WO2020114062A1 - 超导保护方法、超导保护装置及超导系统 - Google Patents

超导保护方法、超导保护装置及超导系统 Download PDF

Info

Publication number
WO2020114062A1
WO2020114062A1 PCT/CN2019/109169 CN2019109169W WO2020114062A1 WO 2020114062 A1 WO2020114062 A1 WO 2020114062A1 CN 2019109169 W CN2019109169 W CN 2019109169W WO 2020114062 A1 WO2020114062 A1 WO 2020114062A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconductor
superconducting
preset value
field
preset
Prior art date
Application number
PCT/CN2019/109169
Other languages
English (en)
French (fr)
Inventor
赵华炜
王鹏
余乃君
史永凌
万波
虞维兴
李强
Original Assignee
湖南迈太科医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南迈太科医疗科技有限公司 filed Critical 湖南迈太科医疗科技有限公司
Publication of WO2020114062A1 publication Critical patent/WO2020114062A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils

Definitions

  • the invention relates to the technical field of magnetic resonance imaging equipment, in particular to a superconducting protection method, a superconducting protection device and a superconducting system.
  • Superconducting magnets are widely used in modern industry and scientific research, and the most common one is the superconducting magnet used in magnetic resonance imaging system (Magnetic Resonance Imaging, MRI). It is an important part of MRI, and its main role is to MRI The work provides a high-intensity, high-stability background magnetic field, which facilitates fast, high-contrast and high-resolution imaging.
  • Magnetic Resonance Imaging Magnetic Resonance Imaging
  • the superconducting magnet During the operation of the superconducting magnet, there is a large energy storage in the superconductor. If quenching occurs, more energy will be consumed inside the magnet, resulting in many high-risk consequences such as high internal temperature.
  • the most effective measure to prevent the risk of superconducting magnet quenching is to drop the field of the superconducting magnet and demagnetize the magnet.
  • the traditional processing method can not demagnetize the magnet in time, and the superconducting magnet may lose time and overheat.
  • the present invention is to overcome the defects of the prior art and provide a superconducting protection method, a superconducting protection device, and a superconducting system that can effectively prevent the superconductor from losing time and overheating.
  • a superconducting protection method includes the following steps:
  • the operating parameters of the superconductor are compared with a preset value, and when the operating parameters of the superconductor exceed the preset value, an instruction is issued, and the instruction is used to lower the field of the superconductor.
  • the above superconducting protection method can compare the working parameters of the superconductor with the preset value. When the working parameter of the superconductor exceeds the preset value, a command is issued to lower the field of the superconductor, reduce the energy in the superconductor, and prevent the superconductor from losing overtime and overheating. And by setting a preset value, it can be ensured that the field lowering operation starts before the superconductor has a risk of quenching.
  • the working parameter of the superconductor is the liquid level of the heat absorbing medium in the cavity where the superconductor is located
  • the preset value is the preset liquid level, when the working parameter of the superconductor exceeds the preset value
  • the working parameter of the superconductor is the temperature in the cavity where the superconductor is located, and the preset value is the preset temperature.
  • the instruction is issued, which specifically includes the following steps :
  • the working parameter of the superconductor is the shutdown time of the refrigerator that cools the heat absorbing medium
  • the preset value is the preset shutdown time
  • Issue instructions including the following steps:
  • a superconducting protection device includes:
  • the acquisition module is used to obtain the working parameters of the superconductor
  • the processing module is used to compare the working parameter of the superconductor with a preset value, and when the working parameter of the superconductor exceeds the preset value, issue an instruction, and the instruction is used to lower the field of the superconductor.
  • the acquisition module can acquire the working parameters of the superconductor and use the processing module to compare the working parameters of the superconductor with the preset value.
  • the processing module compares the working parameters of the superconductor with the preset value.
  • a command is issued to lower the field of the superconductor. Reduce the energy in the superconductor to prevent overheating of the superconductor during overtime, and by setting a preset value, it can be ensured that the field lowering operation starts before the superconductor's risk of quenching occurs.
  • a superconducting system includes a superconductor, a cavity, a field-reducing component, and a superconducting protection device as described above.
  • the cavity is provided with a receiving cavity
  • the receiving cavity is provided with a heat absorbing medium
  • the superconductor is provided on the In the accommodating cavity
  • the superconducting protection device is electrically connected to the field lowering component
  • the field lowering component is used to lower the field of the superconductor.
  • the acquiring module can acquire the working parameters of the superconductor and use the processing module to compare the working parameters of the superconductor with the preset value.
  • a command is issued to lower the field of the superconductor.
  • the superconducting protection device can realize the monitoring of the superconductor and automatically perform the field down operation to prevent the superconductor from losing overtime and overheating, and because the working parameters of the superconductor are compared with the preset value, the preset value can be set to ensure that the superconductor is lost. Before the risk is exceeded, the downsizing operation begins.
  • the field-reducing component includes a superconducting switch, a heater and an energy bleeder
  • the superconducting switch is arranged in series with the superconductor
  • the energy bleeder is arranged in parallel with the superconducting switch
  • the heater is electrically connected to the processing module, the instruction of the processing module is used to turn on the heater, and the heater is used to heat the superconducting switch.
  • the superconducting switch is provided in the accommodating cavity, and the heater is attached to the superconducting switch.
  • the above-mentioned superconducting system further includes an indicator, the indicator is electrically connected to the processing module, and the processing module turns on the indicator after the field drop of the field drop component ends.
  • the above-mentioned superconducting system further includes a detection component for detecting the working parameters of the superconductor, the detection component is electrically connected to the acquisition module, and the detection component includes a liquid level sensor, Temperature sensor or timer.
  • FIG. 1 is a schematic flowchart of a superconducting protection method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a superconducting system according to an embodiment of the present invention.
  • first and second do not represent specific numbers and orders, but are only used to distinguish names.
  • an embodiment discloses a superconducting protection method, including the following steps:
  • the above-mentioned superconducting protection method can compare the operating parameters of the superconductor 100 with the preset values. When the operating parameters of the superconductor 100 exceed the preset values, an instruction is issued to lower the field of the superconductor 100, reduce the energy in the superconductor 100, and prevent the superconductor 100 overtime overheating, and by setting a preset value, it can be ensured that the superconductor 100 starts the downfield operation before the risk of quenching occurs.
  • the "drop field" consumes energy in the superconductor 100.
  • the working parameter of the superconductor 100 is the liquid level of the heat absorbing medium in the cavity where the superconductor 100 is located, and the preset value is the preset liquid level.
  • Issue instructions including the following steps:
  • the heat absorbing medium can absorb heat to the superconductor 100, so that the superconductor 100 is in a superconducting state.
  • the heat absorbing effect on the superconductor 100 becomes poor, and If the superconductor 100 is quenched, when the liquid level of the heat absorbing medium is lower than the preset liquid level, a command is issued to lower the field of the superconductor 100, reduce the energy in the superconductor 100, and prevent the superconductor 100 from overheating during the loss time, causing absorption Loss of heat medium.
  • the liquid level when the superconductor 100 reaches the critical state of quenching is the minimum liquid level, and the preset liquid level may be higher than or equal to the above minimum liquid level. At this time, you can drop in advance.
  • the working parameter of the superconductor 100 is the temperature in the cavity where the superconductor 100 is located, and the preset value is the preset temperature.
  • the instruction is issued, which specifically includes the following steps:
  • the superconductor 100 When the temperature in the cavity is too high, it will cause the superconductor 100 to quench, so through the preset temperature, and compare the temperature of the cavity where the superconductor 100 is located with the preset temperature, when the temperature in the cavity is higher than the preset temperature, send out The instruction lowers the field of the superconductor 100, reduces the energy in the superconductor 100, and prevents the superconductor 100 from overheating during the overtime.
  • the temperature when the superconductor 100 reaches the critical state of quenching is the highest temperature, and the preset temperature is lower than or equal to the above-mentioned highest temperature. At this time, you can drop in advance.
  • the operating parameter of the superconductor 100 is the shutdown time of the refrigerator 400 that cools the heat absorbing medium
  • the preset value is the preset shutdown time.
  • the refrigerator 400 can maintain the temperature in the cavity, so the shutdown of the refrigerator 400 will cause the temperature in the cavity to rise, so the shutdown time of the refrigerator 400 can be compared with the preset shutdown time, when the shutdown time of the refrigerator 400 is greater than When the preset shutdown time, a command can be issued to lower the superconductor 100 field, reduce the energy in the superconductor 100, and prevent the superconductor 100 from overheating during the overtime.
  • the shutdown time when the superconductor 100 reaches the critical state of quenching is the longest shutdown time, and the preset shutdown time is less than or equal to the above-mentioned maximum shutdown time. At this time, the field can be dropped in advance, and the effect of the drop is better.
  • the operating parameter of the superconductor 100 may be at least one of the downtime of the refrigerator 400 that cools the heat absorbing medium, the temperature in the cavity where the superconductor 100 is located, or the liquid level of the heat absorbing medium in the cavity where the superconductor 100 is located Species.
  • the operating parameters of the superconductor 100 include the downtime of the refrigerator 400 that cools the heat absorbing medium, the temperature in the cavity where the superconductor 100 is located, or the liquid level of the heat absorbing medium in the cavity where the superconductor 100 is located. At this time, the working parameters of the superconductor 100 can be obtained more comprehensively, and the field is dropped in a more timely manner, which can better prevent the superconductor 100 from losing overtime and overheating.
  • the working parameter of the superconductor 100 is the current to the circuit where the superconductor 100 is located, and the preset value is the preset current.
  • an instruction is issued, which specifically includes the following steps:
  • an embodiment discloses a superconducting protection device 200, including:
  • the obtaining module 210 is used to obtain the working parameters of the superconductor 100;
  • the processing module 220 is used to compare the operating parameters of the superconductor 100 with a preset value, and when the operating parameters of the superconductor 100 exceed the preset value, issue an instruction for the superconductor 100 to drop the field.
  • the obtaining module 210 can obtain the working parameters of the superconductor 100, and use the processing module 220 to compare the working parameters of the superconductor 100 with a preset value, and when the working parameter of the superconductor 100 exceeds the preset value, issue an instruction To lower the field of the superconductor 100, reduce the energy in the superconductor 100, and prevent the superconductor 100 from losing overtime and overheating, and by setting a preset value, it can be guaranteed that the field lowering operation starts before the superconductor 100 has a risk of quenching.
  • an embodiment discloses a superconducting system, including a superconductor 100, a cavity, a field-reducing component, and a superconducting protection device 200 as described above.
  • the cavity is provided with a receiving cavity, and the receiving cavity is provided with a suction cavity.
  • the thermal medium and the superconductor 100 are provided in the accommodating cavity, and the superconducting protection device 200 is electrically connected to the field lowering component, and the field lowering component is used to lower the field of the superconductor 100.
  • the obtaining module 210 can obtain the working parameters of the superconductor 100 and use the processing module 220 to compare the working parameters of the superconductor 100 with preset values.
  • an instruction is issued to make the superconductor
  • the superconducting protection device 200 can realize the monitoring of the superconductor 100 and automatically perform the field down operation to prevent the superconductor 100 from losing overtime and overheating, and because the operating parameters of the superconductor 100 are compared with the preset values, the The preset value is set to ensure that the field lowering operation starts before the superconductor 100 has a risk of quenching.
  • the heat absorbing medium is liquid helium, but depending on the material of the superconductor 100, the heat absorbing medium may also be liquid nitrogen or other medium that can make the superconductor 100 enter a superconducting state.
  • the field-reducing component includes a superconducting switch 310, a heater 320, and a bleeder 330.
  • the superconducting switch 310 is arranged in series with the superconductor 100, and the bleeder 330 and the superconducting switch 310 Set in parallel, the heater 320 is electrically connected to the processing module 220, the instruction of the processing module 220 is used to turn on the heater 320, and the heater 320 is used to heat the superconducting switch 310.
  • the processing module 220 controls the heater 320 to turn on, and the heater 320 heats the superconducting switch 310, and the superconducting switch 310 quenches due to an increase in temperature.
  • the superconducting switch 310 increases its own resistance, it is equivalent to an open state, so that the superconductor 100 and the energy bleeder 330 become in series.
  • the energy bleeder 330 can be used to consume the energy contained in the superconductor 100, preventing the superconductor 100 from quenching and the superconductor Too much energy in 100 causes the superconductor 100 to overheat.
  • the energy bleeder 330 may be a diode group or a resistor. The energy in the superconductor 100 can be consumed.
  • the superconducting switch 310 is disposed in the accommodating cavity, and the heater 320 is attached to the superconducting switch 310. At this time, both the superconducting switch 310 and the superconductor 100 are in the superconducting state during the working state, and the heater 320 is attached to the superconducting switch 310 to ensure the heating effect of the superconducting switch 310 and make the superconducting switch 310 more quickly Switch to open state.
  • the above superconducting protection structure further includes a display, and the display is electrically connected to the acquisition module 210.
  • the display may display the working parameters of the superconductor 100 monitored by the acquisition module 210, which is convenient for manually monitoring the working state of the superconductor 100.
  • the above superconducting protection structure further includes an artificial switch, which is electrically connected to the processing module 220.
  • the field lowering operation can also be performed on the superconductor 100 by manually issuing instructions.
  • the superconducting system further includes an indicator 500, which is electrically connected to the processing module 220. After the field drop component ends, the processing module 220 turns on the indicator 500. At this time, when the field drop component ends, the indicator 500 can be used to remind.
  • the indicator 500 may be a warning light or a warning horn, etc., which is reminded by means of light or sound.
  • the processing module 220 may be used to monitor the current flowing through the superconductor 100. When the current flowing through the superconductor 100 is 0, it indicates that the field drop of the superconductor 100 has ended, and the processing module 220 may turn on the indicator 500 at this time.
  • the superconductor 100 is a superconducting energy storage component.
  • the superconductor 100 is a superconducting magnet coil.
  • the above-mentioned superconducting system further includes a detection element for detecting the operating parameters of the superconductor 100.
  • the detection element is electrically connected to the acquisition module 220, and the detection element includes a liquid level sensor, a temperature sensor, or a timer. Then, the liquid level height of the heat absorbing medium in the accommodating cavity can be obtained through the liquid level sensor, the temperature in the accommodating cavity can be obtained through the temperature sensor, and the downtime of the refrigerator 400 can be obtained through the timer.
  • the liquid level sensor is provided in the containing cavity, and the liquid level sensor is electrically connected to the acquisition module 210. It is used to obtain the liquid level of the heat absorbing medium in the containing cavity.
  • the temperature sensor is provided in the accommodating cavity, and the temperature sensor is electrically connected to the acquisition module 210. It is used to obtain the temperature in the chamber.
  • the timer is electrically connected to the refrigerator 400 and the acquisition module 210, respectively. Used to obtain the downtime of the refrigerator 400.
  • the above superconducting protection structure further includes a mounting member.
  • the energy bleeder 330 and the processing module 220 are integrated and installed on the mounting member.
  • the mounting member is provided with a current lead interface 610, a magnet monitoring interface 620 and Superconducting switch heater interface 630, wherein the energy bleeder 330 is electrically connected to the current lead interface 610, the current lead interface 610 is used to connect the processing module 220 and the superconducting switch 310 in parallel, and the magnet monitoring interface 620 is used to access the monitoring unit
  • the processing module 220 is electrically connected to the monitoring unit through the magnet monitoring interface 620, the superconducting switch heater interface 630 is used to access the heater 320, and the processing module 220 is typically connected to the heater 320 through the superconducting switch 310.
  • the mounting member, the energy bleeder 330 and the processing module 220 can be used as independent devices in different superconducting systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种超导保护方法、超导保护装置及超导系统,超导保护方法包括以下步骤:获取超导体的工作参数;将所述超导体的工作参数与预设值进行比较,当所述超导体的工作参数超过预设值时,发出指令,所述指令用于使所述超导体降场。上述超导保护方法,可将超导体的工作参数与预设值进行比较,当超导体的工作参数超过预设值时,发出指令,使超导体降场,消减超导体内的能量,防止超导体失超时过热,且通过设定预设值,可保证在超导体发生失超风险之前即开始降场操作。

Description

超导保护方法、超导保护装置及超导系统 技术领域
本发明涉及磁共振成像设备技术领域,特别是涉及一种超导保护方法、超导保护装置及超导系统。
背景技术
超导磁体在现代工业及科研中应用广泛,而最常见的一种是用于磁共振成像系统(Magnetic Resonance Imaging,MRI)的超导磁体,它是MRI的重要组成部分,主要作用是为MRI的工作提供高强度、高稳定性的背景磁场,便于实现快速、高对比度和高清晰度的成像。
在超导磁体工作的过程中,超导体中存在着较大储能,如果发生失超,将会使得更多的能量在磁体内部消耗,产生内部温度过高等诸多的高风险后果。防止超导磁体失超风险最有效的措施就是超导磁体降场,使磁体消磁。但传统的处理方法不能及时使磁体消磁,可能发生超导磁体失超时过热的情况。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种可有效防止超导体失超时过热的超导保护方法、超导保护装置及超导系统。
其技术方案如下:
一种超导保护方法,包括以下步骤:
获取超导体的工作参数;
将所述超导体的工作参数与预设值进行比较,当所述超导体的工作参数超 过预设值时,发出指令,所述指令用于使所述超导体降场。
上述超导保护方法,可将超导体的工作参数与预设值进行比较,当超导体的工作参数超过预设值时,发出指令,使超导体降场,消减超导体内的能量,防止超导体失超时过热,且通过设定预设值,可保证在超导体发生失超风险之前即开始降场操作。
在其中一个实施例中,所述超导体的工作参数为超导体所在腔体内的吸热介质的液面高度,所述预设值为预设液面高度,上述当超导体的工作参数超过预设值时,发出指令,具体包括以下步骤:
当吸热介质的液面高度低于预设液面高度时,发出指令。
在其中一个实施例中,所述超导体的工作参数为超导体所在腔体内的温度,所述预设值为预设温度,上述当超导体的工作参数超过预设值时,发出指令,具体包括以下步骤:
当腔体内的温度高于预设温度时,发出指令。
在其中一个实施例中,所述超导体的工作参数为对吸热介质进行制冷的制冷器的停机时间,所述预设值为预设停机时间,上述当超导体的工作参数超过预设值时,发出指令,具体包括以下步骤:
当制冷器的停机时间大于预设停机时间时,发出指令。
一种超导保护装置,包括:
获取模块,用于获取超导体的工作参数;
处理模块,用于将所述超导体的工作参数与预设值进行比较,当所述超导体的工作参数超过预设值时,发出指令,所述指令用于使所述超导体降场。
上述超导保护装置,获取模块可获取超导体的工作参数,并利用处理模块将超导体的工作参数与预设值进行比较,当超导体的工作参数超过预设值时, 发出指令,使超导体降场,消减超导体内的能量,防止超导体失超时过热,且通过设定预设值,可保证在超导体发生失超风险之前即开始降场操作。
一种超导系统,包括超导体、腔体、降场组件及如上述的超导保护装置,所述腔体内设有容纳腔,所述容纳腔内设有吸热介质,所述超导体设于所述容纳腔内,所述超导保护装置与所述降场组件电性连接,所述降场组件用于使所述超导体降场。
上述超导系统,获取模块可获取超导体的工作参数并利用处理模块将超导体的工作参数与预设值进行比较,当超导体的工作参数超过预设值时,发出指令,使超导体降场,则通过超导保护装置可实现对超导体的监控并自动进行降场操作,防止超导体失超时过热,且由于将超导体的工作参数与预设值进行比较,可通过设定预设值,保证在超导体发生失超风险之前即开始降场操作。
在其中一个实施例中,所述降场组件包括超导开关、加热器及泄能器,所述超导开关与所述超导体串联设置,所述泄能器与所述超导开关并联设置,所述加热器与所述处理模块电性连接,所述处理模块的指令用于开启所述加热器,所述加热器用于加热所述超导开关。
在其中一个实施例中,所述超导开关设于所述容纳腔内,所述加热器贴设于所述超导开关上。
在其中一个实施例中,上述超导系统还包括指示器,所述指示器与所述处理模块电性连接,当所述降场组件降场结束后,所述处理模块开启所述指示器。
在其中一个实施例中,上述超导系统还包括用于对所述超导体的工作参数进行检测的检测件,所述检测件与所述获取模块电性连接,所述检测件包括液位传感器、温度传感器或计时器。
附图说明
图1为本发明实施例所述的超导保护方法的流程示意图;
图2为本发明实施例所述的超导系统的结构示意图。
附图标记说明:
100、超导体,200、超导保护装置,210、获取模块,220、处理模块,310、超导开关,320、加热器,330、泄能器,400、制冷器,500、指示器,610、电流引线接口,620、磁体监控接口,630、超导开关加热器接口。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中所述“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名 称的区分。
如图1所示,一实施例公开了一种超导保护方法,包括以下步骤:
S10、获取超导体100的工作参数;
S20、将超导体100的工作参数与预设值进行比较,当超导体100的工作参数超过预设值时,发出指令,指令用于使超导体100降场。
上述超导保护方法,可将超导体100的工作参数与预设值进行比较,当超导体100的工作参数超过预设值时,发出指令,使超导体100降场,消减超导体100内的能量,防止超导体100失超时过热,且通过设定预设值,可保证在超导体100发生失超风险之前即开始降场操作。
具体地,“降场”即消耗超导体100内的能量。
在其中一个实施例中,超导体100的工作参数为超导体100所在腔体内的吸热介质的液面高度,预设值为预设液面高度,上述当超导体100的工作参数超过预设值时,发出指令,具体包括以下步骤:
当吸热介质的液面高度低于预设液面高度时,发出指令。
吸热介质可对超导体100进行吸热,使超导体100处于超导状态,当腔体内的吸热介质的液面高度低于预设液面高度时,对超导体100的吸热效果变差,会导致超导体100失超,则当吸热介质的液面高度低于预设液面高度时,发出指令,使超导体100降场,消减超导体100内的能量,防止超导体100在失超时过热,造成吸热介质的损失。
可选地,使超导体100达到失超的临界状态时的液面高度为最低液面高度,预设液面高度可高于或等于上述最低液面高度。此时可提前降场。
在其中一个实施例中,超导体100的工作参数为超导体100所在腔体内的温度,预设值为预设温度,上述当超导体100的工作参数超过预设值时,发出 指令,具体包括以下步骤:
当腔体内的温度高于预设温度时,发出指令。
当腔体内的温度过高时,会导致超导体100失超,因此通过预设温度,并将超导体100所在腔体的温度与预设温度比较,当腔体内的温度高于预设温度时,发出指令,使超导体100降场,消减超导体100内的能量,防止超导体100在失超时过热。
可选地,使超导体100达到失超的临界状态时的温度为最高温度,预设温度低于或等于上述最高温度。此时可提前降场。
在其中一个实施例中,超导体100的工作参数为对吸热介质进行制冷的制冷器400的停机时间,预设值为预设停机时间,上述当超导体100的工作参数超过预设值时,发出指令,具体包括以下步骤:
当制冷器400的停机时间大于预设停机时间时,发出指令。
制冷器400可维持腔体内的温度,因此制冷器400的停机会导致腔体内的温度升高,因此可将制冷器400的停机时间与预设停机时间进行对比,当制冷器400的停机时间大于预设停机时间时,可发出指令,使超导体100降场,消减超导体100内的能量,防止超导体100在失超时过热。
可选地,使超导体100达到失超的临界状态时的停机时间为最长停机时间,预设停机时间小于或等于上述最长停机时间。此时可提前降场,降场的效果更好。
可选地,超导体100的工作参数可为对吸热介质进行制冷的制冷器400的停机时间、超导体100所在腔体内的温度或超导体100所在腔体内的吸热介质的液面高度中的至少一种。具体地,超导体100的工作参数包括对吸热介质进行制冷的制冷器400的停机时间、超导体100所在腔体内的温度或超导体100 所在腔体内的吸热介质的液面高度。此时可更全面的获取超导体100的工作参数,降场更及时,可更好的防止超导体100失超时过热。
可选地,超导体100的工作参数为对超导体100所在电路的电流,预设值为预设电流,上述当超导体100的工作参数超过预设值时,发出指令,具体包括以下步骤:
如图2所示,一实施例公开了一种超导保护装置200,包括:
获取模块210,用于获取超导体100的工作参数;
处理模块220,用于将超导体100的工作参数与预设值进行比较,当超导体100的工作参数超过预设值时,发出指令,指令用于使超导体100降场。
上述超导保护装置200,获取模块210可获取超导体100的工作参数,并利用处理模块220将超导体100的工作参数与预设值进行比较,当超导体100的工作参数超过预设值时,发出指令,使超导体100降场,消减超导体100内的能量,防止超导体100失超时过热,且通过设定预设值,可保证在超导体100发生失超风险之前即开始降场操作。
如图2所示,一实施例公开了一种超导系统,包括超导体100、腔体、降场组件及如上述的超导保护装置200,腔体内设有容纳腔,容纳腔内设有吸热介质,超导体100设于容纳腔内,超导保护装置200与降场组件电性连接,降场组件用于使超导体100降场。
上述超导系统,获取模块210可获取超导体100的工作参数并利用处理模块220将超导体100的工作参数与预设值进行比较,当超导体100的工作参数超过预设值时,发出指令,使超导体100降场,则通过超导保护装置200可实现对超导体100的监控并自动进行降场操作,防止超导体100失超时过热,且由于将超导体100的工作参数与预设值进行比较,可通过设定预设值,保证在 超导体100发生失超风险之前即开始降场操作。
本具体实施例中,吸热介质为液氦,但根据超导体100的材料不同,吸热介质也可为液氮或其他能够使超导体100进入超导状态的介质。
在其中一个实施例中,如图2所示,降场组件包括超导开关310、加热器320及泄能器330,超导开关310与超导体100串联设置,泄能器330与超导开关310并联设置,加热器320与处理模块220电性连接,处理模块220的指令用于开启加热器320,加热器320用于加热超导开关310。当处理模块220需要通过降场组件使超导体100降场时,处理模块220控制加热器320开启,加热器320对超导开关310进行加热,超导开关310由于温度的升高而失超,此时超导开关310由于自身电阻增大等同于断路状态,使超导体100与泄能器330变为串联状态,泄能器330可用于消耗超导体100内蕴含的能量,防止由于超导体100失超且超导体100内能量过多,导致超导体100过热。
可选地,泄能器330可为二极管组或电阻等。可对超导体100内的能量进行消耗。
在其中一个实施例中,如图2所示,超导开关310设于容纳腔内,加热器320贴设于超导开关310上。此时超导开关310与超导体100在工作状态时均处于超导状态,且加热器320贴设于超导开关310上可保证对超导开关310的加热效果,使超导开关310更迅速的切换到断路状态。
可选地,上述超导保护结构还包括显示器,显示器与获取模块210电性连接。显示器可显示获取模块210监控到的超导体100的工作参数,方便人工对超导体100的工作状态进行监控。
可选地,上述超导保护结构还包括人工开关,人工开关与处理模块220电性连接。此时也可通过人工发出指令,对超导体100进行降场操作。
在其中一个实施例中,如图2所示,超导系统还包括指示器500,指示器500与处理模块220电性连接,当降场组件降场结束后,处理模块220开启指示器500。此时当降场组件降场结束后,可通过指示器500提醒。
可选地,指示器500可为警示灯或警示喇叭等,通过灯光或声音等方式提醒。
可选地,可利用处理模块220对流过超导体100的电流进行监控,当流过超导体100的电流为0时,则说明超导体100的降场已结束,此时处理模块220可开启指示器500。
可选地,超导体100为超导储能部件。本具体实施例中,超导体100为超导磁体线圈。
在其中一个实施例中,上述超导系统还包括用于对超导体100的工作参数进行检测的检测件,检测件与获取模块220电性连接,检测件包括液位传感器、温度传感器或计时器。则可通过液位传感器获取容纳腔内的吸热介质的液面高度,通过温度传感器获取容纳腔内的温度,通过计时器获取制冷器400的停机时间。
可选地,液位传感器设于容纳腔内,液位传感器与获取模块210电性连接。用于获取容纳腔内的吸热介质的液面高度。
可选地,温度传感器设于容纳腔内,温度传感器与获取模块210电性连接。用于获取容纳腔内的温度。
可选地,计时器分别与制冷器400及获取模块210电性连接。用于获取制冷器400的停机时间。
可选地,如图2所示,上述超导保护结构还包括安装件,泄能器330与处理模块220集成安装于安装件上,安装件上设有电流引线接口610、磁体监控接 口620及超导开关加热器接口630,其中,泄能器330与电流引线接口610电性连接,电流引线接口610用于将处理模块220与超导开关310并联,磁体监控接口620用于接入监控单元,处理模块220通过磁体监控接口620与监控单元电性连接,超导开关加热器接口630用于接入加热器320,处理模块220通过超导开关310加热器320与加热器320典型连接。此时安装件、泄能器330及处理模块220可作为独立装置适用于不同的超导系统中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种超导保护方法,其特征在于,包括以下步骤:
    获取超导体的工作参数;
    将所述超导体的工作参数与预设值进行比较,当所述超导体的工作参数超过预设值时,发出指令,所述指令用于使所述超导体降场。
  2. 根据权利要求1所述的超导保护方法,其特征在于,所述超导体的工作参数为超导体所在腔体内的吸热介质的液面高度,所述预设值为预设液面高度,上述当超导体的工作参数超过预设值时,发出指令,具体包括以下步骤:
    当吸热介质的液面高度低于预设液面高度时,发出指令。
  3. 根据权利要求1所述的超导保护方法,其特征在于,所述超导体的工作参数为超导体所在腔体内的温度,所述预设值为预设温度,上述当超导体的工作参数超过预设值时,发出指令,具体包括以下步骤:
    当腔体内的温度高于预设温度时,发出指令。
  4. 根据权利要求1所述的超导保护方法,其特征在于,所述超导体的工作参数为对吸热介质进行制冷的制冷器的停机时间,所述预设值为预设停机时间,上述当超导体的工作参数超过预设值时,发出指令,具体包括以下步骤:
    当制冷器的停机时间大于预设停机时间时,发出指令。
  5. 一种超导保护装置,其特征在于,包括:
    获取模块,用于获取超导体的工作参数;
    处理模块,用于将所述超导体的工作参数与预设值进行比较,当所述超导体的工作参数超过预设值时,发出指令,所述指令用于使所述超导体降场。
  6. 一种超导系统,其特征在于,包括超导体、腔体、降场组件及如权利要求5所述的超导保护装置,所述腔体内设有容纳腔,所述容纳腔内设有吸热介 质,所述超导体设于所述容纳腔内,所述超导保护装置与所述降场组件电性连接,所述降场组件用于使所述超导体降场。
  7. 根据权利要求6所述的超导系统,其特征在于,所述降场组件包括超导开关、加热器及泄能器,所述超导开关与所述超导体串联设置,所述泄能器与所述超导开关并联设置,所述加热器与所述处理模块电性连接,所述处理模块的指令用于开启所述加热器,所述加热器用于加热所述超导开关。
  8. 根据权利要求7所述的超导系统,其特征在于,所述超导开关设于所述容纳腔内,所述加热器贴设于所述超导开关上。
  9. 根据权利要求6所述的超导系统,其特征在于,还包括指示器,所述指示器与所述处理模块电性连接,当所述降场组件降场结束后,所述处理模块开启所述指示器。
  10. 根据权利要求6所述的超导系统,其特征在于,还包括用于对所述超导体的工作参数进行检测的检测件,所述检测件与所述获取模块电性连接,所述检测件包括液位传感器、温度传感器或计时器。
PCT/CN2019/109169 2018-12-05 2019-09-29 超导保护方法、超导保护装置及超导系统 WO2020114062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811480450.XA CN109546620A (zh) 2018-12-05 2018-12-05 超导保护方法、超导保护装置及超导系统
CN201811480450.X 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020114062A1 true WO2020114062A1 (zh) 2020-06-11

Family

ID=65853709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109169 WO2020114062A1 (zh) 2018-12-05 2019-09-29 超导保护方法、超导保护装置及超导系统

Country Status (2)

Country Link
CN (1) CN109546620A (zh)
WO (1) WO2020114062A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546620A (zh) * 2018-12-05 2019-03-29 湖南迈太科医疗科技有限公司 超导保护方法、超导保护装置及超导系统
CN112440762B (zh) * 2019-09-04 2022-07-26 中车唐山机车车辆有限公司 一种轨道车辆
CN117239681B (zh) * 2023-11-14 2024-01-26 苏州八匹马超导科技有限公司 超导磁体失超保护方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124721A (ja) * 2003-10-22 2005-05-19 Hitachi Medical Corp 超電導磁気共鳴イメージング装置
CN103022972A (zh) * 2012-12-26 2013-04-03 中国科学院电工研究所 一种用于超导磁体失超保护的装置
CN104835611A (zh) * 2014-02-10 2015-08-12 通用电气公司 超导磁体系统及其高温超导引线的失超保护方法
CN109546620A (zh) * 2018-12-05 2019-03-29 湖南迈太科医疗科技有限公司 超导保护方法、超导保护装置及超导系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201515979D0 (en) * 2015-09-09 2015-10-21 Tokamak Energy Ltd Quench protection in superconducting magnets
CN107123504B (zh) * 2017-07-03 2019-06-28 上海联影医疗科技有限公司 磁共振磁体降场系统及降场方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124721A (ja) * 2003-10-22 2005-05-19 Hitachi Medical Corp 超電導磁気共鳴イメージング装置
CN103022972A (zh) * 2012-12-26 2013-04-03 中国科学院电工研究所 一种用于超导磁体失超保护的装置
CN104835611A (zh) * 2014-02-10 2015-08-12 通用电气公司 超导磁体系统及其高温超导引线的失超保护方法
CN109546620A (zh) * 2018-12-05 2019-03-29 湖南迈太科医疗科技有限公司 超导保护方法、超导保护装置及超导系统

Also Published As

Publication number Publication date
CN109546620A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020114062A1 (zh) 超导保护方法、超导保护装置及超导系统
CN107221401B (zh) 一种超导磁体系统及其失超保护方法
US8542015B2 (en) Apparatus and method for protecting a magnetic resonance imaging magnet during quench
JP6457941B2 (ja) 超電導永久磁石を自動的に停止させるシステム及び方法
US7615998B2 (en) Method and apparatus for actively controlling quench protection of a superconducting magnet
US9817092B2 (en) Method and magnetic resonance apparatus with a cooling system to cool a superconducting basic magnetic field coil
EP3230756B1 (en) System and method for maintaining vacuum in superconducting magnet system in event of a loss of cooling
CN105807089A (zh) 投影机风速检测装置及投影机
WO2005098331A1 (en) A method of operating a water chiller
US10775455B2 (en) Power management for cryogen compressors
US20090159238A1 (en) Cooling and warming device
US9638774B2 (en) Discharge controlled superconducting magnet
CN209822412U (zh) 超导保护结构、超导装置及磁共振成像系统
JP5110872B2 (ja) 磁気共鳴イメージング装置およびその運転方法
CN104753027B (zh) 超导磁体及其失超保护装置、方法以及采用该超导磁体的磁共振成像系统
US10473739B2 (en) Method for cooling magnetic resonance imaging apparatus and magnetic resonance imaging apparatus
JPWO2021215168A5 (ja) 超電導磁石装置、および超電導磁石装置の冷却方法
JP2010272616A (ja) 超伝導回路保護装置および超伝導磁石装置
WO2020114063A1 (zh) 超导开关结构及超导开关组合
CN109473749B (zh) 一种动力电池热管理控制方法
CN115508759A (zh) 干式冷却的超导mr磁线圈系统的自主降温
JP2013138057A (ja) 超電導マグネット装置
CN206649970U (zh) 一种油浸式变压器降噪循环冷却系统
JP2005124721A (ja) 超電導磁気共鳴イメージング装置
CN207780629U (zh) 散热检测装置及底座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892555

Country of ref document: EP

Kind code of ref document: A1