washed with saturated brine (200 mL). The organic phase was dried over anhydrous sodium sulfate, filtered with suction, and the filtrate was concentrated under reduced pressure to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-61.
  • the intermediate 1-61 (3.9 g, 16.7 mmol) was dissolved in 1,2-dichloroethane (200 mL), and aluminum trichloride (8.9 g, 66.9 mmol) was added. Under the protection of argon, the reaction solution was stirred at 55°C for 16 hours. The reaction liquid was lowered to 0°C, water (300 mL) and dichloromethane (200 mL) were added for liquid extraction, and the aqueous phase was extracted with dichloromethane (200 mL ⁇ 2). The organic phases were combined, washed with saturated brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-62.
  • intermediate I-62 (3.0 g, 13.7 mmol) was dissolved in acetonitrile (150 mL). I-21 (4.62g, 15.1mmol) and anhydrous potassium carbonate (5.67g, 41.1mmol) were added sequentially. The reaction solution was stirred at 45°C for 16 hours. Water (250 mL) and ethyl acetate (200 mL) were added for separation and extraction. The aqueous phase was extracted with ethyl acetate (200 mL ⁇ 2). The organic phases were combined, washed with saturated brine (50 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain a residue. The residue was purified by silica gel chromatography to obtain intermediate I-63.
  • reaction mixture was slowly poured into saturated NH 4 Cl (100 mL), extracted with ethyl acetate (50 mL ⁇ 4), the combined organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to remove the organic solvent to obtain a residue Thing.
  • the residue was purified by silica gel chromatography only to obtain intermediate I-67.
  • the intermediate 1-74 (1.0 g, 2.15 mmol) was dissolved in a mixture solvent of 1,4-dioxane and water (10 mL, 4:1), and methylboronic acid (1.29 g, 21.46 mmol), potassium carbonate (0.89 g, 6.44 mmol) and tetratriphenylphosphine palladium (243 mg, 0.21 mmol). Under argon protection, the reaction mixture was stirred at 90°C for 7h. The reaction mixture was cooled to room temperature, filtered, and concentrated under reduced pressure to obtain a residue. The residue was dissolved in dichloromethane (20 mL), and water (10 mL) was added.
  • the intermediate I-75 (470 mg, 1.17 mmol) was dissolved in tetrahydrofuran (10 mL), and ethoxycarbonylmethylenetriphenylphosphine (490 mg, 1.41 mmol) was added. The reaction mixture was stirred at 80°C for 15h. After the reaction solution was cooled to room temperature, the organic solvent was concentrated under reduced pressure to obtain a residue. The residue was purified by reverse phase preparative liquid chromatography to obtain intermediate 1-76.
  • the aqueous phase was extracted with ethyl acetate (90 mL ⁇ 2).
  • the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a residue.
  • the residue was separated and purified by silica gel chromatography to obtain intermediate I-85.
  • intermediate 1-89 (11 g) was dissolved in dichloromethane (50 mL), followed by the addition of anhydrous aluminum trichloride (5.5 g, 41.6 mmol) at 0°C.
  • the reaction mixture was stirred at room temperature for 16 hours.
  • the reaction solution was cooled to 0°C and quenched with saturated ammonium chloride solution (10 mL).
  • the organic phase was separated, and the aqueous phase was extracted with dichloromethane (60 mL ⁇ 3).
  • the organic phases were combined and washed with saturated brine (50 mL) , Dried over anhydrous sodium sulfate and filtered.
  • the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product.
  • the crude product was separated and purified by silica gel chromatography to obtain intermediate I-90.
  • intermediate I-90 (8.8 g) was dissolved in tetrahydrofuran (80 mL), followed by slowly adding lithium aluminum hydride (3.05 g, 80.26 mmol) at 0°C.
  • the reaction mixture was warmed to room temperature, and the reaction was stirred at room temperature for 4 hours.
  • the reaction solution was cooled to 0°C, quenched with water (10 mL), filtered, and separated.
  • the aqueous phase was extracted with ethyl acetate (80 mL x 2), and the organic phases were combined, washed with saturated brine (80 mL), dried over anhydrous sodium sulfate, and filtered.
  • the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain intermediate I-91, and the crude product was directly used in the next reaction without purification.
  • reaction mixture was cooled to 0°C and quenched with saturated ammonium chloride solution (5 mL), extracted with ethyl acetate (20 mL ⁇ 3), the organic phases were combined, washed with saturated brine (30 mL), dried over anhydrous sodium sulfate, and filtered . The filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product.
  • the crude product was separated and purified by silica gel chromatography to obtain intermediate 1-93.
  • intermediate I-93 (2.2 g, 8.97 mmol) was dissolved in ethanol (20 mL), and then Pd/C (400 mg, 10% w/w) was added. The reaction mixture was stirred at room temperature under a hydrogen atmosphere for 6 hours. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product of Intermediate 1-94, which was directly used in the next reaction without purification.
  • the organic layers were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a residue.
  • the residue was separated and purified by silica gel chromatography to obtain intermediate I-99.
  • Aqueous hydrobromic acid solution (40% w/w, 5 mL) was added to intermediate 1-103 (400 mg), and the reaction mixture was warmed to 100° C. and stirred for 2 hours. After the reaction solution was cooled to room temperature, it was extracted with ethyl acetate (30 mL ⁇ 3), the organic phases were combined, washed with saturated brine (30 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated to dryness under reduced pressure. The residue was separated and purified by silica gel chromatography to obtain intermediate 1-104.
  • Intermediate 1-104 (67.1 mg, 0.220 mmol) and intermediate 1-107 (50.7 mg, 0.200 mmol) were dissolved in acetonitrile (3 mL), and cesium carbonate (195 mg, 0.600 mmol) was added. The reaction solution was heated to 30°C and stirred for 2 hours. After filtration, the filtrate was concentrated under reduced pressure in vacuo, and the residue was separated and purified by silica gel chromatography to obtain intermediate I-108.
  • methyl 4-bromo-3-(trifluoromethyl)benzoate 100 mg, 0.35 mmol
  • cyclobutylboronic acid 70 mg, 0.70 mmol
  • Palladium acetate 4.5 mg, 0.02 mmol
  • AntPhos 11.1 mg, 0.03 mmol
  • potassium phosphate 297 mg, 1.40 mmol
  • the intermediate 1-110 (70.0 mg, 0.304 mmol) was dissolved in an aqueous solution of hydrobromic acid (1 mL, 40 wt%). The reaction mixture was stirred at 100°C for 2 hours. After cooling to room temperature, water (10 mL) was added to the reaction mixture, and extracted with ethyl acetate (5 mL ⁇ 3). The organic phases were combined, washed with saturated brine (5 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product. The crude product was separated and purified by silica gel chromatography to obtain intermediate I-111.
  • intermediate I-107 (60.6 mg, 0.239 mmol) was dissolved in acetonitrile (5 mL), and intermediate I-111 (70.0 mg, 0.239 mmol) and cesium carbonate (234 mg, 0.718 mmol) were sequentially added.
  • the reaction mixture was stirred at 30°C for 1 hour.
  • the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product.
  • the crude product was separated and purified by silica gel chromatography to obtain intermediate I-112.
  • intermediate 1-114 (700 mg) was dissolved in anhydrous tetrahydrofuran (10.0 mL). After reducing the reaction solution to 0°C under the protection of nitrogen, lithium tetrahydroaluminum (1M in THF) (6.13mL, 6.13mmol) was slowly added dropwise. After the dropwise addition was completed, the reaction mixture was raised to room temperature, and the reaction was stirred at room temperature for 10 hours. Diethyl ether (10.0 mL) was added to the reaction mixture and cooled to 0° C., water (4.00 mL) was added, and then aqueous sodium hydroxide solution (6.00 mL, 10% w/w) was added.
  • Intermediate 1-107 (25.0 mg, 0.0985 mmol), intermediate 1-116 (34.7 mg, 0.108 mmol) and potassium carbonate (27.2 mg, 0.197 mmol) were mixed in acetonitrile (1 mL), and the reaction mixture was at 10°C After stirring the reaction overnight, the temperature was raised to 50°C, and the reaction was further stirred at 50°C for 3 hours. The reaction mixture was filtered, and the filtrate was concentrated to remove the organic solvent to obtain a crude product. The crude product was separated and purified by silica gel chromatography to obtain intermediate I-117.
  • the reaction solution was cooled to room temperature, water (50 mL) and ethyl acetate (50 mL) were added in sequence, the layers were separated, the organic phase was separated, the aqueous phase was extracted with ethyl acetate (50 mL ⁇ 2), the organic phases were combined, and saturated common salt was used It was washed with water (20 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel chromatography to obtain intermediate I-118.
  • Intermediate 1-120 (70.1 mg, 0.217 mmol) and intermediate 1-107 (50.0 mg, 0.197 mmol) were dissolved in acetonitrile (5 mL), and cesium carbonate (128 mg, 0.394 mmol) was added at 10°C. The reaction mixture was stirred at 10°C overnight. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product. The crude product was separated and purified by silica gel chromatography to obtain intermediate I-121.
  • intermediate I-128 (60.0 mg, 0.195 mmol) was dissolved in N,N-dimethylformamide (2.5 mL), and intermediate I-107 (54.5 mg, 0.215 mmol) and Cesium carbonate (191 mg, 0.585 mmol).
  • the reaction system was poured into water (10 mL), and extracted with ethyl acetate (5 mL ⁇ 3). The organic phases were combined, washed with saturated brine (5 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product.
  • the crude product was separated and purified by silica gel chromatography to obtain intermediate I-129.
  • the intermediate I-131 (1.00g, 3.65mmol) was dissolved in anhydrous tetrahydrofuran (25mL), the temperature was lowered to -40°C, and a toluene solution of diisobutylaluminum hydride (1.5M, 9.73) was slowly added dropwise under the protection of argon mL, 14.60 mmol), after dropping, the temperature was raised to room temperature and stirred for 2 hours.
  • Intermediate I-133 (87.0 mg, 0.281 mmol) was dissolved in acetonitrile (3.00 mL), and intermediate I-107 (71.3 mg, 0.281 mmol) and cesium carbonate (275 mg, 0.843 mmol) were sequentially added.
  • the reaction solution was heated to 30°C and stirred for 2 hours, then filtered, and the filtrate was concentrated to dryness under reduced pressure in vacuo. The residue was separated and purified by silica gel chromatography to obtain intermediate 1-134.
  • the intermediate 1-135 (3.5 g) was dissolved in ethanol (80 mL), and palladium carbon (100 mg, 10% w/w) was slowly added.
  • the reaction mixture was stirred at 60°C and 10 atmospheres for 72 hours. After cooling the reaction solution to room temperature, the palladium carbon in the mixture was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was separated and purified by silica gel chromatography to obtain the target intermediate I-136.
  • the intermediate I-138 (60.0 mg, 0.186 mmol) was dissolved in N,N-dimethylformamide (3 mL), and the intermediate I-107 (47.2 mg, 0.186 mmol), carbonic acid were added in this order.
  • Cesium (182 mg, 0.558 mmol).
  • the reaction system was poured into water (10 mL), and extracted with ethyl acetate (3 mL ⁇ 4). The organic phases were combined, washed with saturated brine (5 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product.
  • the crude product was separated and purified by silica gel chromatography to obtain intermediate 1-139.
  • intermediate I-140 (305 mg, 1.20 mmol) was dissolved in hydrobromic acid (3 mL, 40 wt% aqueous solution). The reaction mixture was stirred at 100°C for 2 hours. The reaction mixture was cooled to room temperature, diluted with water (30 mL) and then ethyl acetate (20 mL ⁇ 3). The organic phases were combined, washed with saturated brine (10 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product. The crude product was separated and purified by silica gel chromatography to obtain intermediate I-141.
  • the intermediate 1-141 (240 mg, 0.755 mmol) was dissolved in acetonitrile (10 mL).
  • Intermediate I-6 176 mg, 0.754 mmol
  • cesium carbonate 738 mg, 2.27 mmol
  • the reaction mixture was stirred at 30°C for 1 hour.
  • the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product.
  • the crude product was separated and purified by silica gel method to obtain intermediate I-142.
  • the intermediate I-142 (57.0 mg, 0.121 mmol) was dissolved in toluene (2 mL), and pyrrolidine (17.8 mg, 0.250 mmol), palladium acetate (2.92 mg, 0.0130 mmol), and cesium carbonate ( 122 mg, 0.374 mmol) and 1,1′-binaphthalene-2,2′-bisdiphenylphosphine (15.6 mg, 0.0250 mmol). Under nitrogen, the reaction mixture was stirred at 110°C for 16 hours. The reaction mixture was concentrated under reduced pressure to remove the organic solvent to obtain a crude product. The crude product was separated and purified by silica gel chromatography to obtain intermediate 1-143.
  • intermediate I-6 (467mg, 2.00mmol) and intermediate I-133 (618mg, 2.00mmol) (dissolved in acetonitrile (5mL), was added cesium carbonate (1.95g, 6.00mmol), the reaction solution at 25 Stir at 3°C for 3 hours. Filter and concentrate the filtrate under reduced pressure to remove the organic solvent. The residue is separated and purified by silica gel chromatography to obtain intermediate 1-146.
  • Intermediate 1-149 (72.1 mg, 0.309 mmol) and intermediate 1-120 (100.0 mg, 0.309 mmol) were dissolved in acetonitrile (5 mL), and cesium carbonate (201 mg, 0.618 mmol) was added at room temperature. The reaction mixture was stirred at room temperature for 1 hour. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to remove the organic solvent to obtain a crude product. The crude product was separated and purified by silica gel chromatography to obtain intermediate I-156.
  • Lithium hydroxide monohydrate (20 mg, 0.48 mmol) was added to a mixed solution of intermediate I-11 (73 mg, 0.16 mmol) in tetrahydrofuran/ethanol/water (5 mL, 2:2:1), and the reaction solution was stirred at room temperature for 1 hour.
  • the pH of the reaction solution was adjusted to 6 with hydrochloric acid (1N), and the organic solvent was distilled off under reduced pressure.
  • 20 mL of water and 5 mL of ethyl acetate were added to the residue, the organic layer was separated by extraction, and the aqueous layer was further extracted with ethyl acetate (5 mL ⁇ 2).
  • the combined organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a residue.
  • the residue was purified by preparative HPLC to obtain compound 1.
  • Example 4 Example 5: Preparation of Compound 4 and Compound 5
  • Lithium hydroxide monohydrate (54 mg, 1.30 mmol) was added to a mixed solution of intermediate I-25 and intermediate I-26 mixture (200.0 mg, 0.43 mmol) in ethanol/water (1:1, 6 mL), and the reaction solution was added Stir at room temperature for 3 hours. After adjusting the pH of the reaction solution to 7-8 with an aqueous hydrochloric acid solution (1N), the solution was distilled off under reduced pressure to obtain a residue. The residue was purified by SFC to obtain compound 4 and compound 5.
  • the intermediate 1-64 (50 mg) was dissolved in a mixed solvent of tetrahydrofuran (3 mL) and water (1 mL), and lithium hydroxide monohydrate (23 mg, 0.54 mmol) was added.
  • the reaction solution was stirred at room temperature for 3 hours.
  • the organic solvent was concentrated under reduced pressure, and water (5 mL) was added.
  • the mixture was adjusted to pH 2 with dilute hydrochloric acid (1N), ethyl acetate (5 mL) was added for liquid separation and extraction, and the aqueous phase was extracted with ethyl acetate (5 mL).
  • the organic phases were combined, washed with saturated brine (5 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a residue.
  • Compound 14 was obtained after purification by preparative HPLC.
  • intermediate I-139 (60.0 mg, 0.121 mmol) was dissolved in methanol/water (2 mL, 1:1), lithium hydroxide monohydrate (10.2 mg, 0.242 mmol) was added, and the reaction mixture was The reaction was stirred at 15°C for 3 hours. Separation and purification using preparative HPLC gave compound 27.
  • the cell line used for the test is CHO-K1 EDG1 ⁇ -Arrestin Cell Line, supplier: DiscoverX, article number: 93-0207C2.
  • the test evaluates the inhibitory effect of the compound on S1P1-mediated forskolin-induced cAMP activity.
  • the cell line used for the test is CHO-K1 EDG1 ⁇ -Arrestin Cell Line, supplier: DiscoverX, article number: 93-0207C2. According to the supplier's instructions, the cells were added to the test plate at 25 ⁇ L per cell suspension containing 5000 cells and incubated at 37°C for 20 hours. Ten concentrations of 4-fold diluted compounds were added to the cell culture medium and incubated at 37°C for 90 minutes. Prepare the test solution, 12 ⁇ L per well, incubate at room temperature for 60 minutes, and read the plate with Envision. Data by nonlinear regression analysis to determine EC ⁇ -arrestin activity 50. The experimental results are shown in Table 2.
  • CHO-K1 DEG1 cells ( CHO-K1 EDG1 ⁇ -Arrestin Cell Line, supplier: DiscoverX, article number: 93-0207C2), remove medium (F12medium 1000mL, 10% FBS, 800 ⁇ g/mL G418, 300 ⁇ g/mL Hygromycin, 1% GlutaMax and 1% Pen /Strep), rinse the cells with 2ml of DPBS, add 5mL of cell dispersion (Invitrogen-13151014) to disperse the cells, incubate for 1 to 2 minutes in a 37°C incubator, tap the flask to make the cells fall off, and add 5mL of growth medium, pipetting Pipette gently to fully suspend cells. Vi-Cell was used for cell counting.
  • the cells, culture conditions and cell collection conditions used in this experiment are the same as in Experimental Example 3.
  • mice SPF grade female C57BL/6j mice weighing 19-22g.
  • Rats Male Sprague-Dawley rats weighing 200-220g.
  • Feeding environment temperature 23 ⁇ 2°C, relative humidity 40-70%, lighting time is 7 o'clock in the morning, and 7 o'clock in the evening; animals are free to feed common feed and sterilized drinking water. All animal experiments have been approved by the animal ethics committee; all animal experiment operations comply with the relevant SOP requirements of the animal house. The animals were kept adaptively for one week before the experiment.
  • Animals are administered orally with a volume of 10 mL/kg.
  • the vehicle administered was 0.5% DMSO + 0.5% MC.
  • Animals were anesthetized with isoflurane 5 hours after drug administration, and 100-150 ⁇ l of peripheral blood was collected through the orbits in EP tubes, placed on ice, and analyzed for lymphocyte count detection by XT-2000i automatic blood analyzer within 30 minutes. ; Another 20 ⁇ l whole blood, 40 ⁇ l DDW dilution, liquid nitrogen quick-freeze, blood compound concentration test.
  • test compound 13 and 16 reduced the peripheral blood lymphocyte (PBL) count in mice 5 hours after administration, with IC50 of 18.49nM (compound 13) and 24.68nM (compound 16), respectively.
  • the experimental results are shown in Figure 1; Test compound 13 and 16 reduced the peripheral blood lymphocyte (PBL) count of rats 5 hours after administration, with IC50 of 4.1 nM (compound 13) and 5.6 nM (compound 16), respectively.
  • the experimental results are shown in FIG. 2.
  • the animal enteritis model confirmed that the compound of the present invention has a therapeutic effect on colitis.
  • Sodium dextran sulfate (DSS) is dissolved in drinking water and fed to mice, rats, hamsters or guinea pigs to induce colitis, which may cause bloody stools, weight loss, shortened intestinal length, mucosal ulcers, and neutrophil infiltration.
  • intestinal tissue will appear a large number of crypts, epithelial cell ulcers, tissue edema, and activate the natural immune system, similar to the symptoms of human gastrointestinal inflammatory bowel disease (IBD).
  • IBD gastrointestinal inflammatory bowel disease
  • mice Reared in SPF area room, room temperature 20-26°C, humidity 40-70%, fluorescent lamp illumination, 12 hours illumination (08:00-20:00) and 12 hours no illumination, 2-5 animals per cage (same dosing group ).
  • Experimental mice can obtain unlimited rat food and water in unlimited quantities.
  • day -1 animals were divided into 7 groups on average, with 13 to 18 animals in each group. Starting from 9:00 on the 0th day to 9:00 on the 6th day, the mice in groups 2 to 7 drank 2% DSS in water for 6 days (from day 0 to day 6), after which the mice were free to drink normal water 1 day (from 9:00 on the 6th day to before the necropsy on the 7th day). The day of modeling is counted as 0 days.
  • mice in group 1 were free to drink normal water for 7 days. Animals in group 1 were given 0.5% methylcellulose; model animals in the other groups were given 0.5% methylcellulose or different test substances, respectively. Body weight is observed once a day, and the frequency of daily disease index recording is once a day. It is rated in 4 grades according to the following criteria: body weight change (0, ⁇ 1%; 1, 1-5%; 2, 5-10%; 3, 10- 15%; 4,> 15%); bloody stool (0, negative; 4, positive); stool score (0, normal; 2, loose stool; 4, diarrhea). The scores of the above 3 parts are added and divided by 3 to get the daily disease index value. The experimental results are shown in Figure 3.
  • test compounds 13 and 16 significantly reduced the animal's daily disease index at the end of the experiment (day 7).
  • DNBS (2,4-Dinitrobenzenesulfonic acid, 2,4-dinitrobenzenesulfonic acid) induced Wistar rat ulcerative enteritis model is also one of the commonly used models for enteritis drug development.
  • DNBS combines with intestinal tissue proteins to form a complete antigen, increase vascular permeability, activate inflammatory transmitters, increase fibrinolytic activity, and cause the body to produce an immune response against the intestinal mucosa, resulting in persistent ulceration and inflammation of the rat intestinal mucosa.
  • the experimental animals were Wistar rats, male, 5-6 weeks, 140-160g. Reared in SPF area room, room temperature 20-26°C, humidity 40-70%, fluorescent lamp illumination, 12 hours illumination (08:00-20:00) and 12 hours no illumination, 2-5 animals per cage (same dosing group ).
  • the rats were fasted for 40 hours before the experiment, and the rats were injected subcutaneously with 5% glucose saline (10 mL/kg) during the fast.
  • fasting rats were anesthetized by intraperitoneal injection of Shutai (25mg/kg teltamine and 25mg/kg zolazepam) and 5mg/kg xylazine.
  • the hose was extended from the anus to the left flexion of the colon (about 8 cm from the anus), and enema (0.5 mL/animal) was induced with DNBS (50 mg/mL, DNBS dissolved in 30% ethanol) enema (0.5 mL/animal).
  • the normal control group was enema with 30% ethanol in the same way. The enema animals lowered their heads for 15 minutes, and then kept the Trendelenburg lying position until the animals were awake to avoid backflow of enema.
  • Drug treatment After 4 hours of modeling, animals were given different concentrations of drugs or 0.5% methylcellulose, 10 mL/kg, once a day for 7 consecutive days. During the administration period, observe the changes of animal body weight and fecal traits every day. After the administration, the animals were euthanized, colon tissue was collected, colon length, colon weight and ulcer area were measured, and the colon injury of rats was evaluated macroscopically to evaluate the therapeutic effect of the test drug on the DNBS-induced inflammatory bowel disease rat model. The experimental results are shown in Figure 4.
  • mice Female C57BL/6J mice were immunized with MOG35-55 antigen emulsion, and each animal was injected intraperitoneally with 200 ng/100 ⁇ L of PTX solution 2 hours after the immunization, and the same dose of PTX solution was injected again 24 hours later (the next day).
  • the animals in each group began to administer the drugs, and each group was administered by intragastric administration.
  • the administration volume was 10 mL/kg, which was administered once a day for 33 consecutive days (days 5-37).
  • 2 general clinical observations were made every day, and after the administration, weighing and EAE clinical score were performed once a day.
  • the score is divided into 5 levels: (0, normal mice, no obvious symptoms; 1, tail weakness or hindlimb weakness; 2, tail weakness and hindlimb weakness; 3, hindlimb hemiplegia; 4, complete hindlimb paralysis; 5, died of EAE Or euthanasia in a near-death state).

Abstract

涉及一种式(Ⅰ)所示化合物及其药效上可接受的盐,以及该化合物作为S1P1激动剂的应用。

Description

作为免疫调节的芳环衍生物及其制备方法和应用
本申请主张如下优先权:
CN201811489503.4,申请日2018年12月6日;
CN201811572313.9,申请日2018年12月21日;
CN201910403277.1,申请日2019年5月15日;
CN201911161764.8,申请日2019年11月22日。
技术领域
本发明涉及式(Ⅰ)所示化合物及其药效上可接受的盐,以及该化合物作为S1P1激动剂的应用。
背景技术
鞘氨醇-1-磷酸(Sphingosine-1-phosphate,S1P)是属于溶血磷脂(lysophospholipid,LP)的一种两性生物信号分子。S1P可通过作用于5种G蛋白偶联受体亚型——鞘氨醇-1-磷酸受体(S1PR 1-5)激活复杂的下游信号,从而调节重要的生理生化功能。S1P与不同的S1P受体结合可调节不同的生理功能,在维持机体健康以及疾病发生过程中起着重要的作用。
S1P1受体激动剂干扰淋巴细胞归巢(lymphocyte trafficking),将它们隔离(sequestering)在淋巴结和其它二级淋巴组织中。这导致外周循环淋巴细胞减少,淋巴细胞隔离在临床上的价值是将它们从周围组织中的炎症和/或自身免疫反应视域中排除。这种对淋巴细胞的隔离(例如在淋巴结中)被认为是以下同时作用的结果:由激动剂驱动的对T细胞上S1P1受体的功能性拮抗作用(因此降低S1P动员T细胞从淋巴结中流出的能力)和对淋巴结内皮上S1P1受体的持续激动作用(从而提高对抗淋巴细胞迁移的屏障功能)。因此,S1P 1受体激动剂通过阻止淋巴细胞的运输来降低人体自身免疫能力,因而可以作为免疫抑制剂用于治疗各种身免疫性疾病。
其中S1P1激动剂芬戈莫德(Fingolimod,FTY720)被FDA批准用于复发性多发性硬化症(Multiple Scleorosis,MS)的治疗,为免疫性疾病的治疗开辟了新的治疗领域。尽管FTY720具有临床功效,但它是一个非选择性的S1P受体激动剂,FTY720在体内与S1P3的结合往往会导致一系列重要的副作用,如心动过缓等,从而大大限制了其治疗免疫性疾病领域的应用范围。因此,发现第二代高选择性S1P1激动剂,使之成为疗效更好、副作用更小以及应用范围更广的免疫性疾病治疗药物成为了药物研究的热点之一。
除了提高靶点选择性外,缩短药物即S1P1受体激动剂在体内的半衰期也是发现第二代S1P激动剂的目标。作为免疫抑制剂药物,较长半衰期会导致淋巴细胞的运输被持续抑制,外周血淋巴细胞数减少,从而使得用药者免疫功能低下,增加病毒性感染的风险。在发生感染的情况下,往往需要停止药物使得外周血淋巴细胞数尽快恢复到正常水平,以便能够快速恢复人体免疫功能。其中S1P1受体激动剂如FTY720在人体内的半衰期长达6~9天,因此即便停止服用该药物,需要在很长时间内淋巴细胞数才能恢复正常。
因此,目前本领域仍然需要开发新型的具有S1P1受体选择性、半衰期较短的S1P1受体激动剂,以克服现有疗法的缺陷。
发明内容
本发明提供了式(Ⅰ)所示化合物或其药学上可接受的盐,
Figure PCTCN2019123485-appb-000001
其中,
n选自1、2和3;
R 1分别独立地选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
R 4分别独立地选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
或者,R 1与R 4连接在一起,形成一个C 3-6环烷基;R 2选自H、卤素、OH、NH 2、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R 3选自C 3-7环烷基、C 3-7环烯基、C 2-6烯基和3~6元杂环烷基,所述C 3-7环烷基、C 3-7环烯基、C 2-6烯基或3~6元杂环烷基任选被1、2或3个R取代;
环A选自苯基和6元杂芳基,所述苯基和6元杂芳基任选被1、2或3个R a取代;
环B选自5元杂芳基,所述5元杂芳基任选被R b取代;
R a分别独立地选自H、卤素、OH、NH 2、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R b选自H、卤素、OH、NH 2、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R分别独立地选自H、F、Cl、Br、OH、NH 2、CN、C 1-3烷基和CF 3
T 1选自N和CH;
T 2选自N和CH;
L 1选自
Figure PCTCN2019123485-appb-000002
L 2选自单键、O和S;
所述5元杂芳基、6元杂芳基和3~6元杂环烷基包含1、2或3个独立选自O、NH、S和N的杂原子或杂原子团。
本发明的一些方案中,上述R选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3,其它变量如本发明所定义。
本发明的一些方案中,上述R 2选自H、F、Cl、Br、OH、NH 2、CN、CH 3和CH 2CH 3,所述CH 3或CH 2CH 3任选被1、2或3个R取代,其它变量如本发明所定义。
本发明的一些方案中,上述R 2选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3,其它变量如本发明所定义。
本发明的一些方案中,上述R 3选自C 3-6环烷基、C 3-6环烯基、C 2-3烯基和3~6元杂环烷基,所述C 3- 6环烷基、C 3-6环烯基、C 2-3烯基或3~6元杂环烷基任选被1、2或3个R取代,其它变量如本发明所定义。
本发明的一些方案中,上述R 3选自
Figure PCTCN2019123485-appb-000003
所述
Figure PCTCN2019123485-appb-000004
任选被1、2或3个R取代,其它变 量如本发明所定义。
本发明的一些方案中,上述R 3选自
Figure PCTCN2019123485-appb-000005
其它变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019123485-appb-000006
选自
Figure PCTCN2019123485-appb-000007
Figure PCTCN2019123485-appb-000008
其它变量如本发明所定义。
本发明的一些方案中,上述R a选自H、F、Cl、Br、OH、NH 2、CN、CH 3和CH 2CH 3,所述CH 3或CH 2CH 3任选被1、2或3个R取代,其它变量如本发明所定义。
本发明的一些方案中,上述R a选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3,其它变量如本发明所定义。
本发明的一些方案中,上述R b选自H、F、Cl、Br、OH、NH 2、CN、CH 3和CH 2CH 3,所述CH 3或CH 2CH 3任选被1、2或3个R取代,其它变量如本发明所定义。
本发明的一些方案中,上述R b选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3,其它变量如本发明所定义。
本发明的一些方案中,上述环A选自苯基和吡啶基,所述苯基或吡啶基任选被1、2或3个R a取代,其它变量如本发明所定义。
本发明的一些方案中,上述环B选自吡咯基、咪唑基、吡唑基、噻唑基和噁唑基,所述吡咯基、咪唑基、吡唑基、噻唑基或噁唑基任选被R b取代,其它变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019123485-appb-000009
选自
Figure PCTCN2019123485-appb-000010
Figure PCTCN2019123485-appb-000011
Figure PCTCN2019123485-appb-000012
其它变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019123485-appb-000013
选自
Figure PCTCN2019123485-appb-000014
Figure PCTCN2019123485-appb-000015
Figure PCTCN2019123485-appb-000016
其它变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019123485-appb-000017
选自
Figure PCTCN2019123485-appb-000018
其它变量如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,选自,
Figure PCTCN2019123485-appb-000019
其中,
T 1、T 2、L 1、L 2、R 1、R 2、R 4、R a、R b如上述所定义;
T 3选自N和C(R a);
环C选自C 3-6环烷基、C 3-6环烯基和3~6元杂环烷基,所述C 3-6环烷基、C 3-6环烯基或3~6元杂环烷基任选被1、2或3个R取代。
本发明的一些方案中,上述环C选自
Figure PCTCN2019123485-appb-000020
所述
Figure PCTCN2019123485-appb-000021
任选被1、2或3个R取代。
本发明的一些方案中,上述环C选自
Figure PCTCN2019123485-appb-000022
本发明的一些方案中,上述化合物或其药学上可接受的盐,选自
Figure PCTCN2019123485-appb-000023
其中,T 3、R 1、R 2、R 4、R a、R b、如上述所定义。
本发明提供了下式化合物或其药学上可接受的盐,
Figure PCTCN2019123485-appb-000024
Figure PCTCN2019123485-appb-000025
本发明还提供了一种药物组合物,所述的药物组合物含有上述化合物或其药学上可药用盐,以及一种或多种药学上可接受的载体、稀释剂或赋形剂。
本发明还提供了上述化合物或其可药用盐或上述药物组合物在制备预防和/或治疗用作S1P1受体相关疾病的药物中的用途。
本发明的一些方案中,上述用途,其中所述的S1P1受体相关疾病选自溃疡性结肠炎(Ulcerative colitis)、克罗恩病(Crohn’s disease)、多发性硬化症(Multiple sclerosis)、系统性红斑狼疮(Systemic lupus erythematosus)、狼疮性肾炎(Lupus nephritis)、类风湿性关节炎(Rheumatoid arthritis)、原发性胆汁胆管炎(Primary Biliary Cholangitis)、过敏性皮肤炎(Atopic Dermatitis)、脑出血(Intracerebral hemorrhage)、移植物抗宿主病(Graft versus Host Disease)、牛皮癣(Psoriasis)、I型糖尿病(Type I diabetes)、痤疮(Acne)、微生物感染或微生物疾病及病毒感染或病毒疾病。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、三氟乙酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或 状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。例如,
Figure PCTCN2019123485-appb-000026
可以选自
Figure PCTCN2019123485-appb-000027
Figure PCTCN2019123485-appb-000028
等。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如
Figure PCTCN2019123485-appb-000029
中L 2代表单键时表示该结构实际上是
Figure PCTCN2019123485-appb-000030
当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2019123485-appb-000031
中连接基团L为
Figure PCTCN2019123485-appb-000032
此时
Figure PCTCN2019123485-appb-000033
既可以按与从左往右的读取顺序相同的方向连接苯基和环戊基构成
Figure PCTCN2019123485-appb-000034
也可以按照与从左往右的读取顺序相反的方向连接苯基和环戊基构成
Figure PCTCN2019123485-appb-000035
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。除非另有规定,环上原子的数目通常被定义为环的元数,例如,“3-6元环”是指环绕排列3-6个原子的“环”。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,“C 2-6烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至6个碳原子组成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C 2-6烯基包括C 2-4、C 2-3、C 4、C 3和C 2烯基等;其可以是一价、二价或者多价。C 2-6烯基的实例包括但不限于乙烯基、丙烯基、丁烯基、戊烯基、己烯基、丁间二烯基、戊间二烯基、己间二烯基等。
除非另有规定,“C 2-3烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至3个碳原子组 成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C 2-3烯基包括C 3和C 2烯基;所述C 2-3烯基可以是一价、二价或者多价。C 2-3烯基的实例包括但不限于乙烯基、丙烯基等。
除非另有规定,“C 3-7环烷基”表示由3至7个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,所述C 3-7环烷基包括C 4-7、C 5-7、C 3-5、C 4-5和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-6环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基等。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,本发明术语“环烯基”是指环状烯基。“C 3-7环烯基”包括C 3、C 4、C 5、C 6和C 7环烯基。环烯基的实例包括但不限于环丁烯基、环戊烯基和环己烯基。除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实 施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:
EDCI代表1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;Pd(PPh 3) 4代表四三苯基膦钯;AntPhos代表4-(9-蒽基)-3-(叔丁基)-2,3-二氢苯并[d][1,3]氧,膦戊轭;DMF代表N,N-二甲基甲酰胺;EA代表乙酸乙酯
化合物依据本领域常规命名原则或者使用
Figure PCTCN2019123485-appb-000036
软件命名,市售化合物采用供应商目录名称。
附图说明
图1为化合物13和16在小鼠外周血淋巴细胞(PBL)降低测试中的作用;
图2为化合物13和16在大鼠外周血淋巴细胞(PBL)降低测试中的作用;
图3为化合物13和16在DSS诱导的小鼠结肠炎模型中的作用;
图4为化合物16在DNBS诱导的大鼠结肠炎模型中的作用;
图5为化合物13和化合物16对实验性自身免疫性脑脊髓炎(EAE)的作用。
具体实施方式
下面通过实施例对本申请进行详细描述,但并不意味着存在对本申请而言任何不利的限制。本文已经详细地描述了本申请,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本申请精神和范围的情况下针对本申请具体实施方式进行各种变化和改进将是显而易见的。
中间体的制备
参考例1:中间体I-1的制备
Figure PCTCN2019123485-appb-000037
将5-甲氧基-1H-吲哚-2-羧酸(1.6g,8.37mmol)的二氯甲烷溶液(20mL)缓慢滴加入三溴化硼(6.3g,25.1mmol)的二氯甲烷溶液(100mL)中。0℃下搅拌1小时,并继续在0℃,加入100mL乙醇和200mL水淬灭反应。减压除去有机溶剂,水层用乙酸乙酯萃取(50mL×3),将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。将残留物溶于100mL乙醇中,加入2mL硫酸,于70℃下搅拌16小时。将反应液pH值用饱和碳酸氢钠水溶液调节至pH=6,并加入100mL水和50mL乙酸乙酯,萃取分出有机层。水层继续用乙酸乙酯萃取(50mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-1。
LC-MS(ESI)[M+H] +206.1.
参考例2:中间体I-2的制备
Figure PCTCN2019123485-appb-000038
将苄溴(1.0g,5.85mmol)和碳酸钾(1.35g,9.74mmol)加入中间体I-1(1.0g,4.87mmol)的丙 酮(50mL)溶液中,并将反应液于室温下搅拌16小时。向反应液中加入100mL水和50mL乙酸乙酯,萃取并分出有机层。水层继续用乙酸乙酯萃取(50mL×2)。合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-2。
LC-MS(ESI)[M+H] +296.1.
1H NMR(400MHz,DMSO-d 6)δ11.72(s,1H),7.48–7.41(m,2H),7.40–7.26(m,4H),7.18(s,1H),7.05–6.94(m,2H),5.06(s,2H),4.35–4.24(m,2H),1.36–1.25(m,3H).
参考例3:中间体I-3的制备
Figure PCTCN2019123485-appb-000039
将二异丁基氢化铝的正己烷溶液(1.5mol/L,4.1mL,6.1mmol)于-40℃下缓慢滴加入中间体I-2(600mg,2.03mmol)的四氢呋喃(50mL)溶液中。滴加完毕后,将反应液缓慢升至室温,并搅拌16小时。将反应液用100mL水于0℃下淬灭,并加入50mL乙酸乙酯,萃取分出有机层。水层继续用乙酸乙酯萃取(50mL×2)。合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-3。
LC-MS(ESI)[M+H] +254.1.
1H NMR(400MHz,DMSO-d 6)δ10.82(s,1H),7.49–7.42(m,2H),7.42–7.35(m,2H),7.34–7.27(m,1H),7.21(d,J=8.7Hz,1H),7.07–7.02(m,1H),6.78–6.71(m,1H),6.17(s,1H),5.17(m,1H),5.06(s,2H),4.56(d,J=4.0Hz,2H).
参考例4:中间体I-4的制备
Figure PCTCN2019123485-appb-000040
将二氧化锰(1.13g,13.0mmol)加入中间体I-3(330mg,1.30mmol)的1,2-二氯乙烷(50mL)溶液中,氩气保护下于70℃搅拌3小时。将反应液过滤,滤液减压蒸去溶剂得残留物。残留物经硅胶色谱法纯化后得中间体I-4。
LC-MS(ESI)[M+H] +252.0.
1H NMR(400MHz,DMSO-d 6)δ11.85(s,1H),9.80(s,1H),7.50–7.44(m,2H),7.42–7.32(m,4H),7.31–7.26(m,2H),7.08(dd,J=9.0,2.2Hz,1H),5.11(s,2H).
参考例5:中间体I-5的制备
Figure PCTCN2019123485-appb-000041
将乙氧甲酰基亚甲基三苯基膦(581.8mg,1.67mmol)加入中间体I-4(280mg,1.12mmol)的四氢呋喃(10mL)溶液中,混合物于80℃搅拌16小时。向反应液中加入20mL水和20mL乙酸乙酯,萃取分出有机层。水层继续用乙酸乙酯萃取(20mL×2)。合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-5。
LC-MS(ESI)[M+H] +322.1.
1H NMR(400MHz,DMSO-d 6)δ11.46(s,1H),7.58(d,J=16.0Hz,1H),7.50–7.42(m,2H),7.42–7.35(m,2H),7.35–7.26(m,2H),7.13(d,J=1.6Hz,1H),6.93(dd,J=8.8,2.2Hz,1H),6.81(s,1H),6.50(d,J=16.0Hz,1H),5.09(s,2H),4.18(q,J=7.1Hz,2H),1.26(t,J=7.1Hz,3H).
参考例6:中间体I-6的制备
Figure PCTCN2019123485-appb-000042
在中间体I-5(190mg,0.59mmol)的乙醇(20mL)溶液中加入钯碳(30mg,w/w=10%),并将反应液在氢气下室温搅拌16小时。将反应液过滤,滤液浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-6。
LC-MS(ESI)[M+H] +234.1.
1H NMR(400MHz,DMSO-d 6)δ10.55(s,1H),8.46(s,1H),7.02(d,J=8.5Hz,1H),6.70(s,1H),6.48(dd,J=8.5,2.1Hz,1H),5.93(s,1H),4.05(q,J=7.1Hz,2H),2.90(t,J=7.5Hz,2H),2.67(t,J=7.5Hz,2H),1.15(t,J=7.1Hz,3H).
参考例7:中间体I-7的制备
Figure PCTCN2019123485-appb-000043
将4-溴-3-三氟甲基苯甲酸甲酯(6.32g,22.32mmol)溶解于二氧六环/水(4:1,30mL)中,加入环戊基-1-烯-1-硼酸(3.0g,26.79mmol),四三苯基膦钯(1.3g,1.12mmol)和碳酸钾(9.2g,66.7mmol)。将反应液于110℃,氩气保护下搅拌15小时。待冷却至室温后,将溶剂浓缩蒸干得残留物,残留物经硅胶色谱法纯化后得中间体I-7。
1H NMR(400MHz,CDCl 3)δ8.32(d,J=1.5Hz,1H),8.11(dd,J=8.0,1.5Hz,1H),7.37(d,J=8.0Hz,1H),5.83–5.77(m,1H),3.95(s,3H),2.74–2.63(m,2H),2.58–2.51(m,2H),2.08–1.99(m,2H).
参考例8:中间体I-8的制备
Figure PCTCN2019123485-appb-000044
将中间体I-7(1.0g,3.7mmol)溶解于20mL甲醇中,加入钯碳(50mg,w/w=10%)。将反应混合物于氢气氛围下,室温搅拌24小时。反应液过滤,滤液浓缩得到中间体I-8粗产物。该粗产物未经纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3)δ8.27(d,J=1.3Hz,1H),8.13(dd,J=8.3,1.3Hz,1H),7.54(d,J=8.3Hz,1H),3.93(s,3H),3.47–3.36(m,1H),2.16–2.07(m,2H),1.93–1.82(m,2H),1.82–1.70(m,2H),1.69–1.55(m,2H).
参考例9:中间体I-9的制备
Figure PCTCN2019123485-appb-000045
将中间体I-8(950mg)溶解于15mL四氢呋喃中,于-20℃氩气保护下,逐滴加入四氢锂铝的四氢呋喃溶液(1.5M,7mL,10.5mmol)。滴加完毕后,将反应液于-20℃搅拌1小时。将反应液温度升至0℃后,加入饱和氯化铵水溶液(4mL)和乙酸乙酯(5mL)。将反应液过滤,滤液浓缩得中间体I-9。该粗产物未经纯化,直接用于下一步反应。
参考例10:中间体I-10的制备
Figure PCTCN2019123485-appb-000046
将中间体I-9(2.5g)溶解于10mL二氯亚砜中,并于50℃下加热搅拌2小时。待冷却至室温后,将反应液浓缩得残留物。将残留物溶解于乙酸乙酯(10mL)中,依次用饱和碳酸氢钠水溶液(10mL)和食盐水(10mL)洗涤。经无水硫酸钠干燥后,过滤浓缩得中间体I-10。
1H NMR(400MHz,CDCl 3)δ7.53(s,1H),7.49–7.36(m,2H),4.50(s,2H),3.35–3.23(m,1H),2.07–1.95(m,2H),1.84–1.72(m,2H),1.71–1.59(m,2H),1.57–1.44(m,2H).
参考例11:中间体I-11的制备
Figure PCTCN2019123485-appb-000047
将中间体I-10(101.5mg),碳酸钾(71.2mg,0.52mmol)和碳酸铯(168.2mg,0.52mmol)加入中间体I-6(60mg,0.26mmol)的乙腈溶液(15mL)中,并室温搅拌3小时。向反应液中加入50mL水和20mL乙酸乙酯,萃取分出有机相,水相继续用乙酸乙酯萃取(20mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-11。
LC-MS(ESI)[M+H] +460.1.
参考例12:中间体I-12的制备
Figure PCTCN2019123485-appb-000048
在0℃下,将液溴(350.6mg,2.19mmol)的N,N-二甲基甲酰胺溶液(10mL)滴加至中间体I-4(500.0mg,1.99mmol)的N,N-二甲基甲酰胺溶液(10mL)中,滴加完毕后,将反应液置于室温搅拌16小时。向反应液中加入30mL水和20mL乙酸乙酯,萃取分出有机层后,水层继续用乙酸乙酯萃取(20mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-12。
LC-MS(ESI)[M+H] +330.0.
参考例13:中间体I-13的制备
Figure PCTCN2019123485-appb-000049
将中间体I-12(320.0mg,0.97mmol)溶于二氧六环(10mL)/水(2mL)的混合液中,并加入乙烯基三氟硼酸钾(143.3mg,1.07mmol),碳酸钾(403mg,2.92mmol)和四三苯基膦钯(11.2mg,0.01mmol)。将反应液在氩气保护下,90℃搅拌16小时。待冷却至室温后,向反应液中加入50mL水和20mL乙酸乙酯,萃取分离有机层,水层继续用乙酸乙酯萃取(20mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-13。
LC-MS(ESI)[M+H] +278.0.
参考例14:中间体I-14的制备
Figure PCTCN2019123485-appb-000050
将乙氧甲酰基亚甲基三苯基膦(480.8mg,1.38mmol)加入中间体I-13(190.0mg,0.69mmol)的四氢呋喃(10mL)溶液中,并在80℃下搅拌16小时。反应液冷却至室温后,加入50mL水和20mL乙酸乙酯,萃取分离分层,水相继续用乙酸乙酯萃取(20mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-14。
LC-MS(ESI)[M+H] +348.1.
参考例15:中间体I-15的制备
Figure PCTCN2019123485-appb-000051
将中间体I-14(50.0mg,0.14mmol)溶于四氢呋喃(10mL)中,将反应液于0℃下加入氢化钠(质量分数60%)(7.5mg,0.19mmol),并继续于0℃搅拌1小时。向反应液中加入4-甲基苯磺酰氯(35.7mg,0.19mml),并于60℃搅拌2小时。将反应液冷却至室温,并加入50mL水和20mL乙酸乙酯,萃取分出有机层,水层继续用乙酸乙酯萃取(20mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-15。
LC-MS(ESI)[M-H] -500.2.
参考例16:中间体I-16的制备
Figure PCTCN2019123485-appb-000052
向中间体I-15(50.0mg,0.10mmol)的甲醇溶液(10mL)中加入钯碳(15mg,w/w=10%),在氢气氛围下室温搅拌16小时。将反应液过滤,并将滤液浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-16。
LC-MS(ESI)[M+H] +416.1.
参考例17:中间体I-17的制备
Figure PCTCN2019123485-appb-000053
将中间体I-10(23.7mg)和碳酸铯(59.0mg,0.18mmol)加至中间体I-16(25.0mg,0.06mmol)的乙腈溶液(5mL)中,并将反应液于50℃搅拌2小时。冷却至室温后,向反应液中加入10mL水和10mL乙酸乙酯,萃取分出有机层,水层继续用乙酸乙酯萃取(10mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-17。
LC-MS(ESI)[M+H] +642.3.
参考例18:中间体I-18的制备
Figure PCTCN2019123485-appb-000054
向2-溴-6-甲氧基苯并[d]噻唑(500.0mg,2.05mmol)的二氧六环(10mL)溶液中加入醋酸钾(402mg,4.10mmol),3-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)丙烯酸乙酯(556mg,2.46mmol)和[1,1’-双(二苯基膦基)二茂铁]二氯化钯(150.0mg,0.20mmol),将反应液在100℃,氩气保护下搅拌过夜。冷却至室温后,反应液用10mL水稀释,并用乙酸乙酯萃取(20mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-18。
1H NMR(400MHz,CDCl 3)δ7.85(d,J=8.9Hz,1H),7.24(d,J=2.6Hz,1H),7.05(dd,J=9.0,2.6Hz,1H),6.76(d,J=18.2Hz,1H),6.62(d,J=18.2Hz,1H),4.21(q,J=7.1Hz,2H),3.86(s,3H),1.29(t,J=7.1Hz,3H).
参考例19:中间体I-19的制备
Figure PCTCN2019123485-appb-000055
将中间体I-18(120mg,0.45mmol)溶于乙醇(5mL)中,加入钯碳(20mg,w/w=10%)后将反应液在氢气氛围下室温搅拌过夜。将反应液过滤,滤液浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-19。
LC-MS(ESI)[M+H] +266.0.
参考例20:中间体I-20的制备
Figure PCTCN2019123485-appb-000056
将中间体I-19(110mg,0.41mmol)溶解于2mL二氯甲烷中,并于0℃下滴加入三溴化硼(2mL,1N,二氯甲烷溶液)的二氯甲烷溶液(3mL)中,滴加完成后,将反应液于室温搅拌过夜。将反应液冷却至0℃,缓慢滴加乙醇(2mL),滴加完成后,将反应液在室温搅拌2小时。加入10mL水,水层用二氯甲烷萃取(20mL×2),合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-20。
LCMS(ESI)[M+H] +252.0.
参考例21:中间体I-21的制备
Figure PCTCN2019123485-appb-000057
将中间体I-9(5.0g)溶解于10mL 40%HBr/H 2O溶液中,并于100℃下加热3小时。待冷却至室温后,将反应液浓缩得残留物。向残留物中加入100mL水,乙酸乙酯(50mL×3)萃取。合并的有机层经食盐水(50mL)洗涤,无水硫酸钠干燥后,过滤浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-21。
1H NMR(400MHz,MeOH-d 4)δ7.65(d,J=1.7Hz,1H),7.60(dd,J=8.2,1.6Hz,1H),7.53(d,J=8.2Hz,1H),4.58(s,2H),3.41–3.32(m,1H),2.10–2.01(m,2H),1.94–1.83(m,2H),1.78–1.67(m,2H),1.67–1.57(m,2H).
参考例22:中间体I-22的制备
Figure PCTCN2019123485-appb-000058
将中间体I-20(100.0mg,0.40mmol)和中间体I-21(146.0mg,0.48mmol)溶于乙腈(5mL)中,加入碳酸钾(164.1mg,1.19mmol)后,将反应液于80℃搅拌过夜。将反应液冷却至室温后过滤,滤液浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-22。
LC-MS(ESI)[M+H] +478.2.
参考例23:中间体I-23的制备
Figure PCTCN2019123485-appb-000059
将4-氨基-3-硝基苯酚(0.66g,4.3mmol)溶于N,N-二甲基甲酰胺(20mL)中,加入中间体I-21(1.50g,4.9mmol)和碳酸钾(0.65g,4.7mmol)。将反应液于80℃下搅拌2小时。冷却至室温后,将反应液倒入100mL水中,并用乙酸乙酯萃取(30mL×3)。将合并的有机层经饱和食盐水洗涤,无水 硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-23。
LC-MS(ESI)[M+H] +381.0.
参考例24:中间体I-24的制备
Figure PCTCN2019123485-appb-000060
将中间体I-23(500.0mg,1.31mmol)和原甲酸三甲酯(418.0mg,3.94mmol)溶解于15mL醋酸中,加入铁粉(293.0mg,5.24mmol),将反应液于100℃搅拌10小时。冷却至室温后,反应液用饱和碳酸钠水溶液(100mL)淬灭,并用乙酸乙酯萃取(50mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-24。
LC-MS(ESI)[M+H] +361.1.
参考例25:中间体I-25中间体I-26的制备
Figure PCTCN2019123485-appb-000061
将中间体I-24(200.0mg,0.55mmol)和3-溴丙酸乙酯(197.0mg,1.09mmol)溶于N,N-二甲基甲酰胺(4mL)中,加入碳酸钾(150.0mg,1.09mmol)和碘化钾(8.9mg,0.05mmol)。将反应液于120℃搅拌10小时。冷却至室温后,将反应液倒入20mL水中,并用乙酸乙酯萃取(5mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-25和I-26的混合物。
LC-MS(ESI)[M+H] +461.2.
参考例26:中间体I-27的制备
Figure PCTCN2019123485-appb-000062
将二氯亚砜(0.5mL)加入4-甲氧基-4-氧杂丁酸(100mg,0.76mmol)的二氯甲烷溶液中(2mL),并将反应液于室温搅拌过夜。将反应液减压浓缩,得中间体I-27的粗产物。
参考例27:中间体I-28的合成
Figure PCTCN2019123485-appb-000063
将中间体I-23(200mg,0.53mmol)和N,N-二甲基乙基胺(136mg,1.05mmol)溶于四氢呋喃中(4 mL),在0℃下加入中间体I-27(104mg,溶解于1mL四氢呋喃中)。将反应液于室温下搅拌过夜。减压除去溶剂,向残留物中加入50mL水,并用乙酸乙酯萃取(15mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-28。
LC-MS(ESI)[M+Na] +517.1.
参考例28:中间体I-29的制备
Figure PCTCN2019123485-appb-000064
将中间体I-28(120mg,0.24mmol)溶于乙醇中(5mL),加入雷尼镍(10mg)并将反应液于氢气氛围下室温搅拌1小时。反应液过滤,浓缩后的滤液用30mL水稀释,并用乙酸乙酯萃取(10mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-29粗产物。该粗产物未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +465.3.
参考例29:中间体I-30的制备
Figure PCTCN2019123485-appb-000065
将中间体I-29(60mg)溶于乙酸中(3mL),于60℃下搅拌过夜。减压除去溶剂,残余物用20mL水稀释,并用乙酸乙酯萃取(10mL×2)。将合并的有机层经饱和碳酸氢钠水溶液,饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-30。
LC-MS(ESI)[M+H] +447.1.
参考例30:中间体I-31的制备
Figure PCTCN2019123485-appb-000066
将5-氟-2-硝基苯酚(8.0g,50.9mmol)溶于二甲基亚砜(100mL)中,加入甲醇钠(11.0g,204mmol)。将反应液于70℃下搅拌3小时。反应液用300mL饱和氯化铵水溶液淬灭,并加入100mL水和200mL乙酸乙酯。萃取分出有机层,水层继续用乙酸乙酯萃取(200mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-31。LC-MS(ESI)[M-H] -168.2.
1H NMR(400MHz,DMSO-d 6)δ10.92(s,1H),7.94(d,J=9.3Hz,1H),6.61–6.53(m,2H),3.81(s,3H).
参考例31:中间体I-32的制备
Figure PCTCN2019123485-appb-000067
将中间体I-31(6.3g,37.3mmol)溶解于100mL甲醇中,加入钯碳(1.5g,w/w=10%)和二碳酸二叔丁酯(20.3g,93.2mmol),并于氢气氛围下室温搅拌16小时。反应液过滤,滤液减压浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-32。
LC-MS(ESI)[M+H-56] +184.0 .
1H NMR(400MHz,DMSO-d 6)δ9.58(s,1H),7.71(s,1H),7.28(d,J=7.9Hz,1H),6.37(d,J=2.8Hz,1H),6.30(dd,J=8.8,2.8Hz,1H),3.63(s,3H),1.40(s,9H).
参考例32:中间体I-33的制备
Figure PCTCN2019123485-appb-000068
将中间体I-32(200mg,0.84mmol)溶解于15mL N,N-二甲基甲酰胺中,加入4-甲氧基-4-氧杂丁酸(133mg,1.01mmol),4-二甲氨基吡啶(133mg,1.09mmol)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(209mg,1.09mmol),将反应液于室温搅拌16小时。向反应液中加入50mL水和30mL乙酸乙酯,萃取分出有机相。水相继续用乙酸乙酯萃取(30mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-33。
LC-MS(ESI)[M+Na] +376.0.
1H NMR(400MHz,DMSO-d 6)δ8.45(s,1H),7.45(d,J=8.9Hz,1H),6.75(dd,J=9.0,2.9Hz,1H),6.63(d,J=2.9Hz,1H),3.68(s,3H),3.60(s,3H),2.80(t,J=6.8Hz,2H),2.64(t,J=6.8Hz,2H),1.40(s,9H).
参考例33:中间体I-34的合成
Figure PCTCN2019123485-appb-000069
向中间体I-33(1.9g,5.38mmol)的甲苯溶液(30mL)中加入4-甲基苯磺酸(一水合,206.2mg,1.08mmol),并将反应液于110℃搅拌16小时。冷却至室温后,向反应液中加入100mL乙酸乙酯,有机相经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-34。
LC-MS(ESI)[M+H] +236.1.
1H NMR(400MHz,DMSO-d 6)δ7.51(d,J=8.7Hz,1H),7.26(d,J=2.4Hz,1H),6.89(dd,J=8.7,2.4Hz,1H),3.77(s,3H),3.58(s,3H),3.12(t,J=7.0Hz,2H),2.85(t,J=7.0Hz,2H).
参考例34:中间体I-35的制备
Figure PCTCN2019123485-appb-000070
将中间体I-34(450mg,1.91mmol)的二氯甲烷溶液(10mL)在0℃下缓慢滴入含有三溴化硼(1M二氯甲烷溶液,3.83mL,3.83mmol)的二氯甲烷溶液(20mL)中,滴加完毕后,将反应液在0℃下搅拌5小时。反应液用100mL水淬灭,并加入30mL乙酸乙酯,萃取分出有机层。水层继续用乙酸乙酯萃取(30mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-35。
LC-MS(ESI)[M+H] +222.1.
1H NMR(400MHz,DMSO-d 6)δ9.67(s,1H),7.42(d,J=8.6Hz,1H),6.97(d,J=2.2Hz,1H),6.76(dd,J=8.6,2.3Hz,1H),3.61(s,3H),3.12(t,J=7.0Hz,2H),2.86(t,J=7.0Hz,2H).
参考例35:中间体I-36的制备
Figure PCTCN2019123485-appb-000071
将中间体I-35(150mg,0.68mmol)溶解于乙腈(30mL)中,加入中间体I-21(313.1mg,1.02mmol),碳酸铯(665.0mg,2.04mmol),将反应液于室温搅拌16小时。反应液用100mL水淬灭,并用乙酸乙酯萃取(30mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-36。
LC-MS(ESI)[M+H] +448.3.
参考例36:中间体I-37的制备
Figure PCTCN2019123485-appb-000072
向1-氢-吲唑-5-醇(1g,7.46mmol)和中间体I-21(2.52g,8.20mmol)的乙腈溶液(25mL)中加入碳酸钾(2.06g,14.91mmol),并于0℃搅拌2小时后,于25℃搅拌10小时。向反应液中加入200mL水稀释,并用乙酸乙酯萃取(300mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-37。
1H NMR(400MHz,DMSO-d 6)δ12.95(s,1H),7.95(s,1H),7.77–7.70(m,2H),7.65(d,J=8.0Hz,1H),7.47(d,J=9.0Hz,1H),7.28(d,J=2.1Hz,1H),7.09(dd,J=9.0,2.3Hz,1H),5.17(s,2H),3.30–3.19(m,1H),2.03–1.95(m,2H),1.89–1.80(m,2H),1.71–1.55(m,4H).
参考例37:中间体I-38和中间体I-39的制备
Figure PCTCN2019123485-appb-000073
向中间体I-37(500mg,1.39mmol)和3-溴丙酸乙酯(376.75mg,2.08mmol)的N,N-二甲基甲酰胺溶液(10mL)中加入碳酸钾(575.24mg,4.16mmol),并于80℃搅拌10小时。冷却至室温后,加入230mL饱和食盐水稀释,并用乙酸乙酯萃取(200mL×2)。将合并的有机层经无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-38以及中间体I-39。
中间体I-38:
1H NMR(400MHz,CDCl 3)δ7.91(d,J=0.5Hz,1H),7.69(s,1H),7.61–7.56(m,1H),7.49(d,J=8.1Hz,1H),7.42(d,J=9.0Hz,1H),7.16(dd,J=9.0,2.3Hz,1H),7.14–7.11(m,1H),5.08(s,2H),4.65(t,J=6.8Hz,2H),4.09(q,J=7.2Hz,2H),3.43–3.33(m,1H),2.96(t,J=6.8Hz,2H),2.14–2.05(m,2H),1.90–1.82(m,2H),1.78–1.69(m,2H),1.65–1.56(m,2H),1.17(t,J=7.1Hz,3H).
参考例38:中间体I-40的制备
Figure PCTCN2019123485-appb-000074
将4-炔基戊酸(2.5g,25.5mmol)和碳酸钾(14.07g,102mmol)混悬于20mL N,N-二甲基甲酰胺中,加入碘甲烷(10.8g,76.5mmol),并于室温下搅拌10小时。将反应液倒入100mL水中,并用乙酸乙酯萃取(50mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-40的粗产物。该粗产物直接用于下一步反应。
1H NMR(400MHz,DMSO-d 6)δ3.61(s,3H),2.78(t,J=2.6Hz,1H),2.54–2.50(m,2H),2.43–2.38(m,2H).
参考例39:中间体I-41的制备
Figure PCTCN2019123485-appb-000075
在0℃下,向N-叔丁氧羰基羟胺(6.1g,45.8mmol)的N,N-二甲基甲酰胺(60mL)溶液中加入三乙胺(4.6g,45.5mmol)和2,4,6-三甲基苯磺酰氯(9.95g,45.6mmol),于0℃下搅拌1小时后,将反应液倒入300mL水中,并用二氯甲烷萃取(100mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-41。
LC-MS(ESI)[M-H] -314.1.
参考例40:中间体I-42的制备
Figure PCTCN2019123485-appb-000076
将中间体I-41(1.0g,3.17mmol)于0℃下加入6mL三氟乙酸中。继续在0℃搅拌1小时后,将反应液倒入100mL水中并过滤。固体用冷水(10mL)洗涤后,溶解于冷的乙醚溶液(30mL)中。有机层经水洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-42,该粗产物直接用于下一步反应。
参考例41:中间体I-43的制备
Figure PCTCN2019123485-appb-000077
向2-溴-4-氯吡啶(5.0g,26.0mmol)的二甲基亚砜(50mL)溶液中加入甲醇钠(1.7g,31.5mmol),并于120℃下搅拌10小时。冷却至室温后,将反应液倒入200mL水中,并用乙酸乙酯萃取(40mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-43。
LC-MS(ESI)[M+H] +187.9.
参考例42:中间体I-44的制备
Figure PCTCN2019123485-appb-000078
将中间体I-43(1.0g,5.3mmol)溶解于30mL四氢呋喃中,依次加入中间体I-40(1.0g),双三苯基膦二氯化钯(371mg,0.53mmol),碘化亚铜(100mg,0.53mmol)和N,N-二甲基乙基胺(2.05g,15.9mmol),于氩气保护下,室温搅拌3小时后,将反应液倒入50mL水中,并用乙酸乙酯萃取(20mL×3)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-44。
1H NMR(400MHz,DMSO-d 6)δ8.31(d,J=5.8Hz,1H),7.00(d,J=2.5Hz,1H),6.94(dd,J=5.8,2.6Hz,1H),3.82(s,3H),3.64(s,3H),2.73–2.59(m,4H).
参考例43:中间体I-45的制备
Figure PCTCN2019123485-appb-000079
将中间体I-42(600mg)加入到中间体I-44(400mg,1.8mmol)的二氯甲烷溶液(10mL)中(于0℃下),并将反应液于0℃下搅拌3小时。将反应液浓缩,得中间体I-45,该粗产物不经纯化直接用于下一步反应中。
LC-MS(ESI)[M+H] +235.1.
参考例44:中间体I-46的制备
Figure PCTCN2019123485-appb-000080
将中间体I-45(410mg)溶解于四氢呋喃/N,N-二甲基甲酰胺(4mL,3:1)的混合溶液中,加入叔丁醇钾(224mg,2mmol)。反应液于室温搅拌1小时后,将反应液用10mL水稀释,并用乙酸乙酯萃取(30mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-46。
1H NMR(400MHz,CDCl 3)δ8.17(d,J=7.5Hz,1H),6.63(d,J=2.6Hz,1H),6.37(dd,J=7.6,2.7Hz,1H),6.12(s,1H),3.82(s,3H),3.69(s,3H),3.10(t,J=7.6Hz,2H),2.77(t,J=7.6Hz,2H).
参考例45:中间体I-47的制备
Figure PCTCN2019123485-appb-000081
将三氯化铝(112.8mg,0.85mmol)加入到中间体I-46(40.0mg,0.17mmol)的1,2-二氯乙烷溶液中(5mL),并于室温搅拌过夜。将反应液用10mL稀释,用二氯甲烷萃取(10mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经硅胶色谱法纯化后得中间体I-47。
LC-MS(ESI)[M+H] +221.2.
参考例46:中间体I-48的制备
Figure PCTCN2019123485-appb-000082
将中间体I-47(12.0mg,0.05mmol)和中间体I-21(27.9mg,0.09mmol)溶于乙腈(10mL)中,加入碳酸钾(12.6mg,0.091mmol),并于50℃搅拌6小时。将反应液用20mL水稀释,并用乙酸乙酯萃取(10mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-48。该粗产物未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +447.3.
参考例47:中间体I-49的制备
Figure PCTCN2019123485-appb-000083
将5-甲氧基吡啶-2-胺(3.5g,28.19mmo)与溴乙酸乙酯(28.25g,169.16mmol)混合,于25℃搅拌8小时。将混合物过滤,所得固体用乙醚洗涤后,干燥得中间体I-49的粗产物,该粗产物未经纯化直接用于下一步反应。
参考例48:中间体I-50的制备
Figure PCTCN2019123485-appb-000084
将中间体I-49(8.0g)加入三溴氧磷(21.51g,75.01mmol)中,并于120℃下搅拌2小时(外接硫酸钙干燥管)。冷却至室温后,加入400mL冰水,并在0℃下,用氨水将反应液pH调至7-8。用氯仿萃取(500mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物,残留物经硅胶色谱法纯化后得中间体I-50。
LC-MS(ESI)[M+H] +227.0
1H NMR(400MHz,DMSO-d 6)δ8.22(d,J=2.2Hz,1H),7.97(s,1H),7.46(d,J=9.7Hz,1H),7.09(dd,J=9.7,2.4Hz,1H),3.34(s,3H).
参考例49:中间体I-51的制备
Figure PCTCN2019123485-appb-000085
向中间体I-50(500mg,2.2mmol),(E)-(3-乙氧基-3-氧杂丙基-1-烯-1-基)-硼酸频哪醇酯(1.99g,8.81mmol),碳酸钠(816.87mg,7.71mmol)的水(3mL)/二氧六环(12mL)混合溶液中,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(179.52mg,0.22mmol)。将反应液于110℃下搅拌8小时。冷却至室温后,向反应液中加入300mL水,并用乙酸乙酯萃取(250mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物,残留物经硅胶色谱法纯化后得中间体I-51。LC-MS(ESI)[M+H] +247.1.
1H NMR(400MHz,MeOH-d 4)δ8.08(d,J=2.0Hz,1H),8.04(s,1H),7.69(d,J=15.8Hz,1H),7.43(d,J=9.8Hz,1H),7.15(dd,J=9.8,2.4Hz,1H),6.67(d,J=15.8Hz,1H),4.27(q,J=7.1Hz,2H),3.91–3.83(s,3H),1.35(t,J=7.1Hz,3H).
参考例50:中间体I-52的制备
Figure PCTCN2019123485-appb-000086
将钯碳(20mg,w/w=10%)加入中间体I-51(220mg,0.893mmol)的乙酸乙酯(5mL)溶液中,氢气氛围下,25℃搅拌4小时。将反应液过滤,滤液浓缩得中间体I-52。该中间体未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +249.1.
参考例51:中间体I-53的制备
Figure PCTCN2019123485-appb-000087
将三溴化硼(1M,二氯甲烷溶液,4.11mL)在0℃下缓慢滴加入中间体I-52(170mg,0.685mmol)的二氯甲烷溶液(5mL)中。滴加完毕后,将反应液在氮气保护下于25℃搅拌2小时。向反应液中加 入甲醇(3mL)和水(10mL)淬灭,并用二氯甲烷萃取(30mL)。将有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-53。该中间体未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +235.1.
参考例52:中间体I-54的制备
Figure PCTCN2019123485-appb-000088
向中间体I-53(97mg,0.414mmol)的乙腈溶液(5mL)中以此加入中间体I-21(127.19mg,0.414mmol)和碳酸钾(171.68mg,1.24mmol)。将反应液于80℃搅拌4小时,冷却至室温后,向反应液中加入8mL水,并用乙酸乙酯萃取(15mL)。有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-54。该中间体未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +461.2.
参考例53:中间体I-55的制备
Figure PCTCN2019123485-appb-000089
将5-羟基吲哚(266mg,2mmol)溶于乙腈(5mL)中,并依次加入碳酸铯(1.3g,4mmol)和中间体I-10(789mg,3mmol)。将反应液于室温下搅拌3小时。将反应液过滤,固体用乙酸乙酯(20mL)淋洗,将滤液蒸干,得残留物,残留物经硅胶色谱法纯化后得中间体I-55。
LC-MS(ESI)[M+H]+360.1.
参考例54:中间体I-56的制备
Figure PCTCN2019123485-appb-000090
将氢化钠(80mg,2mmol,质量分数60%)悬浮于N,N-二甲基甲酰胺(4mL),在0℃氮气保护下,加入中间体I-55(359mg,1mmol)的N,N-二甲基甲酰胺(2mL)溶液。将反应液于0℃下搅拌1小时后,滴加3-溴丙酸乙酯(272mg,1.5mmol),并继续搅拌2小时。将反应液用水(10mL)淬灭,并用乙酸乙酯萃取(10mL)。有机层依次经水(3mL*3),食盐水(3mL)洗涤,无水硫酸钠干燥后过滤浓缩,得中间体I-56的粗产物,该粗产物未经纯化,直接用于下一步反应。
LC-MS(ESI)[M+H]+460.3.
参考例55:中间体I-57的制备
Figure PCTCN2019123485-appb-000091
在室温下,将中间体I-11(100mg,0.22mmol)溶于二氯甲烷(9mL)中。将反应混合物降至-70℃,向反应体系中缓慢滴加N-氯代琥珀酰亚胺(29mg,0.22mmol)的二氯甲烷(1mL)溶液。滴加完毕后,反应液在-70℃下搅拌反应半小时,然后升温至室温,并在室温度下继续搅拌反应2小时。将反应液减压浓缩除去有机溶剂得到粗产品。经硅胶色谱法纯化得中间体I-57。
LC-MS(ESI)[M+H] +494.1。
1H NMR(400MHz,CDCl 3)δ8.69(s,1H),7.71(s,1H),7.61(d,J=8.1Hz,1H),7.49(d,J=8.1Hz,1H),7.20(d,J=8.8Hz,1H),7.06(d,J=2.4Hz,1H),6.90(dd,J=8.8,2.5Hz,1H),5.10(s,2H),4.18(q,J=7.1Hz,2H),3.43–3.33(m,1H),3.12–3.05(m,2H),2.75–2.67(m,2H),2.14–2.05(m,2H),1.91–1.82(m,2H),1.78–1.69(m,2H),1.67–1.58(m,2H),1.26(t,J=7.2Hz,3H).
参考例56:中间体I-58的制备
Figure PCTCN2019123485-appb-000092
在室温下,将丙二酸环亚异丙酯(15.7g,109mmol)溶于二氯甲烷(50mL)中。将反应温度降至0℃后,加入吡啶(17.2g,218mmol)。控制内温不超过0℃,向反应体系中缓慢滴加丁二酸单甲酯酰氯(18.0g,120mmol)的二氯甲烷(50mL)溶液。滴加完毕后,将反应温度缓慢升至室温,并在室温下搅拌反应16小时。向反应液中加入稀盐酸(30mL)。分出有机相用稀盐酸(30mL×2)洗涤,饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到残留物。将粗品溶于叔丁醇(100mL)中,混合物在80℃下搅拌反应16小时。将反应液冷却至室温,减压浓缩得到残留物。经硅胶色谱法纯化得中间体I-58。
1H NMR(400MHz,DMSO-d 6)δ3.56(s,3H),3.47(s,2H),2.78(t,J=6.5Hz,2H),2.46(t,J=9.1,2.8Hz,2H),1.39(s,9H)。
参考例57:中间体I-59的制备
Figure PCTCN2019123485-appb-000093
在室温下,将氢化钠(质量分数60%,6.22g,156mmol)加入到N,N-二甲基甲酰胺(100mL)中。将混合物降至0℃,在氩气保护下,依次缓慢加入2-氟-4-甲氧基硝基苯(13.3g,77.8mmol)和中间体I-58(19.7g,85.6mmol)。加料完毕后,将反应混合物升至60℃,并在60℃下搅拌反应16小时。将反应混合物降至0℃,加入饱和氯化铵水溶液(200mL)和乙酸乙酯(100mL)分液萃取。分出有机相,水相用乙酸乙酯(100mL×2)萃取。合并有机相,用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-59。
LC-MS(ESI)[M-H] -380.2。
参考例58:中间体I-60的制备
Figure PCTCN2019123485-appb-000094
在室温下,将中间体I-59(31g,81.4mmol)溶于无水二氯甲烷(300mL)中,依次向反应液中加入三氟乙酸(108mL)和三乙基硅烷(36.5mL,230mmol)。反应液在室温下搅拌反应1小时后,用二氯甲烷(200mL)稀释。加入水(100mL)分液萃取。分出有机相用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法纯化得中间体I-60。
LC-MS(ESI)[M+H] +282.0。
参考例59:中间体I-61的制备
Figure PCTCN2019123485-appb-000095
在室温下,将中间体I-60(13.1g,46.62mmol)溶于冰乙酸(150mL)中,加入还原铁粉(15.7g,0.28mol)。在氩气保护下,反应混合物在95℃下搅拌反应2小时后,冷却至室温。加入乙酸乙酯(100mL)稀释,抽滤,滤液用饱和食盐水(200mL)洗。有机相用无水硫酸钠干燥,抽滤,滤液减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-61。
LC-MS(ESI)[M+H] +234.2。
1H NMR(400MHz,DMSO-d 6)δ10.74(s,1H),7.15(d,J=8.7Hz,1H),6.91(d,J=2.4Hz,1H),6.63(dd,J=8.7,2.5Hz,1H),6.05(s,1H),3.71(s,3H),3.60(s,3H),2.95(t,J=7.5Hz,2H),2.73(t,J=7.5Hz,2H)。
参考例60:中间体I-62的制备
Figure PCTCN2019123485-appb-000096
在室温下,将中间体I-61(3.9g,16.7mmol)溶于1,2-二氯乙烷(200mL)中,加入三氯化铝(8.9g,66.9mmol)。在氩气保护下,反应液在55℃下搅拌反应16小时。将反应液降至0℃,加入水(300mL)和二氯甲烷(200mL)分液萃取,水相用二氯甲烷(200mL×2)萃取。合并有机相,用饱和食盐水(100mL)洗,无水硫酸钠干燥,过滤,减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-62。
LC-MS(ESI)[M+H] +220.0。
1H NMR(400MHz,DMSO-d 6)δ10.55(s,1H),8.46(s,1H),7.01(d,J=8.5Hz,1H),6.69(d,J=2.3Hz,1H),6.47(dd,J=8.6,2.3Hz,1H),5.91(d,J=1.1Hz,1H),3.57(s,3H),2.89(t,J=7.6Hz,2H),2.69(t,J=7.6Hz,2H)。
参考例61:中间体I-63的制备
Figure PCTCN2019123485-appb-000097
室温下,将中间体I-62(3.0g,13.7mmol)溶于乙腈(150mL)中。依次加入I-21(4.62g,15.1mmol)和无水碳酸钾(5.67g,41.1mmol)。反应液在45℃下搅拌反应16小时。加入水(250mL)和乙酸乙酯(200mL)分液萃取,水相用乙酸乙酯(200mL×2)萃取,合并有机相,用饱和食盐水(50mL)洗,无水硫酸钠干燥,过滤,滤液减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-63。
LC-MS(ESI)[M+H] +446.1。
1H NMR(400MHz,DMSO-d 6)δ10.76(s,1H),7.67(d,J=9.0Hz,2H),7.59(d,J=8.0Hz,1H),7.14(d,J=8.7Hz,1H),6.99(d,J=2.3Hz,1H),6.70(dd,J=8.7,2.4Hz,1H),6.03(d,J=0.9Hz,1H),5.08(s,2H),3.58(s,3H),3.25–3.18(m,1H),2.92(t,J=7.5Hz,2H),2.70(t,J=7.6Hz,2H),1.97(dd,J=7.4,3.6Hz,2H),1.81(dd,J=7.4,5.1Hz,2H),1.70–1.52(m,4H)。
参考例62:中间体I-64的制备
Figure PCTCN2019123485-appb-000098
在冰浴下,将中间体I-63(100mg,0.22mmol)溶于乙腈(3mL)和饱和碳酸钠水溶液(0.5mL)的混合溶剂中。加入1-氯甲基-4-氟-1,4-重氮化二环2.2.2辛烷双(四氟硼酸盐)(Selectfluor,95mg,0.27mmol)。反应液在冰浴下搅拌反应0.5小时后,升至室温,并在室温下继续搅拌反应3小时。向反应液中加水(20mL)和乙酸乙酯(5mL)分液萃取,水相用乙酸乙酯(5mL)萃取。合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤,滤液减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-64。
LC-MS(ESI)[M+H] +464.2。
参考例63:中间体I-65的制备
Figure PCTCN2019123485-appb-000099
将1H-吡咯并[2,3-b]吡啶-5-醇(5.0g,37.3mmol)溶于N,N-二甲基甲酰胺(60mL)中。向反应体系中依次加入溴化苄(9.6g,55.9mmol)和磷酸钾(15.8g,74.6mmol)。反应混合物在室温下搅拌反应4小时。将反应混合物缓慢倒入水(300mL)中,用乙酸乙酯(50mL×4)萃取。合并有机相用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法纯化得中间体I-65。
1H NMR(400MHz,CDCl 3)δ9.26(s,1H),8.16(d,J=2.6Hz,1H),7.51(d,J=2.6Hz,1H),7.50–7.43(m,2H),7.43–7.37(m,2H),7.37–7.28(m,2H),6.48–6.39(m,1H),5.14(s,2H)。
参考例64:中间体I-66的制备
Figure PCTCN2019123485-appb-000100
将中间体I-65(800mg,3.57mmol)溶于四氢呋喃(13mL)中。将反应体系降温至0℃,在氮气保护下,加入氢化钠(60%,214mg,5.35mmol)。加料完毕后,反应混合物在0℃下搅拌反应20分钟。在0℃下,继续向反应体系中加入苯磺酰氯(761mg,4.30mmol)。加料完毕后,反应混合物在0℃下搅拌反应4小时。将反应混合物缓慢倒入水(30mL)中,用乙酸乙酯(10mL×5)萃取,合并有机相用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩除去有机溶剂得残留物。残留物经硅胶色谱法纯化得中间体I-66。
LC-MS(ESI)[M+H] +365.0。
参考例65:中间体I-67的制备
Figure PCTCN2019123485-appb-000101
将中间体I-66(800mg,2.20mmol)溶于无水四氢呋喃(10mL)中。将反应液降至-60℃后,在氮气保护下,滴加LDA的四氢呋喃/正庚烷/乙苯的混合溶液(2.0M,1.65mL,3.3mmol)。滴加完毕后,反应混合物继续在-60℃下搅拌反应30分钟。在-60℃下,向反应体系缓慢滴加DMF(241mg,3.3mmol),滴加完毕后,反应混合物继续在-60℃下搅拌反应2小时。将反应混合物缓慢倒入饱和NH 4Cl(100mL)中,用乙酸乙酯(50mL×4)萃取,合并有机相用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩除去有机溶剂得到残留物。残留物仅硅胶色谱法纯化得中间体I-67。
LC-MS(ESI)[M+H] +393.0。
参考例66:中间体I-68的制备
Figure PCTCN2019123485-appb-000102
将中间体I-67(500mg,1.27mmol)溶于四氢呋喃(10mL)中,在15℃下,加入乙氧甲酰基亚甲基三苯基膦(665mg,1.91mmol)。反应混合物在50℃下搅拌反应3小时。反应混合物经硅胶色谱法纯化得中间体I-68。
LC-MS(ESI)[M+H] +463.1。
参考例67:中间体I-69的制备
Figure PCTCN2019123485-appb-000103
将中间体I-68(500mg,1.08mmol)溶于甲醇/四氢呋喃(10mL,4:1)混合溶剂中,加入钯碳(w/w=10%,20mg)。在氢气氛围下,反应混合物在30℃下搅拌反应40小时。将反应体系过滤,滤液减压浓缩得残留物。残留物经硅胶色谱法纯化后得中间体I-69。
LC-MS(ESI)[M+H] +375.1。
参考例68:中间体I-70的制备
Figure PCTCN2019123485-appb-000104
将中间体I-69(160mg,0.43mmol)和中间体I-21(156.6mg,0.51mmol)溶于DMF(5mL)中。在10℃下,加入磷酸钾(274mg,1.29mmol)。反应混合物在30℃下搅拌反应3小时。将反应混合物倒入水(20mL)中,用乙酸乙酯(10mL×4)萃取,合并有机相用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法纯化得到中间体I-70。
LC-MS(ESI)[M+H] +601.2。
参考例69:中间体I-71的制备
Figure PCTCN2019123485-appb-000105
将中间体I-1(4.8g,23.4mmol)溶于乙腈(50mL)中,依次加入中间体I-21(7.2g,23.4mmol)和碳酸钾(9.7g,70.2mmol)。加料完毕后,反应混合物在50℃下搅拌反应过夜。将反应混合物冷却至室温,过滤,滤液减压浓缩得残留物。残留物经硅胶色谱法纯化得到中间体I-71。
LC-MS(ESI)[M-H] -430.0。
参考例70:中间体I-72的制备
Figure PCTCN2019123485-appb-000106
将中间体I-71(7.27g,16.85mmol)溶于四氢呋喃(60mL)中。在氩气保护下,将反应液降温至-40℃后,缓慢滴加DIBAL-H(1.5M in toluene,33.7mL,50.55mmol)的甲苯溶液。滴加完毕后,反应混合物在-40℃下继续搅拌2h。在0℃缓慢加入饱和氯化铵水溶液(10mL),并控制反应体系内温在 20℃以下。滴加完毕升至室温搅拌30min,反应液通过硅藻土过滤,滤液用无水硫酸钠干燥,过滤,减压浓缩得到中间体I-72的粗产物,该粗产物未经纯化,直接用于下一步反应。
LC-MS(ESI)[M+H] +390.1。
参考例71:中间体I-73的制备
Figure PCTCN2019123485-appb-000107
将中间体I-72(6.5g)溶于1,2-二氯乙烷(50mL)中,加入MnO 2(7.27g,83.55mmol)。在氩气保护下,反应混合物在60℃下搅拌反应6h。趁热过滤,滤饼用二氯甲烷洗。滤液减压浓缩得到残留物。粗产物经硅胶色谱法纯化得到中间体I-73。
LC-MS(ESI)[M+H] +388.3。
参考例72:中间体I-74的制备
Figure PCTCN2019123485-appb-000108
将中间体I-73(4.3g)溶于二氯甲烷(30mL)中。将反应液降温至-40℃,缓慢滴加N-溴代丁二酰亚胺(NBS,1.98g,11.1mmol)的二氯甲烷溶液(50mL)。滴加完毕后,将反应混合物升温至0℃,并在0℃下搅拌反应2h。反应混合物用水(20mL)洗,分出有机相,有机相用无水硫酸钠干燥,过滤,减压浓缩得到残留物。残留物经硅胶色谱法纯化得到中间体I-74。
LC-MS(ESI)[M-H] -464。
参考例73:中间体I-75的制备
Figure PCTCN2019123485-appb-000109
在室温下,将中间体I-74(1.0g,2.15mmol)溶于1,4-二氧六环和水(10mL,4:1)的混合物溶剂中,依次加入甲基硼酸(1.29g,21.46mmol)、碳酸钾(0.89g,6.44mmol)和四三苯基膦钯(243mg,0.21mmol)。在氩气保护下,反应混合物在90℃下搅拌反应7h。将反应混合物冷却至室温,过滤,减压浓缩得到残留物。残留物溶于二氯甲烷(20mL)中,加入水(10mL)。分出水相用二氯甲烷(20mL×2)萃取。合并有机相,无水硫酸钠干燥,减压浓缩得到残留物。残留物经硅胶色谱法纯化得到中间体I-75。
LC-MS(ESI)[M-H] -400.0.
参考例74:中间体I-76的制备
Figure PCTCN2019123485-appb-000110
在室温下,将中间体I-75(470mg,1.17mmol)溶于四氢呋喃中(10mL)中,加入乙氧羰基亚甲基三苯基磷(490mg,1.41mmol)。反应混合物在80℃搅拌15h。将反应液降温至室温后,减压浓缩除去有机溶剂得到残留物。残留物经反相制备液相色谱纯化得到中间体I-76。
LC-MS(ESI)[M-H] -470.2.
参考例75:中间体I-77的制备
Figure PCTCN2019123485-appb-000111
将中间体I-76(110mg,0.23mmol)溶于乙酸乙酯(2mL)中,加入PtO 2(50mg)。反应混合物在氢气氛围下室温搅拌反应2h。过滤,滤液减压浓缩得中间体I-77。
LC-MS(ESI)[M+H] +474.2.
参考例76:中间体I-78的制备
Figure PCTCN2019123485-appb-000112
将中间体I-74(500mg,1.07mmol)溶于N,N-二甲基甲酰胺(10mL)中,向反应体系中依次加入氰化锌(377mg,3.21mmol)和四三苯基膦钯(127mg,0.11mmol)。在氩气保护下,反应混合物在100℃下搅拌反应3小时。将反应混合物冷却至室温,加入水(100mL)和乙酸乙酯(50mL)。分出有机相,水相用乙酸乙酯(50mL×2)萃取。合并有机相,用饱和食盐水洗,无水硫酸钠干燥,过滤,滤液减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-78。
LC-MS(ESI)[M-H] -411.1。
1H NMR(400MHz,CDCl 3)δ10.07(s,1H),9.45(s,1H),7.71(d,J=1.0Hz,1H),7.60(d,J=8.2Hz,1H),7.53–7.51(m,1H),7.46(d,J=9.0Hz,1H),7.29(d,J=2.2Hz,1H),7.26–7.23(m,1H),5.13(s,2H),3.43–3.35(m,1H),2.15–2.08(m,2H),1.91–1.85(m,2H),1.78–1.72(m,2H),1.67–1.59(m,2H)。
参考例77:中间体I-79的制备
Figure PCTCN2019123485-appb-000113
将中间体I-78(322mg,0.78mmol)溶于四氢呋喃(10mL)中,加入乙氧甲酰基亚甲基三苯基膦 (543mg,1.56mmol)。在氩气保护下,反应混合物在70℃下搅拌反应16小时。减压浓缩得到残留物。残留物经硅胶色谱法纯化得中间体I-79。
LC-MS(ESI)[M-H] -481.3。
1H NMR(400MHz,CDCl 3)δ8.98(s,1H),7.76(d,J=16.2Hz,1H),7.70(s,1H),7.60(d,J=8.1Hz,1H),7.51(d,J=8.2Hz,1H),7.35(d,J=8.9Hz,1H),7.22(d,J=2.3Hz,1H),7.10(dd,J=8.9,2.4Hz,1H),6.65(d,J=16.2Hz,1H),5.11(s,2H),4.33(q,J=7.1Hz,2H),3.43–3.34(m,1H),2.14–2.06(m,2H),1.90–1.83(m,2H),1.78–1.70(m,2H),1.68–1.59(m,2H),1.37(t,J=7.1Hz,3H)。
参考例78:中间体I-80的制备
Figure PCTCN2019123485-appb-000114
将中间体I-79(294mg,0.61mmol)溶于无水乙酸乙酯(30mL)中,加入二氧化铂(20mg)。在氢气氛围下,反应混合物在室温下搅拌反应4小时。将反应混合物抽滤,滤液减压浓缩得到残留物。残留物经硅胶色谱纯化得中间体I-80。
LC-MS(ESI)[M-H] -483.1
1H NMR(400MHz,CDCl 3)δ9.49(s,1H),7.70(s,1H),7.59(d,J=8.2Hz,1H),7.49(d,J=8.1Hz,1H),7.29(s,1H),7.18(d,J=2.3Hz,1H),6.97(dd,J=8.8,2.4Hz,1H),5.09(s,2H),4.21(q,J=7.2Hz,2H),3.42–3.34(m,1H),3.22–3.18(m,2H),2.80–2.78(m,2H),2.13–2.07(m,2H),1.89–1.83(m,2H),1.77–1.71(m,2H),1.65–1.59(m,2H),1.29(t,J=7.2Hz,3H)。
参考例80:中间体I-82的制备
Figure PCTCN2019123485-appb-000115
将氢化钠(60%质量分数,1.26g,31.62mmol)加入到无水N,N-二甲基甲酰胺(40mL)中。将反应液降至0℃后,加入1-溴-2,5-二氟-4-硝基苯(3.76g,15.81mmol),然后缓慢滴加中间体I-58(4.0g,17.39mmol)。在氩气保护下,反应混合物在60℃下搅拌反应16小时。将反应液冷却至室温后,用饱和氯化铵水溶液(200mL)淬灭,混合物用乙酸乙酯萃取(50mL×4),合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得残留物。残留物经硅胶色谱法分离纯化得中间体I-82。
LC-MS(ESI)[M-H] -446.1。
参考例81:中间体I-83的制备
Figure PCTCN2019123485-appb-000116
将中间体I-82(2.685g,5.99mmol)溶于二氯甲烷(40mL)中。依次滴加三氟乙酸(4mL)和三乙基硅烷(3.47g,29.95mmol)。滴加完毕后,反应混合物在40℃下搅拌反应16小时。加水(60mL),分出水相用二氯甲烷(40mL×2)萃取。合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法分离纯化得中间体I-83。
参考例82:中间体I-84的制备
Figure PCTCN2019123485-appb-000117
将中间体I-83(1.63g,4.68mmol)溶于醋酸(20mL)中,加入铁粉(1.31g,23.42mmol)。反应混合物在115℃下搅拌反应1.5小时后,冷却至室温。抽滤,滤液加水(100mL),水相用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法分离纯化得中间体I-84。
LC-MS(ESI)[M+H] +300.1。
参考例83:中间体I-85的制备
Figure PCTCN2019123485-appb-000118
将中间体I-84(1.3g,4.3mmol)溶于1,4-二氧六环(20mL)中,依次加入双联频哪醇硼酸酯(2.18g,8.6mmol)、醋酸钾(1.27g,12.9mmol)、[1,1`-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(351mg,0.43mmol)。氩气保护下,反应混合物在110℃下搅拌反应过夜后,冷却至室温。抽滤,滤液加乙酸乙酯(90mL)和水(30mL)分液萃取。水相用乙酸乙酯(90mL×2)萃取。合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法分离纯化得中间体I-85。
LC-MS(ESI)[M+H] +348.3。
参考例84:中间体I-86的制备
Figure PCTCN2019123485-appb-000119
将中间体I-85(360mg,1.04mmol)溶于四氢呋喃(9mL)和水(3mL)中,加入过硼酸钠四水 合物(801mg,5.20mmol)。反应混合物在40℃下搅拌反应1小时后,加水(50mL)。用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得残留物。残留物经硅胶色谱法分离纯化得中间体I-86。
LC-MS(ESI)[M+H] +238.0。
参考例85:中间体I-87的制备
Figure PCTCN2019123485-appb-000120
将中间体I-86(101mg,0.426mmol)和I-21(196mg,0.639mmol)溶于乙腈(8mL)中,加入碳酸铯(417mg,1.278mmol)。反应混合物在室温下搅拌反应1小时后抽滤,滤液减压浓缩除去有机溶剂得到残留物。
另一批次:将中间体I-86(137mg,0.578mmol)和I-21(266mg,0.867mmol)溶于乙腈(5mL)中,加入碳酸铯(565mg,1.734mmol)。反应混合物在室温下搅拌反应1小时后抽滤,滤液减压浓缩除去有机溶剂得到残留物。
将上述两个残留物合并,经制备液相色谱法分离纯化得中间体I-87。
LC-MS(ESI)[M+H] +464.3。
参考例86:中间体I-88的制备
Figure PCTCN2019123485-appb-000121
在室温下,将间氨基苯甲醚(10g,81.2mmol)和溴乙酸乙酯(13.6g,81.2mmol)溶于丙酮(100mL)中。向反应体系中加入碳酸钾(16.8g,121.8mmol),随后反应混合物在60℃下搅拌反应16小时。将反应混合物过滤,滤液用水(150mL)稀释,用乙酸乙酯(150mL×2)萃取。合并有机相,用饱和食盐水(100mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-88。
LC-MS(ESI)[M+H] +210.1。
参考例87:中间体I-89的制备
Figure PCTCN2019123485-appb-000122
在室温下,将中间体I-88(14.2g,67.9mmol)溶于N,N-二甲基甲酰胺二甲基缩醛(16.2g,135.8mmol)中,随后反应混合物回流搅拌反应48小时。将反应液冷却至室温后,加入水(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-89。
LC-MS(ESI)[M+H] +265.2
参考例88:中间体I-90的制备
Figure PCTCN2019123485-appb-000123
在室温下,将中间体I-89(11g)溶于二氯甲烷(50mL)中,随后0℃下加入无水三氯化铝(5.5g,41.6mmol)。反应混合物在室温下搅拌反16小时。将反应液降温至0℃并用饱和氯化铵溶液(10mL)淬灭反应,分出有机相,水相用二氯甲烷(60mL x 3)萃取,合并有机相,用饱和食盐水(50mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-90。
LC-MS(ESI)[M+H] +220.1
参考例89:中间体I-91的制备
Figure PCTCN2019123485-appb-000124
在室温下,将中间体I-90(8.8g)溶于四氢呋喃(80mL)中,随后在0℃下缓慢加入四氢铝锂(3.05g,80.26mmol)。反应混合物升至室温,在室温下搅拌反应4小时。将反应液降温至0℃,用水(10mL)淬灭,过滤,分液。水相用乙酸乙酯(80mL x 2)萃取,合并有机相,用饱和食盐水(80mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到中间体I-91,粗产品未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +178.
参考例90:中间体I-92的制备
Figure PCTCN2019123485-appb-000125
在室温下,将中间体I-91(3.5g,19.8mmol)溶于四氢呋喃(40mL)中,在氮气保护下加入二氧化锰(17.2g,198mmol)。反应混合物在60℃下搅拌反应16小时后,将反应混合物过滤。滤液减压浓缩后得到粗产品。粗产品经硅胶柱层析(乙酸乙酯/石油醚=0-40%)分离纯化得到目标化合物I-92。
LC-MS(ESI)[M+H] +176.1.
参考例91:中间体I-93的制备
Figure PCTCN2019123485-appb-000126
在室温下,将乙氧甲酰基亚甲基三苯基膦(2.4g,6.85mmol)溶于四氢呋喃(20mL)中,在0℃下加入氢化钠(356.4mg,8.91mmol)。反应混合物在0℃下搅拌反应30分钟后,加入中间体I-92(1g,5.71mmol)。反应混合物升至室温并在室温下继续搅拌反应4小时。将反应混合物降温至0℃并用饱 和氯化铵溶液(5mL)淬灭,用乙酸乙酯(20mL×3)萃取,合并有机相,用饱和食盐水(30mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-93。
LC-MS(ESI)[M+H] +246.0.
参考例92:中间体I-94的制备
Figure PCTCN2019123485-appb-000127
在室温下,将中间体I-93(2.2g,8.97mmol)溶于乙醇(20mL)中,随后加入Pd/C(400mg,10%w/w)。反应混合物在氢气氛围下室温搅拌反应6小时。将反应混合物过滤,滤液减压浓缩后得到中间体I-94的粗产物,该粗产品未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +248.0.
参考例93:中间体I-95的制备
Figure PCTCN2019123485-appb-000128
在0℃下将三溴化硼(10.1mL,1M in DCM,10.1mmol)加入到二氯甲烷(10mL)中,随后在0℃下将中间体I-94(500mg,2.02mmol)加入到上述溶液中。反应混合物在室温下搅拌反应2小时。在0℃下用乙醇(10mL)淬灭反应,加入水(20mL)稀释,分出有机相,水相用二氯甲烷(20mL×3)萃取。合并有机相,饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-95。
LC-MS(ESI)[M+H] +234.1。
参考例94:中间体I-96的制备
Figure PCTCN2019123485-appb-000129
将中间体I-95(55mg,0.24mmol)溶于乙腈(8mL)中,依次加入中间体I-10(126mg,0.48mmol)、碳酸钾(66.3mg,0.48mmol)和碳酸铯(235mg,0.72mmol)。反应混合物在室温下搅拌反应16小时后,加入水(10mL),用乙酸乙酯(15mL×3)萃取。合并有机相,饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-96。
LC-MS(ESI)[M+H] +460.1。
参考例95:中间体I-97的制备
Figure PCTCN2019123485-appb-000130
将4-溴-1H-吲唑(1.0g,5.1mmol)和溴丙酸乙酯(1.1g,6.1mmol)溶于DMF(10mL)中,加入碳酸钾(2.1g,15.3mmol)。反应混合物在80℃下搅拌反应5小时后,冷却至室温。加入EA(20mL)和水(100mL)分液萃取。减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-97。
LC-MS(ESI)[M+H] +297.0。
1H NMR(400MHz,DMSO-d 6)δ8.05(s,1H),7.75(d,J=8.0Hz,1H),7.40–7.30(m,2H),4.66(t,J=6.5Hz,2H),3.98(q,J=7.1Hz,2H),2.95(t,J=6.5Hz,2H),1.07(t,J=7.1Hz,3H)。
参考例96:中间体I-98的制备
Figure PCTCN2019123485-appb-000131
将中间体I-97(1.2g,4mmol)溶于1,4-二氧六环(12mL)中,依次加入联硼酸频那醇酯(1.2g,4.8mmol)、[1,1'-双(二苯基膦基)二茂铁]二氯化钯(293mg,0.4mmol)和醋酸钾(1.18g,12mmol)。在氩气保护下,反应混合物在100℃下搅拌反应4小时。将反应混合物冷却至30℃后过滤,滤液减压浓缩得到粗产品。将粗产品溶于乙酸乙酯(20mL)中,加水(10mL)分液萃取。有机相用饱和食盐水(10mL)洗,无水硫酸钠干燥,过滤,滤液减压浓缩得到目中间体I-98,该中间体直接用于下一步反应没有进一步纯化。
LC-MS(ESI)[M+H] +345.0。
参考例97:中间体I-99的制备
Figure PCTCN2019123485-appb-000132
将3-氰基-4-异丙氧基苯甲酸(1g,4.87mmol)溶解于二氯甲烷(20mL)中,加入1滴N,N-二甲基甲酰胺后,于0℃下滴加草酰氯(0.6mL,7.31mmol)。将反应液于室温搅拌1小时后浓缩。所得残余物溶解于四氢呋喃(10mL)中并冷却至0℃,依次加入硼氢化钠(461mg,12.18mmol)和甲醇(2mL)。将反应液于0℃搅拌30min后,于室温搅拌2小时。用1N盐酸将反应体系酸化至pH=3,并用乙酸乙酯萃取两次,每次10mL。将有机层合并,无水硫酸钠干燥,过滤,滤液减压浓缩得残留物。残留物经硅胶色谱法分离纯化得中间体I-99。
1H NMR(400MHz,CDCl 3)δ7.54(d,J=2.0Hz,1H),7.52-7.47(dd,J=8.8,2.0Hz,1H),6.95(d,J=8.8Hz,1H),4.70-4.60(m,3H),1.39(d,J=6.0Hz,6H).
参考例98:中间体I-100的制备
Figure PCTCN2019123485-appb-000133
将中间体I-99(300mg,1.57mmol)溶于甲苯(5mL)中,加入二氯亚砜(1.12g,9.41mmol)。将反应液于75℃下搅拌20分钟。将反应液用乙酸乙酯(15mL)稀释后,用碳酸氢钠洗涤(两次,每次 20mL)后,将有机层用饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到中间体I-100的粗产物,该粗产物未经纯化直接用于下一步反应。
参考例99:中间体I-101的制备
Figure PCTCN2019123485-appb-000134
将中间体I-98(400mg,1.16mmol)溶解于乙醇(10mL)/水(5mL)的混合液中,加入间氯过氧苯甲酸(85%纯度,260mg,1.28mmol),并于室温下搅拌2小时。减压蒸去部分有机溶剂,残余物用水(15mL)稀释,并用乙酸乙酯萃取(两次,每次10mL)。将有机层用饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到残留物。残留物经硅胶色谱法分离纯化得到中间体I-101。
LC-MS(ESI)[M+H] +235.1.
参考例100:中间体I-102的制备
Figure PCTCN2019123485-appb-000135
将中间体I-101(87mg,0.37mmol),I-100(92mg,0.44mmol)溶解于乙腈(4mL)中,加入碳酸钾(102mg,0.74mmol),并于80℃下搅拌过夜后,于室温搅拌过夜。反应液过滤,滤液浓缩得残留物,残留物经硅胶色谱法分离纯化得中间体I-102。
参考例101:中间体I-103的制备
Figure PCTCN2019123485-appb-000136
将中间体I-7(900mg,3.33mmol)溶于四氢呋喃(10.0mL)中,降温至-20℃,氩气保护下缓慢滴加二异丁基氢化铝的甲苯溶液(1.0M,9.99mL,9.99mmol),滴加完毕反应液在0℃搅拌反应2小时。将反应液倒入冰的1M盐酸水溶液(50mL),混合物用乙酸乙酯(50mL x 3)萃取,有机相合并,减压浓缩除去有机溶剂得中间体I-103。粗品未经纯化直接用于下一步。
参考例102:中间体I-104的制备
Figure PCTCN2019123485-appb-000137
将氢溴酸水溶液(40%w/w,5mL)加入到中间体I-103(400mg)中,反应混合物升温至100℃搅拌反应2小时。反应液冷却至室温后,用乙酸乙酯(30mL x 3)萃取,有机相合并,用饱和食盐水(30mL)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩至干。残余物经硅胶色谱法分离纯化得中间体I-104。
1H NMR(400MHz,Chloroform-d)δ7.66(s,1H),7.50(d,J=7.9Hz,1H),7.27(d,J=8.1Hz,1H),5.74(t,J=2.3Hz,1H),4.50(s,2H),2.64(m,2H),2.52(m,2H),2.02(m 2H).
参考例103:中间体I-105的制备
Figure PCTCN2019123485-appb-000138
中间体I-6(200mg,0.912mmol)和咪唑(112mg,1.64mmol)溶于N,N-二甲基甲酰胺(15mL)中,在10℃下加入叔丁基二甲基氯硅烷(144mg,0.958mmol)。反应混合物在10℃下搅拌反应2小时。反应液倒入水(150mL)中,用乙酸乙酯萃取(20mL×2),合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-105。
LC-MS(ESI)[M+H] +333.9。
参考例104:中间体I-106的制备
Figure PCTCN2019123485-appb-000139
将中间体I-105(90.0mg,0.270mmol)溶于二氯甲烷(5mL)中,将反应体系降温至-70℃,加入N-氯代丁二酰亚胺(36.1mg,0.270mmol)。反应混合物在-70℃下搅拌反应半小时,然后升温至10℃,在10℃下搅拌半小时。将混合物倒入水(10mL)中,分液,水相用二氯甲烷(5mL)萃取。合并有机相,用无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到中间体I-106。
LC-MS(ESI)[M+H] +367.8。
参考例105:中间体I-107的制备
Figure PCTCN2019123485-appb-000140
将中间体I-106(90.0mg,0.245mmol)溶于四氢呋喃(1mL)中,在10℃下加入1M的四丁基氟化铵的四氢呋喃溶液(0.294mL,0.294mmol)。反应混合物在10℃下搅拌反应1小时。将混合物减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得中间体I-107。
LC-MS(ESI)[M+H] +254.0。
参考例106:中间体I-108的制备
Figure PCTCN2019123485-appb-000141
将中间体I-104(67.1mg,0.220mmol)和中间体I-107(50.7mg,0.200mmol)溶于乙腈(3mL)中,加入碳酸铯(195mg,0.600mmol)。反应液升温至30℃搅拌反应2小时后过滤,滤液真空减压浓 缩,残余物经硅胶色谱法分离纯化得到中间体I-108。
LC-MS.(ESI)[M-H] -476.0。
参考例107:中间体I-109的制备
Figure PCTCN2019123485-appb-000142
在室温下,将4-溴-3-(三氟甲基)苯甲酸甲酯(100mg,0.35mmol)和环丁基硼酸(70mg,0.70mmol)溶于二甲苯中(4mL)中,然后将醋酸钯(4.5mg,0.02mmol),AntPhos(11.1mg,0.03mmol)和磷酸钾(297mg,1.40mmol)加入上述体系。反应体系用氩气置换三次,并在氩气保护下于140℃下反应16小时。将反应液冷却至室温,加入水(15mL)。用乙酸乙酯萃取(15mL×2),合并有机相,有机相用饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法纯化得到中间体I-109。
1H NMR(400MHz,CDCl 3)δ8.26(s,1H),8.18(d,J=8.1Hz,1H),7.66(d,J=8.2Hz,1H),4.11–3.81(m,4H),2.46–2.32(m,2H),2.28–2.15(m,2H),2.12–1.98(m,1H),1.93–1.84(m,1H).
参考例108:中间体I-110的制备
Figure PCTCN2019123485-appb-000143
在0℃下,将四氢铝锂(291.4mg,7.68mmol)分批次加入到中间体I-109(660mg)的四氢呋喃(15mL)溶液中。反应混合物室温反应16小时。将反应液冷却至0℃,加入水(2mL)淬灭反应。反应液过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经反相制备分离纯化得到中间体I-110。 1H NMR(400MHz,CDCl 3)δ7.64–7.49(m,3H),4.72(s,2H),3.94–3.81(m,1H),2.41–2.29(m,2H),2.25–2.12(m,2H),2.09–1.96(m,1H),1.92–1.80(m,1H).
参考例109:中间体I-111的制备
Figure PCTCN2019123485-appb-000144
在室温下,将中间体I-110(70.0mg,0.304mmol)溶于氢溴酸的水溶液(1mL,40wt%)中。反应混合物在100℃下搅拌反应2小时。冷却至室温后,向反应混合物中加水(10mL),并用乙酸乙酯(5mL×3)萃取。合并有机相,用饱和食盐水(5mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-111。
1H NMR(400MHz,CDCl 3)δ7.61(s,1H),7.56(d,J=1.2Hz,2H),4.49(s,2H),3.93–3.81(m,1H),2.39–2.30(m,2H),2.25–2.12(m,2H),2.09–1.96(m,1H),1.91–1.81(m,1H).
参考例110:中间体I-112的制备
Figure PCTCN2019123485-appb-000145
在室温下,将中间体I-107(60.6mg,0.239mmol)溶于乙腈(5mL)中,依次加入中间体I-111(70.0mg,0.239mmol)和碳酸铯(234mg,0.718mmol)。反应混合物在30℃下搅拌反应1小时。将反应混合物过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-112。
LC-MS(ESI)[M+H] +466.2。
参考例111:中间体I-113的制备
Figure PCTCN2019123485-appb-000146
在室温下,将甲基-4-溴-3-(三氟甲基)苯甲酸甲酯(2g,7.07mmol),环己烯-1-基硼酸(1.07g,8.48mmol)和碳酸钾(2.93g,21.2mmol)溶于二氧六环(20.0mL)和水(4.00mL)中,然后加入Pd(PPh 3) 4(409mg,0.354mmol)。在氮气保护下,将反应混合物升温至110℃,并在该温度下搅拌反应5小时。将反应液冷却至室温,加入水(200mL),用乙酸乙酯(300mL×2)萃取。合并有机相,用饱和食盐水(200mL)洗,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法纯化后得到中间体I-113。
1H NMR(400MHz,CD 3OD)δ8.30(d,J=1.7Hz,1H),8.11(dd,J=8.0,1.8Hz,1H),7.29(d,J=8.0Hz,1H),5.62–5.58(m,1H),3.94(s,3H),2.24–2.12(m,4H),1.79–1.65(m,4H).
参考例112:中间体I-114的制备
Figure PCTCN2019123485-appb-000147
在室温下,将中间体I-113(900mg,3.17mmol)和Pd/C(10%w/w,90mg)加入到100mL的不锈钢反应釜中,然后加入甲醇(10.0mL)。将钢瓶中的气体用氢气置换,并把氢气加压到40个大气压。在该压力下将反应混合物升温至50℃,并在该温度下搅拌反应10小时。将反应液冷却至室温后,用硅藻土过滤,滤液减压浓缩除去有机溶剂得到目标化合物I-114,该产品未经纯化直接用于下一步反应。
1H NMR(400MHz,CD 3OD)δ8.28(d,J=1.4Hz,1H),8.13(dd,J=8.3,1.8Hz,1H),7.53(d,J=8.2Hz,1H),3.93(s,3H),3.03-2.93(m,1H),1.89-1.76(m,5H),1.52–1.37(m,4H),1.35–1.25(m,1H).
参考例113:中间体I-115的制备
Figure PCTCN2019123485-appb-000148
在室温下,将中间体I-114(700mg)溶于无水四氢呋喃(10.0mL)中。在氮气保护下将反应液降至0℃后,缓慢滴加四氢铝锂(1M in THF)(6.13mL,6.13mmol)。滴加完毕后,反应混合物升至室 温,并在室温下搅拌反应10小时。向反应混合物中加入乙醚(10.0mL)并冷却到0℃,加入水(4.00mL),然后加入氢氧化钠水溶液(6.00mL,10%w/w)。再加入水(18.0mL)并搅拌10分钟。加入无水硫酸钠到该体系并继续搅拌10分钟。然后过滤,减压浓缩除去有机溶剂得到粗产品。经硅胶色谱法分离纯化得到中间体I-115。
1H NMR(400MHz,CD 3OD)δ7.60(d,J=1.9Hz,1H),7.49(dd,J=8.1Hz,1.8Hz,1H),7.44(d,J=8.1Hz,1H),4.69(s,2H),2.97–2.87(m,1H),1.91–1.74(m,5H),1.50–1.36(m,4H),1.34–1.26(m,1H).
参考例114:中间体I-116的制备
Figure PCTCN2019123485-appb-000149
将中间体I-115(1.00g,3.87mmol)混合于40%氢溴酸水溶液(10mL)中,反应混合物在100℃下搅拌反应2小时。将反应混合物冷却至室温,二氯甲烷萃取(10mL×2)。合并有机相,用饱和碳酸氢钠水溶液(20mL)洗,饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤,滤液浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-116。
1H NMR(400MHz,Chloroform-d)δ7.61(d,J=1.9Hz,1H),7.51(dd,J=8.1,2.0Hz,1H),7.43(d,J=8.1Hz,1H),4.48(s,2H),2.98–2.86(m,1H),1.90–1.73(m,5H),1.49–1.25(m,5H)。
参考例115:中间体I-117的制备
Figure PCTCN2019123485-appb-000150
将中间体I-107(25.0mg,0.0985mmol),中间体I-116(34.7mg,0.108mmol)和碳酸钾(27.2mg,0.197mmol)混合于乙腈(1mL)中,反应混合物在10℃下搅拌反应过夜后升温至50℃,在50℃下继续搅拌反应3小时。将反应混合物过滤,滤液浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱分离纯化得到中间体I-117。
LC-MS(ESI)[M+H] +494.2。
1H NMR(400MHz,Chloroform-d)δ8.65(s,1H),7.72(d,J=1.8Hz,1H),7.60(d,J=7.8Hz,1H),7.47(d,J=8.1Hz,1H),7.21(d,J=8.8Hz,1H),7.06(d,J=2.4Hz,1H),6.91(dd,J=8.8,2.4Hz,1H),5.09(s,2H),3.72(s,3H),3.09(d,J=6.3Hz,2H),3.01-2.80(m,1H),2.72(d,J=6.3Hz,2H),1.89–1.74(m,5H),1.51–1.33(m,5H).
参考例116:中间体I-118制备
Figure PCTCN2019123485-appb-000151
将4-羟基-3-(三氟甲基)苯甲酸甲酯(950mg,4.32mmol)溶于N,N-二甲基甲酰胺(15mL)中,向反应体系中依次加入碘代环戊烷(1270mg,6.48mmol),碳酸铯(4223mg,12.96mmol)。将反应混 合物升温至45℃,并在该温度下搅拌反应16小时。将反应液冷却至室温,依次加入水(50mL)和乙酸乙酯(50mL),萃取分层,分出有机相,水相用乙酸乙酯(50mL×2)萃取,合并有机相,用饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩得到粗产品。粗产品经硅胶色谱法纯化得到中间体I-118。
LC-MS(ESI)[M+H] +289.1。
1H NMR(400MHz,CDCl 3)δ8.24(d,J=2.0Hz,1H),8.15(dd,J=8.7,2.1Hz,1H),7.01(d,J=8.9Hz,1H),4.96–4.92(m,1H),3.91(s,3H),1.95–1.92(m,2H),1.92–1.88(m,2H),1.87–1.79(m,2H),1.70–1.63(m,2H).
参考例117:中间体I-119制备
Figure PCTCN2019123485-appb-000152
将中间体I-118(1.19g,4.13mmol)溶于无水四氢呋喃(50mL)中,在-40℃下向反应混合物中滴加DIBAL-H(5.51mL,8.26mmol,1.5M in toluene)。滴加完毕,将反应混合物升温至室温,并在该温度下搅拌反应16小时。依次加入水(100mL)和乙酸乙酯(50mL),萃取分层,分出有机相,水相用乙酸乙酯(50mL×2)萃取产品,合并有机相,用饱和食盐水(20mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩得到粗产品。粗产品经硅胶色谱法纯化得到中间体I-119。
1H NMR(400MHz,CDCl 3)δ7.55(d,J=1.8Hz,1H),7.45(dd,J=8.5,1.8Hz,1H),6.97(d,J=8.5Hz,1H),4.89–4.85(m,1H),4.64(s,2H),1.92–1.89(m,2H),1.88–1.84(m,2H),1.84–1.76(m,2H),1.65–1.61(m,2H).
参考例118:中间体I-120制备
Figure PCTCN2019123485-appb-000153
将中间体I-119(100mg,0.384mmol)和48%的氢溴酸水溶液(1mL)混合于甲苯(1mL)中,反应混合物在100℃下搅拌反应1小时。将反应液冷却至10℃,加水(20mL),用石油醚(10mL×3)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到中间体I-120,粗产品未经纯化直接用于下一步反应。
1H NMR(400MHz,Chloroform-d)δ7.57(d,J=2.4Hz,1H),7.48(dd,J=8.6,2.4Hz,1H),6.95(d,J=8.5Hz,1H),4.90–4.83(m,1H),4.48(s,2H),1.97–1.86(m,4H),1.85–1.77(m,2H),1.69–1.59(m,2H)。
参考例119:中间体I-121制备
Figure PCTCN2019123485-appb-000154
将中间体I-120(70.1mg,0.217mmol)和中间体I-107(50.0mg,0.197mmol)溶于乙腈(5mL)中,在10℃下加入碳酸铯(128mg,0.394mmol)。反应混合物在10℃下搅拌反应过夜。将反应液过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-121。
LC-MS(ESI)[M+H] +496.2。
1H NMR(400MHz,Chloroform-d)δ8.64(s,1H),7.66(d,J=2.2Hz,1H),7.55(dd,J=8.5,2.2Hz,1H),7.20(d,J=8.8Hz,1H),7.05(d,J=2.4Hz,1H),7.00(d,J=8.5Hz,1H),6.89(dd,J=8.8,2.4Hz,1H),5.04(s,2H),4.91–4.85(m,1H),3.72(s,3H),3.09(d,J=6.3Hz,2H),2.72(d,J=6.3Hz,2H),1.99–1.86(m,4H),1.85–1.78(m,2H),1.68–1.58(m,2H)。
参考例120:中间体I-122制备
Figure PCTCN2019123485-appb-000155
将2-羟基-3-三氟甲基吡啶(5.00g,30.66mmol)和NIS(6.90g,30.66mmol)溶于N,N-二甲基甲酰胺和乙腈的混合溶剂(60.0mL,1:1)中。将反应混合物升温至80℃,并在该温度下搅拌反应3小时。将反应混合物冷却至25℃,加入碳酸氢钠溶液(35.0mL,1M)并搅拌五分钟,用二氯甲烷(500mLx2)萃取。合并有机相,减压浓缩除去有机溶剂得到粗产品。粗产品加水(25.0mL)搅拌后过滤,滤饼真空干燥得到中间体I-122粗产物,产品未经进一步纯化直接用于下一步反应。
参考例121:中间体I-123的制备
Figure PCTCN2019123485-appb-000156
将中间体I-122(6.3g,21.80mmol)溶于三氯氧磷(15.0mL)中。将反应混合物升温至100℃,并在该温度下搅拌反应10小时。将反应液冷却至室温后液缓慢加入冰水(200mL)中,用碳酸钠调节溶液的pH至中性,再用乙酸乙酯(400mL×2)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶柱(PE:EA=100:1to 10:1)分离纯化得到中间体I-123。
1H NMR(400MHz,CDCl 3)δ8.78(s,1H),8.28(s,1H).
参考例122:中间体I-124的制备
Figure PCTCN2019123485-appb-000157
将中间体I-123(2.10g,6.83mmol),乙酸钠(1.12g,13.66mmol),醋酸钯(76.78mg,0.342mmol)和1,1′-双(二苯基膦)二茂铁(114mg,0.205mmol)溶于无水甲醇(25.0mL)中。将反应混合物升温至 80℃并在该温度下于CO氛围下反应10小时。将反应液冷却到25℃后通过硅藻土过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法纯化得到中间体I-124。
LC-MS(ESI)[M+H] +240.1[M+H+41] +281.1。
1H NMR(400MHz,CD 3OD)δ9.13(d,J=1.8Hz,1H),8.64(d,J=1.8Hz,1H),3.99(s,3H).
参考例123:中间体I-125的制备
Figure PCTCN2019123485-appb-000158
将中间体I-124(500mg,2.09mmol),环戊烯-1-硼酸(281mg,2.51mmol),三环己基膦(58.6mg,0.209mmol),碳酸铯(2.04g,6.27mmol)和Pd2(dba)3溶于二氧六环/已腈/水(12.00mL,2.5:2.5:1)的混合溶液中,在氮气保护下将反应液升至100℃并在该温度下反应8小时。将反应液冷却到室温后用硅藻土过滤,滤液减压浓缩除去有机溶剂。残余物用乙酸乙酯(30mL)稀释,经水(15mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥后过滤。滤液减压浓缩除去有机溶剂得粗产品。粗产品用硅胶色谱法纯化得到中间体I-125。
LC-MS(ESI)[M+H+41] +299.2
参考例124:中间体I-126的制备
Figure PCTCN2019123485-appb-000159
将中间体I-125(300mg,1.17mmol)和PtO 2(53.1mg)溶于乙酸乙酯(10.0mL)中。反应混合物在25℃和氢气氛围下反应10小时。反应液用硅藻土过滤,滤液减压浓缩除去有机溶剂得到中间体I-126。
LC-MS(ESI)[M+H+41] +301.2
参考例125:中间体I-127的制备
Figure PCTCN2019123485-appb-000160
将中间体I-126(270mg,1.04mmol)溶于四氢呋喃(4.00mL)中。混合物冷却到0℃后在氮气保护缓慢滴加BH 3(3.12mL,1M in THF,3.12mmol)。然后升至25℃继续反应2小时。将反应液再次冷却到0℃后用甲醇(4.00mL)淬灭。把反应液减压浓缩除去有机溶剂,残余物用乙酸乙酯(30.0mL)稀释后用水(15.0mL)洗涤。有机相用无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到中间体I-127的粗产物,该粗产品未经纯化直接用于下一步反应。
LC-MS(ESI)[M+H] +246.1
参考例126:中间体I-128的制备
Figure PCTCN2019123485-appb-000161
将中间体I-127(90mg,0.367mmol)溶于氢溴酸(5mL,40%in H2O)中加热至100℃。反应混合物在100℃搅拌反应2小时后,冷却至室温,倒入饱和碳酸氢钠(15mL)中,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(10mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-128。
LC-MS(ESI)[M+H] +307.9.
参考例127:中间体I-129的制备
Figure PCTCN2019123485-appb-000162
在18℃下,将中间体I-128(60.0mg,0.195mmol)溶于N,N-二甲基甲酰胺(2.5mL)中,依次加入中间体I-107(54.5mg,0.215mmol)和碳酸铯(191mg,0.585mmol)。反应混合物在30℃搅拌反应8小时后,将反应体系倒入水(10mL)中,用乙酸乙酯(5mL×3)萃取。合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-129。
LC-MS(ESI)[M+H] +481.1.
参考例128:中间体I-130制备
Figure PCTCN2019123485-appb-000163
将化合物3-呋喃硼酸(1.97g,17.61mmol)溶于DMF(30.0mL)中,依次加入3-三氟甲基-4-溴苯甲酸甲酯(3.84g,13.57mmol)、碳酸铯(8.83g,27.10mmol)和[1,1'-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷络合物(335mg,0.410mmol)。反应液在氩气保护下升温至90℃搅拌反应16小时,将水(60mL)和乙酸乙酯(60mL)加入到反应液中,分液,水相用乙酸乙酯(60mL x 2)萃取,合并有机相,并用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩至干,粗品经硅胶色谱法分离纯化得到中间体I-130。
1H NMR(400MHz,Chloroform-d)δ8.42(d,J=1.7Hz,1H),8.19(dd,J=8.0,1.7Hz,1H),7.60(d,J=1.5Hz,1H),7.54–7.48(m,2H),6.62–6.56(m,1H),3.97(s,3H).
参考例129:中间体I-131制备
Figure PCTCN2019123485-appb-000164
将中间体I-130(3.11g,11.51mmol)溶于甲醇(100mL)中,加入Pd/C(500mg,10%w/w), 反应混合物在氢气氛围下室温搅拌16小时。反应液过滤,滤液浓缩至干。粗品经硅胶色谱法分离纯化得中间体I-131。
1H NMR(400MHz,Chloroform-d)δ8.30(d,J=1.8Hz,1H),8.20–8.15(m,1H),7.62(d,J=8.3Hz,1H),4.18–4.04(m,2H),3.94(s,3H),3.92–3.82(m,3H),2.53–2.40(m,1H),2.02–1.91(m,1H).
参考例130:中间体I-132制备
Figure PCTCN2019123485-appb-000165
将中间体I-131(1.00g,3.65mmol)溶于无水四氢呋喃(25mL)中,降温至-40℃,氩气保护下缓慢滴加二异丁基氢化铝的甲苯溶液(1.5M,9.73mL,14.60mmol),滴加完毕升温至室温搅拌2小时,反应完毕后将混合物降温至0℃,加入水(100mL)淬灭反应,加入乙酸乙酯(50mL),分液,水相用乙酸乙酯(50mL x 2)萃取,有机相合并,经食盐水(20mL x 2)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂,残余物经硅胶色谱法分离纯化得中间体I-132。
LC-MS(ESI)[M-H] -245.0.
参考例131:中间体I-133制备
Figure PCTCN2019123485-appb-000166
将氢溴酸水溶液(3.00mL,40%w/w)加入到中间体I-132(150mg,0.609mmol)中,反应混合物升温至100℃搅拌反应2小时。反应液降至室温后,用乙酸乙酯(15mL x 3)萃取,有机相合并,经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤。滤液真空减压浓缩,残余物经硅胶色谱法分离纯化得到中间体I-133。
1H NMR(400MHz,Chloroform-d)δ7.63(s,1H),7.56(d,J=8.2Hz,1H),7.52(d,J=8.2Hz,1H),4.49(s,2H),4.15–4.08(m,1H),4.08–4.02(m,1H),3.95–3.86(m,1H),3.85–3.75(m,2H),2.53–2.34(m,1H),2.05–1.86(m,1H).
参考例132:中间体I-134制备
Figure PCTCN2019123485-appb-000167
将中间体I-133(87.0mg,0.281mmol)溶于乙腈(3.00mL)中,依次加入中间体I-107(71.3mg,0.281mmol)和碳酸铯(275mg,0.843mmol)。反应液升温至30℃搅拌反应2小时后过滤,滤液真空减压浓缩至干。残余物经硅胶色谱法分离纯化得到中间体I-134。
LC-MS(ESI)[M+H] +482.2.
参考例133:中间体I-135制备
Figure PCTCN2019123485-appb-000168
在10℃下,将4-溴-3-(三氟甲基)苯甲酸甲酯(3.5g,12.37mmol)和3,6-二氢-2H-吡喃-4-硼酸频哪醇酯(3.11g,14.8mmol)溶于二氧六环/水(50mL,体积比4/1)中,然后加入四三苯基磷钯(710mg,0.614mmol)和碳酸钾(5.1g,36.9mmol)。反应混合物在氩气保护下110℃搅拌反应3小时。向反应液中加水(200mL),并用石油醚(50mL×4)萃取。合并有机相,并用饱和食盐水(50mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得中间体I-135粗产物。该粗产品未经纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3)δ8.34(d,J=1.4Hz,1H),8.16(dd,J=8.0,1.4Hz,1H),7.35(t,J=6.6Hz,1H),5.69(s,1H),4.28(q,J=2.7Hz,2H),3.95(s,3H),3.92(t,J=5.4Hz,2H),2.36(dt,J=7.2,2.5Hz,2H).
参考例134:中间体I-136制备
Figure PCTCN2019123485-appb-000169
在18℃下,将中间体I-135(3.5g)溶于乙醇(80mL)中,缓慢加入钯碳(100mg,10%w/w)。反应混合物在60℃和10个大气压下搅拌反应72小时。将反应液冷却至室温后,过滤除去混合物中的钯碳,滤液减压浓缩得到粗产品。粗产品经硅胶色谱法分离纯化得到目中间体I-136。
1H NMR(400MHz,CDCl 3)δ8.31(s,1H),8.19(d,J=8.2Hz,1H),7.57(d,J=8.2Hz,1H),4.10(dd,J=11.5,4.1Hz,2H),3.94(s,3H),3.56(td,J=11.8,1.7Hz,2H),3.25(t,J=11.8Hz,1H),1.88(dd,J=12.6,4.2Hz,2H),1.75–1.67(m,2H).
参考例135:中间体I-137制备
Figure PCTCN2019123485-appb-000170
将中间体I-136(2.0g,6.94mmol)溶于四氢呋喃中,在-60℃下将二异丁基氢化铝溶液(13.9mL,1.5M/L甲苯溶液)缓慢滴加到上述混合物中。反应混合物在-30℃下搅拌反应3小时后,将反应混合物倒入稀盐酸(100mL,2N)中,并用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和碳酸氢钠(30mL)洗涤后,再用饱和食盐水(50mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-137。
1H NMR(400MHz,CDCl 3)δ7.64(s,1H),7.53(d,J=8.2Hz,1H),7.46(d,J=8.1Hz,1H),4.71(s,2H),4.07(dd,J=11.5,4.2Hz,2H),3.54(td,J=11.9,1.6Hz,2H),3.18(t,J=11.8Hz,1H),2.03(d,J=4.8Hz,1H),1.85(qd,J=12.4,4.3Hz,2H),1.69(d,J=10.6Hz,2H).
参考例136:中间体I-138制备
Figure PCTCN2019123485-appb-000171
将化合物I-137(100mg,0.384mmol)溶于氢溴酸(5mL,40%aq.)中加热至100℃。反应混合物在100℃搅拌反应3小时后,冷却至室温,用乙酸乙酯(5mL×4)萃取。合并有机相,用饱和碳酸氢钠(10mL)和饱和食盐水(10mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-138。
1H NMR(400MHz,CDCl 3)δ7.64(d,J=1.5Hz,1H),7.58–7.54(m,1H),7.46(d,J=8.1Hz,1H),4.49(s,2H),4.08(dd,J=11.6,4.3Hz,2H),3.54(td,J=11.9,1.9Hz,2H),3.23-3.13(m,1H),1.85(dd,J=12.6,4.2Hz,2H),1.69(dd,J=12.9,1.9Hz,2H).
参考例137:中间体I-139制备
Figure PCTCN2019123485-appb-000172
在10℃下,将中间体I-138(60.0mg,0.186mmol)溶于N,N-二甲基甲酰胺(3mL)中,依次加入中间体I-107(47.2mg,0.186mmol),碳酸铯(182mg,0.558mmol)。反应混合物在30℃搅拌反应8小时后,将反应体系倒入水(10mL)中,用乙酸乙酯(3mL×4)萃取。合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-139。
LC-MS(ESI)[M-H] -494.1.
参考例138:中间体I-140制备
Figure PCTCN2019123485-appb-000173
在0℃下,将3–三氟甲基-4-溴苯甲酸甲酯(1.50g,5.30mmol)的无水四氢呋喃溶液(10mL)滴加到氢化铝锂的四氢呋喃溶液(10.6mL,1.0M,10.6mmol)中。反应混合物在0℃下搅拌反应1小时。反应液在0℃下用饱和碳酸氢钠溶液(30mL)淬灭后过滤,滤液用乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-140。
1H NMR(400MHz,CDCl 3)δ7.70(s,1H),7.68(s,1H),7.39(dd,J=8.2,1.4Hz,1H),4.72(s,1H).
参考例139:中间体I-141制备
Figure PCTCN2019123485-appb-000174
在室温下,将中间体I-140(305mg,1.20mmol)溶于氢溴酸(3mL,40wt%水溶液)中。反应混合物在100℃下搅拌反应2小时。将反应混合物冷却至室温,加水(30mL)稀释后乙酸乙酯(20mL× 3)。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-141。
1H NMR(400MHz,CDCl 3)δ7.70(s,1H),7.68(s,1H),7.42(dd,J=8.2,2.1Hz,1H),4.45(s,2H).
参考例140:中间体I-142制备
Figure PCTCN2019123485-appb-000175
在室温下,将中间体I-141(240mg,0.755mmol)溶于乙腈(10mL)中。依次加入中间体I-6(176mg,0.754mmol)和碳酸铯(738mg,2.27mmol)。加料完毕,反应混合物在30℃下搅拌反应1小时后。过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶法分离纯化得到中间体I-142。
参考例141:中间体I-143制备
Figure PCTCN2019123485-appb-000176
在室温下,将中间体I-142(57.0mg,0.121mmol)溶于甲苯(2mL)中,依次加入吡咯烷(17.8mg,0.250mmol)、醋酸钯(2.92mg,0.0130mmol)、碳酸铯(122mg,0.374mmol)和1,1'-联萘-2,2'-双二苯膦(15.6mg,0.0250mmol)。氮气保护下,反应混合物在110℃下搅拌反应16小时。将反应混合物减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-143。
LC-MS(ESI)[M+H] +461.2。
参考例142:中间体I-144制备
Figure PCTCN2019123485-appb-000177
室温下将中间体I-6(233mg,1.00mmol)和中间体I-128(308mg,1.00mmol)溶于乙腈(3mL)中,加入碳酸铯(977mg,3.00mmol)。反应液在25℃搅拌反应2小时。过滤,滤液减压浓缩除去有机溶剂。残余物经硅胶色谱法分离纯化得到中间体I-144。
LC-MS(ESI)[M+H] +461.2.
参考例143:中间体I-145制备
Figure PCTCN2019123485-appb-000178
室温下将中间体I-144(100mg,0.217mmol)溶于乙腈(2mL)中,降温至0℃后,加入Selectfluor(92.2mg,0.260mmol)的水(1mL)溶液,反应液在0℃搅拌40分钟。反应液用乙酸乙酯(20mL x 3)萃取。合并有机相,用饱和食盐水(5mL)洗涤,分出有机相并减压浓缩。残余物经硅胶色谱法 分离纯化得到中间体I-145。
LC-MS(ESI)[M+H] +479.2。
参考例144:中间体I-146制备
Figure PCTCN2019123485-appb-000179
室温下将中间体I-6(467mg,2.00mmol)和中间体I-133(618mg,2.00mmol)(溶于乙腈(5mL)中,加入碳酸铯(1.95g,6.00mmol),反应液在25℃搅拌3小时。过滤,滤液减压浓缩除去有机溶剂。残余物经硅胶色谱法分离纯化得到中间体I-146。
参考例145:中间体I-147制备
Figure PCTCN2019123485-appb-000180
1-硝基丙烷(20.0g,225mmol)、丙烯酸甲酯(19.4g,225mmol)和碳酸钾(9.33g,67.5mmol)的混合物于室温反应24小时。反应液过滤,滤液用乙酸乙酯(150mL)稀释,并依次用水(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩得到粗产品。粗产品经硅胶色谱法纯化得到中间体I-147。
1H NMR(400MHz,CDCl 3)δ4.52–4.42(m,1H),3.68(s,3H),2.44–2.28(m,2H),2.27–2.16(m,1H),2.15–2.04(m,1H),2.01–1.92(m,1H),1.84–1.75(m,1H),0.96(t,J=7.1Hz,3H).
参考例146:中间体I-148制备
Figure PCTCN2019123485-appb-000181
在氩气保护下,将甲醇钠(2.87g,30%甲醇溶液,16.0mmol)于室温加入到4-苄氧基苯肼盐酸盐(2.00g,7.98mmol)的甲醇溶液(35mL)中。然后将中间体I-147(1.54g,8.79mmol)加入其中,反应混合物在室温下搅拌反应2小时。冷却至0℃,并用H2SO4(1.57g,16.0mmol)酸化,然后加热至90℃反应3小时。反应混合物冷却至室温后,减压浓缩除去大部分甲醇,用水(20mL)稀释后用乙酸乙酯萃取(20mL×3)。合并有机相,饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩得到粗产品,粗产品经色谱法纯化得到中间体I-148。
1H NMR(400MHz,DMSO)δ10.72(s,1H),7.50–7.42(m,2H),7.42–7.35(m,2H),7.34–7.27(m,1H),7.15(d,J=8.7Hz,1H),6.98(t,J=4.3Hz,1H),6.72(dt,J=8.5,4.2Hz,1H),5.09(d,J=6.3Hz,2H),3.59(s,3H),2.92(q,J=7.6Hz,2H),2.67(q,J=7.6Hz,2H),2.12(s,3H).
参考例147:中间体I-149制备
Figure PCTCN2019123485-appb-000182
在氢气氛围下,反应混合物中间体I-148(680mg,2.10mmol)和Pd/C(50.0mg)的甲醇(20mL)溶液于室温下反应16小时。反应液过滤,滤液浓缩得到粗产品。粗产品经硅胶色谱法纯化得到中间体I-149。
LC-MS(ESI)[M+H] +234.2。
参考例148:中间体I-150制备
Figure PCTCN2019123485-appb-000183
在室温下,将碳酸铯(190mg,0.583mmol)加入到中间体I-149(68.0mg,0.292mmol)和中间体I-133(99.3mg,0.321mmol)的乙腈溶液中。反应混合物在室温下搅拌反应2小时。反应混合物用水(25mL)稀释,用乙酸乙酯(20mL×3)萃取,合并有机相。有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-150。
LC-MS(ESI)[M+H] +462.3.
参考例149:中间体I-151制备
Figure PCTCN2019123485-appb-000184
室温下将中间体I-146(176mg,0.381mmol)溶于乙腈(12mL)中,降温至0℃后加入Selectfluoro(162mg,0.457mmol)的水(3mL)溶液,反应液在室温搅拌1小时。加入水(20mL),并用乙酸乙酯(20mL)萃取,分出有机相并减压浓缩。残余物经硅胶色谱法分离纯化得到中间体I-151。
LC-MS(ESI)[M+H] +480.3。
参考例150:中间体I-152制备
Figure PCTCN2019123485-appb-000185
将中间体I-138(140mg,0.433mmol)和中间体I-6(106.14mg,0.455mmol)溶于已腈(5.00mL)中,然后再加入碳酸铯(423.24mg,1.299mmol)。该反应在25℃下搅拌反应1小时。加入水(15.0mL),用乙酸乙酯(20.0mL)萃取。分出有机相,减压浓缩除去有机溶剂得到粗产品。粗产品用硅胶色谱法分离纯化得到中间体I-152。
LC-MS(ESI)[M+H] +476.2.
参考例151:中间体I-153制备
Figure PCTCN2019123485-appb-000186
室温下将中间体I-149(33.1mg,0.142mmol)和I-138(46.0mg,0.142mmol)溶于乙腈(5mL)中,加入碳酸铯(139mg,0.426mmol),反应液室温下搅拌16小时。过滤,滤液减压浓缩。残余物经硅胶色谱法分离纯化得到中间体I-153。
LC-MS(ESI)[M+H] +476.3。
参考例152:中间体I-154制备
Figure PCTCN2019123485-appb-000187
将中间体I-152(70mg,147.21umol)溶于已腈(3.00mL)和水(0.500mL)中,然后再把其冷却到0℃后,缓慢加入Selectfluor(52.15mg,147.21umol)。反应混合物在0℃下搅拌反应10分钟。加入水(6.00mL),用乙酸乙酯(8.00mL)萃取。分出有机相用无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到中间体I-154。
参考例153:中间体I-155制备
Figure PCTCN2019123485-appb-000188
将中间体I-120(300mg,0.928mmol)和中间体I-6(216mg,0.928mmol)溶于乙腈(15mL)中,搅拌下加入碳酸铯(606mg,1.86mmol)。反应混合物在室温下搅拌反应过夜。将混合物过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-155。
LC-MS(ESI)[M+H] +476.2。
参考例154:中间体I-156制备
Figure PCTCN2019123485-appb-000189
将中间体I-149(72.1mg,0.309mmol)和中间体I-120(100.0mg,0.309mmol)溶于乙腈(5mL)中,在室温下加入碳酸铯(201mg,0.618mmol)。反应混合物在室温下搅拌反应1小时。将反应液过滤,滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-156。
LC-MS(ESI)[M+H] +476.3。
参考例155:中间体I-157制备
Figure PCTCN2019123485-appb-000190
将中间体I-155(170mg,0.358mmol)溶于乙腈(10mL)中,在0℃下,往溶液中加入Selectfluor(127mg,0.358mmol)的水溶液(2mL)。反应混合物在0℃下搅拌反应半小时。将混合物倒入水(100mL)中,用乙酸乙酯萃取(20mL×2),合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品经硅胶色谱法分离纯化得到中间体I-157。
LC-MS(ESI)[M+H] +494.2。
参考例156:中间体I-158制备
Figure PCTCN2019123485-appb-000191
将中间体I-149(50.0mg,0.214mmol)溶于乙腈(10.0mL)中。向反应体系中依次加入碳酸铯(139mg,0.428mmol)和I-128(79.2mg,0.257mmol)。反应混合物在室温下搅拌反应2小时。反应液用水(20mL)稀释,用乙酸乙酯(10mL×3)萃取。合并有机相,并饱和食盐水洗,无水硫酸钠干燥,过滤。滤液减压浓缩得到粗产品,粗产品经硅胶色谱法分离纯化得到化合物I-158。
LC-MS(ESI)[M+H] +461.7.
1H NMR(400MHz,DMSO-d 6)δ10.53(s,1H),8.91(d,J=1.7Hz,1H),8.16(d,J=2.0Hz,1H),7.15(d,J=8.8Hz,1H),7.02(d,J=2.4Hz,1H),6.75(dd,J=8.7,2.4Hz,1H),5.20(s,2H),3.59(s,3H),3.43–3.40(m,1H),2.93(t,J=7.7Hz,2H),2.67(t,J=7.7Hz,2H),2.13(s,3H),1.98–1.93(m,2H),1.87–1.76(m,4H),1.70–1.66(m,2H).
实施例1:化合物1的制备
Figure PCTCN2019123485-appb-000192
在中间体I-11(73mg,0.16mmol)的四氢呋喃/乙醇/水(5mL,2:2:1)混合溶液中加入一水合氢氧化锂(20mg,0.48mmol),反应液室温搅拌1小时。用盐酸(1N)将反应液pH调至6,减压蒸去有机溶剂。向残留物中加入20mL水和5mL乙酸乙酯,萃取分出有机层,水层继续用乙酸乙酯萃取(5mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经制备HPLC纯化后得化合物1。
LC-MS(ESI)[M+H] +432.1.
1H NMR(400MHz,DMSO-d 6)δ12.20(br s,1H),10.78(s,1H),7.75–7.66(m,2H),7.65–7.60(m,1H),7.16(d,J=8.7Hz,1H),7.04–6.99(m,1H),6.74–6.69(m,1H),6.05(s,1H),5.11(s,2H),3.27–3.21(m,1H),2.91(t,J=7.4Hz,2H),2.62(t,J=7.6Hz,2H),2.03–1.95(m,2H),1.88–1.79(m,2H),1.71–1.55(m,4H).
实施例2:化合物2的制备
Figure PCTCN2019123485-appb-000193
在中间体I-17(25.0mg,0.04mmol)的乙醇(2mL)/水(2mL)混合溶液中加入氢氧化钠(23.4mg,0.59mmol),100℃搅拌2天。用盐酸水溶液(1N)将反应液pH调至6后,将溶液减压蒸去得残留物。残留物经制备HPLC纯化后得化合物2。
LC-MS(ESI)[M+H] +460.1.
1H NMR(400MHz,MeOH-d 4)δ7.71(s,1H),7.66(d,J=8.2Hz,1H),7.56(d,J=8.1Hz,1H),7.14(d,J=8.7Hz,1H),7.00(d,J=2.3Hz,1H),6.76(dd,J=8.7,2.4Hz,1H),5.10(s,2H),3.39–3.34(m,1H),2.99(t,J=7.7Hz,2H),2.73–2.57(m,4H),2.10–2.00(m,2H),1.95–1.84(m,2H),1.76–1.58(m,4H),1.17(t,J=7.5Hz,3H).
实施例3:化合物3的制备
Figure PCTCN2019123485-appb-000194
在中间体I-22(70.0mg,0.15mmol)的甲醇/四氢呋喃/水(3:1:1,5mL)混合溶液中加入一水合氢氧化锂(19mg,0.44mmol),将反应液于室温搅拌1小时。用盐酸水溶液(2N)将反应液pH调至2后,将溶液减压蒸去得残留物。残留物经制备HPLC纯化后得化合物3。
LC-MS(ESI)[M+H] +450.1.
1H NMR(400MHz,MeOH-d 4)δ7.80(d,J=8.9Hz,1H),7.73–7.69(s,1H),7.69–7.64(m,1H),7.61–7.57(m,1H),7.56(d,J=2.5Hz,1H),7.18(dd,J=8.9,2.5Hz,1H),5.17(s,2H),3.40–3.32(m,3H),2.89(t,J=7.2Hz,2H),2.12–2.03(m,2H),1.95–1.86(m,2H),1.77–1.60(m,4H).
实施例4、实施例5:化合物4和化合物5的制备
Figure PCTCN2019123485-appb-000195
在中间体I-25、中间体I-26混合物(200.0mg,0.43mmol)的乙醇/水(1:1,6mL)混合溶液中加入一水合氢氧化锂(54mg,1.30mmol),将反应液于室温搅拌3小时。用盐酸水溶液(1N)将反应液pH调至7-8后,将溶液减压蒸去得残留物。残留物经SFC纯化后得化合物4和化合物5。
化合物4:
手性HPLC分析条件:(CO 2/MeOH 70/30 2.8ml/min OD,5um,4.6*250(Daicel),15min;保留时间:4.366min).
LC-MS(ESI)[M+H]+433.5.
1H NMR(400MHz,DMSO-d 6)δ8.11(s,1H),7.78–7.68(m,2H),7.64(d,J=8.1Hz,1H),7.53(d,J=8.8Hz,1H),7.25(d,J=1.9Hz,1H),6.98(dd,J=8.8,2.1Hz,1H),5.19(s,2H),4.41(t,J=6.6Hz,2H),3.27–3.21(m,1H),2.79(t,J=6.6Hz,2H),2.06–1.92(m,2H),1.90–1.76(m,2H),1.73–1.54(m,4H).
化合物5:
手性HPLC分析条件:(CO 2/MeOH 70/30 2.8ml/min OD,5um,4.6*250(Daicel),15min;保留时间:3.675min).
LC-MS(ESI)[M+H] +433.5.
1H NMR(400MHz,DMSO-d 6)δ12.46(s,1H),8.06(s,1H),7.80–7.72(m,2H),7.65(d,J=8.1Hz,1H),7.52(d,J=8.8Hz,1H),7.34(d,J=2.3Hz,1H),6.90(dd,J=8.8,2.4Hz,1H),5.21(s,2H),4.41(t,J=6.8Hz,2H),3.29–3.21(m,1H),2.80(t,J=6.8Hz,2H),2.06–1.95(m,2H),1.89–1.78(m,2H),1.73–1.56(m,4H).
实施例6:化合物6的制备
Figure PCTCN2019123485-appb-000196
向中间体I-30(43mg,0.096mmol)的四氢呋喃/水(2:1,3mL)混合溶液中加入一水合氢氧化锂(12mg,0.29mmol),将反应液于室温搅拌1小时。减压浓缩反应液,用盐酸水溶液(1N)将反应液pH调至2-3后,用乙酸乙酯萃取(5mL×2)。将合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经制备HPLC纯化后得化合物6。
LC-MS(ESI)[M+H] +433.5.
1H NMR(400MHz,MeOH-d 4)δ7.74-7.69(m,1H),7.69-7.64(m,1H),7.63-7.52(m 2H),7.23-7.12(m,2H),5.20(s,2H),3.41-3.33(m,1H),3.30-3.24(m,2H),2.97-2.87(m,2H),2.12-2.01(m,2H),1.96-1.84(m,2H),1.79-1.56(m,4H).
实施例7:化合物7的制备
Figure PCTCN2019123485-appb-000197
向中间体I-36(240mg,0.53mmol)的甲醇/四氢呋喃/水(1:1:1,9mL)混合溶液中加入一水合氢氧化锂(67.6mg,1.61mmol),将反应液于室温搅拌2小时。用盐酸水溶液(1N)将反应液pH调至6后,加入10mL乙酸乙酯,萃取分出有机相。水相继续用乙酸乙酯萃取(10mL×2)。合并的有机层经饱和食盐水洗涤,无水硫酸钠干燥后过滤浓缩,得残留物。残留物经制备HPLC纯化后得化合物7。
LC-MS(ESI)[M+H] +434.1.
1H NMR(400MHz,DMSO-d 6)δ12.33(s,1H),7.76–7.69(m,2H),7.65(d,J=8.1Hz,1H),7.56(d,J=8.7Hz,1H),7.40(d,J=2.4Hz,1H),7.01(dd,J=8.7,2.4Hz,1H),5.21(s,2H),3.28–3.22(m,1H),3.10(t,J=6.9Hz,2H),2.79(t,J=7.0Hz,2H),2.05–1.95(m,2H),1.89–1.79(m,2H),1.72–1.56(m,4H).
实施例8:化合物8的制备
Figure PCTCN2019123485-appb-000198
向中间体I-38(100mg,0.22mmol)的四氢呋喃(3mL)/水(0.5mL)混合溶液中加入氢氧化锂(15.60mg,0.65mmol),将反应液于25℃搅拌10小时。反应液用3mL水稀释,用盐酸水溶液(1N)将反应液pH调至5-6后,用乙酸乙酯萃取(10mL)。合并的有机层经无水硫酸钠干燥后过滤浓缩,得残留物。残留物经制备HPLC纯化后得化合物8。
LC-MS(ESI)[M+H] +433.1.
1H NMR(400MHz,MeOH-d 4)δ7.90(s,1H),7.73–7.64(m,2H),7.61–7.51(m,2H),7.23(d,J=2.0Hz,1H),7.17(dd,J=9.1,2.3Hz,1H),5.13(s,2H),4.63(t,J=6.8Hz,2H),3.41–3.35(m,1H),2.89(t,J=6.7Hz,2H),2.12–2.02(m,2H),1.95–1.84(m,2H),1.79–1.60(m,4H).
实施例9:化合物9的制备
Figure PCTCN2019123485-appb-000199
向中间体I-39(150mg)的四氢呋喃(3mL)/水(0.5mL)混合溶液中加入氢氧化锂(23.40mg,0.98mmol),将反应液于25℃搅拌10小时。反应液用3mL水稀释,用盐酸(1N)将反应液pH调至5-6后,用乙酸乙酯萃取(30mL)。合并的有机层经无水硫酸钠干燥后过滤浓缩,得残留物。残留物经制备HPLC纯化后得化合物9。
LC-MS(ESI)[M+H] +433.5.
1H NMR(400MHz,MeOH-d 4)δ8.07(s,1H),7.76–7.63(m,2H),7.62–7.46(m,2H),7.16–7.02(m,2H),5.10(s,2H),4.65(t,J=6.7Hz,2H),3.41–3.35(m,1H),2.99(t,J=6.7Hz,2H),2.14–2.02(m,2H),1.96–1.84(m,2H),1.79–1.57(m,4H).
实施例10:化合物10的制备
Figure PCTCN2019123485-appb-000200
向中间体I-48(35mg)的甲醇(2mL)/水(1mL)混合溶液中加入一水合氢氧化锂(6.2mg,0.14mmol),将反应液于室温搅拌24小时。用盐酸(1N)将反应液pH调至3后,减压蒸去有机溶剂,得残留物。残留物经制备HPLC纯化后得化合物10。
LC-MS(ESI)[M+H] +433.2.
1H NMR(400MHz,MeOH-d 4)δ8.26(d,J=7.6Hz,1H),7.71(s,1H),7.68–7.66(m,1H),7.60(d,J=8.2 Hz,1H),6.96(d,J=2.6Hz,1H),6.58(dd,J=7.6,2.7Hz,1H),6.24(s,1H),5.15(s,2H),3.41–3.34(m,1H),3.04(t,J=7.6Hz,2H),2.73(t,J=7.6Hz,2H),2.12–2.03(m,2H),1.95–1.86(m,2H),1.80–1.71(m,2H),1.70–1.61(m,2H).
实施例11:化合物11的制备
Figure PCTCN2019123485-appb-000201
向中间体I-54(30mg,0.065mmol)的四氢呋喃(1mL)/水(0.2mL)混合溶液中加入氢氧化锂(4.68mg,0.195mmol),将反应液于25℃搅拌10小时。向反应液中加入6mL水稀释,并用10mL乙酸乙酯萃取。用盐酸水溶液(1N)将水相的pH调至5-6后,加入10mL乙酸乙酯萃取,合并的有机层干燥浓缩得残留物。残留物经制备HPLC纯化后得化合物11(由于制备HPLC的流动相中含有甲酸,因此产物以甲酸盐的形式被分离纯化)。
LC-MS(ESI)[M+H] +433.5.
1H NMR(400MHz,MeOH-d 4)δ8.26(d,J=1.9Hz,1H),8.20(s,1H)7.79–7.65(m,3H),7.61(d,J=8.2Hz,1H),7.52(d,J=9.7Hz,1H),7.37(dd,J=9.7,2.2Hz,1H),5.14(s,2H),3.41–3.36(m,1H),3.06(t,J=7.3Hz,2H),2.74(t,J=7.3Hz,2H),2.12–2.02(m,2H),1.96–1.84(m,2H),1.80–1.60(m,4H).
实施例12:化合物12的制备
Figure PCTCN2019123485-appb-000202
向中间体I-56(200mg粗产物,0.44mmol)的甲醇(2mL)溶液中加入一水合氢氧化锂(37mg,0.88mmol)和水(0.5mL),将反应液于室温搅拌4小时。反应液经制备HPLC纯化后得化合物12。
LC-MS(ESI)[M+H] +432.2.
1H NMR(400MHz,DMSO-d 6)δ7.74–7.67(m,2H),7.63(d,J=8.0Hz,1H),7.39(d,J=8.9Hz,1H),7.30(d,J=3.0Hz,1H),7.13(d,J=2.3Hz,1H),6.86(dd,J=8.9,2.3Hz,1H),6.31(d,J=3.0Hz,1H),5.14(s,2H),4.34(t,J=6.8Hz,2H),3.28–3.23(m,1H),2.71(t,J=6.8Hz,2H),2.04–1.95(m,2H),1.88–1.79(m,2H),1.72–1.55(m,4H).
实施例13:化合物13的制备
Figure PCTCN2019123485-appb-000203
在室温下,将中间体I-57(90mg,0.18mmol)溶于四氢呋喃(5mL)和水(1mL)中,向反应体系加入一水合氢氧化锂(38mg,0.91mmol)。反应混合物在室温下搅拌反应过夜。将反应液减压浓缩 得到粗产品。经制备HPLC纯化后得化合物13。
LC-MS(ESI)[M+H] +466.1.
1H NMR(400MHz,MeOH-d 4)δ8.45(s,1H),7.71(s,1H),7.67(d,J=8.1Hz,1H),7.57(d,J=8.2Hz,1H),7.20(d,J=8.8Hz,1H),6.98(d,J=2.4Hz,1H),6.84(dd,J=8.8,2.4Hz,1H),5.12(s,2H),3.40-3.35(m,1H),3.05(t,J=7.8Hz,2H),2.64(t,J=7.6Hz,2H),2.12–2.03(m,2H),1.96–1.85(m,2H),1.77–1.61(m,4H).
实施例14:化合物14的制备
Figure PCTCN2019123485-appb-000204
在室温下,将中间体I-64(50mg)溶于四氢呋喃(3mL)和水(1mL)的混合溶剂中,加入一水合氢氧化锂(23mg,0.54mmol)。反应液在室温下搅拌反应3小时。减压浓缩除去有机溶剂,加入水(5mL)。混合物用稀盐酸(1N)调pH至2,加入乙酸乙酯(5mL)分液萃取,水相用乙酸乙酯(5mL)萃取。合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤,滤液减压浓缩得到残留物。经制备HPLC纯化后得化合物14。
LC-MS(ESI)[M+H] +450.1。
1H NMR(400MHz,MeOH-d 4)δ9.93(s,1H),7.70(s,1H),7.65(d,J=8.3Hz,1H),7.57(d,J=8.1Hz,1H),7.15(dd,J=8.8,2.5Hz,1H),6.99(d,J=2.3Hz,1H),6.81(dd,J=8.8,2.4Hz,1H),5.09(s,2H),3.42–3.34(m,1H),3.02(t,J=7.6Hz,2H),2.70(t,J=7.6Hz,2H),2.11-2.03(m,2H),1.95–1.84(m,2H),1.79–1.45(m,4H).
实施例15:化合物15的制备
Figure PCTCN2019123485-appb-000205
将中间体I-70(100mg,0.17mmol)溶于水/甲醇(3/3mL)的混合溶剂中。在10℃下,加入氢氧化钠(600mg,15mmol)。反应混合物在60℃下搅拌反应3小时后,加入稀盐酸(3M)将反应混合物pH值调至7-8。反应混合物用二氯甲烷(1mL×5)萃取。合并有机相,用饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩除去有机溶剂得残留物。残留物经制备液相色谱分离纯化化合物15。
LC-MS(ESI)[M+H] +433.1.
1H NMR(400MHz,DMSO-d 6)δ11.35(s,1H),7.92(d,J=2.7Hz,1H),7.75–7.68(m,2H),7.64(d,J=8.0Hz,1H),7.50(d,J=2.6Hz,1H),6.08(s,1H),5.18(s,2H),3.26–3.23(m,1H),2.92(t,J=7.6Hz,2H),2.64(t,J=7.6Hz,2H),2.04–1.95(m,2H),1.89–1.78(m,2H),1.72–1.55(m,4H).
实施例16:化合物16的制备
Figure PCTCN2019123485-appb-000206
将中间体I-77(110mg)溶于四氢呋喃(2mL)中,加入氢氧化锂一水合物(29mg,0.70mmol)和水(0.5mL)。室温下搅拌反应3h后,反应液用制备液相色谱分离纯化得到化合物16。
LC-MS(ESI)[M-H] -444.1.
1H NMR(400MHz,MeOH-d 4)δ7.71(s,1H),7.66(d,J=8.2Hz,1H),7.57(d,J=8.2Hz,1H),7.13(d,J=8.7Hz,1H),6.98(d,J=2.3Hz,1H),6.76(dd,J=8.7,2.4Hz,1H),5.10(s,2H),3.41–3.35(m,1H),3.00(t,J=7.7Hz,2H),2.63(t,J=7.7Hz,2H),2.18(s,3H),2.10–2.02(m,2H),1.95–1.86(m,2H),1.78–1.60(m,4H).
实施例17:化合物17的制备
Figure PCTCN2019123485-appb-000207
将中间体I-80(130mg,0.27mmol)溶于四氢呋喃(1mL)和水(0.5mL)的混合溶剂中,加入氢氧化锂一水合物(23mg,0.54mmol)。反应混合物在室温下搅拌反应1小时,反应液用1N稀盐酸调节pH至6.0。向反应混合物中加入水(10mL)和乙酸乙酯(10mL)。分出有机相,水相用乙酸乙酯(10mL×2)萃取。合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤,滤液减压浓缩得残留物。残留物用制备液相色谱分离纯化得化合物17。
LC-MS(ESI)[M-H] -455.0.
1H NMR(400MHz,MeOH-d 4)δ7.71(s,1H),7.67(d,J=8.3Hz,1H),7.58(d,J=8.2Hz,1H),7.32(d,J=8.8Hz,1H),7.12(d,J=2.3Hz,1H),6.95(dd,J=8.8,2.4Hz,1H),5.14(s,2H),3.40–3.34(m,1H),3.19(t,J=7.5Hz,2H),2.80(t,J=7.5Hz,2H),2.11–2.02(m,2H),1.95–1.86(m,2H),1.79–1.60(m,4H).
实施例18:化合物18的制备
Figure PCTCN2019123485-appb-000208
将中间体I-87(68mg,0.15mmol)溶于四氢呋喃(4mL)和甲醇(1mL)中,加入氢氧化锂一水合物(13mg,0.31mmol)的水(1mL)溶液。反应混合物在室温下搅拌反应1小时后,加入稀盐酸(1M,0.3mL)将反应混合物pH值调至5。反应混合物减压浓缩除去有机溶剂得残留物。粗产品用制备液相色谱分离纯化得到化合物18。
LC-MS(ESI)[M+H] +450.2.
1H NMR(400MHz,DMSO-d 6)δ12.19(s,1H),10.85(s,1H),7.71(s,1H),7.69(d,J=8.4Hz,1H),7.62(d,J=8.2Hz,1H),7.19(d,J=8.4Hz,1H),7.10(d,J=11.6Hz,1H),6.06(s,1H),5.15(s,2H),3.26–3.19(m, 1H),2.88(t,J=7.5Hz,2H),2.60(t,J=7.6Hz,2H),2.03–1.93(m,2H),1.87–1.76(m,2H),1.71–1.53(m,4H).
实施例19:化合物19的制备
Figure PCTCN2019123485-appb-000209
将中间体I-96(36mg,0.078mmol)溶于乙醇/水(5mL/1mL)中,加入氢氧化锂一水合物(9.82mg,0.234mmol)。反应混合物在室温下搅拌反应3h。减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物19。
LC-MS(ESI)[M+H] +432.1.
1H NMR(400MHz,CD 3OD)δ10.11(brs,1H),7.74–7.61(m,2H),7.56(d,J=8.1Hz,1H),7.29(d,J=8.5Hz,1H),6.89(s,1H),6.75–6.67(m,1H),6.08(s,1H),5.10(s,2H),3.40–3.34(m,1H),3.00(t,J=7.5Hz,2H),2.70(t,J=7.5Hz,2H),2.12–2.02(m,2H),1.96–1.85(m,2H),1.79–1.60(m,4H).
实施例20:化合物20的制备
Figure PCTCN2019123485-appb-000210
将中间体I-102(76mg,0.19mmol)溶解于四氢呋喃(3mL)/水(1mL)的混合液中,加入一水合氢氧化锂(16mg,0.38mmol),将反应液于室温下搅拌过夜。减压浓缩反应液,将残留物用1N盐酸酸化后,用乙酸乙酯萃取(两次,每次10mL)。合并有机相,用无水硫酸钠干燥,过滤,滤液减压浓缩得残留物。残留物用制备HPLC分离纯化得化合物20。
LC-MS(ESI)[M+H] +380.2.
1H NMR(400MHz,DMSO-d 6)δ12.32(s,1H),8.06(d,J=0.6Hz,1H),7.86(d,J=2.2Hz,1H),7.77(dd,J=8.8,2.2Hz,1H),7.36-7.20(m,3H),6.66(d,J=7.1Hz,1H),5.21(s,2H),4.85-4.76(m,1H),4.55(t,J=6.7Hz,2H),2.83(t,J=6.7Hz,2H),1.32(d,J=6.0Hz,6H).
实施例21:化合物21的制备
Figure PCTCN2019123485-appb-000211
将中间体I-108(61.0mg,0.128mmol)溶于甲醇(2.00mL)中,加入氢氧化锂一水合物(16.1mg,0.384mmol)和水(0.500mL)。反应混合物在30℃下搅拌反应2小时。反应液经制备HPLC分离纯化得到化合物21。
LC-MS(ESI)[M+H] +464.1.
1H NMR(400MHz,Methanol-d 4)δ7.77(d,J=1.8Hz,1H),7.64(dd,J=7.9,1.8Hz,1H),7.34(d,J=7.9Hz,1H),7.21(d,J=8.8Hz,1H),6.99(d,J=2.4Hz,1H),6.86(dd,J=8.7,2.5Hz,1H),5.71(t,J=2.3Hz,1H),5.15(s,2H),3.11–2.98(m,2H),2.73–2.60(m,4H),2.56–2.45(m,2H),2.09–1.91(m,2H).
实施例22:化合物22的制备
Figure PCTCN2019123485-appb-000212
在室温下,将中间体I-112(63.0mg,0.135mmol)溶于四氢呋喃(2mL)和甲醇(0.5mL)中,加入氢氧化锂一水合物(11.3mg,0.269mmol)的水(0.5mL)溶液。反应混合物在室温下搅拌反应1小时后,加入稀盐酸(1M)将反应混合物pH值调至5。反应混合物减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物22。
LC-MS(ESI)[M+H] +452.1.
1H NMR(400MHz,DMSO-d 6)δ12.30(s,1H),11.17(s,1H),7.79–7.70(m,3H),7.25(d,J=8.7Hz,1H),6.94(d,J=2.3Hz,1H),6.83(dd,J=8.8,2.4Hz,1H),5.18(s,2H),3.84–3.73(m,1H),2.95(t,J=7.8Hz,2H),2.62(t,J=7.8Hz,2H),2.30–2.14(m,4H),2.03–1.94(m,1H),1.87–1.77(m,1H).
实施例23:化合物23的制备
Figure PCTCN2019123485-appb-000213
将中间体I-117(30.0mg,0.0607mmol)混合于四氢呋喃(0.5mL)和水(0.1mL)中,在10℃下加入氢氧化锂一水合物(5.08mg,0.121mmol)。反应混合物在10℃下搅拌反应过夜。反应混合物减压浓缩除去有机溶剂,然后用1N的稀盐酸调节pH到1,乙酸乙酯萃取(5mL×2)。合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物23。
LC-MS(ESI)[M+H] +480.3
1H NMR(400MHz,Methanol-d 4)δ10.50(s,1H),7.72(s,1H),7.66(d,J=8.2Hz,1H),7.56(d,J=8.1Hz,1H),7.21(d,J=8.8Hz,1H),6.99(d,J=2.4Hz,1H),6.85(dd,J=8.8,2.4Hz,1H),5.12(s,2H),3.06(t,J=7.8Hz,2H),2.98–2.89(m,1H),2.69(t,J=7.8Hz,2H),1.93–1.75(m,5H),1.60–1.33(m,5H).
实施例24:化合物24的制备
Figure PCTCN2019123485-appb-000214
将中间体I-121(90mg,0.181mmol)溶于四氢呋喃(5mL)和水(1mL)中,加入氢氧化锂一水 合物(22.8mg,0.543mmol)。反应混合物在10℃下搅拌反应1小时后。反应混合物减压浓缩除去有机溶剂,浓缩物用1N的稀盐酸调节pH至1,用乙酸乙酯萃取(5mL×2),合并有机相,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物24。LC-MS(ESI)[M+H] +482.2.
1H NMR(400MHz,Methanol-d 4)δ7.65(d,J=2.2Hz,1H),7.62(dd,J=8.5,2.2Hz,1H),7.20(d,J=8.8Hz,1H),7.15(d,J=8.5Hz,1H),6.98(d,J=2.4Hz,1H),6.83(dd,J=8.8,2.4Hz,1H),5.04(s,2H),4.99–4.94(m,1H),3.06(t,J=7.8Hz,2H),2.68(t,J=7.8Hz,2H),1.98–1.75(m,6H),1.72–1.61(m,2H).
实施例25:化合物25的制备
Figure PCTCN2019123485-appb-000215
在15℃下,将中间体I-129(40.0mg,0.0832mmol)溶于甲醇/水(1/1mL)中,加入氢氧化锂一水合物(6.97mg,0.166mmol),反应混合物在15℃搅拌反应3小时。用制备HPLC分离纯化得到化合物25。
LC-MS(ESI)[M+H] +467.2.
1H NMR(400MHz,DMSO-d 6)δ11.75(brs,1H),8.92(s,1H),8.17(s,1H),7.25(d,J=8.7Hz,1H),6.97(d,J=2.3Hz,1H),6.83(dd,J=8.7,2.4Hz,1H),5.22(s,2H),3.44–3.39(m,1H),2.89(t,J=7.3Hz,2H),2.03–1.92(m,4H),1.88–1.79(m,3H),1.71–1.62(m,2H),1.48–1.42(m,1H).
实施例26:化合物26的制备
Figure PCTCN2019123485-appb-000216
将中间体I-134(105mg,0.218mmol)溶于甲醇(3.00mL)中,加入氢氧化锂一水合物(27.4mg,0.654mmol)和水(1.00mL)。反应混合物升温至30℃搅拌反应2小时。反应液经制备HPLC分离纯化得到化合物26。
LC-MS(ESI)[M+H] +468.2.
1H NMR(400MHz,Methanol-d 4)δ10.50(s,1H),7.76(s,1H),7.71(d,J=8.1Hz,1H),7.62(d,J=8.1Hz,1H),7.21(d,J=8.8Hz,1H),6.98(d,J=2.4Hz,1H),6.85(dd,J=8.8,2.4Hz,1H),5.14(s,2H),4.19–3.99(m,2H),3.94–3.87(m,1H),3.84–3.74(m,2H),3.06(t,J=7.7Hz,2H),2.68(t,J=7.7Hz,2H),2.48–2.37(m,1H),2.09–1.93(m,1H).
实施例27:化合物27的制备
Figure PCTCN2019123485-appb-000217
在15℃下,将中间体I-139(60.0mg,0.121mmol)溶于甲醇/水(2mL,1:1)中,加入氢氧化锂一水合物(10.2mg,0.242mmol),反应混合物在15℃搅拌反应3小时。用制备HPLC分离纯化得到化合物27。
LC-MS(ESI)[M+H] +482.2.
1H NMR(400MHz,DMSO-d 6)δ11.24(s,1H),7.80–7.66(m,3H),7.25(d,J=8.8Hz,1H),6.94(d,J=2.3Hz,1H),6.83(dd,J=8.8,2.4Hz,1H),5.18(s,2H),3.97(dd,J=11.1,3.8Hz,2H),3.46–3.41(m,2H),3.11–3.03(m,1H),2.94(t,J=7.7Hz,2H),2.60(t,J=7.7Hz,2H),1.89–1.74(m,2H),1.64–1.55(m,2H).
实施例28:化合物28的制备
Figure PCTCN2019123485-appb-000218
在室温下,将中间体I-143(35.0mg,0.0760mmol)溶于四氢呋喃(2mL)和甲醇(0.5mL)中,加入氢氧化锂一水合物(6.38mg,0.152mmol)的水(0.5mL)溶液。反应混合物在室温下搅拌反应1小时后,加入稀盐酸(1M)将反应混合物pH值调至5。反应混合物减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物28。
LC-MS(ESI)[M+H] +433.1.
1H NMR(400MHz,CDCl 3)δ8.19(s,1H),7.66(d,J=1.7Hz,1H),7.45(d,J=8.5Hz,1H),7.19(d,J=8.6Hz,1H),7.07(d,J=1.8Hz,1H),6.96(d,J=8.6Hz,1H),6.85(dd,J=8.7,2.1Hz,1H),6.19(s,1H),4.98(s,2H),3.33(t,J=6.1Hz,4H),3.05(t,J=6.4Hz,2H),2.79(t,J=6.4Hz,2H),1.98–1.90(m,4H).
实施例29:化合物29的制备
Figure PCTCN2019123485-appb-000219
将中间体I-144(46.1mg,0.100mmol)溶于甲醇(2mL)中,加入LiOH·H 2O(12.6mg,0.300mmol)和水(0.5mL),反应液在室温下搅拌2h。反应液用制备HPLC分离纯化得到化合物29。
LC-MS(ESI)[M+H] +433.3.
1H NMR(400MHz,DMSO-d 6)δ10.83(s,1H),8.89(s,1H),8.13(d,J=1.9Hz,1H),7.17(d,J=8.7Hz,1H),7.05(d,J=2.4Hz,1H),6.73(dd,J=8.7,2.4Hz,1H),6.06(s,1H),5.17(s,2H),3.43–3.39(m,1H),2.91(t,J=7.5Hz,2H),2.60(t,J=7.5Hz,2H),1.99–1.92(m,2H),1.90–1.78(m,4H),1.72–1.62(m,2H).
实施例30:化合物30的制备
Figure PCTCN2019123485-appb-000220
将中间体I-145(35.2mg,0.0736mmol)溶于甲醇(2mL)中,加入LiOH·H 2O(9.27mg,0.221mmol)和水(0.5mL),反应液在室温下搅拌反应2小时,反应液用制备HPLC分离纯化得到化合物30。LC-MS(ESI)[M+H] +451.1.
1H NMR(400MHz,DMSO-d 6)δ12.18(s,1H),10.65(s,1H),8.90(s,1H),8.15(s,1H),7.19(d,J=8.5Hz,1H),7.03(s,1H),6.81(d,J=8.6Hz,1H),5.21(s,2H),3.45–3.39(m,1H),2.92(t,J=7.1Hz,2H),2.64(t,J=7.2Hz,2H),2.00-1.50(m,8H).
实施例31:化合物31的制备
Figure PCTCN2019123485-appb-000221
将中间体I-146(100mg,0.217mmol)溶于四氢呋喃(5mL)中,加入LiOH·H2O(27.3mg,0.651mmol)和水(1mL),反应液在25℃下搅拌1h,反应液用制备HPLC分离纯化得到化合物31。
LC-MS(ESI)[M+H] +434.2.
1H NMR(400MHz,DMSO-d 6)δ12.25(brs,1H),10.79(s,1H),7.74(d,J=10.1Hz,2H),7.64(d,J=8.0Hz,1H),7.16(d,J=8.7Hz,1H),7.01(d,J=2.4Hz,1H),6.72(dd,J=8.7,2.4Hz,1H),6.05(s,1H),5.13(s,2H),4.05–3.94(m,2H),3.85–3.78(m,1H),3.69–3.61(m,2H),2.91(t,J=7.6Hz,2H),2.61(t,J=7.6Hz,2H),2.38–2.31(m,1H),1.99–1.91(m,1H).
实施例32:化合物32的制备
Figure PCTCN2019123485-appb-000222
在室温下,将氢氧化锂一水合物(21.8mg,0.520mmol)的水(1mL)溶液加入到中间体I-150(80.0mg,0.173mmol)的四氢呋喃溶液(3mL)中。反应混合物在室温下搅拌反应5小时后,用稀盐酸(1M)调节pH至1。反应混合物滤膜过滤后,用制备HPLC纯化得到化合物32。
LC-MS(ESI)[M+H] +448.3.
1H NMR(400MHz,CD 3OD)δ7.77(s,1H),7.71(d,J=8.3Hz,1H),7.61(d,J=8.1Hz,1H),7.14(d,J=8.7Hz,1H),6.98(d,J=2.3Hz,1H),6.77(dd,J=8.7,2.4Hz,1H),5.12(s,2H),4.15–4.01(m,2H),3.85–3.95(m,1H),3.85–3.73(m,2H),3.00(t,J=7.7Hz,2H),2.63(t,J=7.7Hz,2H),2.48–2.37(m,1H),2.18(s,3H),2.08–1.96(m,1H).
实施例33:化合物33的制备
Figure PCTCN2019123485-appb-000223
中间体I-151(100mg,0.209mmol)溶于四氢呋喃(4mL)中,加入LiOH·H 2O(26.3mg,0.627mmol)和水(1mL),反应液在25℃下搅拌2h,反应液用制备HPLC分离纯化得到化合物33。
LC-MS(ESI)[M+H] +452.2.
1H NMR(400MHz,DMSO-d 6)δ10.67(s,1H),7.77(s,1H),7.75(d,J=8.0Hz,1H),7.65(d,J=8.0Hz,1H),7.18(dd,J=8.8,2.6Hz,1H),6.98(d,J=2.4Hz,1H),6.79(dd,J=8.8,2.5Hz,1H),5.17(s,2H),4.09–3.92(m,2H),3.81(q,J=7.8Hz,1H),3.66(q,J=5.3,4.7Hz,2H),2.91(t,J=7.6Hz,2H),2.61(t,J=7.6Hz,2H),2.41–2.31(m,1H),2.03–1.85(m,1H).
实施例34:化合物34的制备
Figure PCTCN2019123485-appb-000224
将中间体I-152(40.0mg,84.12umol)和氢氧化锂一水合物(10.59mg,252.36umol)溶于四氢呋喃(3.00mL)和水(0.500mL)中。反应混合物在25℃下搅拌反应10小时后。直接把反应液减压浓缩除去有机溶剂和水得到粗产品。粗产品用制备HPLC分离纯化得到化合物34。
LC-MS(ESI)[M+H] +448.2.
1H NMR(400MHz,CD 3OD)δ7.75(s,1H),7.69(d,J=7.9Hz,1H),7.59(d,J=8.1Hz,1H),7.18(d,J=8.7Hz,1H),7.03(s,1H),6.78(d,J=8.7Hz,1H),6.11(s,1H),5.11(s,2H),4.12–4.00(m,2H),3.56(t,J=11.5Hz,2H),3.26–3.13(m,1H),3.03(t,J=7.5Hz,2H),2.71(t,J=7.5Hz,2H),1.99–1.83(m,2H),1.74–1.62(m,2H).
实施例35:化合物35的制备
Figure PCTCN2019123485-appb-000225
将中间体I-153(35.2mg,0.0740mmol)溶于甲醇(3mL)中,加入LiOH·H 2O(9.32mg,0.222mmol)和水(0.5mL),反应液在室温下搅拌3h,反应液用制备HPLC分离纯化得到化合物35。
LC-MS(ESI)[M+H] +462.3.
1H NMR(400MHz,DMSO-d 6)δ10.51(s,1H),7.77(s,1H),7.74(d,J=8.4Hz,1H),7.68(d,J=8.1Hz,1H),7.13(d,J=8.6Hz,1H),6.98(d,J=2.3Hz,1H),6.72(dd,J=8.6,2.4Hz,1H),5.14(s,2H),3.97(m,2H),3.43(m,2H),3.11–3.03(m,1H),2.88(t,J=7.7Hz,2H),2.55(t,J=8.0Hz,2H),2.10(s,3H),1.87–1.76(m,2H),1.63–1.54(m,2H).
实施例36:化合物36的制备
Figure PCTCN2019123485-appb-000226
将中间体I-154(30.0mg,粗品)和氢氧化锂一水合物(4.06mg,96.66umol)溶于四氢呋喃(2.00mL)和水(0.500mL)中。反应混合物在25℃下搅拌反应10小时后。直接把反应液减压浓缩除去有机溶剂和水得到粗产品。粗产品用制备HPLC分离纯化得到化合物36。
LC-MS(ESI)[M+H] +466.2.
1H NMR(400MHz,CD 3OD)δ7.75(s,1H),7.70(d,J=8.2Hz,1H),7.60(d,J=8.1Hz,1H),7.15(dd,J=8.8,2.5Hz,1H),6.98(d,J=2.3Hz,1H),6.81(dd,J=8.8,2.4Hz,1H),5.12(s,2H),4.13–4.00(m,2H),3.62–3.49(m,2H),3.21(m,1H),3.02(t,J=7.6Hz,2H),2.68(t,J=7.6Hz,2H),1.97–1.84(m,2H),1.77–1.65(m,2H).
实施例37:化合物37的制备
Figure PCTCN2019123485-appb-000227
将中间体I-155(50mg,0.105mmol)溶于四氢呋喃(3mL)和水(0.5mL)中,室温下加入氢氧化锂一水合物(22.0mg,0.525mmol)。反应混合物在室温下搅拌反应过夜。反应混合物减压浓缩除去有机溶剂,残余物用1N的稀盐酸调节pH至1,用乙酸乙酯萃取(5mL×2),合并有机相,用饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物37。
LC-MS(ESI)[M+H] +448.3.
1H NMR(400MHz,Methanol-d 4)δ10.16(s,1H),7.63(s,1H),7.60(d,2H),J=8.6Hz,7.19–7.11(m,2H),7.03(d,J=2.4Hz,1H),6.75(dd,J=8.7,2.4Hz,1H),6.11(s,1H),5.01(s,2H),4.99–4.93(m,1H),3.02(t,J=7.6Hz,2H),2.71(t,J=7.6Hz,2H),1.98–1.75(m,6H),1.72–1.61(m,2H).
实施例38:化合物38的制备
Figure PCTCN2019123485-appb-000228
将中间体I-156(100mg,0.210mmol)溶于四氢呋喃(5mL)和水(1mL)中,室温下加入氢氧化锂一水合物(44.1mg,1.05mmol)。反应混合物在室温下搅拌反应过夜。反应混合物减压浓缩除去有机溶剂,残余物用1N的稀盐酸调节pH至1,用乙酸乙酯萃取(5mL×2),合并有机相,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物38。
LC-MS(ESI)[M+H] +462.3.
1H NMR(400MHz,Methanol-d 4)δ7.65(d,J=2.2Hz,1H),7.61(dd,J=8.5,2.2Hz,1H),7.14(dd,J=8.6,4.1Hz,2H),6.98(d,J=2.4Hz,1H),6.75(dd,J=8.7,2.4Hz,1H),5.03(s,2H),4.99–4.94(m,1H),3.01(t, J=7.6Hz,2H),2.63(t,J=7.7Hz,2H),2.19(s,3H),1.98–1.85(m,4H),1.84–1.76(m,2H),1.72–1.61(m,2H).
实施例39:化合物39的制备
Figure PCTCN2019123485-appb-000229
将中间体I-157(57mg,0.116mmol)溶于四氢呋喃(5mL)和水(0.5mL)中,室温下加入氢氧化锂一水合物(24.3mg,0.580mmol)。反应混合物在室温下搅拌反应4小时。反应混合物减压浓缩除去有机溶剂,残余物用1N的稀盐酸调节pH至1,用乙酸乙酯萃取(5mL×2),合并有机相,饱和食盐水(5mL)洗,无水硫酸钠干燥,过滤。滤液减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物39。
LC-MS(ESI)[M+H] +466.2.
1H NMR(400MHz,Methanol-d 4)δ7.68–7.58(m,2H),7.19–7.11(m,2H),6.99(d,J=2.3Hz,1H),6.80(dd,J=8.8,2.4Hz,1H),5.03(s,2H),4.99–4.94(m,1H),3.03(t,J=7.6Hz,2H),2.70(t,J=7.6Hz,2H),1.99–1.75(m,6H),1.73–1.61(m,2H).
实施例40:化合物40的制备
Figure PCTCN2019123485-appb-000230
将中间体I-158(60.0mg,0.130mmol)溶于无水甲醇(1.00mL)中,加入氢氧化锂一水合物(16.4mg,0.390mmol)的水(1.00mL)溶液。反应混合物在室温下搅拌反应2小时后,加入稀盐酸(0.05M)将反应混合物pH值调至6.0。反应混合物减压浓缩除去有机溶剂得到粗产品。粗产品用制备HPLC分离纯化得到化合物40。
LC-MS(ESI)[M+H] +447.3.
1H NMR(400MHz,DMSO-d 6)δ12.03(s,1H),10.51(s,1H),8.90(s,1H),8.15(d,J=1.7Hz,1H),7.14(d,J=8.6Hz,1H),7.01(d,J=2.4Hz,1H),6.73(dd,J=8.6,2.4Hz,1H),5.19(s,2H),3.46–3.39(m,1H),2.89(t,J=8.0Hz,2H),2.56(t,J=8.0Hz,2H),2.13(s,3H),2.01–1.90(m,2H),1.74–1.89(m,4H),1.73–1.60(m,2H).
实验例1:S1P1介导的cAMP抑制作用
测试所用细胞株为
Figure PCTCN2019123485-appb-000231
CHO-K1 EDG1β-Arrestin Cell Line,供货商:DiscoverX,货号:93-0207C2。测试通过化合物对S1P1介导的毛喉萜(Forskolin)诱导cAMP活性的抑制作用进行评价。
每次测试将不同浓度的化合物和终浓度0.6μM的毛喉萜加入测试板孔,1000rpm离心10秒。取一支冻存细胞,用HBSS缓冲液洗两次,重悬。按每孔5000细胞加入测试板,震荡20秒,1000rpm离心10秒,室温孵育60分钟。加入抗cAMP-Eu2+-Cryptate和cAMP-d2,震荡20秒,1000rpm离心10秒,室温孵育60分钟,用Envision读板。通过非线性回归分析数据以确定化合物对毛喉萜诱导的cAMP的抑制的EC 50。实验结果如表1所示。
表1化合物对S1P1受体介导的cAMP抑制作用的激活
化合物编号 S1P1 cAMP EC 50(nM) 化合物编号 S1P1 cAMP EC 50(nM)
化合物1 <0.05 化合物26 0.0041
化合物2 0.07 化合物24 0.0072
化合物4 0.50 化合物25 0.0017
化合物6 0.16 化合物27 0.0021
化合物12 0.65 化合物30 0.15
化合物13 0.08 化合物31 0.18
化合物14 0.07 化合物32 0.56
化合物16 0.18 化合物33 0.057
化合物17 0.21 化合物35 0.34
化合物18 0.08 化合物36 0.30
化合物21 0.035 化合物37 0.20
化合物22 0.11 化合物39 0.027
化合物23 0.032 APD334 2.07
实验数据表明,本发明化合物对S1P1介导的cAMP抑制作用显示出良好的激活特性。
实验例2:S1P1介导的β-Arrestin报告基因激活作用
测试所用细胞株为
Figure PCTCN2019123485-appb-000232
CHO-K1 EDG1β-Arrestin Cell Line,供货商:DiscoverX,货号:93-0207C2。实验操作按照供应商说明,按每孔25μL细胞悬液含5000细胞将细胞加到测试板上,37℃培养20小时。4倍稀释的10个浓度化合物加入细胞培液中,37℃培养90分钟。配制检测液,每孔12μL,室温孵育60分钟,Envision读板。通过非线性回归分析数据以测定β-arrestin活性的EC 50。实验结果如表2所示。
表2化合物对S1P1受体介导的β-arrestin活性的激活作用
Figure PCTCN2019123485-appb-000233
Figure PCTCN2019123485-appb-000234
实验数据表明,本发明化合物对S1P1介导的β-arrestin表现出很好的激活作用。
实验例3:本发明化合物的S1P1受体的内化效应实验
1.CHO-K1 DEG1细胞(
Figure PCTCN2019123485-appb-000235
CHO-K1 EDG1β-Arrestin Cell Line,供货商:DiscoverX,货号:93-0207C2),除去培养基(F12medium 1000mL,10%FBS,800μg/mL G418,300μg/mL Hygromycin,1%GlutaMax and 1%Pen/Strep),用2ml DPBS冲洗细胞,加入5mL细胞分散液(Invitrogen-13151014)分散细胞,37℃培养箱孵育1~2分钟,轻拍培养瓶使细胞脱落,并加入5mL生长培养基,移液管轻轻吹打使细胞充分悬浮。使用Vi-Cell进行细胞计数。室温下以1000rpm离心5分钟,轻轻倒出上清液,并将细胞重新悬浮在FACS缓冲液中,使其浓度为每毫升1.5e6个细胞。2.在384孔板中用DMSO稀释S1P和化合物,并将500nL体积转移到96V孔板(Cat#Axygen-WIPP02280)中。3.将50μL细胞加入96孔板;4.将96孔板在37℃ 5%CO2培养箱中孵育2h。5.在室温下以1500rpm离心细胞5分钟,除去上清液。6.向重悬细胞中加入100μl FACS缓冲液,以1500rpm离心5min,并除去上清液。7.用FACS缓冲液200倍稀释抗人S1P1/EDG-1-Alex647(R&D-FAB1864R)和抗IgG2B-Alex647(R&D-IC0041R)的抗体。8.在96孔中加入50μL抗体,并将板转移至4℃ 30分钟。9.将细胞在4℃以1500rpm离心5分钟,除去上清液。10.将100μL FACS缓冲液添加到重悬的细胞中。11.将细胞在4℃下以1500rpm离心5分钟,除去上清液。12.洗涤后,将细胞重悬于每孔50μL FACS缓冲液中。13.使用iQue Screener PLUS-VBR读取细胞样品。实验结果如表3所示。
表3化合物对S1P1受体的内化效应实验
化合物编号 S1P1内化EC 50(nM) 化合物编号 S1P1内化EC 50(nM)
化合物2 0.32 化合物16 0.015
化合物13 0.18 化合物18 0.69
化合物14 0.14 APD334 6.26
实验数据表明,本发明化合物对S1P1受体表现出很好的内化激活作用。
实验例4:针对S1P3受体激动剂活性的测定
本实验所用细胞,培养条件及细胞收集条件同实验例3。
1)在测定板的每个孔中加入25μL(5000个细胞)的细胞悬液,37℃下孵育20小时。(2)4倍系列稀释的化合物以获得10个剂量,37℃孵育90分钟。(3)向检测板的每个孔中添加12μL检测试剂,在23℃下孵育60分钟。(4)Envision读数。实验结果如表4所示。
表4针对S1P3受体激动剂活性的测定
Figure PCTCN2019123485-appb-000236
实验数据表明,本发明化合物对S1P3受体表现出很好的选择性。
实验例5:本发明化合物的体内药代动力学实验
本实验例对大鼠通过静脉注射和口服给药进行了体内药代动力学评价。
实验方法和条件:雄性Sprague Dawley大鼠,分别静脉注射单次给予待测化合物1mg/Kg(溶剂5%DMSO/15%Solutol/80%Saline)和口服灌胃给药1mg/Kg(溶剂0.5%MC),给药后5min,15min,30min,1hr,2hr,4hr,6hr,8hr,24hr经颌下静脉采血,每个样品采集约0.20mL,肝素钠抗凝,采集后放置冰上,并于1小时之内离心分离血浆待测。血浆中血药浓度的检测采用液相串联质谱法(LC/MS/MS),测得浓度运用Phoenix WinNonlin软件计算药代动力学参数。实验结果如表5和表6所示。
表5:口服给药(1mg/kg)的药代动力学
化合物 T 1/2(hr) C max(ng/mL) AUC inf(ng*hr/mL) F(%)
化合物13 3.9 184 1194 17.4
化合物14 4.0 258 2338 21.3
化合物16 2.9 162 649 13.3
APD334 5.5 341 4442 46.3
表6:静脉注射给药(1mg/kg)的药代动力学
化合物 T 1/2(hr) AUC inf(ng*hr/mL) Cl(L/hr/kg)
化合物13 2.8 4753 0.21
化合物14 4.1 10842 0.093
化合物16 1.4 4145 0.25
APD334 5.2 9414 0.11
实验数据表明,本发明化合物在大鼠体内表现出较短的体内半衰期(T 1/2)。
实验例6:本发明化合物在外周淋巴细胞降低(Peripheral Lymphocyte Lowering,PLL)测定中的作用。PLL测定:
小鼠:SPF级别雌性C57BL/6j小鼠,体重19-22g。大鼠:雄性Sprague-Dawley大鼠,体重200-220g。饲养环境:温度23±2℃,相对湿度40-70%,照明时间早上7点开灯,晚上7点关灯;动物自由饲喂普通饲料和灭菌饮用水。所有动物实验都获得了动物伦理委员会的批准;所有动物实验操作都遵守动物房相关SOP要求。动物在试验前适应性饲养一周。
动物口服给药,给药体积10mL/kg。给药溶媒为0.5%DMSO+0.5%MC。在给药后5小时动物用异氟烷麻醉,且通过眼眶来收取100~150μl外周血于EP管,冰块上放置,30min内用XT-2000i全自动血液分析仪进行血液分析淋巴细胞计数检测;另外20μl全血,40μl DDW稀释,液氮速冻,进行血液化合物浓度检测。
结果显示给药后5小时测试化合物13和16使小鼠外周血淋巴细胞(PBL)计数降低,IC50分别为18.49nM(化合物13)和24.68nM(化合物16),实验结果如图1所示;给药后5小时测试化合物13和16使大鼠外周血淋巴细胞(PBL)计数降低,IC50分别为4.1nM(化合物13)和5.6nM(化合物16),实验结果如图2所示。
实验例7:本发明化合物对结肠炎的作用。
动物肠炎模型证实本发明化合物对结肠炎具有治疗功效。右旋糖酐硫酸钠(DSS)溶于饮用水中, 喂给小鼠、大鼠、仓鼠或豚鼠诱导结肠炎,会出现便血、体重减轻、肠长度缩短、粘膜溃疡、中性粒细胞浸润的现象。病理组织学分析表面,肠道组织会出现大量隐窝、上皮细胞溃疡、组织水肿,并激活天然免疫系统,与人类胃肠道炎症性肠病(IBD)类似的症状。受试动物为C57BL/6,雌性,6-8周龄/18–20g。饲养在SPF区房间,室温20-26℃,湿度40-70%,日光灯照明,12小时照明(08:00-20:00)及12小时无照明,每笼2-5只(同一给药组)。实验用小鼠可无限量获取专用鼠粮和水。第-1天,动物被平均分为7组,每组13~18只。第0天9:00开始到第6天9:00,第2组到第7组小鼠饮用含2%DSS水溶液6天(从第0天到第6天),之后小鼠自由饮用正常用水1天(从第6天9:00到第7天剖检前)。将造模当天计为0天。第1组小鼠自由饮用正常用水7天。第1组动物给予0.5%甲基纤维素;其他组模型动物分别给予0.5%甲基纤维素或者不同受试物。体重每天观察一次,日常疾病指数记录频率为一天一次,按照以下标准评为4个等级:体重变化(0,≤1%;1,1-5%;2,5-10%;3,10-15%;4,>15%);血便(0,阴性;4,阳性);粪便评分(0,正常;2,稀便;4,腹泻)。以上3部分的分数相加除以3得到日常疾病指数值。实验结果如图3所示。
结果显示测试化合物13和16在实验结束的时候(第7天)显著降低动物的日常疾病指数。
DNBS(2,4-Dinitrobenzenesulfonic acid,2,4-二硝基苯磺酸)诱导的Wistar大鼠溃疡性肠炎模型也是肠炎药物研发常用的模型之一。DNBS与肠组织蛋白结合形成完全抗原,增加血管通透性,激活炎症递质,增加溶解纤维蛋白活性,令机体产生针对肠黏膜的免疫反应,造成大鼠肠黏膜的持续溃疡和炎症。
实验动物为Wistar大鼠,雄性,5-6周,140-160g。饲养在SPF区房间,室温20-26℃,湿度40-70%,日光灯照明,12小时照明(08:00-20:00)及12小时无照明,每笼2-5只(同一给药组)。实验前大鼠禁食40小时,并且在禁食期间给大鼠皮下注射5%葡萄糖盐水(10mL/kg)。实验第1天,腹腔注射舒泰(25mg/kg替来他明和25mg/kg唑拉西泮)和5mg/kg甲苯噻嗪麻醉禁食大鼠。其它组,将软管从肛门伸入到结肠左曲(约肛门8cm处),用DNBS(50mg/mL,DNBS溶于30%乙醇)灌肠(0.5mL/只)诱导大鼠结肠炎。正常对照组以同样的方法用30%乙醇灌肠。灌肠的动物使其头下低15min,然后保持特伦德伦伯卧位姿势直到动物苏醒,以避免灌肠液回流。
药物处理:造模4h后,动物给与不同浓度的药物或者0.5%甲基纤维素灌胃,10mL/kg,一日一次,连续给药7天。给药期间,每天观察动物体重和粪便性状变化。给药结束后将动物安乐死,采集结肠组织、测量结肠长度、结肠重量和溃疡面积,宏观评估大鼠结肠损伤,以评价受试药对DNBS诱导大鼠炎症性肠炎模型的治疗作用。实验结果如图4所示。
结果表明化合物16在0.2mg/Kg和1mg/Kg可以显著降低动物结肠溃疡面积。
实验例8:本发明化合物对实验性自身免疫性脑脊髓炎(EAE)的作用
雌性C57BL/6J小鼠使用MOG35-55抗原乳剂免疫动物,免疫结束2h后每只动物腹腔注射200ng/100μL的PTX溶液,24h后(第二天)重复注射1次相同剂量的PTX溶液。第五天时各组动物开始给药,各组均为灌胃给药,给药容量为10mL/kg,每天给药1次,连续33天(第5-37天)。实验期间每天进行2次一般临床观察,给药后每天称重及EAE临床评分1次。评分分5个等级:(0,正常小鼠,无明显的病症;1,尾无力或后肢无力;2,尾无力和后肢无力;3,后肢偏瘫;4,后肢完全瘫痪;5,死于EAE或濒死状态下安乐死)。
结果表明化合物13(1mg/Kg)和化合物16(1mg/Kg和5mg/Kg)均可以显著降低模型动物的 疾病症状。化合物13(1mg/Kg)小鼠从第15天开始出现轻微症状,之后症状略微加强,于第14天~第21天、第24天和第26~37天期间显著低于同期模型对照组。化合物16(1mg/Kg和5mg/Kg)组小鼠从第15天开始出现轻微症状,之后症状略微加强,第24~37天期间显著低于同期模型对照组。实验结果如图5所示。

Claims (22)

  1. 式(Ⅰ)所示化合物或其药学上可接受的盐,
    Figure PCTCN2019123485-appb-100001
    其中,
    n选自1、2和3;
    R 1分别独立地选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
    R 4分别独立地选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
    或者,R 1与R 4连接在一起,形成一个C 3-6环烷基;
    R 2选自H、卤素、OH、NH 2、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
    R 3选自C 3-7环烷基、C 3-7环烯基、C 2-6烯基和3~6元杂环烷基,所述C 3-7环烷基、C 3-7环烯基C 2-6烯基或3~6元杂环烷基任选被1、2或3个R取代;
    环A选自苯基和6元杂芳基,所述苯基和6元杂芳基任选被1、2或3个R a取代;
    环B选自5元杂芳基,所述5元杂芳基任选被R b取代;
    R a分别独立地选自H、卤素、OH、NH 2、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;R b选自H、卤素、OH、NH 2、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
    R分别独立地选自H、F、Cl、Br、OH、NH 2、CN、C 1-3烷基和CF 3
    T 1选自N和CH;
    T 2选自N和CH;
    L 1选自
    Figure PCTCN2019123485-appb-100002
    Figure PCTCN2019123485-appb-100003
    L 2选自单键、O和S;
    所述5元杂芳基、6元杂芳基和3~6元杂环烷基包含1、2或3个独立选自O、NH、S和N的杂原子或杂原子团。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 2选自H、F、Cl、Br、OH、NH 2、CN、CH 3和CH 2CH 3,所述CH 3或CH 2CH 3任选被1、2或3个R取代。
  3. 根据权利要求2所述化合物或其药学上可接受的盐,其中,R 2选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
  4. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 3选自C 3-6环烷基、C 3-6环烯基、C 2-3烯基和3~6元杂环烷基,所述C 3-6环烷基、C 3-6环烯基、C 2-3烯基或3~6元杂环烷基任选被1、2或3个R取代。
  5. 根据权利要求4所述化合物或其药学上可接受的盐,其中,R 3选自
    Figure PCTCN2019123485-appb-100004
    Figure PCTCN2019123485-appb-100005
    所述
    Figure PCTCN2019123485-appb-100006
    任选被 1、2或3个R取代。
  6. 根据权利要求5所述化合物或其药学上可接受的盐,其中,R 3选自
    Figure PCTCN2019123485-appb-100007
    Figure PCTCN2019123485-appb-100008
  7. 根据权利要求1或6所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019123485-appb-100009
    选自
    Figure PCTCN2019123485-appb-100010
    Figure PCTCN2019123485-appb-100011
  8. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R a选自H、F、Cl、Br、OH、NH 2、CN、CH 3和CH 2CH 3,所述CH 3或CH 2CH 3任选被1、2或3个R取代。
  9. 根据权利要求8所述化合物或其药学上可接受的盐,其中,R a选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
  10. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R b选自H、F、Cl、Br、OH、NH 2、CN、CH 3和CH 2CH 3,所述CH 3或CH 2CH 3任选被1、2或3个R取代。
  11. 根据权利要求10所述化合物或其药学上可接受的盐,其中,R b选自H、F、Cl、Br、OH、NH 2、CN、CH 3、CH 2CH 3和CF 3
  12. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环A选自苯基和吡啶基,所述苯基或吡啶基任选被1、2或3个R a取代。
  13. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环B选自吡咯基、咪唑基、吡唑基、噻唑基和噁唑基,所述吡咯基、咪唑基、吡唑基、噻唑基或噁唑基任选被R b取代。
  14. 根据权利要求1、12或13任意一项所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019123485-appb-100012
    选自
    Figure PCTCN2019123485-appb-100013
    Figure PCTCN2019123485-appb-100014
  15. 根据权利要求14所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019123485-appb-100015
    选自
    Figure PCTCN2019123485-appb-100016
  16. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019123485-appb-100017
    选自
    Figure PCTCN2019123485-appb-100018
  17. 根据权利要求1~11任意一项所述化合物或其药学上可接受的盐,选自,
    Figure PCTCN2019123485-appb-100019
    其中,
    T 1、T 2如权利要求1所述;
    T 3选自N和C(R a);
    L 1、L 2如权利要求1所述;
    R 1、R 4如权利要求1所述;
    R 2如权利要求1~3所述;
    R a如权利要求1、8和9所述;
    R b如权利要求1、10和11所述;
    环C选自C 3-6环烷基、C 3-6环烯基和3~6元杂环烷基,所述C 3-6环烷基、C 3-6环烯基或3~6元杂环烷基任选被1、2或3个R取代;
    任选地,环C选自
    Figure PCTCN2019123485-appb-100020
    所述
    Figure PCTCN2019123485-appb-100021
    Figure PCTCN2019123485-appb-100022
    任选被1、2或3个R取代;
    任选地,环C选自
    Figure PCTCN2019123485-appb-100023
  18. 根据权利要求17所述化合物或其药学上可接受的盐,选自
    Figure PCTCN2019123485-appb-100024
    其中,
    T 3选自N和C(R a);
    R a如权利要求1、8和9所述;
    R b如权利要求1、10和11所述;
    R 1、R 4如权利要求1所述;
    R 2如权利要求1~3所述。
  19. 下式化合物或其药学上可接受的盐,
    Figure PCTCN2019123485-appb-100025
    Figure PCTCN2019123485-appb-100026
    Figure PCTCN2019123485-appb-100027
  20. 一种药物组合物,所述的药物组合物含有如权利要求1~19任意一项所述化合物或其药学上可药用盐,以及一种或多种药学上可接受的载体、稀释剂或赋形剂。
  21. 根据权利要求1~19任意一项所述化合物或其可药用盐或根据权利要求20所述的药物组合物在制备预防和/或治疗用作S1P1受体相关疾病的药物中的用途。
  22. 根据权利要求21所述的用途,其中所述的S1P1受体相关疾病选自溃疡性结肠炎、克罗恩病、多发性硬化症、系统性红斑狼疮、狼疮性肾炎、类风湿性关节炎、原发性胆汁胆管炎、过敏性皮肤炎、脑出血、移植物抗宿主病、牛皮癣、I型糖尿病、痤疮、微生物感染或微生物疾病及病毒感染或病毒疾病。
PCT/CN2019/123485 2018-12-06 2019-12-06 作为免疫调节的芳环衍生物及其制备方法和应用 WO2020114475A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980011541.5A CN111712484B (zh) 2018-12-06 2019-12-06 作为免疫调节的芳环衍生物及其制备方法和应用
JP2021554786A JP7464920B2 (ja) 2018-12-06 2019-12-06 免疫調節としての芳香環誘導体及びその製造方法と使用
EP19891955.7A EP3892616A4 (en) 2018-12-06 2019-12-06 AROMATIC RING DERIVATIVE AS IMMUNOREGULATION AND MANUFACTURING METHOD AND APPLICATION OF AN AROMATIC RING DERIVATIVE
US17/299,515 US20220017513A1 (en) 2018-12-06 2019-12-06 Aromatic ring derivative as immunoregulation and preparation method and application of aromatic ring derivative

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811489503.4 2018-12-06
CN201811489503 2018-12-06
CN201811572313.9 2018-12-21
CN201811572313 2018-12-21
CN201910403277 2019-05-15
CN201910403277.1 2019-05-15
CN201911161764.8 2019-11-22
CN201911161764 2019-11-22

Publications (1)

Publication Number Publication Date
WO2020114475A1 true WO2020114475A1 (zh) 2020-06-11

Family

ID=70974110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123485 WO2020114475A1 (zh) 2018-12-06 2019-12-06 作为免疫调节的芳环衍生物及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220017513A1 (zh)
EP (1) EP3892616A4 (zh)
JP (1) JP7464920B2 (zh)
CN (2) CN113185446A (zh)
TW (1) TW202033500A (zh)
WO (1) WO2020114475A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880747A (zh) * 2020-07-03 2022-01-04 上海美迪西生物医药股份有限公司 一种吲哚衍生物及其应用
CN115340484A (zh) * 2021-05-13 2022-11-15 上海美迪西生物医药股份有限公司 苄氧基吲哚类支链酸类衍生物及其制备方法和应用
WO2023109931A1 (zh) * 2021-12-17 2023-06-22 上海济煜医药科技有限公司 一种芳环衍生物的晶型及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185446A (zh) * 2018-12-06 2021-07-30 上海济煜医药科技有限公司 作为免疫调节的芳环衍生物及其制备方法和应用
TW202327578A (zh) * 2021-12-27 2023-07-16 大陸商上海濟煜醫藥科技有限公司 作為免疫調節的芳環衍生物的製備方法
CN115784839A (zh) * 2022-11-11 2023-03-14 浙江工业大学 一种4-环己基-3-(三氟甲基)苯甲醇的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190968A (en) * 1991-09-30 1993-03-02 Merck Frosst Canada, Inc. (Polycyclic-arylmethoxy) indoles as inhibitors of leukotriene biosynthesis
US5308850A (en) * 1991-09-30 1994-05-03 Merck Frosst Canada, Inc. (Bicyclic-hetero-arylmethoxy)indoles as inhibitors of leukotriene biosynthesis
WO1994012179A1 (en) * 1992-11-20 1994-06-09 Abbott Laboratories Indole carboxylate derivatives which inhibit leukotriene biosynthesis
JP2007262009A (ja) * 2006-03-29 2007-10-11 Dai Ichi Seiyaku Co Ltd ヘテロアリール低級カルボン酸誘導体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028254A1 (fr) * 1996-12-24 1998-07-02 Nippon Chemiphar Co., Ltd. Derives d'acide propionique
BRPI0410746A (pt) * 2003-05-19 2006-06-27 Irm Llc compostos e composições imunossupressoras
DK1638551T3 (da) * 2003-05-19 2012-04-02 Irm Llc Immunosuppressive forbindelser og sammensætninger
EP1630152A4 (en) * 2003-05-30 2009-09-23 Takeda Pharmaceutical CONNECTION WITH CONDENSED RING
AU2006283175A1 (en) * 2005-08-23 2007-03-01 Irm Llc Immunosuppressant compounds and compositions
WO2007106469A2 (en) * 2006-03-14 2007-09-20 Amgen Inc. Bicyclic carboxylic acid derivatives useful for treating metabolic disorders
JPWO2007129745A1 (ja) 2006-05-09 2009-09-17 第一三共株式会社 ヘテロアリールアミド低級カルボン酸誘導体
JP2009114107A (ja) * 2007-11-06 2009-05-28 Daiichi Sankyo Co Ltd ヘテロアリールアミド低級カルボン酸誘導体を含有する医薬組成物
JP2009263261A (ja) 2008-04-23 2009-11-12 Daiichi Sankyo Co Ltd ピロリジン誘導体
KR20190132565A (ko) * 2008-07-23 2019-11-27 아레나 파마슈티칼스, 인크. 자가면역성 및 염증성의 장애의 치료에 유용한 치환된 1,2,3,4-테트라히드로시클로펜타[b]인돌-3-일)아세트산 유도체
CN105816453B (zh) 2008-08-27 2021-03-05 艾尼纳制药公司 用于治疗自身免疫性病症和炎性病症的作为s1p1受体激动剂的经取代的三环酸衍生物
CN113185446A (zh) * 2018-12-06 2021-07-30 上海济煜医药科技有限公司 作为免疫调节的芳环衍生物及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190968A (en) * 1991-09-30 1993-03-02 Merck Frosst Canada, Inc. (Polycyclic-arylmethoxy) indoles as inhibitors of leukotriene biosynthesis
US5308850A (en) * 1991-09-30 1994-05-03 Merck Frosst Canada, Inc. (Bicyclic-hetero-arylmethoxy)indoles as inhibitors of leukotriene biosynthesis
WO1994012179A1 (en) * 1992-11-20 1994-06-09 Abbott Laboratories Indole carboxylate derivatives which inhibit leukotriene biosynthesis
JP2007262009A (ja) * 2006-03-29 2007-10-11 Dai Ichi Seiyaku Co Ltd ヘテロアリール低級カルボン酸誘導体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892616A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880747A (zh) * 2020-07-03 2022-01-04 上海美迪西生物医药股份有限公司 一种吲哚衍生物及其应用
WO2022002225A1 (zh) * 2020-07-03 2022-01-06 上海美迪西生物医药股份有限公司 一种吲哚衍生物及其应用
CN115340484A (zh) * 2021-05-13 2022-11-15 上海美迪西生物医药股份有限公司 苄氧基吲哚类支链酸类衍生物及其制备方法和应用
WO2023109931A1 (zh) * 2021-12-17 2023-06-22 上海济煜医药科技有限公司 一种芳环衍生物的晶型及其制备方法和应用

Also Published As

Publication number Publication date
CN111712484B (zh) 2021-05-28
JP2022511130A (ja) 2022-01-28
US20220017513A1 (en) 2022-01-20
EP3892616A1 (en) 2021-10-13
TW202033500A (zh) 2020-09-16
EP3892616A4 (en) 2022-07-27
CN111712484A (zh) 2020-09-25
CN113185446A (zh) 2021-07-30
JP7464920B2 (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2020114475A1 (zh) 作为免疫调节的芳环衍生物及其制备方法和应用
TWI781651B (zh) 酞嗪酮類化合物及其製備方法和醫藥用途
EP3412663B1 (en) Nitrogen-containing heterocycle and carbocycle derivatives having trka inhibitory activity
TW201643139A (zh) 作為組蛋白脫乙醯基酶抑制劑之3-螺環-6-異羥肟酸萘滿
US20220396582A1 (en) Crystalline forms of n-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxy-3-pyridazinyl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl)phenyl)-n&#39;-methoxyurea
JP2023540350A (ja) 中環状または大環状ベンジル置換複素環誘導体およびオレキシン-2受容体アゴニストとしてのそれらの使用
CN115052604A (zh) Masp-2抑制剂和使用方法
JP2023504543A (ja) Masp-2阻害剤および使用方法
CN114644635B (zh) 三氮唑类三并环衍生物及其制备方法和应用
WO2023011573A1 (zh) 芳香乙炔类衍生物及其制备方法和用途
WO2022184172A1 (zh) 新型苯并氮杂卓并环衍生物
CN112457366B (zh) 作为蛋白降解剂的并环类化合物及其制备方法和应用
WO2020114477A1 (zh) 作为免疫调节剂的化合物及其制备方法和应用
WO2022063317A1 (zh) 稠合的三并环衍生物及其在药学上的应用
TWI831088B (zh) 新型苯并氮雜卓螺環衍生物
TWI838437B (zh) 作為免疫調節劑的化合物及其製備方法和應用
WO2024027795A1 (zh) 包含Myc蛋白降解剂类生物活性化合物的抗体药物偶联物及其制备方法和用途
WO2022268152A1 (zh) Glp-1受体激动剂及其组合物和用途
WO2022228365A1 (zh) 六元杂芳并脲环的衍生物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891955

Country of ref document: EP

Effective date: 20210706