WO2020114063A1 - 超导开关结构及超导开关组合 - Google Patents

超导开关结构及超导开关组合 Download PDF

Info

Publication number
WO2020114063A1
WO2020114063A1 PCT/CN2019/109170 CN2019109170W WO2020114063A1 WO 2020114063 A1 WO2020114063 A1 WO 2020114063A1 CN 2019109170 W CN2019109170 W CN 2019109170W WO 2020114063 A1 WO2020114063 A1 WO 2020114063A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting switch
superconducting
switch
coil
condensing
Prior art date
Application number
PCT/CN2019/109170
Other languages
English (en)
French (fr)
Inventor
赵华炜
李强
王鹏
史永凌
虞维兴
万波
余乃君
Original Assignee
湖南迈太科医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南迈太科医疗科技有限公司 filed Critical 湖南迈太科医疗科技有限公司
Publication of WO2020114063A1 publication Critical patent/WO2020114063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the invention relates to the technical field of superconductivity, in particular to a superconducting switch structure and a superconducting switch combination.
  • Superconducting magnets are an important direction for the application of modern superconducting technology, and high-field superconducting magnets are an important part of high-field magnetic resonance imaging systems (MagneticResonanceImaging, MRI). Their main role is to provide high-intensity, The highly stable background magnetic field facilitates fast, high-contrast and high-definition imaging.
  • the superconducting switch is the core component of the superconducting magnet. The stability and reliability of its work directly affect whether the coil circuit of the superconducting magnet can be opened and closed smoothly, which directly determines the quality of the superconducting magnet.
  • the superconducting switch In order to ensure that the superconducting switch can be quickly closed after the superconducting switch heater is turned off, sufficient liquid helium is needed around the superconducting switch, usually the superconducting switch is immersed in liquid helium to achieve rapid cooling of the superconducting switch to the superconducting temperature The purpose of closing the switch.
  • the traditional superconducting switch has a strong dependence on the external liquid helium environment, and the direct cooling method of the refrigerator is often used in the liquid-free helium superconducting magnet. The switch is cooled to the superconducting temperature through heat conduction. Usually this method requires a longer time to close the superconducting Guide switch, the efficiency is low.
  • a superconducting switch structure includes: a skeleton having a receiving cavity, a switch coil wound around the outside of the skeleton, and a heater for heating the switch coil; the skeleton is further provided with The inlet portion and the outlet portion communicate with each other.
  • a cooling cavity is provided inside the superconducting switch, which can achieve the effect of liquid helium immersion, which not only meets the cooling speed requirement of the superconducting switch, but also prevents the superconducting switch from being damaged due to excessive temperature under special circumstances.
  • the framework for fixing the switching coil in the present technical solution has a containing cavity for storing coolant, that is, liquid helium, so that when the heater is turned off, the liquid helium in the containing cavity can be applied to the switching coil wound around the framework Fast cooling to achieve the closed loop of the switch coil.
  • the heating of the traditional superconducting switch during use will cause the liquid helium to volatilize outside the magnet, forming a loss.
  • the skeleton is also provided with an inlet and an outlet that communicate with the accommodating cavity. Both the part and the outlet part are used to connect with the condensing assembly to ensure that the helium heated by the switch coil has a volatilization path and a liquid helium return path to achieve the effect of circulating coolant.
  • the technical solution has an independent closed containing cavity and a circulation circuit. The temperature change of the switch coil only causes the liquid helium and helium gas in the containing cavity to be converted into each other, but no helium molecules will escape, saving costs.
  • the superconducting magnet coil is quenched in a certain process, a lot of heat will be generated, and then the liquid helium will be heated into helium gas. During this process, if the liquid helium in the containing chamber is not completely volatilized, it will always The liquid helium volatilizes to lower the temperature of the switch coil, and the temperature of the switch coil will not be too high, which protects the superconducting switch.
  • the time for the liquid helium to cool the switch coil is maximized to ensure that the switch coil does not experience extreme conditions such as excessive temperature, which protects the superconducting switch and also reduces The recovery time of the switching coil.
  • the technical solution is particularly suitable for a superconducting magnet with little liquid helium, and can also be applied to a conventional superconducting magnet.
  • the internal cooling method of the technical solution cools the switch coil, frees the superconducting switch from relying on the external liquid helium environment, and has an internal accommodating cavity, which can achieve the same superconducting switch closing time as the external liquid helium immersion method.
  • the heater is provided on the surface layer of the switch coil.
  • the skeleton is a heat-conducting and low-temperature resistant skeleton.
  • the inlet portion is an inlet pipe communicating with the accommodating cavity; the outlet portion is an outlet pipe communicating with the accommodating cavity.
  • the technical solution also provides a superconducting switch combination, the superconducting switch combination includes the superconducting switch structure according to any one of the above, and a condensing component connected to the superconducting switch structure.
  • the technical solution is provided with a cooling cavity inside the superconducting switch, which can achieve the effect of liquid helium immersion, which not only meets the temperature reduction requirement of the superconducting switch, but also prevents the superconducting switch from being damaged due to excessive temperature under special circumstances.
  • the technical solution has an independent closed containing cavity and a circulation circuit. The temperature change of the switch coil only causes the liquid helium and helium gas in the containing cavity to be converted into each other, but no helium molecules will escape, saving costs.
  • the condensing assembly is connected to the inlet part and the outlet part, respectively.
  • the condensation assembly includes a condensation chamber and a condenser for condensing the interior of the condensation chamber; the condensation chamber is connected to the inlet portion and the outlet portion, respectively.
  • the inlet portion is connected to the bottom of the condensation chamber, and the outlet portion is connected to the upper portion or top of the condensation chamber.
  • the condensing assembly and the inlet part and the outlet part are respectively connected by a connecting pipe.
  • the connecting pipe is a low temperature resistant pipe.
  • FIG. 1 is a schematic structural diagram of a superconducting switch structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a superconducting switch combination according to an embodiment of the present invention.
  • a superconducting switch structure includes: a skeleton 10 having a receiving cavity 11, a switch coil 20 wound outside the skeleton 10, and a heater 30 for heating the switch coil 20;
  • the frame 10 is further provided with an inlet portion 12 and an outlet portion 13 communicating with the accommodating cavity 11.
  • a cooling cavity is provided inside the superconducting switch, which can achieve the effect of liquid helium immersion, which not only meets the cooling speed requirement of the superconducting switch, but also prevents the superconducting switch from being damaged due to excessive temperature under special circumstances.
  • the skeleton 10 for fixing the switching coil 20 in this embodiment has a containing cavity 11 for storing coolant, that is, liquid helium, so that when the heater 30 is turned off, the liquid helium in the containing cavity 11 can be wound around The switch coil 20 on the skeleton 10 is rapidly cooled to realize the closed loop of the switch coil 20.
  • the framework 10 of this embodiment is also provided with an inlet portion 12 and an outlet portion 13 that communicate with the containing chamber 11 Both the inlet portion 12 and the outlet portion 13 are used to connect with the condensing assembly, to ensure that the helium heated by the switch coil 20 has a volatilization path and a liquid helium return path, to achieve the effect of circulating coolant. That is, after the liquid helium in the accommodating chamber 11 is volatilized by heat, it enters the condensing assembly through the outlet section 13 under the action of thermal circulation.
  • the liquid helium After condensing the condensing assembly into liquid helium, the liquid helium is returned to the accommodating chamber 11 from the inlet section 12.
  • This embodiment has an independently closed receiving chamber 11 and a circulation circuit.
  • the temperature change of the switch coil 20 only causes the liquid helium and helium gas in the receiving chamber 11 to be converted into each other, but no helium molecules will escape, saving costs.
  • the superconducting magnet coil (not shown in the figure) is quenched in a certain process, a large amount of heat will be generated, and then the liquid helium will be heated into helium gas.
  • the liquid in the containing chamber 11 If the helium is not completely volatilized, the liquid helium has been volatilized to reduce the temperature of the switch coil 20, and the temperature of the switch coil 20 will not be too high, which protects the superconducting switch. Even if the liquid helium in the accommodating chamber 11 is completely volatilized during the quenching process, the time for the liquid helium to cool the switch coil 20 is maximized to ensure that the switch coil 20 does not experience extreme conditions such as excessive temperature, which protects the superconducting switch. At the same time, the recovery time of the switching coil 20 is also reduced.
  • sufficient liquid helium is introduced into the containing chamber 11 before use to ensure that the liquid helium will not completely volatilize during the entire excitation process, thereby ensuring that the superconducting switch can quickly restore the superconducting state when the excitation is completed , Successfully complete the closed loop of the superconducting magnet coil; even in the case of quenching, the switching coil 20 will not be damaged due to excessive temperature and other reasons.
  • This embodiment is particularly suitable for low-liquid helium superconducting magnets, and can also be applied to conventional superconducting magnets.
  • the internal cooling method of the technical solution cools the switch coil 20 to get rid of the dependence of the superconducting switch on the external liquid helium environment, and at the same time has an internal accommodating cavity 11 to achieve the same superconducting switch closing time as the external liquid helium immersion method.
  • the heater 30 is provided on the surface layer of the switch coil 20, which can heat the switch coil 20 and facilitate the installation of the heater 30.
  • the skeleton 10 is a thermally conductive low-temperature resistant skeleton 10, which satisfies the application of the superconducting switch structure at a temperature of 4.2K.
  • the inlet portion 12 is an inlet pipe that communicates with the containing chamber 11;
  • the outlet portion 13 is an outlet pipe communicating with the accommodating chamber 11.
  • this embodiment also provides a superconducting switch combination
  • the superconducting switch combination includes the superconducting switch structure according to any one of the foregoing, and a condensing component connected to the superconducting switch structure 40.
  • the condensing assembly is connected to the inlet portion 12 and the outlet portion 13, respectively, so as to realize the circulation and reflux of liquid helium.
  • the condensing assembly 40 includes a condensing chamber 41 and a condenser 42 for condensing the inside of the condensing chamber 41; the condensing chamber 41 is connected to the inlet portion 12 and the outlet portion 13, respectively.
  • the inlet portion 12 is connected to the bottom of the condensation chamber 41, and the outlet portion 13 is connected to the upper or top of the condensation chamber 41 to ensure that once liquid helium is generated in the condensation chamber 41, it will quickly flow out to the inlet
  • the part 12 flows back to the accommodating cavity 11 to ensure the reliable operation of the superconducting switch.
  • the condensing unit 40 and the inlet 12 and the outlet 13 are respectively connected by a connecting pipe 50.
  • the working environment of this embodiment is a severe environment such as low temperature, high pressure, vacuum, etc.
  • the embodiment adopts the method of welding connection to be more reliable.
  • the connecting pipe 50 is a low temperature resistant pipe, which satisfies the application of the superconducting switch combination at a temperature of 4.2K
  • helium gas is condensed by the condenser 42 in the condensing chamber 41, the generated liquid helium is collected in the containing chamber 11, and the switching coil 20 is cooled to make it in a superconducting state.
  • the heater 30 is energized, the switching coil 20 is heated, and the superconducting enters the normal conducting state, the superconducting switch is opened, and the superconducting magnet coil can be excited.
  • the superconducting switch remains open. A part of the liquid helium in the receiving chamber 11 is heated to volatilize into helium gas, enters the condensation chamber 41 through the outlet portion 12, and the helium gas becomes liquid helium after condensation, and passes through the inlet portion 12 Return to the accommodating chamber 11 and keep the liquid helium in the accommodating chamber 11 until the excitation is completed.
  • the heater 30 is turned off, and the switch coil 20 is quickly cooled to the superconducting state by the liquid helium in the accommodating chamber 11, and the superconducting magnet coil is connected to achieve a closed loop.
  • the heater 30 When performing the field down operation, the heater 30 is energized, the switch coil 20 is heated, and the superconducting state enters the normal conducting state, the superconducting switch is opened, and the superconducting power is consumed by an external energy release module (not shown). Lead the energy storage in the coil to achieve a safe field reduction of superconducting magnets.
  • the superconducting magnet coil is quenched in a certain process, a large amount of heat will be generated, and then the liquid helium will be heated into helium gas.
  • the liquid helium in the containing chamber 11 is not completely volatilized, it will always The liquid helium volatilizes to lower the temperature of the switch coil 20, and the temperature of the switch coil 20 is not too high, which protects the superconducting switch.
  • the liquid helium in the holding chamber 11 is also the last part to be volatilized. This design maximizes the time for the liquid helium to cool the superconducting switch to ensure superconductivity
  • the switch does not exhibit extreme conditions such as excessive temperature, which protects the superconducting switch and reduces the recovery time of the switch coil 20 at the same time.
  • the superconducting switch structure and the superconducting switch combination of the present embodiment have greater flexibility and safety, can be used in various situations and have a stronger switch coil prevention 20 The ability to overheat.
  • the condenser 42 is connected to the secondary cold head 60 of the refrigerator. After the secondary cold head 60 is once supercooled, the refrigeration efficiency is high, and the condensation efficiency of the condenser 42 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种超导开关结构及超导开关组合,所述超导开关结构包括:具有容纳腔(11)的骨架(10),绕设于所述骨架(10)外部的开关线圈(20),以及用于对所述开关线圈(20)加热的加热器(30);所述骨架(10)上还设有与所述容纳腔(11)连通的入口部(12)和出口部(13)。在超导开关的内部设置容纳腔(11),可达到液氦浸泡的效果,不仅满足超导开关的降温速度要求,同时可防止特殊情况下超导开关温度过高而损坏。

Description

超导开关结构及超导开关组合 技术领域
本发明涉及超导技术领域,特别是涉及超导开关结构及超导开关组合。
背景技术
超导磁体是现代超导技术应用的重要方向,而高场的超导磁体是高场磁共振成像系统(Magnetic Resonance Imaging,MRI)的重要组成部分,主要作用是为MRI的工作提供高强度、高稳定性的背景磁场,便于实现快速、高对比度和高清晰度的成像。超导开关是超导磁体的核心部件,其工作的稳定性和可靠性直接影响着超导磁体线圈回路能否顺利开环和闭环,直接决定着超导磁体的质量。为了保证在关闭超导开关加热器后超导开关能够迅速闭合,需要足够的液氦在超导开关周围,通常超导开关是浸泡在液氦里,以达到超导开关迅速冷却到超导温度闭合开关的目的。传统的超导开关对外部液氦环境依赖性强,且无液氦超导磁体中常采用制冷机直接制冷方式,通过热传导将开关冷却到超导温度,通常这种方式需要更长的时间闭合超导开关,效率低下。
发明内容
基于此,有必要针对传统的超导开关对外部液氦环境的依赖及无液氦超导磁体中超导开关闭合时间长的问题,提供一种超导开关结构及超导开关组合。
一种超导开关结构,包括:具有容纳腔的骨架,绕设于所述骨架外部的开关线圈,以及用于对所述开关线圈加热的加热器;所述骨架上还设有与所述容纳腔连通的入口部和出口部。
本技术方案在超导开关的内部设置冷却腔,可达到液氦浸泡的效果,不仅满足超导开关的降温速度要求,同时可防止特殊情况下超导开关因温度过高而损坏。具体地,本技术方案中用于固定开关线圈的骨架具有用于存储冷却剂即液氦的容纳腔,从而当加热器关闭后,容纳腔内的液氦可对绕设于骨架上的开关线圈进行快速冷却,实现开关线圈闭环。同时,传统的超导开关在使用过程中加热会引起液氦挥发至磁体外,形成损失,本技术方案所述骨架上还设有与所述容纳腔连通的入口部和出口部,所述入口部与所述出口部均用于与冷凝组件连接,保证被开关线圈加热后的氦气具有挥发路径和液氦回流路径,达到冷却剂循环使用的效果。本技术方案具有独立封闭的容纳腔以及循环回路,开关线圈温度变化仅引起所述容纳腔中液氦和氦气相互转化,但不会有氦分子逸出,节约成本。
另外,如果超导磁体线圈在某一过程中失超,将会产生大量的热,进而将液氦加热变成氦气,在此过程中,如果容纳腔内液氦没有被完全挥发,则一直有液氦挥发为开关线圈降温,不会出现开关线圈温度过高的情况,保护了超导开关。即使容纳腔中的液氦在失超过程中全部挥发,也最大限度地延长了液氦冷却开关线圈的时间,保证开关线圈不会出现温度过高等极端情况,保护了超导开关,同时也减少了开关线圈的恢复时间。
本技术方案特别适用于少液氦超导磁体,也可运用于常规的超导磁体中。本技术方案内冷却的方式冷却开关线圈,摆脱了超导开关对外部液氦环境的依赖,同时具有内部容纳腔,可达到与外部液氦浸泡方式相同的超导开关闭合时间。
进一步地,所述加热器设于所述开关线圈的表层。
进一步地,所述骨架为导热耐低温骨架。
进一步地,所述入口部为与所述容纳腔连通的入口管;所述出口部为与所述容纳腔连通的出口管。
本技术方案还提供一种超导开关组合,所述超导开关组合包括如上述任一项所述的超导开关结构,以及与所述超导开关结构连接的冷凝组件。本技术方案在超导开关的内部设置冷却腔,可达到液氦浸泡的效果,不仅满足超导开关的降温速度要求,同时可防止特殊情况下超导开关因温度过高而损坏。本技术方案具有独立封闭的容纳腔以及循环回路,开关线圈温度变化仅引起所述容纳腔中液氦和氦气相互转化,但不会有氦分子逸出,节约成本。
进一步地,所述冷凝组件与所述入口部、出口部分别连接。
进一步地,所述冷凝组件包括冷凝腔以及用于对所述冷凝腔内部进行冷凝的冷凝器;所述冷凝腔与所述入口部、出口部分别连接。
进一步地,所述入口部与所述冷凝腔的底部连接,所述出口部与所述冷凝腔的上部或顶部连接。
进一步地,所述冷凝组件与所述入口部、出口部分别通过连接管连接。
进一步地,所述连接管为耐低温管。
附图说明
图1为本发明的实施方式所述的超导开关结构的结构示意图;
图2为本发明的实施方式所述的超导开关组合的结构示意图。
10、骨架;11、容纳腔;12、入口部;13、出口部;20、开关线圈;30、加热器;40、冷凝组件;41、冷凝腔;42、冷凝器;50、连接管;60、二级冷头。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
如图1所示一种超导开关结构,包括:具有容纳腔11的骨架10,绕设于所述骨架10外部的开关线圈20,以及用于对所述开关线圈20加热的加热器30;所述骨架10上还设有与所述容纳腔11连通的入口部12和出口部13。
本实施方式在超导开关的内部设置冷却腔,可达到液氦浸泡的效果,不仅满足超导开关的降温速度要求,同时可防止特殊情况下超导开关因温度过高而损坏。具体地,本实施方式中用于固定开关线圈20的骨架10具有用于存储冷却剂即液氦的容纳腔11,从而当加热器30关闭后,容纳腔11内的液氦可对绕设于骨架10上的开关线圈20进行快速冷却,实现开关线圈20闭环。同时,传统的超导开关在使用过程中加热会引起液氦挥发至磁体外,形成损失,本实施方式所述骨架10上还设有与所述容纳腔11连通的入口部12和出口部13,所述入口部12与所述出口部13均用于与冷凝组件连接,保证被开关线圈20加热后的氦气具有挥发路径和液氦回流路径,达到冷却剂循环使用的效果。即容纳腔11内的液氦受热挥发后,在热循环的作用下,通过出口部13进入冷凝组件,经冷凝组件冷凝为液氦后,由入口部12将液氦回流至容纳腔11内。本实施方式具有独立封闭的容纳腔11以及循环回路,开关线圈20温度变化仅引起所述容纳腔11中液氦和氦气相互转化,但不会有氦分子逸出,节约成本。另外,如果超导磁体线圈(图中未示出)在某一过程中失超,将会产生大量的热,进而将液氦加热变成氦气,在此过程中,如果容纳腔11内液氦没有被完全挥发,则一直有液氦挥发为开关线圈20降温,不会出现开关线圈20温度过高的情况,保 护了超导开关。即使容纳腔11中的液氦在失超过程中全部挥发,也最大限度地延长了液氦冷却开关线圈20的时间,保证开关线圈20不会出现温度过高等极端情况,保护了超导开关,同时也减少了开关线圈20的恢复时间。本实施方式中,使用前在所述容纳腔11内通入足够多的液氦,保证整个励磁过程中,液氦不会完全挥发,从而保证励磁完成时,超导开关可以快速恢复超导态,顺利完成超导磁体线圈的闭环;即使在发生失超的情况下,开关线圈20也不会因温度过高等原因而损坏。
本实施方式特别适用于少液氦超导磁体,也可运用于常规的超导磁体中。本技术方案内冷却的方式冷却开关线圈20,摆脱了超导开关对外部液氦环境的依赖,同时具有内部容纳腔11,可达到与外部液氦浸泡方式相同的超导开关闭合时间。
所述加热器30设于所述开关线圈20的表层,既可对开关线圈20进行加热,且方便加热器30的安装。
为了保证容纳腔11内的液氦对开关线圈20的冷却效果,所述骨架10为导热耐低温骨架10,满足超导开关结构在温度4.2K下应用。
由于所述入口部12与所述出口部13需与冷凝组件对接,为了提高连接的稳定性、密封性和便利性,所述入口部12为与所述容纳腔11连通的入口管;所述出口部13为与所述容纳腔11连通的出口管。
如图2所示,本实施方式还提供一种超导开关组合,所述超导开关组合包括如上述任一项所述的超导开关结构,以及与所述超导开关结构连接的冷凝组件40。具体地,所述冷凝组件与所述入口部12、出口部13分别连接,从而实现液氦的循环回流。
所述冷凝组件40包括冷凝腔41以及用于对所述冷凝腔41内部进行冷凝的 冷凝器42;所述冷凝腔41与所述入口部12、出口部13分别连接。
具体地,所述入口部12与所述冷凝腔41的底部连接,所述出口部13与所述冷凝腔41的上部或顶部连接,保证冷凝腔41内一旦产生液氦,会快速流出至入口部12回流至容纳腔11,保证超导开关可靠工作。且本实施方式中所述冷凝组件40与所述入口部12、出口部13分别通过连接管50连接,考虑到本实施方式的工作环境为低温、高压、真空等较为严苛的环境,故本实施方式采用焊接连接的方式更为可靠。且所述连接管50为耐低温管,满足超导开关组合在温度4.2K下应用
在超导磁体预冷过程中,氦气在冷凝腔41中被冷凝器42冷凝,产生的液氦在容纳腔11中聚集,冷却开关线圈20使其处于超导状态。
在进行励磁操作时,给加热器30加电流,开关线圈20被加热,由超导进入常导态,超导开关打开,可以给超导磁体线圈励磁。在励磁过程中,超导开关保持打开状态,容纳腔11内有一部分液氦受热挥发为氦气,经过出口部12进入冷凝腔41,氦气经过冷凝后又变为液氦,通过入口部12回流至容纳腔11内,保持容纳腔11中存在液氦,直到励磁完成。此时关闭加热器30,开关线圈20被容纳腔11内的液氦快速冷却到超导状态,连通超导磁体线圈,实现闭环。
当进行降场操作时,给加热器30加电流,开关线圈20被加热,由超导态进入常导态,超导开关打开,通过外部的泄能模块(图中未示出)消耗掉超导此题线圈中的储能,实现超导磁体安全降场。
如果超导磁体线圈在某一过程中失超,将会产生大量的热,进而将液氦加热变成氦气,在此过程中,如果容纳腔11内的液氦没有被完全挥发,则一直有液氦挥发为开关线圈20降温,不会出现开关线圈20温度过高的情况,保护了超导开关。即使容纳腔11中的液氦在失超过程中全部挥发,容纳腔11内的液 氦也是最后挥发的那部分,这种设计最大限度地延长了液氦冷却超导开关的时间,保证超导开关不会出现温度过高等极端情况,保护了超导开关,同时也减少了开关线圈20的恢复时间。
可见,在超导磁体的所有工作过程中,本实施方式的超导开关结构及超导开关组合具有更大的灵活性和安全性,满足各种情况下使用并具有更强的防止开关线圈20过热的能力。
本实施方式所述冷凝器42与制冷机的二级冷头60连接,所述二级冷头60经过一次过冷后,制冷效率高,提高冷凝器42的冷凝效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种超导开关结构,其特征在于,包括:具有容纳腔的骨架,绕设于所述骨架外部的开关线圈,以及用于对所述开关线圈加热的加热器;所述骨架上还设有与所述容纳腔连通的入口部和出口部。
  2. 根据权利要求1所述的超导开关结构,其特征在于,所述加热器设于所述开关线圈的表层。
  3. 根据权利要求1所述的超导开关结构,其特征在于,所述骨架为导热耐低温骨架。
  4. 根据权利要求1-3任一项所述的超导开关结构,其特征在于,所述入口部为与所述容纳腔连通的入口管;所述出口部为与所述容纳腔连通的出口管。
  5. 一种超导开关组合,其特征在于,所述超导开关组合包括如权利要求1-4任一项所述的超导开关结构,以及与所述超导开关结构连接的冷凝组件。
  6. 根据权利要求5所述的超导开关组合,其特征在于,所述冷凝组件与所述入口部、出口部分别连接。
  7. 根据权利要求6所述的超导开关组合,其特征在于,所述冷凝组件包括冷凝腔以及用于对所述冷凝腔内部进行冷凝的冷凝器;所述冷凝腔与所述入口部、出口部分别连接。
  8. 根据权利要求7所述的超导开关组合,其特征在于,所述入口部与所述冷凝腔的底部连接,所述出口部与所述冷凝腔的上部或顶部连接。
  9. 根据权利要求5-8任一项所述的超导开关组合,其特征在于,所述冷凝组件与所述入口部、出口部分别通过连接管连接。
  10. 根据权利要求9所述的超导开关组合,其特征在于,所述连接管为耐低温管。
PCT/CN2019/109170 2018-12-05 2019-09-29 超导开关结构及超导开关组合 WO2020114063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811480187.4 2018-12-05
CN201811480187.4A CN109449278A (zh) 2018-12-05 2018-12-05 超导开关结构及超导开关组合

Publications (1)

Publication Number Publication Date
WO2020114063A1 true WO2020114063A1 (zh) 2020-06-11

Family

ID=65556298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109170 WO2020114063A1 (zh) 2018-12-05 2019-09-29 超导开关结构及超导开关组合

Country Status (2)

Country Link
CN (1) CN109449278A (zh)
WO (1) WO2020114063A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449278A (zh) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 超导开关结构及超导开关组合
CN116206845B (zh) * 2023-02-16 2023-09-26 苏州八匹马超导科技有限公司 一种用于传导冷却超导磁体的超导开关系统实现方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173577B1 (en) * 1996-08-16 2001-01-16 American Superconductor Corporation Methods and apparatus for cooling systems for cryogenic power conversion electronics
CN103091653A (zh) * 2011-10-31 2013-05-08 通用电气公司 用于在第一模式和第二模式之间交替切换持续电流开关的系统和方法
CN106158228A (zh) * 2015-04-16 2016-11-23 通用电气公司 用于超导磁体的冷却系统及磁体系统
CN108630376A (zh) * 2018-03-29 2018-10-09 杭州汉胜科磁体设备有限公司 超导磁体二级冷却装置及二级冷却方法
CN109449278A (zh) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 超导开关结构及超导开关组合
CN209169193U (zh) * 2018-12-05 2019-07-26 湖南迈太科医疗科技有限公司 超导开关结构及超导开关组合

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173577B1 (en) * 1996-08-16 2001-01-16 American Superconductor Corporation Methods and apparatus for cooling systems for cryogenic power conversion electronics
CN103091653A (zh) * 2011-10-31 2013-05-08 通用电气公司 用于在第一模式和第二模式之间交替切换持续电流开关的系统和方法
CN106158228A (zh) * 2015-04-16 2016-11-23 通用电气公司 用于超导磁体的冷却系统及磁体系统
CN108630376A (zh) * 2018-03-29 2018-10-09 杭州汉胜科磁体设备有限公司 超导磁体二级冷却装置及二级冷却方法
CN109449278A (zh) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 超导开关结构及超导开关组合
CN209169193U (zh) * 2018-12-05 2019-07-26 湖南迈太科医疗科技有限公司 超导开关结构及超导开关组合

Also Published As

Publication number Publication date
CN109449278A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2019134533A1 (zh) 磁共振成像超导磁体系统
JP5196781B2 (ja) 極低温に冷却される機器の閉ループ予冷方法及び装置
WO2020114063A1 (zh) 超导开关结构及超导开关组合
US20090293504A1 (en) Refrigeration installation having a warm and a cold connection element and having a heat pipe which is connected to the connection elements
KR102506491B1 (ko) 결함-감내형 극저온 냉각 시스템
CN105468117B (zh) 服务器的液冷系统
CN103648252B (zh) 一种电气设备的冷却系统
WO2013078844A1 (zh) 一种密闭式循环水冷却装置和方法
EP3069159B1 (en) Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
US7509815B2 (en) Superconducting device having cryosystem and superconducting switch
JP2016083018A (ja) 超電導磁石およびmri装置、nmr装置
US20160189841A1 (en) Cooling system and method for a magnetic resonance imaging device
CN207264217U (zh) 半导体生产用温控设备
JP4814630B2 (ja) 超電導電磁石装置
CN209169193U (zh) 超导开关结构及超导开关组合
CN108109806B (zh) 超导磁体装置
US20120190552A1 (en) Precooling device, superconducting magnet and magnetic resonance imaging apparatus
JP6132821B2 (ja) 吸収式冷凍システム
CN219889978U (zh) 一种冻融机载冷循环加热系统及冻融机
JPS63156980A (ja) ヒ−トポンプ式空気調和機
JPH11340028A (ja) 超電導コイル装置及びその温度調整方法
JP2000269022A (ja) 超電導磁石装置
JP3590607B2 (ja) 吸収式冷温水装置
JP3663006B2 (ja) 吸収冷温水機
JP3663007B2 (ja) 吸収冷温水機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893486

Country of ref document: EP

Kind code of ref document: A1