WO2020114446A1 - 一种微波加热干燥设备及微波加热干燥方法 - Google Patents

一种微波加热干燥设备及微波加热干燥方法 Download PDF

Info

Publication number
WO2020114446A1
WO2020114446A1 PCT/CN2019/123240 CN2019123240W WO2020114446A1 WO 2020114446 A1 WO2020114446 A1 WO 2020114446A1 CN 2019123240 W CN2019123240 W CN 2019123240W WO 2020114446 A1 WO2020114446 A1 WO 2020114446A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
heating
drying
power
working box
Prior art date
Application number
PCT/CN2019/123240
Other languages
English (en)
French (fr)
Inventor
王永恩
刘轶
王博
周鹏举
候齐林
Original Assignee
共享智能铸造产业创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811482711.1A external-priority patent/CN109556359A/zh
Priority claimed from CN201822034553.5U external-priority patent/CN209495514U/zh
Application filed by 共享智能铸造产业创新中心有限公司 filed Critical 共享智能铸造产业创新中心有限公司
Publication of WO2020114446A1 publication Critical patent/WO2020114446A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy

Definitions

  • the invention relates to the technical field of microwave drying equipment, in particular to a microwave heating and drying equipment and a microwave heating and drying method.
  • a curing cavity is usually fixed, a microwave drying device is provided at the top of the curing cavity, and a lifting base is provided at the bottom of the curing cavity.
  • the formed sand mold will be placed on the lifting base.
  • the lifting base drives into the curing cavity for microwave drying and curing.
  • One of the objects of the present invention is to provide a microwave heating and drying device, so as to improve the production efficiency of the microwave heating and drying device on the one hand, and effectively reduce the amount of microwave leakage on the other hand.
  • Another object of the present invention is to provide a microwave heating and drying method using the above microwave heating and drying equipment.
  • the microwave heating and drying equipment includes a lifting mechanism and a microwave drying mechanism.
  • the microwave heating and drying equipment also includes a working box for containing materials and an open structure at the top, and For conveying the working box to the conveying roller of the lifting mechanism, wherein,
  • the microwave drying mechanism has a microwave generator, a microwave hood, and a microwave conduit connecting the microwave generator and the microwave hood, and the lower part of the microwave hood is a microwave outlet;
  • the conveying roller table is provided on the lifting mechanism, and can follow the lifting mechanism to move up and down;
  • the lifting mechanism is provided below the microwave cover, and is used to lift up the working box loaded with materials so that the opening at the top of the working box is in contact with the microwave outlet, and the top of the working box A first sealing structure to prevent microwave leakage is provided between the opening of and the microwave outlet.
  • the first sealing structure includes an end face seal and a side wall seal, wherein,
  • the microwave cover is provided with a steel wire sealing brush and an elastic shielding net, and the top periphery of the working box is provided with a resisting member. Under the lifting action of the lifting mechanism, the top end face of the working box and the The steel wire sealing brush is compressed and forms the end face seal; the abutment piece is squeezed tightly with the elastic shielding net and forms the side wall seal.
  • the pressing member is provided with a wedge-shaped pressing surface for pressing contact with the elastic shielding net.
  • it further includes a microwave absorption tube located in the microwave cover and circumferentially arranged along the circumference of the microwave cover, a liquid capable of absorbing microwave circulating in the microwave absorption tube, and the microwave absorption tube is close to the
  • the first sealing structure is provided to absorb microwaves leaked from the first sealing structure.
  • the working box is provided with a floating plate adapted to the shape of the inner cavity of the working box, and the floating plate is used to carry the material to be cured.
  • the side plate and the bottom plate formed by the working box An elastic shielding net is arranged at the joint seam, and under the pressure of the floating plate, the elastic shielding net deforms and seals the gap between the floating plate and the working box.
  • one or more microwave dispersing bars made of metal are also provided in the microwave cover, two ends of the microwave dispersing bar are respectively connected to two opposite sides of the microwave cover, and the microwave dispersing bar Has a tapered cross section, and the tip of the microwave dispersing bar is disposed toward the top of the microwave cover.
  • the inner cavity of the microwave cover is divided into a plurality of microwave feedback cavities by a partition plate, each of the microwave feedback cavities is provided with one or more of the microwave dispersion bars, the microwave cover and the microwave
  • the conduits are connected by a power distributor.
  • One end of the power distributor is a main pipe connected to the microwave conduit, and the other end is a branch pipe corresponding to the microwave feedback cavity in one-to-one correspondence. Any branch pipe is connected to the microwave.
  • the top of the cover communicates with the microwave feedback cavity corresponding to itself.
  • each of the branch pipes is connected to the top of the microwave cover through a trumpet-shaped feed port.
  • it further includes a microwave cover bracket, the microwave cover is located in the microwave cover bracket, and the top of the microwave cover is fixedly connected to the top of the microwave cover bracket.
  • the microwave conduit is provided with a ringer for preventing microwave backflow at the end connected to the microwave generator, and a screw adapter for reducing the amount of microwave reflection is provided at the end connected to the microwave cover.
  • the microwave cover is also provided with an air inlet hole to ensure the air pressure balance in the microwave cover.
  • the microwave generated by the microwave generator is 915MHz microwave.
  • the lifting mechanism includes a support frame, a lifting motor, a speed reducer, and a screw lifter, wherein,
  • the support frame is rectangular, and the lifting motor is fixedly arranged on the top of the support frame;
  • the screw lifter includes four, and the four screw lifters are respectively fixedly arranged at four corners on the top of the support frame;
  • the reducer includes a first-stage reducer and a second-stage reducer, both the first-stage reducer and the second-stage reducer are dual-output shaft reducers, and the first-stage reducer is located at the center of the top of the support frame ,
  • the secondary reducer is symmetrically distributed on both sides of the primary reducer, the input shaft of the primary reducer is connected to the output shaft of the lifting motor, and the two outputs of the primary reducer
  • the shafts are respectively connected to the input shafts of the two secondary reducers, and the two output shafts of any one of the secondary reducers are respectively connected to the two screw lifts.
  • it further includes a leg connected to the bottom of the support frame by bolts, and a height adjustment hole for adjusting the height of the support frame is further provided on the leg.
  • the conveying roller table includes a roller table power mechanism and a roller table mechanism, wherein,
  • the roller table mechanism includes a roller table frame and a conveying roller body that is rotatably provided on both sides of the roller table frame, the roller table frame is fixedly disposed on the lead screw lift, and each of the conveying roller bodies Input sprockets are set on the outer end of
  • the roller table power mechanism includes a power support frame, a power motor, a power reducer, and a power output shaft.
  • the power support frame is fixedly installed at the bottom of the roller table frame.
  • the power motor is connected to the power reducer.
  • the output shaft of the power reducer is connected to the power output shaft.
  • a first output sprocket and a second output sprocket are respectively provided at both ends of the power output shaft. The first output sprocket is used for all
  • the input sprocket of the conveyor roller body on one side of the roller frame provides power
  • the second output sprocket is used to power the input sprocket of the conveyor roller body on the other side of the roller frame.
  • the roller frame is further provided with a lift-in-position sensor, a drop-in-position sensor and an advance-in-position sensor, so that the working box and the microwave hood can be accurately positioned.
  • the entrance end of the roller frame is also provided with a guide wheel for adjusting the direction of the work box into the conveying roller table, and the end of the roller frame is also provided with a means to prevent the work box from falling. Blocking rod.
  • it further includes a microwave leak detector for detecting the amount of microwave leakage, and a first controller connected to the microwave leak detector and used for controlling the start and stop of the microwave heating and drying equipment.
  • a microwave leak detector for detecting the amount of microwave leakage
  • a first controller connected to the microwave leak detector and used for controlling the start and stop of the microwave heating and drying equipment.
  • the first controller controls the microwave heating and drying equipment to shut down.
  • it also includes a microwave leak reminder connected to the controller, and when the microwave leak detected by the microwave leak meter exceeds a preset reminder value, the first controller controls the microwave leak reminder The device performs a reminder, wherein the preset reminder value is less than the stop preset value.
  • the microwave curing device also includes a second controller for controlling the start and stop or alarm of the microwave curing device, and the end of the microwave conduit connected to the microwave hood is also provided with a dual directional coupler, the dual directional coupling The device is used to detect the reflected power value of the microwave, and when the reflected power value reaches the preset reflected power value, the second controller controls the microwave curing device to stop or alarm.
  • the microwave heating and drying method disclosed in the present invention adopts the microwave heating and drying equipment disclosed in any one of the above, and the microwave heating and drying method includes heating and curing, wherein,
  • the heating and curing includes:
  • the material contained in the working box is divided into n heating stages for microwave heating, where n ⁇ 2, each heating stage includes multiple heating pulses, any one of the same heating stage
  • the heating powers of the heating pulses are all equal, P i represents the heating power of the heating pulses in the i-th heating stage, then P i+1 ⁇ P i , where i ⁇ n-1.
  • the heating time of any one of the heating pulses is equal.
  • the number of the heating pulses included in any two of the heating stages is equal or unequal.
  • the interval time between two adjacent heating pulses is equal or unequal.
  • the movable working box is used to contain the formed materials, and the working box containing the materials is transported to the lifting mechanism by the conveying roller table, and the shape of the working box is adapted to the shape of the microwave cover Under the lifting effect of the lifting mechanism, the opening at the top of the working box is in contact with the microwave outlet at the bottom of the microwave hood.
  • the microwave generated by the microwave generator passes through the microwave conduit and enters the microwave hood, and is emitted from the microwave outlet at the bottom of the microwave hood and then enters Go to the working box to heat and solidify the material; at the same time, there is a first sealing structure to prevent microwave leakage between the opening at the top of the working box and the microwave outlet, through this first sealing structure can effectively avoid microwave from the working box and microwave The position where the cover contacts is leaking.
  • the materials output from the molding equipment (such as a 3D printer) can be moved to the lifting mechanism by transshipment, and then the sealing cooperation between the working box and the microwave cover is realized under the action of the lifting mechanism .
  • This makes a microwave drying mechanism can correspond to multiple molding equipment, improve the utilization of equipment and heating and drying efficiency, and the first sealing structure between the top opening of the working box and the microwave outlet of the microwave cover can effectively prevent microwaves Leakage properly solved the problem of microwave leakage during the microwave curing process.
  • FIG. 1 is a schematic structural view of an angle of the microwave heating and drying device disclosed in the embodiment of the present invention.
  • FIG. 2 is a schematic structural view of another angle of the microwave heating and drying device disclosed in the embodiment of the present invention.
  • FIG. 3 is a schematic partial cross-sectional view of part A in FIG. 1;
  • FIG. 4 is a schematic diagram of the inverted structure of the microwave heating and drying device disclosed in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the overall structure of the microwave drying mechanism disclosed in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a bottom view of the microwave drying mechanism disclosed in the embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the working box disclosed in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the combination of the lifting mechanism and the conveying roller table disclosed in the embodiment of the present invention.
  • FIG. 9 is a schematic structural view of the support frame disclosed in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the power system of the lifting mechanism disclosed in the embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a roller table power mechanism disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a roller table mechanism disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic partial cross-sectional view of part B in FIG. 12.
  • 1 is the support frame
  • 2 is the microwave cover bracket
  • 3 is the lifting mechanism
  • 4 is the fan
  • 5 is the conveying roller table
  • 6 is the exhaust pipe
  • 7 is the working box
  • 8 is the microwave cover
  • 9 is the trumpet-shaped feed Port
  • 10 is a microwave absorption tube
  • 11 is a microwave catheter
  • 12 is a microwave generator
  • 13 is a circulator
  • 14 is a reducer
  • 15 is a lifting motor
  • 16 is a wire sealing brush
  • 17 is an elastic shielding mesh
  • 18 is a branch Tube
  • 19 is the screw adapter
  • 20 is the partition plate
  • 21 is the microwave dispersion bar
  • 22 is the floating plate
  • 23 is the power motor
  • 24 is the foot
  • 25 is the screw jack installation part
  • 26 is the reducer installation part
  • 27 is the mounting part of the lift motor
  • 28 is the screw lift
  • 29 is the coupling
  • 30 is the power reducer
  • 31 is the power output shaft
  • 32 is the first output
  • the core of the present invention is to provide a microwave heating and drying device, so as to increase the production efficiency of the microwave heating and drying device on the one hand, and effectively reduce the amount of microwave leakage on the other hand.
  • Another core of the present invention is to provide a microwave heating and drying method implemented by using the above microwave heating and drying equipment.
  • the microwave heating and drying equipment disclosed in the present invention includes a lifting mechanism 3 and a microwave drying mechanism.
  • the microwave heating and drying equipment also includes a working box 7 and a conveying roller table 5, the working box 7 is used to hold materials, And its top is an open structure, the microwave drying mechanism has a microwave generator 12, a microwave cover 8 and a microwave duct 11 connecting the microwave generator 12 and the microwave cover 8, the lower part of the microwave cover 8 is a microwave outlet, and the microwave outlet and the working box 7
  • the shape of the top is adapted, as shown in FIGS.
  • the conveying roller table 5 is provided on the lifting mechanism 3, and the conveying roller table 5 can follow the lifting mechanism 3 to move up and down, the lifting mechanism 3 Under the microwave cover 8, the lifting mechanism 3 is used to lift the working box 7 loaded with materials so that the top opening of the working box 7 contacts the microwave outlet, and between the opening of the top of the working box 7 and the microwave outlet A first sealing structure for preventing microwave leakage is provided.
  • the material type in the above embodiment is any material that can be cured by microwave heating, which is not limited in the present invention.
  • the sand type is used as a specific example of the material to explain the scheme .
  • the movable sand box 7 holds the formed sand mold, and the sand box-containing work box 7 is transported by the conveying roller table 5 to the lifting mechanism 3.
  • the shape of the work box 7 and the microwave is adapted. Under the lifting action of the lifting mechanism 3, the opening at the top of the working box 7 is in contact with the microwave outlet at the bottom of the microwave cover 8, and the microwave generated by the microwave generator 12 passes through the microwave duct 11 and enters the microwave cover 8.
  • a first sealing structure to prevent microwave leakage is provided between the opening at the top of the working box 7 and the microwave outlet, The first sealing structure can effectively avoid the leakage of microwaves from the position where the working box 7 contacts the microwave cover 8.
  • the sand mold output from the molding equipment (such as a 3D printer) can be moved to the lifting mechanism 3 by transfer, and then the working box 7 and the microwave cover are realized under the action of the lifting mechanism 3
  • the sealing cooperation between 8, which makes a microwave drying mechanism can correspond to multiple molding equipment, improve the utilization rate of equipment and heating and drying efficiency, and at the same time between the top opening of the working box 7 and the microwave outlet of the microwave cover 8
  • the first sealing structure can effectively prevent microwave leakage, and properly solve the microwave leakage problem in the microwave curing process.
  • the first sealing structure specifically includes an end face seal and a side wall seal.
  • a wire sealing brush is provided inside the microwave cover 8 16 and the elastic shielding net 17, the top periphery of the working box 7 is provided with a resisting member, under the lifting action of the lifting mechanism 3, the top end face of the working box 7 is pressed against the elastic shielding net 17 and constitutes the above end face seal, resisting The piece is squeezed tightly with the wire sealing brush 16 and constitutes the above-mentioned side seal.
  • the end face seal and the side wall seal form a double seal structure for microwaves, which greatly reduces the microwave leakage and improves the safety performance of the equipment.
  • the pressing member is provided with a wedge-shaped squeezing for squeezing contact with the wire sealing brush 16
  • the small end of the wedge-shaped pressing surface is flush with the top of the working box 7, and the wedge-shaped pressing surface can also guide the working box 7 when the working box 7 is lifted by the lifting mechanism 3 So that the working box 7 can be smoothly docked with the outlet of the microwave cover 8.
  • the wedge-shaped squeezing surface is squeezed with the wire sealing brush 16 to form a side wall seal.
  • the wire sealing brush 16 should use tungsten wire that can shield microwaves , Copper wire or steel wire.
  • a microwave absorbing tube 10 is also provided in the microwave hood 8.
  • the microwave absorbing tube 10 is located in the microwave hood 8 and surrounds the inner wall of the microwave hood 8.
  • a liquid capable of absorbing microwave is circulated in the microwave absorbing tube 10.
  • the microwave absorption tube 10 should be disposed close to the first sealing structure, so as to absorb the microwaves leaking from the first sealing structure in time.
  • the microwave absorption tube 10 itself should allow microwave transmission, so that the liquid inside the microwave absorption tube 10 can absorb microwaves, and the material of the microwave absorption tube 10 that allows microwave transmission can have various options, such as PVC tubes and rubber tubes , Ceramic tubes, etc., the liquid capable of absorbing microwaves may be water or other solutions of water. In view of the convenience of material acquisition and cost, in this embodiment, it is recommended that the microwave absorption tube 10 be filled with liquid water for microwave absorption.
  • the microwave absorption tube 10 should be provided with a microwave reflecting wall at a position corresponding to the inside of the microwave cover.
  • the microwave reflecting wall is made of microwave reflecting material, such as Shown in Figure 3.
  • the work box 7 is of an integrated molding structure, there will be no microwave leakage problem at the bottom of the work box 7, but in some cases, for example, for the convenience of unloading or installation, the work box 7
  • the bottom plate and the side plate may be designed as a split structure, and if the bottom of the working box 7 of this structure is not subjected to microwave leakage treatment, there will be microwave leakage, so the microwave heating and drying disclosed in this embodiment
  • the working box 7 is provided with a floating plate 22 that matches the shape of the inner cavity in the working box 7, of course, the floating plate 22 is consistent with the working box 7, and all metal materials (such as steel plates) should be used.
  • the floating plate 22 is used In order to support the sand mold to be cured, the floating plate 22 will gradually move down with the increase of the sand mold during the sand mold forming process (such as when 3D printing is in progress), and finally move to the bottom to contact the bottom plate of the working box 7, in this embodiment
  • An elastic shielding net 17 is provided at the joint between the side plate and the bottom plate of the working box 7. As shown in FIG. 7, under the pressure of the floating plate 22, the elastic shielding net 17 deforms and deforms the floating plate 22 and The gap between the working boxes 7 is sealed to prevent microwave leakage from the bottom of the working box 7.
  • the elastic shielding net 17 at this position is consistent with the material of the elastic shielding net 17 on the top of the work box 7.
  • a card slot that facilitates installation of the elastic shielding net 17 can also be provided on the bottom plate of the working box 7, and the elastic shielding net 17 is fixedly disposed in the card slot.
  • a microwave cover holder 2 is also provided, as shown in FIGS. 1-4,
  • the microwave cover support 2 is a support formed by welding a profile
  • the microwave cover 8 is located inside the microwave cover support 2
  • the top of the microwave cover 8 is fixedly connected to the top of the microwave cover support 2.
  • the microwave enters the working box 7 from the exit position of the microwave hood 8 to solidify the sand mold.
  • the microwave heating and drying equipment disclosed in the embodiments of the present invention can meet the heating and drying requirements of the large-sized working box 7 of more than 3 tons.
  • the thickness of the sand type of the type will usually reach more than 500mm, and even reach 700mm, so it is necessary to use a high-power microwave drying mechanism for drying. If the microwave outlet of the microwave cover 8 is a single cavity structure, it is easy to uneven microwave distribution The problem is that too much microwave directly below the microwave outlet will cause overheating of the sand mold, and the microwave distribution on both sides of the microwave outlet is relatively small, which will cause insufficient heating of the sand mold on both sides of the microwave outlet.
  • the inner cavity of the microwave cover 8 is separated by a partition plate 20 called a plurality of microwave feedback chambers, and the microwave cover 8 and the microwave conduit 11 is connected by a power divider, one end of the power divider is a main pipe connected to the microwave conduit 11, and the other end is a branch pipe 18 corresponding to the microwave feedback cavity, each branch pipe 18 is connected to the top of the microwave cover 8, And communicate with the microwave feedback cavity corresponding to itself.
  • microwave dispersion bar 21 in the embodiment of the present invention is specifically a triangular prism structure formed by surrounding a metal plate, and one edge of the microwave dispersion bar 21 faces upward. The side of the prism opposite to the edge is disposed toward the microwave outlet. The function of the microwave dispersion bar 21 is to disperse the microwave as evenly as possible to both sides of the microwave feedback cavity, thereby further improving the uniformity of microwave heating;
  • This kind of microwave dispersion bar realizes the breaking of microwaves through a fixed structure. Compared with the current rotating breaking microwave method, since it does not involve the penetration of the power input shaft, it will not cause microwave leakage.
  • the inner cavity of the microwave cover 8 is divided into two microwave feedback cavities by a partition plate 20, and each microwave feedback cavity is provided with a microwave dispersion bar 21.
  • each branch tube 18 is connected to the top of the microwave cover 8 through a trumpet-shaped feed port
  • the microwave duct 11 includes a longitudinal tube arranged in the vertical direction and two respectively connected to the longitudinal tube
  • the first horizontal tube and the second horizontal tube arranged at the end and in the horizontal direction
  • the power distributor is disposed on the first horizontal tube
  • the microwave generator 12 is connected to the second horizontal tube.
  • the bends of the microwave ducts are all 90° curved elbows.
  • the two branch pipes 18 of the power distributor are provided with 90° circular arc E-plane waveguides. As shown in Figures 5 and 6.
  • the end of the microwave guide tube connected to the microwave hood is also provided with a screw adapter 19, and the end of the microwave guide tube connected to the microwave generator is provided with a circulator 13 to prevent microwave backflow.
  • the screw adapter 19 A three-screw adapter can be used. After the three-screw adapter is used to adjust the standing wave ratio (the smaller the standing wave ratio, the greater the microwave incident power and the lower the reflected power), the microwave is fed back to the two horn-shaped feed ports 9, and then the horn The shaped feed port 9 reflects the microwave into the microwave feedback cavity, and the microwave dispersion bar 21 in the microwave feedback cavity can disperse the microwave directly under the horn shaped feed port 9 to both sides to ensure the uniformity of the microwave distribution.
  • the solution disclosed in this embodiment further includes a fan 4 and a row connected to the fan 4
  • the air pipe 6 and the exhaust pipe extend into the microwave hood, and each microwave feedback cavity is connected to the exhaust pipe 6 so that the gas generated in the microwave hood 8 during the drying process can be discharged by the fan 4,
  • the microwave hood is also provided with an air inlet hole to ensure the air pressure balance in the microwave hood.
  • the diameter of the air inlet hole is small, which can effectively avoid the leakage of microwave while achieving ventilation. Under normal circumstances, the diameter of the air inlet hole is based on
  • the appropriate aperture can be selected for different microwave frequencies. For example, when the frequency is 2450 Hz, the aperture is not greater than 4 mm, and when the frequency is 915 Hz, the aperture is not greater than 10 mm.
  • the thickness thereof usually reaches more than 500 mm, and even reaches 700 mm.
  • the 915MHZ microwave with good wavelength and permeability is selected, that is, the microwave generated by the microwave generator 12 is 915MHZ microwave.
  • the implementation form of the lifting mechanism 3 that can lift the working box 7 is not limited to one type, for example, the cylinder mechanism, the screw mechanism, etc. can all lift the working box 7, however, because After the working box 7 is lifted by the lifting mechanism 3, its top opening needs to be closely matched with the microwave outlet of the microwave cover 8 to avoid the leakage of microwaves. Therefore, the synchronous lifting of the working box 7 at various positions is a problem that needs to be focused on.
  • the lifting mechanism 3 disclosed in this embodiment includes a supporting frame 1, a lifting motor 15, a speed reducer 14, and a lifting screw.
  • the supporting frame 1 is specifically rectangular and welded by profiles
  • the lifting motor 15 is fixedly arranged on the top of the support frame 1
  • the screw lifter specifically includes four
  • the four screw lifts are fixedly arranged on the four corners of the top of the support frame 1
  • the speed reducer 14 includes
  • the first stage reducer and the second stage reducer, the first stage reducer and the second stage reducer are dual output shaft reducers
  • the first stage reducer is located in the center of the top of the support frame 1
  • the second stage reducer is symmetrically distributed in the first stage reducer
  • the input shaft of the first-stage reducer is connected to the output shaft of the lifting motor 15, the two output shafts of the first-stage reducer are respectively connected to the input shafts of the two second-stage reducers,
  • the two output shafts are respectively connected to the two screw lifts.
  • the top four corners of the support frame 1 are provided with screw lift mounting parts 25, and the center position of the support frame 1 is provided with an intermediate speed reducer mounting part 26 for installing a first-stage speed reducer, an intermediate speed reducer mounting part Two reduction gear mounting portions 26 are symmetrically arranged on both sides of the 26 for the installation of the second-stage speed reducer, and a lifting motor 15 mounting portion, a lifting motor 15 and a screw
  • Both the hoist and the reducer 14 are mounted on the top of the support frame 1 by bolts, and the power output from the output shaft of the lift motor 15 passes through the first-stage reducer, and is transmitted to the second-stage reducer through the first-stage reducer, and finally passes
  • the two-stage reducer transmits power to the screw lifts located at the four corners, to achieve synchronous lifting at the four corners, and to ensure the precise cooperation between the working box 7 and the microwave cover 8. It should be noted that any one that requires rigid connection Both shafts can be connected by a coupling 29.
  • a foot 24 is also provided at the bottom of the support frame 1, and the foot 24 directly contacts the ground.
  • the foot 24 in the microwave heating and drying device disclosed in this embodiment A height adjustment hole for adjusting the height of the support frame 1 is also provided.
  • a plurality of height adjustment holes can be provided. The height adjustment holes can be connected to the support frame 1 through different height adjustment holes to adjust the height of the support frame 1 above the ground.
  • the conveying roller table 5 is integrally installed on the lead screw lift. It includes a roller table power mechanism and a roller table mechanism.
  • the roller table power mechanism includes a roller table frame and a conveyor that is rotatably provided on both sides of the roller table frame.
  • the roller body 44 and the roller table frame are fixedly installed on the lead screw lift, and the outer end of each conveying roller body 44 is provided with an input sprocket 40, as shown in FIG. 13;
  • the roller table power mechanism is shown in FIG. 11, It includes a power support frame, a power motor 23, a power reducer 30, and a power output shaft 31.
  • the power support frame is fixedly mounted on the top of the roller frame, and the power motor 23 is connected to the power reducer 30, and the output shaft of the power reducer 30 Connected to the power output shaft 31, the two ends of the power output shaft 31 are respectively provided with a first output sprocket 32 and a second output sprocket 33, the first output sprocket 32 is used for the conveyor roller body 44 on the side of the roller frame
  • the input sprocket 40 provides power
  • the second output sprocket 33 is used to power the input sprocket 40 of the conveying roller body 44 on the other side of the roller frame.
  • the conveying roller body 44 is mounted on the roller shaft 45 through a connecting key, and the roller shaft 45 is circumferentially and axially limited by the ball bearing 42 and the retaining ring 41 installed in the bearing sleeve 43, and the input sprocket 40
  • the roller shaft 45 is also keyed, and the end of the roller shaft 45 is also bolted with a shaft cover 39 for preventing the input sprocket 40 from coming out.
  • roller table frame is also provided with a lift-in-place sensor, a drop-in-place sensor and a working box advance-in-place sensor, so that the working box and the microwave cover can be accurately positioned.
  • the roller frame is composed of two cross bars 36 and a connecting bar 37 connecting the two cross bars 36 as a whole.
  • a position near the cross bar 36 is also provided
  • Microwave leakage will cause harm to the human body. Although various measures are used to shield the microwave leakage, the microwave leakage cannot be completely eliminated due to various factors. Therefore, in the current actual production process, the staff needs to pass the handheld microwave at a certain time interval.
  • the leak detector performs microwave leak detection, but this method not only fails to detect microwave leaks in real time, but also easily threatens the health of workers.
  • the microwave heating and drying equipment disclosed in this embodiment also includes a microwave leak detector for detecting the amount of microwave leakage, and a first control connected to the microwave leak detector and used to control the startup of the microwave heating and drying equipment When the amount of microwave leakage detected by the microwave leak meter exceeds the preset value for shutdown, the first controller controls the microwave heating and drying equipment to shut down.
  • the controller can be a PLC controller, and the microwave leak meter can communicate with the PLC controller through serial data.
  • a preset reminder value is also set in this embodiment.
  • the reminder preset value should be less than the shutdown preset value.
  • the first controller controls the microwave leak reminder to remind.
  • the reminder can be realized by sound and light signals.
  • the staff receives the reminder, they can check the relevant sealing parts in time and replace the seals if necessary.
  • the preset reminder value can be based on the experience value obtained by detecting the microwave heating and drying equipment for a long time. For example, under normal circumstances, the microwave leakage of the microwave heating and drying equipment is less than 1mw/cm 2 , the preset reminder value can be set to Other numerical values that are slightly larger than the normal value may be sufficient, for example, 1.2 mw/cm 2 .
  • this embodiment also includes a second controller for controlling the start and stop or alarm of the microwave curing device.
  • the second controller may be the same controller as the first controller in the above embodiment, It can also be a different controller.
  • the microwave catheter is also provided with a dual directional coupler at the end connected to the microwave cover. The dual directional coupler is used to detect the reflected power value of the microwave. When the reflected power value reaches the preset reflected power value, The controller controls the microwave curing equipment to stop for inspection, or controls the microwave curing equipment to alarm to remind the operator to check.
  • the present invention also discloses a microwave heating and drying method using the above microwave heating and drying equipment, the microwave heating and drying method includes heating and cooling and cooling placement, wherein heating and curing includes: placing the work box The sand mold in 7 is divided into n heating stages for microwave heating, where n is a positive integer and n ⁇ 2, each heating stage includes multiple heating pulses, and the heating power of each heating pulse in the same heating stage is Equal to each other, P i represents the heating power of the heating pulse in the i-th heating stage, then P i+1 ⁇ P i , where i ⁇ n-1; the placement cooling includes: turning off the microwave drying mechanism, And place the working box 7 for 8 to 24 hours.
  • the core of the method is that the heating power of each pulse in the same heating stage is equal, and in the two adjacent heating stages, the heating power in the post-heating stage is less than the heating power in the previous heating stage, that is It is said that heating and drying are gradually reduced by heating power.
  • the advantage of this method is that the initial high-power heating and curing can quickly heat up the sand mold at a low temperature. When the sand mold temperature is high, the high temperature of the sand mold itself can quickly diffuse inward.
  • the heating time of any one heating pulse is equal
  • the number of heating pulses included in any two adjacent heating stages may be equal or unequal.
  • the interval time between two adjacent heating pulses may be equal or unequal.
  • the temperature of the sand mold in the work box 7 is about 50°C.
  • T represents the heating time
  • t represents the intermittent time
  • m represents the number of pulse cycles.

Abstract

一种微波加热干燥设备和微波干燥方法,该设备包括升降机构(3)以及微波烘干机构,用于盛装物料且顶部为开口结构的工作箱(7),以及用于将工作箱(7)输送至升降机构(3)的输送辊道(5),微波烘干机构具有微波发生器(12)、微波罩(8)和连接微波发生器(12)与微波罩(8)的微波导管(11),微波罩(8)的下部为微波出口;输送辊道(5)设置在升降机构上(3),并能够跟随升降机构(3)进行上下运动;升降机构(3)设置在微波罩(8)的下方,其用于将装载有物料的工作箱(7)顶升,以使工作箱(7)顶部的开口与微波出口接触,并且工作箱(7)顶部的开口与微波出口之间设置有防止微波泄漏的第一密封结构。该微波加热干燥设备妥善解决了微波固化过程中的微波泄漏问题,同时提高了设备的利用率和加热干燥效率。

Description

一种微波加热干燥设备及微波加热干燥方法
本申请要求于2018年12月05日提交中国专利局、申请号为201811482711.1、发明名称为“一种微波加热干燥设备及微波加热干燥方法”的中国专利申请以及于2018年12月05日提交中国专利局、申请号为201822034553.5、发明名称为“一种微波加热干燥设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微波烘干设备技术领域,特别涉及一种微波加热干燥设备及微波加热干燥方法。
背景技术
目前的微波加热干燥设备中,通常固定设置有一个固化腔,固化腔的顶部设置有一台微波烘干设备,固化腔的底部设置有一升降底座,成型后的砂型将被安放在升降底座上,由该升降底座带动进入固化腔中进行微波烘干固化。
然而,目前的微波加热干燥设备中微波泄漏的问题依然没有得到妥善的解决,而且如何能够将成型后的砂型直接从成型设备的出口运输至微波烘干机构,以便实现一台微波烘干机构同时与多台砂型成型设备配合,提高微波加热干燥设备的工作效率也一直是本领域技术人员所急切需要解决的。
发明内容
本发明的目的之一是提供一种微波加热干燥设备,以便能够一方面提高微波加热干燥设备的生产效率,另一方面有效减小微波的泄漏量。
本发明的另一目的还在于提供一种采用上述微波加热干燥设备而实现的微波加热干燥方法。
为达到上述目的,本发明提供的微波加热干燥设备,包括升降机构以及微波烘干机构,除此之外,该微波加热干燥设备还包括用于盛装物料且顶部为开口结构的工作箱,以及用于将所述工作箱输送至所述升降机构的输送辊道,其中,
所述微波烘干机构具有微波发生器、微波罩和连接所述微波发生器与所述微波罩的微波导管,所述微波罩的下部为微波出口;
所述输送辊道设置在所述升降机构上,并能够跟随所述升降机构进行上下运动;
所述升降机构设置在所述微波罩的下方,其用于将装载有物料的所述工作箱顶升,以使所述工作箱顶部的开口与所述微波出口接触,并且所述工作箱顶部的开口与所述微波出口之间设置有防止微波泄漏的第一密封结构。
优选的,所述第一密封结构包括端面密封和侧围密封,其中,
所述微波罩的内部设置有钢丝密封刷和弹性屏蔽网,所述工作箱的顶部外围设置有抵紧件,在所述升降机构的顶升作用下,所述工作箱的顶部端面与所述钢丝密封刷压紧并构成所述端面密封;所述抵紧件与所述弹性屏蔽网挤紧并构成所述侧围密封。
优选的,所述抵紧件设置有用于与所述弹性屏蔽网挤紧接触的楔形挤紧面。
优选的,还包括位于所述微波罩内,并沿所述微波罩的周向环绕设置的微波吸收管,所述微波吸收管内循环流动有能够吸收微波的液体,且所述微波吸收管靠近所述第一密封结构设置,以吸收由所述第一密封结构处所泄漏的微波。
优选的,所述工作箱内设置有与所述工作箱的内腔形状适配的浮动板,且所述浮动板用于承载待固化的物料,所述工作箱的侧板与底板所形成的接合缝处布设有弹性屏蔽网,在所述浮动板的压力作用下,所述弹性屏蔽网产生形变并将所述浮动板与所述工作箱之间的缝隙密封。
优选的,所述微波罩内还设置有一个或多个金属材质的微波分散条,所述微波分散条的两端分别连接在所述微波罩相对的两个侧面上,且所述微波分散条的横截面为锥状,所述微波分散条的尖端朝向所述微波罩的顶部设置。
优选的,所述微波罩的内腔由分隔板分隔为多个微波反馈腔,每一个所述微波反馈腔内设置有一个或多个所述微波分散条,所述微波罩与所述微波导管通过功率分配器相连,所述功率分配器的一端为与所述微波导管相连的总管,另一端为与所述微波反馈腔一一对应的分支管,任意一分支管均连接在所述微 波罩的顶部,并与自身对应的所述微波反馈腔连通。
优选的,每一个所述分支管均通过喇叭状馈口与所述微波罩的顶部相连。
优选的,还包括微波罩支架,所述微波罩位于所述微波罩支架内,且所述微波罩的顶部固定连接在所述微波罩支架的顶部。
优选的,所述微波导管用于与所述微波发生器相连的一端设置有防止微波回流的环形器,用于与所述微波罩相连的一端设置有用于降低微波反射量的螺钉调配器。
优选的,还包括风机以及与所述风机相连的排气管路,所述排气管路通入所述微波罩内,以将微波烘干过程中所述微波罩内所产生的气体排走,所述微波罩上还开设有进风孔,以保证所述微波罩内的气压平衡。
优选的,所述微波发生器所产生的微波为915MHz微波。
优选的,所述升降机构包括支撑架、举升电机、减速器以及丝杠举升机,其中,
所述支撑架呈矩形,所述举升电机固定设置在所述支撑架的顶部;
所述丝杠举升机包括四个,且四个所述丝杠举升机分别固定设置在所述支撑架顶部上的四角部位;
所述减速器包括一级减速器和二级减速器,所述一级减速器和所述二级减速器均为双输出轴减速器,所述一级减速器位于所述支撑架顶部的中心,所述二级减速器对称分布在所述一级减速器的两侧,所述一级减速器的输入轴与所述举升电机的输出轴相连,所述一级减速器的两个输出轴分别与两个所述二级减速器的输入轴相连,任意一所述二级减速器的两个输出轴分别与两个所述丝杠举升机相连。
优选的,还包括通过螺栓连接在所述支撑架底部的支脚,所述支脚上还设置有调节所述支撑架高度的高度调节孔。
优选的,所述输送辊道包括辊道动力机构和辊道机构,其中,
所述辊道机构包括辊道构架和转动设置在所述辊道构架两侧上的输送辊本体,所述辊道构架固定设置在所述丝杠举升机上,且每一个所述输送辊本体的外端均设置有输入链轮;
所述辊道动力机构包括动力支撑构架、动力电机、动力减速器及动力输出 轴,所述动力支撑构架固定安装在所述辊道构架的底部,所述动力电机与所述动力减速器相连,所述动力减速器的输出轴与所述动力输出轴相连,所述动力输出轴的两端分别设置有第一输出链轮和第二输出链轮,所述第一输出链轮用于为所述辊道构架一侧的所述输送辊本体的输入链轮提供动力,所述第二输出链轮用于为所述辊道构架另外一侧的所述输送辊本体的输入链轮提供动力。
优选的,所述辊道构架上还设置有举升到位传感器、下降到位传感器以及前进到位传感器,以使所述工作箱与所述微波罩实现精确定位。
优选的,所述辊道构架的入口端还设置有用于调整所述工作箱进入所述输送辊道方向的导向轮,所述辊道构架的终止端还设置有防止所述工作箱掉落的阻挡杆。
优选的,还包括用于检测微波泄漏量的微波测漏仪,以及与所述微波测漏仪相连且用于控制所述微波加热干燥设备启停的第一控制器,在所述微波测漏仪所检测到的微波泄漏量超过停机预设值时,所述第一控制器控制所述微波加热干燥设备停机。
优选的,还包括与所述控制器相连的微波泄漏提醒装置,且在所述微波泄漏仪所检测到的微波泄漏量超过提醒预设值时,所述第一控制器控制所述微波泄漏提醒装置进行提醒,其中,所述提醒预设值小于所述停机预设值。
优选的,还包括用于控制所述微波固化设备启停或报警的第二控制器,所述微波导管用于与所述微波罩相连的一端还设置有双定向耦合器,所述双定向耦合器用于检测微波的反射功率值,且在所述反射功率值达到预设反射功率值时,所述第二控制器控制所述微波固化设备停机或者报警。
本发明中所公开的微波加热干燥方法,采用上述任意一项中所公开的微波加热干燥设备,并且该微波加热干燥方法包括加热固化,其中,
所述加热固化包括:
将盛装在所述工作箱内的物料分n个加热阶段进行微波加热,其中,n≥2,每一个所述加热阶段中均包括多个加热脉冲,在同一个所述加热阶段中,任意一个所述加热脉冲的加热功率均相等,P i代表第i个加热阶段中的加热脉冲的加热功率,则有P i+1<P i,其中,i≤n-1。
优选的,在同一个加热阶段中,任意一个所述加热脉冲的加热时间均相等。
优选的,T i代表第i个加热阶段中的加热脉冲的加热时间,则有T i+1=T i,其中,i≤n-1。
优选的,任意两个所述加热阶段中所包含的所述加热脉冲的数量相等或不等。
优选的,任意两个所述加热阶段中,相邻两个所述加热脉冲的间隔时间相等或不等。
本发明中所公开的微波加热干燥设备中,通过可移动的工作箱盛装成型的物料,并且盛装有物料的工作箱被输送辊道输送至升降机构,工作箱的形状与微波罩的形状适配,在升降机构的顶升作用下,工作箱顶部的开口与微波罩底部的微波出口接触,微波发生器产生的微波经过微波导管后进入微波罩,并从微波罩底部的微波出口射出,进而进入到工作箱内对物料进行加热固化;与此同时,工作箱顶部的开口与微波出口之间设置有防止微波泄漏的第一密封结构,通过该第一密封结构可以有效避免微波从工作箱与微波罩相接触的位置泄漏。
通过工作箱和输送辊道的配合,使得从成型设备(如3D打印机)输出的物料可以通过转运的方式移动至升降机构,然后在升降机构的作用下实现工作箱与微波罩之间的密封配合,这就使得一台微波烘干机构可以对应多台成型设备,提高了设备的利用率和加热干燥效率,同时工作箱顶部开口与微波罩的微波出口之间的第一密封结构可以有效防止微波泄漏,妥善解决了微波固化过程中的微波泄漏问题。
附图说明
图1为本发明实施例中所公开的微波加热干燥设备一种角度的结构示意图;
图2为本发明实施例中所公开的微波加热干燥设备另一种角度的结构示意图;
图3为图1中A部分的局部剖视示意图;
图4为本发明实施例中所公开的微波加热干燥设备的倒置结构示意图;
图5为本发明实施例中所公开的微波烘干机构的整体结构示意图;
图6为本发明实施例中所公开的微波烘干机构的仰视结构示意图;
图7为本发明实施例中所公开的工作箱的剖视示意图;
图8为本发明实施例中所公开的升降机构与输送辊道的组合示意图;
图9为本发明实施例中所公开的支撑架的结构示意图;
图10为本发明实施例中所公开的升降机构的动力系统的机构示意图;
图11为本发明实施例中所公开的辊道动力机构的结构示意图;
图12为本发明实施例中所公开的辊道机构的结构示意图;
图13为图12中B部分的局部剖视示意图。
其中,1为支撑架,2为微波罩支架,3为升降机构,4为风机,5为输送辊道,6为排气管路,7为工作箱,8为微波罩,9为喇叭状馈口,10为微波吸收管,11为微波导管,12为微波发生器,13为环形器,14为减速器,15为举升电机,16为钢丝密封刷,17为弹性屏蔽网,18为分支管,19为螺钉调配器,20为分隔板,21为微波分散条,22为浮动板,23为动力电机,24为支脚,25为丝杠举升机安装部,26为减速器安装部,27为举升电机安装部,28为丝杠举升机,29为联轴器,30为动力减速器,31为动力输出轴,32为第一输出链轮,33为第二输出链轮,34为阻挡杆,35为链轮罩,36为横杆,37为连接杆,38为导向轮,39为轴盖板,40为输入链轮,41为挡圈,42为球轴承,43为轴承套,44为输送辊本体,45为辊子轴。
具体实施方式
本发明的核心是提供一种微波加热干燥设备,以便能够一方面提高微波加热干燥设备的生产效率,另一方面有效减小微波的泄漏量。
本发明的另一核心是提供一种采用上述微波加热干燥设备而实现的微波加热干燥方法。
本发明中所公开的微波加热干燥设备,包括升降机构3以及微波烘干机构,除此之外,该微波加热干燥设备还包括工作箱7和输送辊道5,工作箱7用于盛装物料,并且其顶部为开口结构,微波烘干机构具有微波发生器12、微波罩8以及连接微波发生器12与微波罩8的微波导管11,微波罩8的下部为微波出口,并且微波出口与工作箱7顶部的形状适配,如图1、2以及图5 和图6中所示,输送辊道5设置在升降机构3上,且输送辊道5能够跟随升降机构3进行上下运动,升降机构3设置在微波罩8的下方,升降机构3用于将装载有物料的工作箱7顶升,以便使工作箱7的顶部开口与微波出口接触,并且工作箱7的顶部的开口与微波出口之间设置有用于防止微波泄露的第一密封结构。
需要进行说明的是,上述实施例中的物料类型为可以被微波加热固化的任何物料,本发明中对此不作限制,在本发明实施例中,以砂型作为物料的具体实例来对方案进行说明。
上述实施例中所公开的微波加热干燥设备,通过可移动的工作箱7盛装成型的砂型,并且盛装有砂型的工作箱7被输送辊道5输送至升降机构3,工作箱7的形状与微波罩8的形状适配,在升降机构3的顶升作用下,工作箱7顶部的开口与微波罩8底部的微波出口接触,微波发生器12产生的微波经过微波导管11后进入微波罩8,并从微波罩8底部的微波出口射出,进而进入到工作箱7内对砂型进行加热固化;与此同时,工作箱7顶部的开口与微波出口之间设置有防止微波泄漏的第一密封结构,通过该第一密封结构可以有效避免微波从工作箱7与微波罩8相接触的位置泄漏。
通过工作箱7和输送辊道5的配合,使得从成型设备(如3D打印机)输出的砂型可以通过转运的方式移动至升降机构3,然后在升降机构3的作用下实现工作箱7与微波罩8之间的密封配合,这就使得一台微波烘干机构可以对应多台成型设备,提高了设备的利用率和加热干燥效率,同时工作箱7顶部开口与微波罩8的微波出口之间的第一密封结构可以有效防止微波泄漏,妥善解决了微波固化过程中的微波泄漏问题。
能够实现微波密封的结构并不局限于一种,在本实施例中,第一密封结构具体包括端面密封和侧围密封,请参考图1和图3,微波罩8的内部设置有钢丝密封刷16和弹性屏蔽网17,工作箱7的顶部外围设置有抵紧件,在升降机构3的顶升作用下,工作箱7的顶部端面与弹性屏蔽网17压紧并构成上述端面密封,抵紧件与钢丝密封刷16挤紧并构成上述侧围密封。端面密封和侧围密封形成了针对于微波的双重密封结构,这就大大降低了微波泄漏量,提高了设备的安全性能。
进一步的,为了保证工作箱7顺利与微波罩8的微波出口对接,本实施例中所公开的微波加热干燥设备中,抵紧件上设置有用于与钢丝密封刷16挤紧接触的楔形挤紧面,如图3中所示,该楔形挤紧面的小端与工作箱7的顶端平齐,在工作箱7被升降机构3顶升时,楔形挤紧面还能够对工作箱7进行导向,使工作箱7顺利与微波罩8的出口对接,在工作箱7移动到位后,楔形挤紧面与钢丝密封刷16挤紧构成侧围密封,钢丝密封刷16应当采用能够屏蔽微波的钨丝、铜丝或者钢丝制成。
即使设置了第一密封结构,也不能确保工作箱7与微波罩8的对接位置处绝对不会有微波泄漏,为了尽量减少泄漏的微波对人体或周围环境造成危害,本实施例中作了进一步优化,具体的,微波罩8内还设置有微波吸收管10,该微波吸收管10位于微波罩8内,并且环绕微波罩8内壁一周,该微波吸收管10内循环流动有能够吸收微波的液体,当然,为了能够及时吸收泄漏的微波,微波吸收管10应当靠近第一密封结构设置,以便将从第一密封结构出泄漏的微波及时吸收。
容易理解的是,微波吸收管10本身应当允许微波透射,以便位于微波吸收管10内的液体将微波吸收,允许微波透射的微波吸收管10的材质可有多种选择,例如PVC管、橡胶管、陶瓷管等,能够吸收微波的液体可以为水或者水的其他溶液,从材料获取的便利性以及成本方面考虑,本实施例中推荐微波吸收管10内通过充入液态水来进行微波吸收。
更进一步的,为了避免微波吸收管10将微波罩内的正常工作的微波吸收,微波吸收管10与微波罩内部对应的位置应当设置有微波反射壁,微波反射壁由微波反射材料制成,如图3中所示。
若工作箱7的底板与工作箱7的侧板为一体式成型结构,则工作箱7的底部不会存在微波泄漏的问题,但是一些情况下,例如为了卸料或者安装的方便,工作箱7的底板与侧板之间可能会设计为分体式结构,而这种结构的工作箱7的底部若不进行防微波泄漏处理,就会有微波泄漏,因此本实施例中所公开的微波加热干燥设备中,工作箱7内设置有与工作箱7内的内腔形状适配的浮动板22,当然,浮动板22与工作箱7一致,都应当采用金属材质(例如钢板),浮动板22用于承载待固化的砂型,在砂型成型过程中(如3D打印进行时) 浮动板22会随着砂型的增大逐渐下移,最终移动到底部与工作箱7的底板相接触,本实施例中在工作箱7的侧板与底板所形成的接合缝位置设置有弹性屏蔽网17,如图7中所示,在浮动板22的压力作用下,弹性屏蔽网17产生形变并将浮动板22与工作箱7之间的缝隙密封,从而防止微波从工作箱7的底部泄漏。该位置的弹性屏蔽网17与工作箱7顶部的弹性屏蔽网17的材质一致。
为了进一步优化方案,还可以在工作箱7底板上设置方便弹性屏蔽网17安装的卡槽,弹性屏蔽网17固定设置在卡槽内。
由于微波罩8位于升降机构3和输送辊道5的上方,因此微波罩8的安装稳定性需要重点考虑,本实施例中,还设置有微波罩支架2,如图1-4中所示,微波罩支架2为由型材焊接形成的支架,微波罩8位于该微波罩支架2的内部,并且微波罩8的顶部固定连接在微波罩支架2的顶部。
微波从微波罩8的出口位置进入到工作箱7内对砂型进行固化,本发明实施例中所公开的微波加热干燥设备,能够满足3吨以上的大尺寸工作箱7的加热干燥要求,这种类型的砂型的厚度通常会达到500mm以上,甚至能够达到700mm,因此需要采用大功率微波烘干机构来进行烘干,若使微波罩8的微波出口为单腔结构,就容易出现微波分布不均匀的问题,微波出口正下方的微波量过多,会导致砂型出现过烧现象,而微波出口两边的微波分布又比较少,这会导致微波出口两边的砂型出现加热不足的现象。
本实施例中所公开的方案对此进行了优化,如图5和图6中所示,微波罩8的内腔有分隔板20分隔称为多个微波反馈腔,微波罩8与微波导管11通过功率分配器相连,功率分配器的一端为与微波导管11相连的总管,另一端为与微波反馈腔一一对应的分支管18,每一个分支管18均连接在微波罩8的顶部,并且与自身所对应的微波反馈腔连通。
由微波发生器12产生的微波经过微波导管11后,被功率分配器的分支管18均匀分配,并分别进入各个微波反馈腔内对工作箱7内的砂型进行加热,通过结构改进使得微波可以均匀分散至各个位置,从而保证工作箱7内的砂型被均匀加热;更进一步的,一个或者多个微波反馈腔内还可通过设置一个或多个金属材质的微波分散条21来进一步分散微波,如图6中所示,微波分散条的横截面呈锥形,本发明实施例中的微波分散条21具体是通过金属板围合形 成的三棱柱结构,微波分散条21的一条棱边朝上,与该棱边相对的棱柱侧面朝向微波出口设置,微波分散条21的作用在于将微波尽量均匀分散至微波反馈腔的两边,从而进一步提高微波加热的均匀性;
该种微波分散条通过固定式结构实现了对微波的打散,相比于目前的转动打散微波方式而言,由于不涉及动力输入轴的穿入,因此其不会导致微波泄露。
本发明实施例所对应的附图中,微波罩8的内腔被一块分隔板20分隔为两个微波反馈腔,并且每一个微波反馈腔内均设置有一个微波分散条21。
请同时参考图5和图6,每一个分支管18均通过喇叭口状的馈口与微波罩8的顶部相连,微波导管11包括沿竖直方向布置的纵向管和分别连接在纵向管的两端且沿水平方向布置的第一横向管和第二横向管,功率分配器设置在第一横向管上,微波发生器12与第二横向管相连。
微波导管的弯折处均为90°弧形弯管,为了实现功率分配器与喇叭状馈口9的连接,功率分配器的两个分支管18上均设置有90°圆弧E面波导,如图5和图6中所示。
更进一步的,微波导管用于与微波罩相连的一端还设置有螺钉调配器19,微波导管用于与微波发生器相连的一端设置有防止微波回流的环形器13,具体的,螺钉调配器19可采用三螺钉调配器,通过三螺钉调配器调节驻波比(驻波比越小,微波入射功率越大,反射功率越小)后,微波反馈至两个喇叭状馈口9,然后由喇叭状馈口9将微波反射至微波反馈腔中,微波反馈腔中的微波分散条21可将喇叭状馈口9正下方的微波分散至两边,以保证微波分布的均匀性。
微波加热过程中,微波罩8和工作箱7所形成的整体内部可能会有气体产生,为了保持内部具有合适气压,本实施例中所公开的方案进一步设置了风机4以及与风机4相连的排气管路6,排气管路伸入至微波罩内,每一个微波反馈腔均与排气管路6相连,以便通过风机4将烘干过程中微波罩8内所产生的气体排走,同时微波罩上还开设有进风孔,以保证微波罩内的气压平衡,该进风孔的直径较小,在实现通风的同时有效避免微波的泄露,通常情况下,进风孔的直径根据微波频率不同可以选择合适的孔径,如频率为2450Hz时,孔径不大于4mm,频率为915Hz时,孔径不大于10mm。
对于本发明实施例中所针对的大尺寸砂型而言,其厚度通常达到500mm以上,甚至达到700mm。为了更好地实现砂型的固化干燥效果,根据大尺寸加热干燥的特点,经过反复研究,选择了波长和穿透性好的915MHZ微波,即微波发生器12所产生的微波为915MHZ微波。
本领域技术人员能够理解的是,能够对工作箱7进行升降的升降机构3的实现形式并非局限于一种,例如气缸机构、丝杠机构等均可实现对工作箱7进行升降,然而,由于工作箱7被升降机构3顶升之后,其顶部开口需要与微波罩8的微波出口严密配合,以避免微波的泄漏,因此工作箱7各个位置的同步提升是需要重点关注的问题。
为此,本实施例中所公开的升降机构3包括支撑架1、举升电机15、减速器14以及举升丝杠,如图8-13所示,支撑架1具体呈矩形,由型材焊接而成,举升电机15固定设置在支撑架1的顶部,丝杠举升机具体包括四个,四个丝杠举升机分别固定设置在支撑架1顶部上的四角部位,减速器14包括一级减速器和二级减速器,一级减速器和二级减速器均为双输出轴减速器,一级减速器位于支撑架1顶部的中心,二级减速器对称分布在一级减速器的两侧,一级减速器的输入轴与举升电机15的输出轴相连,一级减速器的两个输出轴分别与两个二级减速器的输入轴相连,任意一个二级减速器的两个输出轴分别与两个丝杠举升机相连。
更为具体的,支撑架1的顶部四角部分设置有丝杠举升机安装部25,支撑架1的中心位置设置有供一级减速器安装的中间减速器安装部26,中间减速器安装部26的两侧对称设置有两个减速器安装部26,以用于二级减速器的安装,靠近中间减速器安装部26位置设置有举升电机15安装部,举升电机15、丝杠举升机以及减速器14均通过螺栓安装在支撑架1的顶部,从举升电机15的输出轴所输出的动力经过一级减速器,并通过一级减速器传递至二级减速器,最终通过二级减速器将动力传递至位于四角部位的丝杠举升机,实现四角部位的同步举升,保证工作箱7与微波罩8之间的精确配合,需要说明的是,任何需要刚性连接的两个轴之间均可通过联轴器29连接。
请参考图9,在支撑架1底部还设置有支脚24,支脚24与地面直接接触,为了进一步实现整个支撑架1高度的调整,本实施例中所公开的微波加热干燥 设备中的支脚24上还设置有调节支撑架1高度的高度调节孔,通常情况下,高度调节孔可设置有多个,通过不同的高度调节孔与支撑架1相连,可以实现支撑架1自身离地高度的调节。
输送辊道5整体安装在丝杠举升机上,其包括辊道动力机构和辊道机构,辊道动力机构如图12所示,包括辊道构架和转动设置在辊道构架两侧上的输送辊本体44,辊道构架固定设置在丝杠举升机上,并且每一个输送辊本体44的外端均设置有输入链轮40,如图13所示;辊道动力机构如图11所示,其包括动力支撑构架、动力电机23、动力减速器30以及动力输出轴31,动力支撑构架固定安装在辊道构架的顶部,并且动力电机23与动力减速器30相连,动力减速器30的输出轴与动力输出轴31相连,动力输出轴31的两端分别设置有第一输出链轮32和第二输出链轮33,第一输出链轮32用于为辊道构架一侧的输送辊本体44的输入链轮40提供动力,第二输出链轮33用于为辊道构架另外一侧的输送辊本体44的输入链轮40提供动力。
请参考图13,输送辊本体44通过连接键安装在辊子轴45上,辊子轴45通过安装在轴承套43内的球轴承42以及挡圈41实现周向和轴向限位,输入链轮40与辊子轴45也为键连接,并且辊子轴45的端部还通过螺栓连接有一用于防止输入链轮40脱出的轴盖板39。
更进一步的,辊道构架上还设置有举升到位传感器,下降到位传感器以及工作箱前进到位传感器,以便使工作箱与微波罩实现精确定位。
如图12中所示,辊道构架由相对设置的两根横杆36和将两根横杆36连为一体的连接杆37构成,为了提高安全性,靠近横杆36的位置还设置有将链轮罩住的链轮罩35;进一步的,辊道构架的入口端还设置有用于调整工作箱7进入输送辊道5方向的导向轮38,辊道构架的终止端还设置有防止工作箱7掉落的阻挡杆34。
微波泄漏会对人体造成伤害,尽管采用多种措施对微波泄漏进行技术屏蔽,但是微波泄漏由于种种因素依然无法完全消除,因此目前的实际生产过程中,工作人员需要间隔一定的时间通过手持式微波测漏仪进行微波泄漏量检测,但是该种方式不仅不能够实时发现微波泄漏,而且容易对工作人员的健康带来威胁。
为此,本实施例中所公开的微波加热干燥设备中,还包括用于检测微波泄漏量的微波测漏仪,以及与微波测漏仪相连且用于控制微波加热干燥设备启动的第一控制器,在微波泄漏仪检测到的微波泄漏量超过停机预设值时,第一控制器控制微波加热干燥设备停机。
控制器可采用PLC控制器,微波泄漏仪可以与PLC控制器进行串口数据通讯。
通过该种方式实现了微波泄漏的实时监测,并且在微波泄漏量达到停机预设值(国家标准为5mw/cm 2)时,控制设备停机,以避免大量微波泄漏而对人员以及设备所造成的影响。
进一步的优化上述实施例中的技术方案,本实施例中还设置了提醒预设值,提醒预设值应当小于停机预设值,当微波泄漏仪所检测到的微波泄漏量超过提醒预设值时,第一控制器控制微波泄漏提醒装置进行提醒,提醒可通过声光信号实现,当工作人员收到提醒后,可及时对相关密封部位进行检查,必要情况下可对密封件进行更换。
该提醒预设值可根据长时间检测该微波加热干燥设备得出的经验值,例如正常情况下该微波加热干燥设备的微波泄露量为小于1mw/cm 2,则可将提醒预设值设置为稍大于该正常值的其他数值即可,例如1.2mw/cm 2
更进一步的,本实施例中还包括用于控制微波固化设备启停或者报警的第二控制器,当然,该第二控制器可以与上述实施例中的第一控制器为同一个控制器,也可为不同的控制器,微波导管用于与微波罩相连的一端还设置有双定向耦合器,双定向耦合器用于检测微波的反射功率值,在反射功率值达到预设反射功率值时,控制器控制微波固化设备停机以便检查,或者控制微波固化设备报警,以提醒操作人员检查。
除此之外,本发明中还公开了一种采用上述微波加热干燥设备而实现的微波加热干燥方法,该微波加热干燥方法包括加热固化和冷却放置,其中,加热固化包括:将盛装在工作箱7内的砂型分n个加热阶段进行微波加热,其中,n为正整数,且n≥2,每一个加热阶段中均包括多个加热脉冲,同一个加热阶段中每一个加热脉冲的加热功率均相等,P i代表第i个加热阶段中的加热脉冲的加热功率,则有P i+1<P i,其中,i≤n-1;所述放置冷却包括:关闭所述微 波烘干机构,并将所述工作箱7放置8~24小时。
该方法的核心在于,在同一个加热阶段中的各个脉冲加热功率相等,而在相邻的两个加热阶段中,在后加热阶段中的加热功率小于在先加热阶段中的加热功率,也就是说采用逐渐降低加热功率的方式进行加热干燥,该种方式的优势在于,初期大功率加热固化可以迅速使处于低温状态的砂型升温,当砂型温度较高后,砂型本身的高温可以迅速向内扩散,保证各个位置的砂子尽快固化,与此同时,逐步降低加热功率以防止过烧;经过实验,该种方式加热干燥效果好,几乎没有过烧,砂型也没有开裂现象,并且相比传统整个加热周期功率不变的方式而言,该种方式可以显著缩短加热干燥周期,提高生产效率。
进一步的,在同一个加热阶段中,任意一个加热脉冲的加热时间均相等
需要进行说明的是,砂型体积的不同,其所需要的总热量不同,因此实际生产过程中需要根据砂型体积的变化,灵活调整加热阶段的数量,以及每个加热阶段中加热脉冲的加热功率、加热时间和脉冲次数。
任意相邻两个加热阶段中所包含的加热脉冲的数量可以相等也可以不相等,任意两个加热阶段中,相邻两个加热脉冲的间隔时间可以相等也可以不相等。
以2200mm*1500mm*700mm的砂型3D打印工作箱7为例,工作箱7体积V=2.31m 3,首先,将3D打印完毕的工作箱7放置在微波固化设备中,开启微波烘干机构开始加热干燥,微波固化工艺如下:
第一阶段:功率P 1=90KW,T 1=5min,t 1=1min,m 1=10;
第二阶段:功率P 2=60KW,T 2=5min,t 2=1min,m 2=5;
第三阶段:功率P 3=30KW,T 3=5min,t 3=1min,m 3=5;
按照以上微波固化步骤加热,结束后将工作箱7放置冷却24小时后进行清箱取出合格的砂型,此时工作箱7内砂型温度约50℃左右。
其中,T代表加热时间,t代表间歇时间,m代表脉冲循环次数。
以上对本发明所提供的微波加热干燥设备及微波加热干燥方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本 发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (20)

  1. 一种微波加热干燥设备,包括升降机构(3)以及微波烘干机构,其特征在于,还包括用于盛装物料且顶部为开口结构的工作箱(7),以及用于将所述工作箱(7)输送至所述升降机构(3)的输送辊道(5),其中,
    所述微波烘干机构具有微波发生器(12)、微波罩(8)和连接所述微波发生器(12)与所述微波罩(8)的微波导管(11),所述微波罩(8)的下部为微波出口;
    所述输送辊道(5)设置在所述升降机构(3)上,并能够跟随所述升降机构(3)进行上下运动;
    所述升降机构(3)设置在所述微波罩(8)的下方,其用于将装载有物料的所述工作箱(7)顶升,以使所述工作箱(7)顶部的开口与所述微波出口接触,并且所述工作箱(7)顶部的开口与所述微波出口之间设置有防止微波泄漏的第一密封结构。
  2. 根据权利要求1所述的微波加热干燥设备,其特征在于,所述第一密封结构包括端面密封和侧围密封,其中,
    所述微波罩(8)的内部设置有钢丝密封刷(16)和弹性屏蔽网(17),所述工作箱(7)的顶部外围设置有抵紧件,在所述升降机构(3)的顶升作用下,所述工作箱(7)的顶部端面与所述弹性屏蔽网(17)压紧并构成所述端面密封;所述抵紧件与所述钢丝密封刷(16)挤紧并构成所述侧围密封。
  3. 根据权利要求2所述的微波加热干燥设备,其特征在于,所述抵紧件设置有用于与所述钢丝密封刷(16)挤紧接触的楔形挤紧面。
  4. 根据权利要求2所述的微波加热干燥设备,其特征在于,还包括位于所述微波罩(8)内,并沿所述微波罩(8)的周向环绕设置的微波吸收管(10),所述微波吸收管(10)内循环流动有能够吸收微波的液体,且所述微波吸收管(10)靠近所述第一密封结构设置,以吸收由所述第一密封结构处所泄漏的微波。
  5. 根据权利要求1所述的微波加热干燥设备,其特征在于,所述工作箱(7)内设置有与所述工作箱(7)的内腔形状适配的浮动板(22),且所述浮 动板(22)用于承载待固化的物料,所述工作箱(7)的侧板与底板所形成的接合缝处布设有弹性屏蔽网(17),在所述浮动板(22)的压力作用下,所述弹性屏蔽网(17)产生形变并将所述浮动板(22)与所述工作箱(7)之间的缝隙密封。
  6. 根据权利要求1所述的微波加热干燥设备,其特征在于,所述微波罩内还设置有一个或多个金属材质的微波分散条(21),所述微波分散条(21)的两端分别连接在所述微波罩相对的两个侧面上,且所述微波分散条的横截面为锥状,所述微波分散条的尖端朝向所述微波罩的顶部设置。
  7. 根据权利要求6所述的微波加热干燥设备,其特征在于,所述微波罩(8)的内腔由分隔板(20)分隔为多个微波反馈腔,每一个所述微波反馈腔内设置有一个或多个所述微波分散条(21),所述微波罩(8)与所述微波导管(11)通过功率分配器相连,所述功率分配器的一端为与所述微波导管(11)相连的总管,另一端为与所述微波反馈腔一一对应的分支管(18),任意一分支管(18)均连接在所述微波罩(8)的顶部,并与自身对应的所述微波反馈腔连通。
  8. 根据权利要求7所述的微波加热干燥设备,其特征在于,每一个所述分支管(18)均通过喇叭状馈口(9)与所述微波罩(8)的顶部相连。
  9. 根据权利要求1所述的微波加热干燥设备,其特征在于,所述微波导管用于与所述微波发生器相连的一端设置有防止微波回流的环形器,用于与所述微波罩相连的一端设置有用于降低微波反射量的螺钉调配器(19)。
  10. 根据权利要求1所述的微波加热干燥设备,其特征在于,还包括风机(4)以及与所述风机(4)相连的排气管路(6),所述排气管路通入所述微波罩内,以将微波烘干过程中所述微波罩(8)内所产生的气体排走,所述微波罩上还开设有进风孔,以保证所述微波罩内的气压平衡。
  11. 根据权利要求1所述的微波加热干燥设备,其特征在于,所述升降机构(3)包括支撑架(1)、举升电机(15)、减速器(14)以及丝杠举升机(28),其中,
    所述支撑架(1)呈矩形,所述举升电机(15)固定设置在所述支撑架(1)的顶部;
    所述丝杠举升机(28)包括四个,且四个所述丝杠举升机(28)分别固定设置在所述支撑架(1)顶部上的四角部位;
    所述减速器(14)包括一级减速器和二级减速器,所述一级减速器和所述二级减速器均为双输出轴减速器,所述一级减速器位于所述支撑架(1)顶部的中心,所述二级减速器对称分布在所述一级减速器的两侧,所述一级减速器的输入轴与所述举升电机(15)的输出轴相连,所述一级减速器的两个输出轴分别与两个所述二级减速器的输入轴相连,任意一所述二级减速器的两个输出轴分别与两个所述丝杠举升机(28)相连。
  12. 根据权利要求11所述的微波加热干燥设备,其特征在于,还包括通过螺栓连接在所述支撑架(1)底部的支脚(24),所述支脚(24)上还设置有调节所述支撑架(1)高度的高度调节孔。
  13. 根据权利要求11所述的微波加热干燥设备,其特征在于,所述输送辊道(5)包括辊道动力机构和辊道机构,其中,
    所述辊道机构包括辊道构架和转动设置在所述辊道构架两侧上的输送辊本体,所述辊道构架固定设置在所述丝杠举升机(28)上,且每一个所述输送辊本体的外端均设置有输入链轮(40);
    所述辊道动力机构包括动力支撑构架、动力电机(23)、动力减速器(30)及动力输出轴(31),所述动力支撑构架固定安装在所述辊道构架的底部,所述动力电机(23)与所述动力减速器(30)相连,所述动力减速器(30)的输出轴与所述动力输出轴(31)相连,所述动力输出轴(31)的两端分别设置有第一输出链轮(32)和第二输出链轮(33),所述第一输出链轮(32)用于为所述辊道构架一侧的所述输送辊本体的输入链轮(40)提供动力,所述第二输出链轮(33)用于为所述辊道构架另外一侧的所述输送辊本体的输入链轮(40)提供动力。
  14. 根据权利要求13所述的微波加热干燥设备,其特征在于,所述辊道构架上还设置有举升到位传感器、下降到位传感器以及前进到位传感器,以使所述工作箱(7)与所述微波罩(8)实现精确定位。
  15. 根据权利要求13所述的微波加热干燥设备,其特征在于,所述辊道构架的入口端还设置有用于调整所述工作箱(7)进入所述输送辊道(5)方向 的导向轮(38),所述辊道构架的终止端还设置有防止所述工作箱(7)掉落的阻挡杆(34)。
  16. 根据权利要求1-15任意一项所述的微波加热干燥设备,其特征在于,还包括用于检测微波泄漏量的微波测漏仪,以及与所述微波测漏仪相连且用于控制所述微波加热干燥设备启停的第一控制器,在所述微波测漏仪所检测到的微波泄漏量超过停机预设值时,所述第一控制器控制所述微波加热干燥设备停机。
  17. 根据权利要求16所述的微波加热干燥设备,其特征在于,还包括与所述控制器相连的微波泄漏提醒装置,且在所述微波泄漏仪所检测到的微波泄漏量超过提醒预设值时,所述第一控制器控制所述微波泄漏提醒装置进行提醒,其中,所述提醒预设值小于所述停机预设值。
  18. 根据权利要求1-15、17所述的微波加热干燥设备,其特征在于,还包括用于控制所述微波固化设备启停或报警的第二控制器,所述微波导管用于与所述微波罩相连的一端还设置有双定向耦合器,所述双定向耦合器用于检测微波的反射功率值,且在所述反射功率值达到预设反射功率值时,所述第二控制器控制所述微波固化设备停机或者报警。
  19. 一种微波加热干燥方法,其特征在于,采用如权利要求1-18任意一项所述的微波加热干燥设备,且所述微波加热干燥方法包括加热固化,其中,所述加热固化包括:
    将盛装在所述工作箱(7)内的物料分n个加热阶段进行微波加热,其中,n≥2,每一个所述加热阶段中均包括多个加热脉冲,在同一个所述加热阶段中,任意一个所述加热脉冲的加热功率均相等,P i代表第i个加热阶段中的加热脉冲的加热功率,则有P i+1<P i,其中,i≤n-1。
  20. 根据权利要求19所述的微波加热干燥方法,其特征在于,在同一个加热阶段中,任意一个所述加热脉冲的加热时间均相等;和/或T i代表第i个加热阶段中的加热脉冲的加热时间,则有T i+1=T i,其中,i≤n-1;和/或任意两个所述加热阶段中所包含的所述加热脉冲的数量相等或不等;和/或任意两个所述加热阶段中,相邻两个所述加热脉冲的间隔时间相等或不等。
PCT/CN2019/123240 2018-12-05 2019-12-05 一种微波加热干燥设备及微波加热干燥方法 WO2020114446A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201822034553.5 2018-12-05
CN201811482711.1A CN109556359A (zh) 2018-12-05 2018-12-05 一种微波加热干燥设备及微波加热干燥方法
CN201811482711.1 2018-12-05
CN201822034553.5U CN209495514U (zh) 2018-12-05 2018-12-05 一种微波加热干燥设备

Publications (1)

Publication Number Publication Date
WO2020114446A1 true WO2020114446A1 (zh) 2020-06-11

Family

ID=70973732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123240 WO2020114446A1 (zh) 2018-12-05 2019-12-05 一种微波加热干燥设备及微波加热干燥方法

Country Status (1)

Country Link
WO (1) WO2020114446A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297479B1 (en) * 1998-02-04 2001-10-02 Michael Wefers Method and apparatus for drying or heat-treating products
CN201078730Y (zh) * 2007-04-16 2008-06-25 沈炳红 一种微波自动烘干设备
CN102711302A (zh) * 2012-03-06 2012-10-03 广州聚天化工科技有限公司 微波加热系统及微波加热方法
CN108007096A (zh) * 2017-11-14 2018-05-08 宁夏共享机床辅机有限公司 一种顶升式砂芯微波烘干设备
CN109556359A (zh) * 2018-12-05 2019-04-02 共享智能铸造产业创新中心有限公司 一种微波加热干燥设备及微波加热干燥方法
CN209495514U (zh) * 2018-12-05 2019-10-15 共享智能铸造产业创新中心有限公司 一种微波加热干燥设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297479B1 (en) * 1998-02-04 2001-10-02 Michael Wefers Method and apparatus for drying or heat-treating products
CN201078730Y (zh) * 2007-04-16 2008-06-25 沈炳红 一种微波自动烘干设备
CN102711302A (zh) * 2012-03-06 2012-10-03 广州聚天化工科技有限公司 微波加热系统及微波加热方法
CN108007096A (zh) * 2017-11-14 2018-05-08 宁夏共享机床辅机有限公司 一种顶升式砂芯微波烘干设备
CN109556359A (zh) * 2018-12-05 2019-04-02 共享智能铸造产业创新中心有限公司 一种微波加热干燥设备及微波加热干燥方法
CN209495514U (zh) * 2018-12-05 2019-10-15 共享智能铸造产业创新中心有限公司 一种微波加热干燥设备

Similar Documents

Publication Publication Date Title
CN109556359A (zh) 一种微波加热干燥设备及微波加热干燥方法
CN206131636U (zh) 一种砂芯烘干设备
WO2020114446A1 (zh) 一种微波加热干燥设备及微波加热干燥方法
CN209147692U (zh) 一种微波活性炭粉干燥设备
CN209495514U (zh) 一种微波加热干燥设备
WO2020151146A1 (zh) 一种连续式液态物料微波处理设备
CN212124089U (zh) 一种注塑件冷却装置
CN203194492U (zh) 一种粉状物料连续式灭菌干燥冷却系统
CN210758379U (zh) 混凝土构件养护装置及混凝土构件生产系统
CN210718597U (zh) 真空无氧固化炉
CN208317046U (zh) 一种大功率工业化微波解冻设备
CN112117055B (zh) 一种交联电缆紫外光辐照设备
CN213766299U (zh) 一种应用于中纤板预加热的微波设备
CN210061532U (zh) 一种耐火砖用多段切割设备
CN112156503A (zh) 基于循环液体自动脱气技术的壁流式真空脱气系统
CN208765433U (zh) 一种大尺寸砂芯烘干设备
CN207862194U (zh) 一种纳米镀膜生产流水线
CN217600385U (zh) 一种箱式硅胶活化机
CN206521395U (zh) 热弯机
CN213153860U (zh) 一种粉条冷却输送装置
CN110560512A (zh) 一种具有安全防护功能的机械自动化压平设备
CN208303166U (zh) Uv漆烘干机
CN218973185U (zh) 分段恒温烤箱
CN207655145U (zh) 咯菌腈杀菌剂生产用反应釜
CN214206272U (zh) 配电自动化设备电气自动化检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891770

Country of ref document: EP

Kind code of ref document: A1