WO2020114284A1 - 一种半纤维素连续水解制备木糖液的系统及其方法 - Google Patents
一种半纤维素连续水解制备木糖液的系统及其方法 Download PDFInfo
- Publication number
- WO2020114284A1 WO2020114284A1 PCT/CN2019/121084 CN2019121084W WO2020114284A1 WO 2020114284 A1 WO2020114284 A1 WO 2020114284A1 CN 2019121084 W CN2019121084 W CN 2019121084W WO 2020114284 A1 WO2020114284 A1 WO 2020114284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hemicellulose
- liquid
- acid
- sulfuric acid
- discharge
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K13/00—Sugars not otherwise provided for in this class
- C13K13/002—Xylose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/0066—Stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0086—Processes carried out with a view to control or to change the pH-value; Applications of buffer salts; Neutralisation reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00164—Controlling or regulating processes controlling the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00177—Controlling or regulating processes controlling the pH
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2469—Feeding means
- B01J2219/247—Feeding means for the reactants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2201/00—Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
Definitions
- the invention belongs to the technical field of xylose produced by biomass acid hydrolysis, and particularly relates to a system and a method for preparing xylose liquid by continuous hydrolysis of hemicellulose.
- the domestic method for producing xylose is mainly to obtain xylose liquid by dilute acid hydrolysis of corn cob.
- This method generally uses a kettle batch hydrolysis reaction.
- the batch hydrolysis method has many shortcomings: 1. The operation of the reaction input and output is complicated; 2. It is not environmentally friendly. The energy consumption is large. After the hydrolysis is completed, the heat energy discharged from the kettle cannot be used well, and the energy waste is large. Since the main raw material for domestic xylose production is corn cob, the residue generated during the hydrolysis process is more, causing blockage of equipment and pipelines. At present, there is no good continuous hydrolysis equipment.
- the technical problem to be solved by the present invention is to provide a system and method for continuous hydrolysis of hemicellulose to prepare xylose liquid, which has a high degree of automation and can achieve continuous automatic adjustment of acidity, continuous feeding and discharging, and continuous heat exchange between feeding and discharging .
- the purpose of continuous production can be achieved, which is very suitable for large-scale industrial production.
- the present invention is achieved in this way, providing a system for continuous hydrolysis of hemicellulose to prepare xylose liquid, including a neutralization unit, an acid adjustment unit, a feed unit, a liquefaction injection unit, a feed-in and heat-exchanging unit, and a feed-out control unit,
- the neutralization unit includes a raw material tank, a neutralization concentrated sulfuric acid pump, and a neutralization pipeline mixer.
- the acid adjustment unit includes an acid adjustment concentrated sulfuric acid pump, an acid adjustment pipeline mixer, and an acid adjustment tank.
- the feed unit includes an inlet For the feed tank, the liquefaction injection unit includes a liquefaction injector and a liquefaction maintainer, the inlet and outlet heat exchange unit includes an inlet and outlet plate heat exchanger and a first outlet temperature sensor, and the outlet control unit includes an outlet valve and Reflux valve;
- the raw material tank is used to store hemicellulose lye
- the neutralization pipeline mixer is used to neutralize hemicellulose lye and concentrated sulfuric acid from the neutralized concentrated sulfuric acid pump to obtain hemicellulose Liquid raw material
- the acid-adjusting pipeline mixer is used to mix hemicellulose liquid raw material with concentrated sulfuric acid from acid-adjusting concentrated sulfuric acid pump to obtain hemicellulose liquid
- the acid-adjusting tank collects the mixed hemicellulose liquid.
- the feed tank receives the hemicellulose liquid overflowing from the acid adjustment tank, and the inlet and outlet plate heat exchanger is used for heat exchange between the acid-modified hemicellulose liquid feed and the xylose liquid obtained by hydrolysis.
- the liquefaction injector is used to fully mix the heat-exchanged hemicellulose liquid and external high-pressure steam and spray them into the liquefaction maintainer.
- the liquefaction maintainer is used to hydrolyze the hemicellulose liquid and water vapor at a high temperature.
- the first discharge temperature sensor is used to sense the temperature of the xylose liquid obtained by hydrolysis.
- the first discharge temperature sensor is interlocked with the discharge valve and the return valve to control the flow direction of the xylose liquid obtained by hydrolysis.
- the discharge valve of the discharge control unit opens, the return valve closes, and the xylose liquid is discharged normally, otherwise the return valve opens and discharges The valve is closed and the xylose liquid is returned to the feed tank for recycling.
- the neutralization unit further includes a raw material on-off valve, a material pump, a neutralized sulfuric acid on-off valve, a neutralized sulfuric acid flow controller and a neutralized pH controller.
- the raw material on-off valve is used to control the semi-fiber in the raw material tank The outflow or shutdown of the alkaline liquid
- the neutralized sulfuric acid on-off valve is used to control the on-off of the output pipeline of the neutralized concentrated sulfuric acid pump
- the neutralized sulfuric acid flow controller is used to control the concentration of concentrated sulfuric acid in the output pipeline of the concentrated concentrated sulfuric acid pump
- the material pump is used to transfer the neutralized hemicellulose liquid raw material to the acid adjustment unit
- the neutralized pH controller is used to control the acidity pH value of the mixed hemicellulose liquid raw material.
- the acid adjustment unit further includes a material flow controller and an acid adjustment sulfuric acid flow controller, the material flow controller is used to control the flow of hemicellulose liquid raw material flowing through, and the acid adjustment sulfuric acid flow controller is used Control the flow of concentrated sulfuric acid in the pipeline of acid-adjusted concentrated sulfuric acid pump.
- the material flow controller and the acid-adjusted sulfuric acid flow controller are linked to adjust the pumping of acid-adjusted concentrated sulfuric acid pump according to the flow rate of hemicellulose liquid raw material. Amount, so that the acidity of the raw material of hemicellulose liquid meets the set value.
- the feed unit further includes a feed pump and a feed valve switch
- the feed pump is used to transport the hemicellulose liquid in the feed tank to the feed and heat exchange unit
- the feed valve switch It is used to control the on-off of the feed pump delivery pipeline.
- the liquefaction spraying unit further includes a liquefaction temperature controller and a temperature regulating valve.
- the liquefaction temperature controller is used to control the temperature of the hemicellulose liquid entering the liquefaction maintainer.
- the liquefaction temperature controller is linked to the temperature regulating valve.
- the temperature regulating valve is used to control the opening of the liquefaction injector, keep the temperature of the liquefaction maintainer stable, and facilitate the hydrolysis of hemicellulose liquid.
- the feed-in and feed-out heat exchange unit further includes a feed regulating valve that controls the flow rate of hemicellulose liquid in the pipeline.
- the discharge control unit further includes a discharge plate heat exchanger, a second discharge temperature controller and a discharge pressure regulating valve
- the discharge plate heat exchanger is used for cooling the xylose liquid flowing through Water exchanges heat to reduce the temperature of the xylose liquid.
- the second discharge temperature controller is used to control the temperature of the xylose liquid before discharge.
- the discharge pressure regulating valve is used to control the xylose liquid before discharge. pressure.
- the present invention is achieved in this way, and provides a method for preparing xylose solution by continuous hydrolysis of hemicellulose.
- the method utilizes the system for preparing xylose solution by continuous hydrolysis of hemicellulose as described above, including the following steps:
- Step 1 Neutralization process: when the hemicellulose lye stored in the raw material tank reaches 25% to 35%, open the raw material switch valve, and the hemicellulose lye enters the neutralization pipeline mixer through the raw material switch valve.
- the concentrated sulfuric acid pumped by the concentrated sulfuric acid pump also enters the neutralization pipeline mixer after passing through the neutralization sulfuric acid flow controller, and is mixed with the hemicellulose lye in the neutralization pipeline mixer for neutralization reaction.
- the neutralized sulfuric acid controller is interlocked, and the neutralized sulfuric acid controller is interlocked with the neutralized pH controller to control the amount of concentrated sulfuric acid pumped by the neutralized concentrated sulfuric acid pump, so that the neutralized hemicellulose liquid raw material pH value is stable at the set Fixed value 6.5 ⁇ 7.0;
- Step two acid adjustment process: the neutralized hemicellulose liquid raw material is transferred to the acid adjustment pipeline mixer of the acid adjustment unit through the material pump, and the concentrated sulfuric acid pumped by the acid adjustment concentrated sulfuric acid pump is also entered through the acid adjustment sulfuric acid controller
- the acid-adjusting pipeline mixer is mixed with the hemicellulose liquid raw material in the acid-adjusting pipeline mixer.
- the mixed hemicellulose liquid enters the acid-adjusting tank for temporary storage.
- the acid-adjusting sulfuric acid controller and the material flow controller are linked.
- the flow rate of the hemicellulose liquid raw material is used to adjust the pumping capacity of the acid-adjusted concentrated sulfuric acid pump, so that the acidity of the hemicellulose liquid raw material meets the set requirements: 1% to 4%;
- Step 3 Feeding process: The acid-adjusted hemicellulose liquid enters the feed tank of the feed unit from the acid tank through the overflow. When the feed tank liquid level reaches 25% to 35%, the feed is turned on Valve switch and feed pump, hemicellulose liquid enters the post-process;
- Step 4 Liquefaction spraying process: the hemicellulose liquid flowing through the inlet and outlet plate heat exchangers enters the liquefaction sprayer, and is mixed with the external high-pressure steam in the liquefaction sprayer and sprayed into the liquefaction maintainer, hemicellulose liquid and Water vapor is hydrolyzed in the liquefaction maintainer to obtain xylose liquid; the liquefaction temperature controller is linked with the temperature regulating valve, which controls the opening of the liquefaction injector, keeping the temperature of the liquefaction maintainer stable, Facilitate the hydrolysis of hemicellulose liquid; the hydrolysis time of hemicellulose liquid in the liquefaction maintainer is maintained at 2.0h ⁇ 3.0h;
- Step 5 Inlet and outfeed heat exchange process: The obtained xylose liquid undergoes heat exchange with the hemicellulose liquid from the feed pump through the infeed and outflow plate heat exchanger, and the temperature of the hemicellulose liquid is reduced, and the hemicellulose liquid uses the residual heat of the hemicellulose liquid
- the first discharge temperature sensor is interlocked with the discharge valve and the return valve of the discharge control unit.
- the discharge control The discharge valve of the unit is opened, the return valve is closed, and the xylose liquid is discharged normally, otherwise the return valve is opened and the discharge valve is closed, and the xylose liquid is returned to the feed tank for recycling;
- Step 6 Discharge control process: The xylose liquid after heat exchange enters the discharge plate heat exchanger and exchanges with the cooling water flowing through the discharge plate heat exchanger, its temperature is further reduced, and it flows through the discharge pressure regulating valve And after the second discharge temperature controller, the xylose liquid that meets the pressure and temperature setting conditions is discharged from the discharge valve.
- step four the induction temperature of the liquefaction temperature controller is set to 128°C ⁇ 130°C.
- step five the sensing temperature of the first discharge temperature sensor is set to 115°C to 120°C.
- the reflux valve is opened and the discharge valve is closed, and the xylose liquid is returned to the feed tank for recycling.
- step 6 the discharge temperature of the xylose liquid is stable at 60°C to 80°C, and the pressure range is: 0.20 MPa to 0.30 MPa.
- the system and method for preparing xylose liquid by continuous hydrolysis of hemicellulose of the present invention control the acidity of hemicellulose liquid material through an online pH monitor and a flow chain, and enter and exit through a plate heat exchanger
- the heat exchange of the material makes full use of the residual heat of the hydrolysate
- the opening of the liquefaction injector is controlled by the liquefaction temperature sensor to achieve the control of the hydrolysis temperature
- the pressure range of the hydrolysis process is ensured by the interlock of the discharge pressure
- the discharge of the xylose liquid is cooled by water Its discharge temperature satisfies the next process.
- the hemicellulose can be automatically controlled for continuous and stable hydrolysis.
- the equipment has high energy consumption utilization rate, convenient operation, and can achieve high efficiency and Controlled continuous production.
- FIG. 1 is a schematic diagram of a preferred embodiment of a system for preparing a xylose solution by continuous hydrolysis of hemicellulose according to the present invention.
- a preferred embodiment of the system for the continuous hydrolysis of hemicellulose to prepare xylose liquid of the present invention includes a neutralization unit 1, an acid adjustment unit 2, a feed unit 3, a liquefaction spray unit 4, an input and output feed exchange Thermal unit 5, discharge control unit 6.
- the neutralization unit 1 includes a raw material tank 11, a raw material on-off valve 12, a neutralized concentrated sulfuric acid pump 13, a neutralized sulfuric acid on-off valve 14, a neutralized sulfuric acid flow meter 15, a neutralized sulfuric acid flow controller 16, and a neutralized pipeline mixer 17.
- the raw material tank 11 is used to store hemicellulose lye.
- the neutralized concentrated sulfuric acid pump 13 is an inverter pump.
- the neutralization pipeline mixer 17 is used to neutralize the hemicellulose lye and concentrated sulfuric acid from the neutralized concentrated sulfuric acid pump 13 to obtain the raw material of hemicellulose liquid.
- the raw material on-off valve 12 is used to control the outflow or closing of the hemicellulose lye in the raw material tank 11.
- the neutralized sulfuric acid on-off valve 14 is used to control the on-off of the output pipeline of the neutralized sulfuric acid pump 13.
- the neutralized sulfuric acid flowmeter 15 and the neutralized sulfuric acid flow controller 16 are used to sense the flow of concentrated sulfuric acid in the output pipeline of the neutralized concentrated sulfuric acid pump 13.
- the material pump 18 is used to transfer the neutralized hemicellulose liquid raw material to the acid adjusting unit 2.
- the neutralization pH sensor 19 and the neutralization pH controller 110 are used to sense and control the acidity pH value of the mixed hemicellulose liquid raw material.
- the acid adjusting unit 2 includes an acid adjusting concentrated sulfuric acid pump 21, an acid adjusting pipeline mixer 22, an acid adjusting tank 23, a material flow meter 24, a material flow controller 25, an acid adjusting sulfuric acid flow meter 26 and an acid adjusting sulfuric acid flow controller 27.
- the acid-adjusted concentrated sulfuric acid pump 21 is a variable frequency pump.
- the acid adjusting pipeline mixer 22 is used to mix hemicellulose liquid raw materials with concentrated sulfuric acid from the acid adjusting concentrated sulfuric acid pump 21 to obtain hemicellulose liquid.
- the acid adjusting tank 23 collects the mixed hemicellulose liquid.
- the material flow meter 24 and the material flow controller 25 are used to sense and control the flow rate of the hemicellulose liquid raw material flowing through.
- the acid-adjusting sulfuric acid flowmeter 26 and the acid-adjusting sulfuric acid flow controller 27 are used to sense and control the flow of concentrated sulfuric acid in the pipeline of the acid-adjusting concentrated sulfuric acid pump 21.
- the material flow meter 24 and the material flow controller 25 are connected to the acid adjusting sulfuric acid flow meter 26 and the acid adjusting sulfuric acid flow controller 27, and the pump of the acid adjusting concentrated sulfuric acid pump 21 is adjusted according to the flow rate of the raw material of hemicellulose liquid
- the feed volume makes the acidity of the raw material of hemicellulose liquid meet the set value.
- the feeding unit 3 includes a feeding tank 31, a feeding pump 32 and a feeding valve switch 33.
- the feed tank 31 receives the hemicellulose liquid overflowing from the acid tank 23.
- the feed pump 32 is used to transfer the hemicellulose liquid in the feed tank 31 to the feed and heat exchange unit 5.
- the feed valve switch 33 is used to control the feeding pump 32 to turn on and off the pipeline.
- the liquefaction injection unit 4 includes a liquefaction injector 41, a liquefaction maintainer 42, a liquefaction temperature sensor 43, a liquefaction temperature controller 44, and a temperature regulating valve 45.
- the liquefaction injector 41 is used to fully mix the heat-exchanged hemicellulose liquid and external high-pressure steam and inject it into the liquefaction maintainer 42 together.
- the liquefaction temperature controller 43 is used to control the temperature of the hemicellulose liquid entering the liquefaction maintainer 42.
- the hemicellulose liquid flowing through the inlet and outlet plate heat exchanger 51 is mixed with the external high-pressure steam in the liquefaction injector 41 and injected into the liquefaction maintainer 42 together.
- the hemicellulose liquid and water vapor occur in the liquefaction maintainer 42 After the hydrolysis reaction, a xylose liquid is obtained.
- the liquefaction temperature sensor 43 and the liquefaction temperature controller 44 are linked with a temperature regulating valve 45, and the temperature regulating valve 45 is used to control the opening degree of the liquefaction injector 41, keeping the temperature of the liquefaction maintainer 42 stable, which is beneficial to the The cellulose liquid is hydrolyzed.
- the inlet and outlet heat exchange unit 5 includes an inlet and outlet plate heat exchanger 51, a first outlet temperature sensor 52, an inlet flow meter 53, and an inlet adjustment valve 54.
- the inlet and outlet plate heat exchanger 51 is used for heat exchange between the acid-modified hemicellulose liquid feed and the xylose liquid obtained by hydrolysis.
- the xylose liquid obtained from the liquefaction injection unit 4 exchanges heat with the hemicellulose liquid from the feed tank 31 in the inlet and outlet plate heat exchanger 51, so that the temperature of the xylose liquid is reduced, and the temperature of the hemicellulose liquid Rise. Simultaneous feed and discharge heat exchange can greatly reduce energy consumption.
- the first discharge temperature sensor 52 is used to sense the temperature of the xylose liquid obtained by hydrolysis.
- the feed flowmeter 53 is used to sense the flow rate of the hemicellulose liquid flowing from the feed pump 32.
- the feed flow meter 53 and the feed regulating valve 54 are linked with each other to control the flow rate of the hemicellulose liquid in the pipeline.
- the discharge temperature of the xylose liquid is a criterion for judging whether the hydrolysis is sufficient.
- the hydrolysis reaction of the hemicellulose liquid is considered to be insufficient, and it must be recycled.
- the discharge temperature of the xylose liquid reaches the set target value, the hydrolysis reaction of the hemicellulose liquid is sufficient.
- the system equipment of the present invention only needs a reflow process when it starts to start operation, and the system equipment normally discharges DC material.
- the discharge control unit 6 includes a discharge valve 61, a return valve 62, a discharge plate heat exchanger 63, a cooling water temperature regulating valve 64, a second discharge temperature sensor 65, a second discharge temperature controller 66, a discharge Material pressure sensor 67 and discharge pressure regulating valve 68.
- the first discharge temperature sensor 52 is interlocked with the discharge valve 61 and the return valve 62 and is used to control the flow direction of the xylose solution obtained by hydrolysis.
- the discharge valve 61 opens and the return valve 62 closes, and the xylose liquid is discharged normally, otherwise the return valve 62 opens and the discharge valve 61 is closed, and the xylose liquid is returned to the feed tank 31 for recycling.
- the discharge temperature of the xylose liquid is controlled to ensure that the hydrolysis reaction of the hemicellulose liquid is sufficient, and the conversion efficiency of the hemicellulose liquid is improved.
- the discharge plate heat exchanger 63 is used to exchange the xylose liquid flowing through the cooling water to reduce the temperature of the xylose liquid.
- the cooling water temperature adjustment valve 64 is used to adjust the temperature of the cooling water.
- the outlet temperature of the xylose liquid is cooled by water to make the outlet temperature satisfy the next step.
- the second discharge temperature sensor 65 and the second discharge temperature controller 66 are used to sense and control the temperature of the xylose liquid before discharge.
- the discharge pressure sensor 67 and the discharge pressure regulating valve 68 are used to sense and control the pressure of the xylose liquid before discharging.
- the invention also discloses a method for preparing xylose solution by continuous hydrolysis of hemicellulose.
- the method utilizes the system for preparing xylose solution by continuous hydrolysis of hemicellulose as described above, which includes the following steps:
- Step 1 Neutralization process: When the hemicellulose lye in the raw material tank 11 reaches 25% to 35%, open the raw material on-off valve 12, and the hemicellulose lye enters the neutralization pipeline mixer 17 through the raw material on-off valve 12, such as The arrow in the figure shows.
- the concentrated sulfuric acid pumped by the neutralized concentrated sulfuric acid pump 13 passes through the neutralized sulfuric acid on-off valve 14 and the neutralized sulfuric acid flow meter 15 and the neutralized sulfuric acid flow controller 16 and also enters the neutralized pipeline mixer 17 with the hemicellulose alkali
- the liquid undergoes a neutralization reaction in the neutralization pipe mixer 17.
- the neutralized hemicellulose liquid is sent to the acid adjusting unit 2 through the material pump 18.
- the material pump 18 has a frequency conversion function and can automatically adjust the flow rate according to the setting value of the neutralizing sulfuric acid flow meter 15.
- the neutralizing pH sensor 19 provided in the conveying pipeline senses the pH value of the hemicellulose liquid, and the neutralizing sulfuric acid flow meter 15 and the neutralizing sulfuric acid flow controller 16 regulate the neutralizing concentrated sulfuric acid pump through the neutralizing pH controller 110
- the concentrated sulfuric acid output of 13 stabilizes the pH value of the raw material of hemicellulose liquid after neutralization at the set value of 6.5 ⁇ 7.0.
- Step 2 acid adjustment process: the raw material of hemicellulose liquid enters the acid adjustment pipeline mixer 22, as shown by the arrow in the figure.
- the concentrated sulfuric acid pumped by the acid-adjusted concentrated sulfuric acid pump 21 also enters the acid-adjusted pipeline mixer 22 after passing through the acid-adjusted sulfuric acid flowmeter 26 and the acid-adjusted sulfuric acid flow controller 27, and is carried out with the hemicellulose liquid raw material in the acid-adjusted pipeline mixer 22 mixing.
- the mixed hemicellulose liquid enters the acid-adjusting tank 23 for temporary storage.
- the material flow meter 24 and the material flow controller 25 provided in the hemicellulose liquid raw material delivery pipeline are linked with the acid-adjusting sulfuric acid flow meter 26 and the acid-adjusting sulfuric acid flow controller 27, and the adjustment is adjusted according to the flow rate of the hemicellulose liquid raw material
- the pumping amount of the acid concentrated sulfuric acid pump 21 makes the acidity of the raw material of hemicellulose liquid meet the set requirements: 1% to 4%, and the hemicellulose liquid in the acid tank 23 enters the feeding unit 3 through the valve.
- Step 3 Feeding process: The acid-adjusted hemicellulose liquid enters the feed tank 31 of the feed unit 3 through the overflow tank 23 from the acid-adjusting tank 23, as shown by the arrows in the figure.
- the feed valve switch 33 and the feed pump 32 are turned on, and the hemicellulose liquid enters the feed and discharge heat exchange unit 5.
- Step 4 Liquefaction spraying process: the hemicellulose liquid flowing through the inlet and outlet plate heat exchanger 51 enters the liquefaction sprayer 41, and is mixed with the external high-pressure steam in the liquefaction sprayer 41 and sprayed together into the liquefaction maintainer 42, such as The arrow in the figure shows.
- the hemicellulose liquid and water vapor undergo a hydrolysis reaction in the liquefaction maintainer 42 to obtain a xylose liquid.
- the liquefaction temperature sensor 43 and the liquefaction temperature controller 44 are linked with a temperature regulating valve 45, which controls the opening of the liquefaction injector 41, keeps the temperature of the liquefaction maintainer 42 stable, and is beneficial to hemicellulose liquid Hydrolysis;
- the hydrolysis time of the hemicellulose liquid in the liquefaction maintainer 42 is maintained at 2.0h ⁇ 3.0h.
- the induction temperature of the liquefaction temperature controller 44 is set at 128°C to 130°C.
- Step 5 Inlet and outfeed heat exchange process: after the hemicellulose liquid from the infeed pump 32 passes through the infeed control valve 55 controlled by the infeed flow controller 54 and infeed flowmeter 53, it enters the infeed and outfeed plate heat exchanger 51 performs heat exchange with the high-temperature xylose liquid coming out of the liquefaction injection unit 4, and then enters the liquefaction injector 41 of the liquefaction injection unit 4, as shown by the arrows in the figure.
- the first discharge temperature sensor 52 is interlocked with the discharge valve 61 and the return valve 62 of the discharge control unit 6.
- the discharge control The discharge valve 61 of the unit 6 is opened, the return valve 62 is closed, and the xylose liquid is discharged normally, otherwise, the return valve 62 is opened and the discharge valve 61 is closed, and the xylose liquid is returned to the feed tank 31 for recycling.
- the sensing temperature of the first discharge temperature sensor 52 is set at 115°C ⁇ 120°C. When the temperature of the hydrolyzed xylose liquid is lower than 115°C, the reflux valve is opened and the discharge valve is closed, and the xylose liquid is returned to the feed Recycle in the tank.
- Step 6 Discharge control process: The xylose liquid after heat exchange enters the discharge plate heat exchanger 63 and exchanges heat with the cooling water flowing through the discharge plate heat exchanger 63, and its temperature is further reduced, as shown by the arrow in the figure Show. After flowing through the discharge pressure sensor 67, the discharge pressure regulating valve 68, the second discharge temperature sensor 65, and the second discharge temperature controller 66, the xylose liquid that meets the pressure and temperature setting conditions is discharged from the discharge valve Material, as shown by the arrow in the figure. The second discharge temperature controller 66 is linked with the cooling water temperature regulating valve 64 to control the cooling temperature of the xylose liquid.
- the discharge temperature of xylose liquid is stable at 60°C ⁇ 80°C, and the pressure range is: 0.20MPa ⁇ 0.30MPa.
- the system for preparing xylose liquid by the continuous hydrolysis of hemicellulose of the present invention controls the continuous feed and discharge of the feed of hemicellulose liquid and the discharge of xylose liquid, improves the production efficiency of hemicellulose liquid hydrolysis, and has a high degree of automation. Simplified worker operation.
- the feature of the method and equipment of the present invention is continuous hydrolysis.
- One of the advantages of this method over existing kettle-type intermittent hydrolysis is that it saves the operation time of feeding and discharging materials, thereby improving the hydrolysis efficiency (capacity).
- hemicellulose alkaline solution (alkali concentration 1.5%, hemicellulose concentration 8%, flow rate 6m 3 /h) for continuous hydrolysis to prepare xylose solution as an example.
- the neutralization end point of the pH sensor 19 in the neutralization process is set to pH7, and the flow rate of the concentrated sulfuric acid is controlled by the pH controller 110 to be 58L/h. Therefore, the frequency of the flow chain control to neutralize the concentrated sulfuric acid pump 13 is 36HZ .
- the hemicellulose lye is transported to the acid adjustment unit through the material pump 18.
- the flow rate of the material flow meter 24 of the hemicellulose liquid raw material in the acid adjustment process is 6 m 3 /h, and the flow rate of the acid flow control sulfuric acid flow meter 26 is 66 L/h, thereby controlling the frequency of the acid adjustment concentrated sulfuric acid pump 21 30HZ.
- the temperature of the discharge sensor of the first discharge temperature sensor 52 in the process of heat exchange between the inlet and the outlet is 118°C
- the flow rate of the inlet flow meter 53 is 6m 3 /h
- the inlet flow controller 54 controls the inlet adjustment
- the opening of the valve 55 is 60%.
- the temperature of the liquefaction temperature sensor 43 is set to 128°C in the liquefaction and injection process, and the liquefaction temperature controller 44 controls the temperature of the liquefaction injector 41 to obtain an opening of 70% to ensure that the temperature of the hemicellulose liquid is stabilized at At 128°C, it enters the liquefaction maintainer 42 for hydrolysis.
- the liquefaction maintainer 42 is designed with a volume capacity of 12m 3 for the cylinder body, to ensure that the time from feeding to discharging is maintained for 2h.
- the opening of the discharge pressure regulating valve 68 in the discharge control process is 40%, the pressure of the chain control discharge pressure sensor is 0.25MPa, and the second discharge temperature sensor 65 and the second discharge temperature controller
- the temperature sensor 66 controls the opening of the cooling water temperature regulating valve 64 by 60%, and stably controls the end temperature of the xylose liquid to ensure 60°C.
- the discharge valve 29 is opened when the temperature of the first discharge temperature sensor 52 reaches 115°C, and the return valve 28 is opened when the temperature is lower than 115°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Paper (AREA)
Abstract
一种半纤维素连续水解制备木糖液的系统及使用该系统的方法,包括中和单元、调酸单元、进料单元、液化喷射单元、进出料换热单元、出料控制单元。中和单元包括原料罐、中和浓硫酸泵、中和管道混合器,调酸单元包括调酸浓硫酸泵、调酸管道混合器和调酸罐,进料单元包括进料罐,液化喷射单元包括液化喷射器和液化维持器,进出料换热单元包括进出料板式换热器和第一出料温度传感器,出料控制单元包括出料阀和回流阀。制备的木糖液在进出料板式换热器中与半纤维素液进行换热,使得木糖液的温度降低,而半纤维素液的温度升高。
Description
本发明属于生物质酸解制木糖技术领域,具体涉及一种半纤维素连续水解制备木糖液的系统及其方法。
目前国内生产木糖的方法主要是稀酸水解玉米芯的得到木糖液,该法一般采用釜式间歇水解反应,间歇水解方法有诸多缺点:1、反应进出料操作复杂;2、不环保,能耗大,水解完成后釜内出料热能不能很好的利用,能源浪费大。由于国内木糖生产主要原料是玉米芯,水解过程中产生的残渣较多,造成设备及管道的堵塞,目前还没有很好的连续水解设备。
在以化学浆(木浆、棉浆、草浆芦苇浆等植物纤维素)为原料的粘胶纤维生产过程中,为确保生产过程中纤维素含量,采用碱液对纤维素处理(浸渍、压榨),使用碱液将半纤维素溶解分离。以上半纤维素碱液通过纳滤回收碱液,剩余的半纤维素液未得利用,造成资源浪费。
本发明所要解决的技术问题在于,提供一种半纤维素连续水解制备木糖液的系统及其方法,自动化程度高,可以达到连续自动化调节酸度,连续进料和出料,进出料连续换热。通过自动化程序调控,可以达到连续化生产的目的,非常适用于工业化大生产。
本发明是这样实现的,提供一种半纤维素连续水解制备木糖液的系统,包括中和单元、调酸单元、进料单元、液化喷射单元、进出料换热单元、出料控制单元,所述中和单元包括原料罐、中和浓硫酸泵、中和管道混合器,所述调酸单元包括调酸浓硫酸泵、调酸管道混合器和调酸罐,所述进料单元包括进料罐,所述液化喷射单元包括液化喷射器和液化维持器,所述进出料换热单元包括进出料板式换热器和第一出料温度传感器,所述出料控制单元包括出料阀和回流阀;所述原料罐用于存储半纤维素碱液,所述中和管道混合器用于将半纤维素碱液与从中和浓硫酸泵来的浓硫酸进行中和反应以得到的半纤维素液原料,所述调酸管道混合器用于将半纤维素液原料与从调酸浓硫酸泵来的浓硫酸混合得到半纤维素液,所述调酸罐收集混合后的半纤维素液,所述进料罐接收从调酸罐溢流的半纤维素液,所述进出料板式换热器用于调酸后的半纤维素液进料与水解得到的木糖液之间进行换热,所述液化喷射器用于将换热后的半纤维素液与外接的高压蒸汽充分混合并一同喷射进入液化维持器,所述液化维持器用于将半纤维素液和水蒸气在高温下发生水解反应后得到木糖液,第一出料温度传感器用于感应水解得到的木糖液的温度,第一出料温度传感器与出料阀和回流阀连锁,用于控制水解得到的木糖液的流向。当第一出料温度传感器感应到木糖液的温度不低于设定值时,出料控制单元的出料阀开启,回流阀关闭,木糖液正常出料,否则回流阀开启,出料阀关闭,木糖液回流到进料罐中进行再循环。
进一步地,所述中和单元还包括原料开关阀、物料泵、中和硫酸开关阀、中和硫酸流量控制器和中和pH控制器,所述原料开关阀用于控制原料罐中的半纤维素碱液的流出或关闭,所述中和硫酸开关阀用于控制中和浓硫酸泵输出管道的通断,所述中和硫酸流量控制器用于控制中和浓硫酸泵输出管道中浓硫酸的流量,所述物料泵用于将中和后的半纤维素液原料输送到调酸单元,所述中和pH控制器用于控制混合后的半纤维素液原料的酸度pH值。
进一步地,所述调酸单元还包括物料流量控制器和调酸硫酸流量控制器,所述物料流量控制器用于控制流经的半纤维素液原料的流量,所述调酸硫酸流量控制器用于控制调酸浓硫酸泵输送管道中浓硫酸的流量,所述物料流量控制器与调酸硫酸流量控制器之间实行联动,根据半纤维素液原料的流量来调节调酸浓硫酸泵的泵送量,使得半纤维素液原料的酸度符合设定值。
进一步地,所述进料单元还包括进料泵和进料阀开关,所述进料泵用于将进料罐中的半纤维素液输送到进出料换热单元,所述进料阀开关用于控制进料泵输送管道的通断。所述液化喷射单元还包括液化温度控制器和温度调节阀,所述液化温度控制器用于控制进入液化维持器的半纤维素液的温度,所述液化温度控制器与温度调节阀联动,所述温度调节阀用于对液化喷射器的开度进行控制,保持液化维持器的温度稳定,有利于半纤维素液水解。
进一步地,所述进出料换热单元还包括进料调节阀,所述进料调节阀控制管道中的半纤维素液的流量。
进一步地,所述出料控制单元还包括出料板式换热器、第二出料温度控制器和出料压力调节阀,所述出料板式换热器用于给流经的木糖液通过冷却水进行换热,降低木糖液温度,所述第二出料温度控制器用于控制出料前的木糖液的温度,所述出料压力调节阀用于控制出料前的木糖液的压力。
本发明是这样实现的,提供一种半纤维素连续水解制备木糖液的方法,该方法利用了如前所述的半纤维素连续水解制备木糖液的系统,包括如下步骤:
步骤一、中和工序:存储在原料罐中的半纤维素碱液达到25%~35%时,打开原料开关阀,半纤维素碱液通过原料开关阀进入中和管道混合器,所述中和浓硫酸泵泵送的浓硫酸经过中和硫酸流量控制器后也进入中和管道混合器,与半纤维素碱液在中和管道混合器中混合进行中和反应,中和浓硫酸泵与中和硫酸控制器联锁,中和硫酸控制器与中和pH控制器联锁,控制中和浓硫酸泵泵送的浓硫酸量,使中和后的半纤维素液原料pH值稳定在设定值6.5~7.0;
步骤二、调酸工序:中和后的半纤维素液原料通过物料泵输送到调酸单元的调酸管道混合器中,调酸浓硫酸泵泵送的浓硫酸经过调酸硫酸控制器也进入调酸管道混合器,与半纤维素液原料在调酸管道混合器进行混合,混合后的半纤维素液进入调酸罐中暂存,调酸硫酸控制器与物料流量控制器实行联动,根据半纤维素液原料的流量来调节调酸浓硫酸泵的泵送量,使得半纤维素液原料的酸度符合设定要求:1%~4%;
步骤三、进料工序:调酸后的半纤维素液通过溢流从调酸罐进入到进料单元的进料罐中,当进料罐液位达到25%~35%时,开启进料阀开关和进料泵,半纤维素液进入后工序;
步骤四、液化喷射工序:流经进出料板式换热器后的半纤维素液进入液化喷射器,与外接的高压蒸汽在液化喷射器中混合并一同喷射进入液化维持器,半纤维素液和水蒸气在液化维持器中发生水解反应后得到木糖液;液化温度控制器与温度调节阀联动,所述温度调节阀对液化喷射器的开度进行控制,保持液化维持器的温度稳定,有利于半纤维素液水解;半纤维素液在液化维持器中的水解时间维持在2.0h~3.0h;
步骤五、进出料换热工序:得到的木糖液经过进出料板式换热器与从进料泵来的半纤维素液进行换热后温度降低,而半纤维素液利用半纤维素液余热后温度升高,第一出料温度传感器与出料控制单元的出料阀和回流阀连锁,当第一出料温度传感器感应到木糖液的温度不低于设定值时,出料控制单元的出料阀开启,回流阀关闭,木糖液正常出料,否则回流阀开启出料阀关闭,木糖液回流到进料罐中进行再循环;
步骤六、出料控制工序:经过换热后的木糖液进入出料板式换热器与流经出料板式换热器的冷却水换热,其温度进一步降低,流经出料压力调节阀以及第二出料温度控制器后,符合压力和温度设定条件的木糖液从出料阀出料。
进一步地,在步骤四中,所述液化温度控制器的感应温度设定为128℃~130℃。
进一步地,在步骤五中,所述第一出料温度传感器感应温度设定为115℃~120℃。当水解后的木糖液的温度低于115℃时,回流阀开启出料阀关闭,木糖液回流到进料罐中进行再循环。
进一步地,在步骤六中,木糖液的出料温度稳定在60℃~80℃,压力范围为:0.20MPa~0.30MPa。
与现有技术相比,本发明的半纤维素连续水解制备木糖液的系统及其方法,通过在线pH监测仪及流量连锁控制半纤维素液物料酸度,通过进出料板式换热器进行进出料换热充分利用水解液余热,通过液化温度传感器控制液化喷射器的开度达到控制水解温度,通过出料压力联锁保证水解过程的压力范围,通过对木糖液的出料进行水冷却使其出料温度满足下一工序。而且,只需根据半纤维素液物料情况设定好参数,即可自动控制半纤维素进行连续、稳定的水解,同时,本系统的设备能耗利用率高,操作方便,可以实现高效、可控的连续生产。
图1为本发明的半纤维素连续水解制备木糖液的系统一较佳实施例的原理示意图。
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明半纤维素连续水解制备木糖液的系统的较佳实施例,包括中和单元1、调酸单元2、进料单元3、液化喷射单元4、进出料换热单元5、出料控制单元6。
所述中和单元1包括原料罐11、原料开关阀12、中和浓硫酸泵13、中和硫酸开关阀14、中和硫酸流量计15、中和硫酸流量控制器16、中和管道混合器17、物料泵18、中和pH传感器19和中和pH控制器110。所述原料罐11用于存储半纤维素碱液。所述中和浓硫酸泵13为变频泵。所述中和管道混合器17用于将半纤维素碱液与从中和浓硫酸泵13来的浓硫酸进行中和反应以得到的半纤维素液原料。所述原料开关阀12用于控制原料罐11中的半纤维素碱液的流出或关闭。所述中和硫酸开关阀14用于控制中和浓硫酸泵13输出管道的通断。所述中和硫酸流量计15和中和硫酸流量控制器16用于感应中和浓硫酸泵13输出管道中浓硫酸的流量。所述物料泵18用于将中和后的半纤维素液原料输送到调酸单元2。所述中和pH传感器19和中和pH控制器110用于感应和控制混合后的半纤维素液原料的酸度pH值。
所述调酸单元2包括调酸浓硫酸泵21、调酸管道混合器22、调酸罐23、物料流量计24、物料流量控制器25、调酸硫酸流量计26和调酸硫酸流量控制器27。所述调酸浓硫酸泵21为变频泵。所述调酸管道混合器22用于将半纤维素液原料与从调酸浓硫酸泵21来的浓硫酸混合得到半纤维素液。所述调酸罐23收集混合后的半纤维素液。所述物料流量计24和物料流量控制器25用于感应和控制流经的半纤维素液原料的流量。所述调酸硫酸流量计26和调酸硫酸流量控制器27用于感应和控制调酸浓硫酸泵21输送管道中浓硫酸的流量。所述物料流量计24和物料流量控制器25与调酸硫酸流量计26和调酸硫酸流量控制器27之间实行联动,根据半纤维素液原料的流量来调节调酸浓硫酸泵21的泵送量,使得半纤维素液原料的酸度符合设定值。
所述进料单元3包括进料罐31、进料泵32和进料阀开关33。所述进料罐31接收从调酸罐23溢流的半纤维素液。所述进料泵32用于将进料罐31中的半纤维素液输送到进出料换热单元5。所述进料阀开关33用于控制进料泵32输送管道的通断。
所述液化喷射单元4包括液化喷射器41、液化维持器42、液化温度传感器43、液化温度控制器44和温度调节阀45。所述液化喷射器41用于将换热后的半纤维素液与外接的高压蒸汽充分混合并一同喷射进入液化维持器42。所述液化温度控制器43用于控制进入液化维持器42的半纤维素液的温度。流经进出料板式换热器51后的半纤维素液与外接的高压蒸汽在液化喷射器41中混合并一同喷射进入液化维持器42,半纤维素液和水蒸气在液化维持器42中发生水解反应后得到木糖液。所述液化温度传感器43和液化温度控制器44与温度调节阀45联动,所述温度调节阀45用于对液化喷射器41的开度进行控制,保持液化维持器42的温度稳定,有利于半纤维素液水解。
所述进出料换热单元5包括进出料板式换热器51、第一出料温度传感器52、进料流量计53和进料调节阀54。所述进出料板式换热器51用于调酸后的半纤维素液进料与水解得到的木糖液之间进行换热。从液化喷射单元4得到的木糖液在进出料板式换热器51中与从进料罐31来的半纤维素液进行换热,使得木糖液的温度降低,而半纤维素液的温度升高。同时进料和出料换热,能够大大降低能耗。第一出料温度传感器52用于感应水解得到的木糖液的温度。所述进料流量计53用于对流经的从进料泵32来的半纤维素液的流量进行感应。所述进料流量计53与进料调节阀54相互联动,控制管道中的半纤维素液的流量。
木糖液的出料温度是判定其水解是否充分的标准,出料温度未达到设定目标值时被认为半纤维素液的水解反应不充分,必须回流再循环。木糖液的出料温度达到设定目标值时,半纤维素液的水解反应才充分。一般地,本发明的系统设备只有在刚开始开车启动运行时才需要回流过程,系统设备正常运行时都是直流出料。
所述出料控制单元6包括出料阀61、回流阀62、出料板式换热器63、冷却水温度调节阀64、第二出料温度传感器65、第二出料温度控制器66、出料压力传感器67和出料压力调节阀68。
第一出料温度传感器52与出料阀61和回流阀62连锁,用于控制水解得到的木糖液的流向。当第一出料温度传感器52感应到木糖液的温度不低于设定值时,出料阀61开启,回流阀62关闭,木糖液正常出料,否则回流阀62开启,出料阀61关闭,木糖液回流到进料罐31中进行再循环。对木糖液的出料温度进行控制以确保半纤维素液的水解反应充分,提高半纤维素液的转换效率。
所述出料板式换热器63用于给流经的木糖液通过冷却水进行换热,降低木糖液温度。所述冷却水温度调节阀64用于调节冷却水的温度。通过对木糖液的出料进行水冷却使其出料温度满足下一工序。所述第二出料温度传感器65和第二出料温度控制器66用于感应和控制出料前的木糖液的温度。所述出料压力传感器67和出料压力调节阀68用于感应和控制出料前的木糖液的压力。
本发明还公开一种半纤维素连续水解制备木糖液的方法,该方法利用了如前所述的半纤维素连续水解制备木糖液的系统,包括如下步骤:
步骤一、中和工序:原料罐11中的半纤维素碱液达到25%~35%时,打开原料开关阀12,半纤维素碱液通过原料开关阀12进入中和管道混合器17,如图中箭头所示。所述中和浓硫酸泵13泵送的浓硫酸经过中和硫酸开关阀14和中和硫酸流量计15、中和硫酸流量控制器16后也进入中和管道混合器17,与半纤维素碱液在中和管道混合器17中进行中和反应。中和后的半纤维素液通过物料泵18输送到调酸单元2。物料泵18带有变频功能,能够根据中和硫酸流量计15设定值自动调节流量。设置在输送管道中的中和pH传感器19感应半纤维素液的pH值,并通过中和pH控制器110来控制中和硫酸流量计15和中和硫酸流量控制器16调节中和浓硫酸泵13的浓硫酸输出量,使中和后的半纤维素液原料pH值稳定在设定值6.5~7.0。
步骤二、调酸工序:半纤维素液原料进入调酸管道混合器22,如图中箭头所示。调酸浓硫酸泵21泵送的浓硫酸经过调酸硫酸流量计26、调酸硫酸流量控制器27后也进入调酸管道混合器22,与半纤维素液原料在调酸管道混合器22进行混合。混合后的半纤维素液进入调酸罐23中暂存。设置在半纤维素液原料输送管道中的物料流量计24和物料流量控制器25与调酸硫酸流量计26、调酸硫酸流量控制器27实行联动,根据半纤维素液原料的流量来调节调酸浓硫酸泵21的泵送量,使得半纤维素液原料的酸度符合设定要求:1%~4%,调酸罐23中的半纤维素液通过阀门进入到进料单元3。
步骤三、进料工序:调酸后的半纤维素液通过溢流从调酸罐23进入到进料单元3的进料罐31中,如图中箭头所示。当进料罐31液位达到25%~35%时,开启进料阀开关33和进料泵32,半纤维素液进入进出料换热单元5。
步骤四、液化喷射工序:流经进出料板式换热器51后的半纤维素液进入液化喷射器41,与外接的高压蒸汽在液化喷射器41中混合并一同喷射进入液化维持器42,如图中箭头所示。半纤维素液和水蒸气在液化维持器42中发生水解反应后得到木糖液。液化温度感应器43和液化温度控制器44与温度调节阀45联动,所述温度调节阀45对液化喷射器41的开度进行控制,保持液化维持器42的温度稳定,有利于半纤维素液水解;半纤维素液在液化维持器42中的水解时间维持在2.0h~3.0h。所述液化温度控制器44的感应温度设定为128℃~130℃。
步骤五、进出料换热工序:从进料泵32来的半纤维素液通过进料流量控制器54和进料流量计53联动控制的进料调节阀55后,进入进出料板式换热器51与从液化喷射单元4出来的高温木糖液进行换热,再进入液化喷射单元4的液化喷射器41,如图中箭头所示。第一出料温度传感器52与出料控制单元6的出料阀61和回流阀62连锁,当第一出料温度传感器52感应到木糖液的温度不低于设定值时,出料控制单元6的出料阀61开启,回流阀62关闭,木糖液正常出料,否则回流阀62开启出料阀61关闭,木糖液回流到进料罐31中进行再循环。所述第一出料温度传感器52感应温度设定为115℃~120℃,当水解后的木糖液的温度低于115℃时,回流阀开启出料阀关闭,木糖液回流到进料罐中进行再循环。
步骤六、出料控制工序:经过换热后的木糖液进入出料板式换热器63与流经出料板式换热器63的冷却水换热,其温度进一步降低,如图中箭头所示。再流经出料压力传感器67、出料压力调节阀68以及第二出料温度传感器65、第二出料温度控制器66后,符合压力和温度设定条件的木糖液从出料阀出料,如图中箭头所示。第二出料温度控制器66与冷却水温度调节阀64联动,控制木糖液的冷却温度。木糖液的出料温度稳定在60℃~80℃,压力范围为:0.20MPa~0.30MPa。
使用本发明的半纤维素连续水解制备木糖液的系统对半纤维素液的进料和木糖液的出料进行连续进出料控制,提高半纤维素液水解的生产效率,自动化程度高,简化了工人操作。本发明方法设备的特点在于连续水解,该方法比现有的釜式间断式水解的优势之一在于节省了进出料的操作时间,从而提高水解效率(产能)。
下面结合具体实施例来进一步说明本发明的半纤维素连续水解制备木糖液的系统和方法。
实施例1
以半纤维素碱液(碱浓度1.5%,半纤维素浓度8%,流量6m
3/h)进行连续水解制备木糖液为例。
第一步,设定中和工序中pH传感器19的中和终点为pH7,由pH控制器110连锁控制浓硫酸流量为58L/h,由此流量连锁控制中和浓硫酸泵13的频率为36HZ。半纤维素碱液经过中和单元后,再经过物料泵18输送至调酸单元。
第二步,调酸工序中半纤维素液原料的物料流量计24的流量6m
3/h,连锁控制调酸硫酸流量计26的流量66L/h,由此控制调酸浓硫酸泵21的频率为30HZ。
第三步,进出料换热工序中第一出料温度传感器52的出料传感温度为118℃,进料流量计53的流量6m
3/h,进料流量控制器54连锁控制进料调节阀55的开度60%。
第四步,液化喷射工序中液化温度传感器43的温度设定为128℃,液化温度控制器44温控连锁控制液化喷射器41得到开度70%,保证液化喷射后半纤维素液温度稳定在128℃进入液化维持器42进行水解。液化维持器42设计筒体12m
3的体积容量,保证进料到出料时间维持2h。
第五步,出料控制工序中出料压力调节阀68的开度40%,连锁控制出料压力传感的压力为0.25MPa,同时第二出料温度传感器65、第二出料温度控制器66的温度传感连锁控制冷却水温度调节阀64的开度60%,稳定控制木糖液出料终点温度保证60℃。其中当第一出料温度传感器52温度达到115℃时出料阀29打开,低于115℃时回流阀28打开。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
在此处键入工业实用性描述段落。
在此处键入序列表自由内容描述段落。
Claims (10)
- 一种半纤维素连续水解制备木糖液的系统,其特征在于,包括中和单元、调酸单元、进料单元、液化喷射单元、进出料换热单元、出料控制单元,所述中和单元包括原料罐、中和浓硫酸泵、中和管道混合器,所述调酸单元包括调酸浓硫酸泵、调酸管道混合器和调酸罐,所述进料单元包括进料罐,所述液化喷射单元包括液化喷射器和液化维持器,所述进出料换热单元包括进出料板式换热器和第一出料温度传感器,所述出料控制单元包括出料阀和回流阀;所述原料罐用于存储半纤维素碱液,所述中和管道混合器用于将半纤维素碱液与从中和浓硫酸泵来的浓硫酸进行中和反应以得到的半纤维素液原料,所述调酸管道混合器用于将半纤维素液原料与从调酸浓硫酸泵来的浓硫酸混合得到半纤维素液,所述调酸罐收集混合后的半纤维素液,所述进料罐接收从调酸罐溢流的半纤维素液,所述进出料板式换热器用于调酸后的半纤维素液进料与水解得到的木糖液之间进行换热,所述液化喷射器用于将换热后的半纤维素液与外接的高压蒸汽充分混合并一同喷射进入液化维持器,所述液化维持器用于将半纤维素液和水蒸气在高温下发生水解反应后得到木糖液,第一出料温度传感器用于感应水解得到的木糖液的温度,第一出料温度传感器与出料阀和回流阀连锁,用于控制水解得到的木糖液的流向。
- 如权利要求1所述的半纤维素连续水解制备木糖液的系统,其特征在于,所述中和单元还包括原料开关阀、物料泵、中和硫酸开关阀、中和硫酸流量控制器和中和pH控制器,所述原料开关阀用于控制原料罐中的半纤维素碱液的流出或关闭,所述中和硫酸开关阀用于控制中和浓硫酸泵输出管道的通断,所述中和硫酸流量控制器用于控制中和浓硫酸泵输出管道中浓硫酸的流量,所述物料泵用于将中和后的半纤维素液原料输送到调酸单元,所述中和pH控制器用于控制混合后的半纤维素液原料的酸度pH值。
- 如权利要求2所述的半纤维素连续水解制备木糖液的系统,其特征在于,所述调酸单元还包括物料流量控制器和调酸硫酸流量控制器,所述物料流量控制器用于控制流经的半纤维素液原料的流量,所述调酸硫酸流量控制器用于控制调酸浓硫酸泵输送管道中浓硫酸的流量,所述物料流量控制器与调酸硫酸流量控制器之间实行联动,根据半纤维素液原料的流量来调节调酸浓硫酸泵的泵送量,使得半纤维素液原料的酸度符合设定值。
- 如权利要求3所述的半纤维素连续水解制备木糖液的系统,其特征在于,所述进料单元还包括进料泵和进料阀开关,所述进料泵用于将进料罐中的半纤维素液输送到进出料换热单元,所述进料阀开关用于控制进料泵输送管道的通断;所述液化喷射单元还包括液化温度控制器和温度调节阀,所述液化温度控制器用于控制进入液化维持器的半纤维素液的温度,所述液化温度控制器与温度调节阀联动,所述温度调节阀用于对液化喷射器的开度进行控制,保持液化维持器的温度稳定,有利于半纤维素液水解。
- 如权利要求4所述的半纤维素连续水解制备木糖液的系统,其特征在于,所述进出料换热单元还包括进料调节阀,所述进料调节阀控制管道中的半纤维素液的流量。
- 如权利要求5所述的半纤维素连续水解制备木糖液的系统,其特征在于,所述出料控制单元还包括出料板式换热器、第二出料温度控制器和出料压力调节阀,所述出料板式换热器用于给流经的木糖液通过冷却水进行换热,降低木糖液温度,所述第二出料温度控制器用于控制出料前的木糖液的温度,所述出料压力调节阀用于控制出料前的木糖液的压力。
- 一种半纤维素连续水解制备木糖液的方法,其特征在于,该方法利用了如权利要求6所述的半纤维素连续水解制备木糖液的系统,包括如下步骤:步骤一、中和工序:存储在原料罐中的半纤维素碱液达到25%~35%时,打开原料开关阀,半纤维素碱液通过原料开关阀进入中和管道混合器,所述中和浓硫酸泵泵送的浓硫酸经过中和硫酸流量控制器后也进入中和管道混合器,与半纤维素碱液在中和管道混合器中混合进行中和反应,中和浓硫酸泵与中和硫酸控制器联锁,中和硫酸控制器与中和pH控制器联锁,控制中和浓硫酸泵泵送的浓硫酸量,使中和后的半纤维素液原料pH值稳定在设定值6.5~7.0;步骤二、调酸工序:中和后的半纤维素液原料通过物料泵输送到调酸单元的调酸管道混合器中,调酸浓硫酸泵泵送的浓硫酸经过调酸硫酸控制器也进入调酸管道混合器,与半纤维素液原料在调酸管道混合器进行混合,混合后的半纤维素液进入调酸罐中暂存,调酸硫酸控制器与物料流量控制器实行联动,根据半纤维素液原料的流量来调节调酸浓硫酸泵的泵送量,使得半纤维素液原料的酸度符合设定要求:1%~4%;步骤三、进料工序:调酸后的半纤维素液通过溢流从调酸罐进入到进料单元的进料罐中,当进料罐液位达到25%~35%时,开启进料阀开关和进料泵,半纤维素液进入后工序;步骤四、液化喷射工序:流经进出料板式换热器后的半纤维素液进入液化喷射器,与外接的高压蒸汽在液化喷射器中混合并一同喷射进入液化维持器,半纤维素液和水蒸气在液化维持器中发生水解反应后得到木糖液;液化温度控制器与温度调节阀联动,所述温度调节阀对液化喷射器的开度进行控制,保持液化维持器的温度稳定,有利于半纤维素液水解;半纤维素液在液化维持器中的水解时间维持在2.0h~3.0h;步骤五、进出料换热工序:得到的木糖液经过进出料板式换热器与从进料泵来的半纤维素液进行换热后温度降低,而半纤维素液利用半纤维素液余热后温度升高,第一出料温度传感器与出料控制单元的出料阀和回流阀连锁,当第一出料温度传感器感应到木糖液的温度不低于设定值时,出料控制单元的出料阀开启,回流阀关闭,木糖液正常出料,否则回流阀开启出料阀关闭,木糖液回流到进料罐中进行再循环;步骤六、出料控制工序:经过换热后的木糖液进入出料板式换热器与流经出料板式换热器的冷却水换热,其温度进一步降低,流经出料压力调节阀以及第二出料温度控制器后,符合压力和温度设定条件的木糖液从出料阀出料。
- 如权利要求7所述的半纤维素连续水解制备木糖液的方法,其特征在于,在步骤四中,所述液化温度控制器的感应温度设定为128℃~130℃。
- 如权利要求7所述的半纤维素连续水解制备木糖液的方法,其特征在于,在步骤五中,所述第一出料温度传感器感应温度设定为115℃~120℃。
- 如权利要求7所述的半纤维素连续水解制备木糖液的方法,其特征在于,在步骤六中,木糖液的出料温度稳定在60℃~80℃,压力范围为:0.20MPa~0.30MPa。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020558501A JP6980931B2 (ja) | 2018-12-04 | 2019-11-26 | ヘミセルロースを連続的に加水分解してキシロース液を調製するためのシステム及び方法 |
PL19892774.1T PL3798323T3 (pl) | 2018-12-04 | 2019-11-26 | Układ i sposób do ciągłej hydrolizy hemicelulozy dla wytwarzania roztworu ksylozy |
US17/287,887 US12060621B2 (en) | 2018-12-04 | 2019-11-26 | System for preparing xylose liquid by continuously hydrolyzing hemicellulose and method thereof |
EP19892774.1A EP3798323B1 (en) | 2018-12-04 | 2019-11-26 | System and method for continuously hydrolyzing hemicellulose to prepare xylose solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811473078.XA CN109355443B (zh) | 2018-12-04 | 2018-12-04 | 一种半纤维素连续水解制备木糖液的系统及其方法 |
CN201811473078.X | 2018-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020114284A1 true WO2020114284A1 (zh) | 2020-06-11 |
Family
ID=65331182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/121084 WO2020114284A1 (zh) | 2018-12-04 | 2019-11-26 | 一种半纤维素连续水解制备木糖液的系统及其方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12060621B2 (zh) |
EP (1) | EP3798323B1 (zh) |
JP (1) | JP6980931B2 (zh) |
CN (1) | CN109355443B (zh) |
PL (1) | PL3798323T3 (zh) |
WO (1) | WO2020114284A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109355443B (zh) * | 2018-12-04 | 2020-07-17 | 浙江华康药业股份有限公司 | 一种半纤维素连续水解制备木糖液的系统及其方法 |
CN115318216A (zh) * | 2022-08-26 | 2022-11-11 | 焦作市华康糖醇科技有限公司 | 一种水解反应釜装置及其自动化控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101818217A (zh) * | 2010-05-06 | 2010-09-01 | 中国科学院广州能源研究所 | 一种纤维素类生物质高温液态水预处理的方法及装置 |
CN101935718A (zh) * | 2010-08-26 | 2011-01-05 | 中国农业大学 | 一种利用强酸性电生功能水降解生物质中半纤维素的方法 |
CN102021252A (zh) * | 2010-12-21 | 2011-04-20 | 山东省鲁洲食品集团有限公司 | 一种玉米皮连续水解方法及设备 |
CN109355443A (zh) * | 2018-12-04 | 2019-02-19 | 浙江华康药业股份有限公司 | 一种半纤维素连续水解制备木糖液的系统及其方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705369A (en) | 1994-12-27 | 1998-01-06 | Midwest Research Institute | Prehydrolysis of lignocellulose |
FR2789400B1 (fr) * | 1999-02-04 | 2002-12-20 | Bio Ethanol Nord Picardie | Procede de production d'ethanol avec apport frequent de levure |
CN101457261B (zh) * | 2008-12-26 | 2011-08-31 | 杨德喜 | 碳酸法制糖饱充罐尾气回收再利用装置及工艺 |
CN101863737B (zh) * | 2010-07-01 | 2013-01-30 | 安徽丰原发酵技术工程研究有限公司 | 一种精制木糖醇发酵液的方法 |
US8709770B2 (en) * | 2010-08-31 | 2014-04-29 | Iogen Energy Corporation | Process for improving the hydrolysis of cellulose in high consistency systems using one or more unmixed and mixed hydrolysis reactors |
CN102021251A (zh) * | 2010-12-15 | 2011-04-20 | 广东石油化工学院 | 一种利用稻壳经过酸碱处理制备木糖方法 |
US9605281B2 (en) * | 2012-09-12 | 2017-03-28 | Butamax Advanced Biofuels Llc | Processes and systems for the fermentative production of alcohols |
CN103449699B (zh) * | 2012-08-07 | 2015-03-04 | 焦作市开泰电力设备制造有限责任公司 | 一种有机质连续热水解处理装置和方法 |
TWI558814B (zh) | 2012-10-24 | 2016-11-21 | 行政院原子能委員會核能研究所 | 連續處理纖維原料之裝置 |
CN103409315A (zh) * | 2013-07-15 | 2013-11-27 | 重庆大学 | 木糖醇结晶母液制备葡萄糖酸的反应分离耦合装置和工艺 |
CN104437060A (zh) * | 2014-12-16 | 2015-03-25 | 广西大新县雷平永鑫糖业有限公司 | 糖厂二氧化碳回收活化利用方法及设备 |
US20160244788A1 (en) * | 2015-02-19 | 2016-08-25 | Api Intellectual Property Holdings, Llc | Hydrothermal-mechanical conversion of lignocellulosic biomass to ethanol or other fermentation products |
CN104805222B (zh) * | 2015-04-02 | 2018-02-27 | 广西大学 | 一种精制糖澄清装置 |
JP6218085B2 (ja) | 2015-05-18 | 2017-10-25 | 国立大学法人信州大学 | 修飾キシロポリサッカライドの製造方法 |
CN204685100U (zh) * | 2015-05-29 | 2015-10-07 | 吴巴特尔 | 一种新型高效反应器 |
CN106834554A (zh) * | 2017-03-01 | 2017-06-13 | 四川金象赛瑞化工股份有限公司 | 一种半纤维素连续水解制备木糖的方法 |
WO2019067526A1 (en) * | 2017-09-26 | 2019-04-04 | Poet Research, Inc. | SYSTEMS AND METHODS FOR TREATING LIGNOCELLULOSIC BIOMASS |
CN209193996U (zh) * | 2018-12-04 | 2019-08-02 | 浙江华康药业股份有限公司 | 一种半纤维素连续水解制备木糖液的系统 |
-
2018
- 2018-12-04 CN CN201811473078.XA patent/CN109355443B/zh active Active
-
2019
- 2019-11-26 JP JP2020558501A patent/JP6980931B2/ja active Active
- 2019-11-26 PL PL19892774.1T patent/PL3798323T3/pl unknown
- 2019-11-26 WO PCT/CN2019/121084 patent/WO2020114284A1/zh unknown
- 2019-11-26 US US17/287,887 patent/US12060621B2/en active Active
- 2019-11-26 EP EP19892774.1A patent/EP3798323B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101818217A (zh) * | 2010-05-06 | 2010-09-01 | 中国科学院广州能源研究所 | 一种纤维素类生物质高温液态水预处理的方法及装置 |
CN101935718A (zh) * | 2010-08-26 | 2011-01-05 | 中国农业大学 | 一种利用强酸性电生功能水降解生物质中半纤维素的方法 |
CN102021252A (zh) * | 2010-12-21 | 2011-04-20 | 山东省鲁洲食品集团有限公司 | 一种玉米皮连续水解方法及设备 |
CN109355443A (zh) * | 2018-12-04 | 2019-02-19 | 浙江华康药业股份有限公司 | 一种半纤维素连续水解制备木糖液的系统及其方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3798323A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20210348244A1 (en) | 2021-11-11 |
EP3798323A4 (en) | 2021-11-17 |
CN109355443A (zh) | 2019-02-19 |
CN109355443B (zh) | 2020-07-17 |
EP3798323B1 (en) | 2022-08-10 |
US12060621B2 (en) | 2024-08-13 |
JP2021512640A (ja) | 2021-05-20 |
EP3798323A1 (en) | 2021-03-31 |
JP6980931B2 (ja) | 2021-12-15 |
PL3798323T3 (pl) | 2023-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020114284A1 (zh) | 一种半纤维素连续水解制备木糖液的系统及其方法 | |
CN108840548B (zh) | 热水解闪蒸分离装置及热水解闪蒸分离工艺、热水解系统及热水解工艺 | |
CN101825360A (zh) | 氧化铝生产中高压溶出稀释槽乏汽回收利用方法及装置 | |
CN208472052U (zh) | 果糖生产过程中淀粉乳与液化液热能综合利用系统 | |
CN209193996U (zh) | 一种半纤维素连续水解制备木糖液的系统 | |
CN108854167B (zh) | 焦炉煤气中甲烷蒸汽转化后冷凝液的循环利用系统 | |
CN114837757B (zh) | 一种配置蒸汽引射器的火电厂高加给水旁路调频系统及工作方法 | |
CN205907158U (zh) | 一种污泥废液热水解设备 | |
CN211771017U (zh) | 一种利用半纤维素液制备糠醛的系统 | |
CN210103972U (zh) | 一种淀粉质原料液糖化节能装置 | |
CN111606867B (zh) | 差异化尿素联产三聚氰胺装置及生产方法 | |
CN213771363U (zh) | 一种尿素水解制氨系统 | |
CN214553446U (zh) | 一种连续化生产十八水合硫酸铝的装置 | |
CN109019725A (zh) | 一种节能废水汽提塔 | |
CN108654127A (zh) | 一种蒸汽冷凝液回收系统 | |
CN206607031U (zh) | 供热系统及应用其的硫酸生产系统 | |
CN209173409U (zh) | 联碱生产用节能装置 | |
CN203487063U (zh) | 一种制备聚甲氧基二甲醚的装置 | |
CN206572800U (zh) | 一种煤气化co2载气节能系统 | |
CN110172402A (zh) | 一种淀粉质原料液糖化节能装置和工艺 | |
CN215781603U (zh) | 一种闪蒸汽调节使用装置 | |
CN218120680U (zh) | 适用于乙烯下游热水综合利用的系统 | |
CN214232825U (zh) | 甲醇预塔精留装置 | |
CN112387229B (zh) | 一种连续化生产十八水合硫酸铝的装置和方法 | |
CN214457906U (zh) | 一种淀粉质原料液糖化多效热耦合装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19892774 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020558501 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019892774 Country of ref document: EP Effective date: 20201224 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |