WO2020113593A1 - 一种冶金过程的放大方法 - Google Patents

一种冶金过程的放大方法 Download PDF

Info

Publication number
WO2020113593A1
WO2020113593A1 PCT/CN2018/119969 CN2018119969W WO2020113593A1 WO 2020113593 A1 WO2020113593 A1 WO 2020113593A1 CN 2018119969 W CN2018119969 W CN 2018119969W WO 2020113593 A1 WO2020113593 A1 WO 2020113593A1
Authority
WO
WIPO (PCT)
Prior art keywords
metallurgical
reaction
amplification
reactor
physical
Prior art date
Application number
PCT/CN2018/119969
Other languages
English (en)
French (fr)
Inventor
张廷安
豆志河
刘燕
张子木
赵秋月
吕国志
牛丽萍
张伟光
傅大学
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to JP2021532166A priority Critical patent/JP2022510465A/ja
Priority to AU2018452089A priority patent/AU2018452089B2/en
Priority to US17/298,497 priority patent/US20220019719A1/en
Priority to EP18942086.2A priority patent/EP3893130A4/en
Priority to CA3120496A priority patent/CA3120496A1/en
Publication of WO2020113593A1 publication Critical patent/WO2020113593A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/007Separating solid material from the gas/liquid stream by sedimentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the field of metallurgy and chemical equipment research and amplification, and particularly relates to an amplification method of metallurgical processes.
  • the green, large-scale, integrated and intelligent development of the metallurgical industry requires not only a non-polluting, low energy consumption, short process, and economical green metal extraction process, but also a large-scale and scale matching process Metallurgical reaction equipment.
  • the analysis and amplification of the metallurgical process is an important guarantee for the smooth production process and the economic benefits of the enterprise, and it is also the only way to apply scientific research results from the laboratory stage to industrial production.
  • the traditional reactor amplification work often relies on the engineer's personal experience to gradually amplify the equipment, which has defects such as low efficiency, time-consuming and labor-intensive, and unreliable amplification schemes, and The amplification scheme cannot be transplanted and borrowed even in a similar reaction system.
  • the chemical industry has conducted in-depth research on equipment and proposed mathematical simulation amplification methods. This method is based on the material flow information in the chemical equipment and introduces mathematical analysis methods such as differential or integral to construct the material flow balance equation in the equipment to achieve the enlargement of the equipment.
  • the metallurgical industry has a similar unit operation process as the chemical industry, it also has obvious differences, such as: high temperature, high corrosiveness, high pressure, high magnetic field, high electric field, complex physical properties, multi-field coupling and other characteristics. Therefore, the complexity of the metallurgical reaction system makes the effective data in the reactor comprehensive, accurate, and real-time measurement becomes a challenge, and the establishment of accurate mathematical models becomes very difficult. Therefore, how to develop metallurgical reactor amplification technology and methods with metallurgical characteristics has become an urgent scientific problem.
  • metallurgical reaction engineering is to analyze the processes occurring in the metallurgical reactor according to the reaction rate theory and the transfer process theory, to clarify the reactor’s Characteristics, determine the reaction operating conditions and strive to control the reaction process in the best state, and ultimately obtain comprehensive technical and economic benefits. Therefore, metallurgical reaction engineering is also called the analysis and amplification science of metallurgical reactors.
  • the invention proposes the concept of metallurgical process adaptation and amplification, which not only guarantees the deep analysis of the reaction process from the mechanism, but also avoids the establishment of complex mathematical models, so its scope of application is wider and its practical application is more convenient.
  • the present invention proposes a metallurgical process amplification method, which is a metallurgical process amplification method based on the principles of "adaptation theory” and "single factor". This method has a wide range of applications and is more convenient for practical applications.
  • the amplification method of the metallurgical process of the present invention includes the following steps:
  • R f (P, T, C, X); where, R is the reaction rate of the metallurgical reaction process , F is a functional relationship, P is the pressure, T is the temperature, C is the concentration, X is other influencing factors; determine the most critical process steps that affect the reaction rate during the metallurgical reaction process, and obtain the reaction characteristics;
  • a single factor of the reaction period is determined, and the single factor is a decisive factor existing in the specific metallurgical reaction period;
  • the single factor amplification criterion According to the determined single factor, according to the influence relationship of the single factor on the metallurgical reaction process, determine the single factor amplification criterion
  • the amplification criterion remains unchanged.
  • the hot-scale experiment or simulation is used to solve the pilot scale test results, verify the amplification criterion, obtain the amplification plan, industrialize, and complete the metallurgical process amplification.
  • the relationship between the determined metallurgical reaction process and temperature, pressure, concentration, or other factors has nothing to do with the structure of the reactor, and is only related to a certain key factor in a specific time period.
  • the reaction control steps are determined.
  • the physical fields of the reactor include pressure fields, flow fields, concentration fields, magnetic fields, stirring physical fields, and other physical fields that affect the metallurgical reaction process.
  • the reactor and its structure suitable for metallurgical reaction characteristics are determined.
  • the physical field characteristics of the reactor and its structure are required to correspond to the requirements of metallurgical reaction laws.
  • the physical characteristics and numerical simulation methods are used to determine the field characteristics of the reactor.
  • the physical simulations are particle velocity measurement, high-speed photography, Doppler, and infrared imaging to obtain water model experiments; numerical simulation The simulation is a detailed simulation of the simulation obtained by ANSYS/FLUENT simulation.
  • the material transmission law is obtained according to physical simulation and numerical simulation, and the phenomenological equation is determined according to phenomenology.
  • the single factor is a decisive factor that must exist during a specific metallurgical reaction period.
  • the determination of the single-factor amplification criterion is a single-factor amplification criterion based on the single-factor amplification that the metallurgical process amplification can establish in a specific time period.
  • the reactor suitable for metallurgical reaction characteristics, its structure, and the determination of single factors should be established based on the coupling of macroscopic dynamics research, physical simulation and numerical simulation simulation, and thermal experiment verification Based on the metallurgical process amplification research platform, the metallurgical process amplification can be accurately completed according to the steps of the metallurgical process reactor amplification method.
  • the method for amplifying the metallurgical process of the present invention determines the key control link of the reaction process in step one, which belongs to a more macro level, such as external diffusion; in step three, the "single factor" of the control link is further determined to determine which factor is Key factors that reflect a particular stage. )
  • step one belongs to a more macro level, such as external diffusion
  • step three the "single factor" of the control link is further determined to determine which factor is Key factors that reflect a particular stage.
  • the present invention proposes the concept of "adaptive amplification", which solves the problem that the existing amplification method when the reactor is amplified, because the reaction characteristics in the reactor and the characteristics of the reactor itself and the interaction between them are not clear, resulting in The technical difficulty of the amplification failure caused by the mismatch between the reaction characteristics and the reactor characteristics after the actual amplification.
  • the metallurgical reaction process includes chemical reaction and physical transmission.
  • the essence of its chemical reaction means that the metallurgical chemical reaction path and law will not change in a specific physical environment. For example, the initial reaction temperature of coal combustion and sulfide ore decomposition under normal pressure is fixed. But the same chemical reaction, in different reaction equipment, different operating conditions and different scale equipment, its conversion effect, reaction rate, and even reaction products are different. This is due to the difference in the reaction environment provided by the reactors with different structural characteristics, which leads to the difference in the material transfer process, which in turn leads to the difference in the chemical reaction results. Therefore, the core idea of the amplification of the metallurgical process is to ensure that the physical environment in the metallurgical equipment after the amplification matches the environment required for the chemical reaction, so that the metallurgical process can be reliably amplified.
  • the metallurgical process is often a reaction process with many substances participating in the reaction, complicated reaction pathways, and multiphase coexistence, so it is very difficult to construct accurate mathematical equations.
  • the present invention proposes the "single factor" principle, that is, grasping the leading and decisive influencing factors in the metallurgical process, which usually controls the rate of reaction and the change of the physical field, thereby simplifying the metallurgical process.
  • Figure 1 shows the metallurgical process amplification research platform and amplification process.
  • Particle velocity measurement technology high-speed camera technology, infrared imaging technology, Doppler technology are used to analyze the distribution of physical fields such as temperature field, velocity field and concentration field in the physical model.
  • ANSYS numerical simulation technology can be used to analyze the changing laws of the physical field from multiple angles to construct the reactor physical characteristics under different scales, structures, and operations, thereby obtaining reactors and structures suitable for metallurgical reaction characteristics , Establish the phenomenological equations of the physical parameters (such as temperature, pressure, concentration, velocity, etc.) and operation and structural conditions.
  • Metallurgical macrodynamics divides the limiting steps in metallurgy into physical transfer control, chemical reaction control, and mixed control of physical transfer and chemical reaction.
  • the principle of a single influencing factor is based on the macroscopic dynamics and the analysis of "physical field", focusing on the study of the impact of changes in physical factors on the metallurgical chemical reaction and mass transfer effect, so as to find the decisive and control in multiple physical fields
  • the amplification criterion is constructed.
  • a metallurgical process is controlled by diffusion, so the principle of single influencing factors focuses on the diffusion process of reactants, and the influence of key parameters such as stirring speed, stirring type, and stirring structure on the diffusion of substances is studied.
  • the decisive stirring criterion is found, and the amplification criterion is constructed.
  • the "thin material principle” is introduced to establish an amplification method that takes temperature effects as the main contradiction during the metallurgical reaction.
  • Boron-rich slag is the boron-containing waste slag produced by blast furnace ironmaking.
  • the boron content is about 12%, which is an ideal raw material for industrial boron extraction.
  • the boron-rich slag obtained at high temperature has low activity after cooling and is not suitable as a raw material for boron extraction.
  • ⁇ B 61.21+1.25 ⁇ T ( ⁇ T variation range: 2°C/min ⁇ 20°C/min), where ⁇ B is the utilization rate of boron-rich slag after cooling, and ⁇ T is the temperature gradient during cooling.
  • the temperature has a great influence on the metallurgical reaction rate of the boron-rich slag.
  • the phase changes in the boron-rich slag are determined under different cooling temperatures and cooling rates. It is found that the main cooling process of the boron-rich slag The contradiction is: the competitive precipitation of borate magnesium salt with forsterite and glass phase brought about by temperature effect. Therefore, the cooling temperature and cooling rate are the most critical processes in the metallurgical reaction process of boron-rich slag.
  • an industrial-scale slow cooling tank (tank size: 1500mm ⁇ 900mm ⁇ 150mm) and slow cooling furnace (furnace size: 4524mm ⁇ 2488mm ⁇ 2065mm) were determined.
  • cooling temperature and cooling rate determined in step 1 are the most critical processes in the metallurgical reaction process of boron-rich slag, and the physical characteristics of the reactor determined in step 2 are determined as a single factor;
  • phase change characteristics of the cooling process that is, the two-stage slow cooling characteristics, that is, the boron-rich slag is rapidly cooled at a rate greater than 10°C/min in the range of 1500 to 1200°C, and slowly cooled at a rate not greater than 3°C/min below 1200°C .
  • the "thin material principle” is introduced, the Fo number (the relative size of the temperature propagation depth inside the object and the object's characteristic size) and the Bi number (the relative size of the internal thermal resistance of the material and the internal heat release thermal resistance) are introduced;
  • the boron-rich slag must be cooled in the form of a thickness of less than 0.15m, that is, in the form of "thin material" slow cooling to ensure the extraction rate of boron. Therefore, in the process of equipment enlargement, the preheating temperature is 700-900°C, the thickness of the slag layer is not more than 0.15m, the ambient temperature of the fast cooling section is 600-900°C, and the environmental temperature of the insulation section is 780-980°C, which can ensure the efficient extraction of boron. .
  • an amplification method with a concentration distribution effect as the main contradiction under a solid-liquid mechanical stirring system is established, and an amplification method for an alumina seed separation tank is invented.
  • the decomposition of seed crystals of sodium aluminate solution is one of the key processes for the production of alumina by the Bayer process. It not only affects the quantity and quality of the product alumina, but also directly affects the cycle efficiency and other processes.
  • the seed crystal decomposition is the process of precipitation of solid aluminum hydroxide from the sodium aluminate solution, which is a solid-liquid two-phase reaction.
  • the mechanical stirring introduced therein can ensure the uniformity of the distribution of solid particles and the uniformity and stability of the liquid phase concentration and reaction temperature in the reaction system.
  • An enlargement method of alumina seed sub-groove includes the following steps:
  • the enlarged seed distribution tank is a flat-bottomed mechanical stirring tank with a tank body of 14m in diameter, 30 meters in height, and an effective volume of 4500m 3 ;
  • the single factor of the reaction is the critical stirring speed
  • N js N js0 ⁇ -0.868 , where N js is the amplified critical suspension speed , N js0 is the critical suspension speed before the seed tank is enlarged, and ⁇ is the volume multiple of the seed tank;
  • an enlargement criterion is established to achieve a high magnification rapid amplification from the laboratory to the industrial 40,000-ton seeding tank.
  • the consumption is reduced by 31.2% compared with the existing seed distribution tank.
  • a metallurgical reaction system with a complex reaction mechanism, multiple phases, and multiple physical fields coupling is established, and the energy distribution effect is the main contradiction amplification method.
  • spherical nickel hydroxide As an important raw material for battery materials, spherical nickel hydroxide is widely used in important fields such as electronic energy, electroplating, aerospace and military industry.
  • the difficulty of amplifying the spherical nickel hydroxide synthesis kettle lies in the complex mechanism of the synthesis reaction.
  • the reaction process is a multi-phase reaction that generates solid crystals from the liquid phase.
  • the reaction process involves concentration distribution, temperature distribution, residence time distribution, stirring intensity, speed distribution, etc. This kind of physics is coupled.
  • the sphericity of nickel hydroxide products affects the performance of subsequent batteries such as charge and discharge. Therefore, there are strict requirements on the shape of the products.
  • the stirring in the system is in the state of over stirring, the solid-liquid two-phase distribution is uniform and the temperature is uniform, so the concentration effect and temperature effect are eliminated.
  • the crystal growth time and the intensity of the stirring energy are important factors that affect the crystal growth habits and morphology.
  • stimulus-response technology to measure the residence time distribution of materials in the synthesis kettle under different working conditions, it was found that the residence time under different working conditions did not differ much.
  • the intensity of stirring energy has an important influence on the growth habit and morphology of nickel hydroxide crystals. Therefore, the technology of the present invention determines that the single factor that affects product quality and productivity is the intensity of stirring energy.
  • the reactor was simultaneously measured using particle velocity technology and particle concentration analyzer. Internal flow field distribution, concentration distribution and temperature distribution; the relationship between fluid flow state and energy consumption in reactors with different structures is simulated, and the reactor type and structure of the reaction process are determined.
  • the synthetic kettle has a diameter of 2.4 m, a height-to-diameter ratio of 1.1, and a nominal volume of 10.51 m 3 .
  • the single factor for determining the reaction period is a constant linear velocity
  • the single factor amplification criterion is determined as U E ⁇ 7m/s.
  • U E is the linear velocity at the end of the stirring paddle;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种冶金过程的放大方法,属于冶金与化工装备研究与放大领域。该方法包括:运用冶金宏观反应动力学研究方法,确定总包速率方程,确定影响反应速率的最关键的工艺步骤,得到反应特性;利用物理模拟和/或数值仿真模拟方法确定反应器的物理场特性,优化反应器;由反应特性和反应器物理场特性,确定反应时段的单一因素;根据冶金反应过程的影响关系,确定单一因素放大准数;利用热态实验或模拟仿真手段求解中试规模试验结果,验证放大准则,得到放大方案,进行工业化,完成冶金过程的放大。

Description

一种冶金过程的放大方法 技术领域
本发明属于冶金与化工装备研究与放大领域,尤其是涉及一种冶金过程的放大方法。
背景技术
冶金工业的绿色化、规模化、集成化和智能化发展不仅仅需要无污染的、低能耗的、短流程的、经济性良好的绿色金属提取工艺,还需要与工艺相匹配的大型化、规模化的冶金反应装备。冶金过程的分析与放大是生产工艺顺行和企业经济效益的重要保障,也是将科学研究成果从实验室阶段应用到工业化生产的必经之路。传统的反应器放大工作,由于科学研究体系的不完善和分析检测技术的缺失,往往依靠工程师的个人经验,逐步地放大装备,存在效率低、耗时耗力且放大方案不可靠等缺陷,并且放大方案即使在相似的反应体系内也不能移植借用。随着科技的进步,化工行业对装备进行了深入的研究,提出了数学模拟放大的方法。该方法以化工装备内的物质流信息为基础,引入微分或积分等数学分析手段,构建装备内的物质流平衡方程,从而实现装备的放大。冶金工业虽然与化工有着相似的单元操作过程,但也有着明显的区别,如:高温、高腐蚀性、高压、高磁场、高电场、介质物性复杂、多场耦合等特性。因此,冶金反应体系的复杂性使得反应器内有效数据全面、准确、实时地测量成为一项挑战,准确的数学模型的建立变得十分困难。因此,如何开发具有冶金特色的冶金反应器放大技术与方法成为一个急于解决的科学问题。
冶金装备的放大应着眼于内部的冶金化学反应过程和物理传递过程,而冶金反应工程学就是把冶金反应器内发生的过程分别按反应速率理论和传递过程理论进行分析,用以阐明反应器的特性,决定反应操作条件和力求按最佳的状态控制反应过程,最终获得综合的技术经济效益。因此,冶金反应工程学又叫冶金反应器的解析与放大科学。
以冶金反应工程学角度分析冶金反应器放大过程发现:在反应器尺寸放大的过程中,化学反应的规律并没有发生变化,设备及参与反应的介质(如气泡、液滴、颗粒等)尺度变化主要影响的是流动、传热和传质等物理过程。因此,真正随尺度而变的不是化学反应的规律而是物理传递过程的规律。因此,对冶金反应器而言,需要跟踪考察的实际上是传递过程的规律及其与化学反应规律间的耦合作用。但现有的采用逐级经验放大法和数学模型放大法在进行反应器放大过程中,对反应器内的反应特性和反应器自身特性以及两者之间的耦合依赖关系研究不清晰,导致实际放大后的反应特性与反应器特性不匹配,这已成为制约反应器可靠高效放大的技术瓶颈。
本发明提出了冶金过程适配放大概念,既保证了从机理上深度解析反应过程,又避免了复杂的数学模型的建立,故其适用范围更广泛,实际应用更简便。
发明内容
本发明为克服传统逐级经验放大方法和数学模型法的缺点与不足,提出了一种冶金过程的放大方法,该方法是基于“适配理论”和“单一因素”原理的冶金过程放大方法。该方法适用范围广泛,实际应用更简便。
本发明的一种冶金过程的放大方法,包括以下步骤:
步骤一:
运用冶金宏观反应动力学研究方法,确定冶金反应过程与压力、浓度、温度的关系,其关系式为:R=f(P、T、C、X);其中,R为冶金反应过程的反应速率,f为函数关系,P为压力,T为温度,C为浓度,X为其他影响因素;确定冶金反应过程中,影响反应速率的最关键的工艺步骤,得到反应特性;
步骤二:
利用物理模拟和/或数值仿真模拟方法确定反应器的物理场特性,优化反应器,确定适用于冶金反应特性的反应器及其结构;
步骤三:
根据步骤一确定的反应特性和步骤二确定的反应器的物理场特性,确定反应时段的单一因素,所述的单一因素是特定冶金反应时段内存在的一个决定性的因素;
步骤四:
根据确定的单一因素,根据单一因素对冶金反应过程的影响关系,确定单一因素放大准数;
步骤五:
根据单一因素放大准数放大过程中保持不变的放大准则,利用热态实验或模拟仿真手段求解中试规模试验结果,验证放大准则,得到放大方案,进行工业化,完成冶金过程的放大。
所述的步骤一中,所述的确定的冶金反应过程,与温度、压力、浓度或其他因素的关系与反应器的结构无关,且在特定时间区段仅与某一个关键因素有关。
所述的步骤一中,所述的冶金宏观反应动力学研究方法中,选用差热分析法、热重分析法、差示扫描量热法、粒子浓度测量法、成分分析方法中的一种或几种结合,得到总包速率方程,即R=f(P、T、C、X),并确定反应控制步骤。
所述的步骤二中,所述的反应器的物理场包括压力场、流场、浓度场、磁场、搅拌物理场和其他影响冶金反应过程的物理场。
所述的步骤二中,确定适用于冶金反应特性的反应器及其结构,在冶金过程放大中,要求反应器及其结构的物理场特性和冶金反应规律的要求相对应。
所述的步骤二中,所述的利用物理模拟和数值仿真模拟方法确定反应器的场特性,具体为物理模拟为粒子测速、高速照相、多普勒、红外成像,得到水模型实验;数值仿真模拟是ANSYS/FLUENT仿真得到的仿真细化模拟。
所述的步骤二中,根据物理模拟和数值仿真模拟得到物质传输规律,根据唯象论,确定唯象方程。
所述的步骤三中,所述的单一因素,是在特定冶金反应时段内必然会存在的一个决定性因素。
所述的步骤四中,所述的确定单一因素放大准数,是以冶金过程放大在特定时段可以建立的单一因素为基础的单一因素放大准则。
本发明的一种冶金过程的放大方法中,适用于冶金反应特性的反应器及其结构、单一因素的确定,要建立在宏观动力学研究、物理模拟与数值仿真模拟、热态实验验证相耦合的冶金过程放大研究平台基础上,按照冶金过程反应器的放大方法的步骤可以精准完成冶金过程的放大。
本发明的一种冶金过程的放大方法,在步骤一确定了反应过程的关键控制环节,属于较宏观层次,如外扩散;步骤三中进一步确定控制环节的“单一因素”,明确哪一个因素是反应特定阶段的关键因素。)与传统的逐级经验放大方法和数学模型法相比,本技术方案的特点和优势在于:
1.本发明提出了“适配放大”的理念,解决了现有放大方法在反应器放大时,由于对反应器内的反应特性和反应器自身特性及其之间的作用规律不清晰,导致实际放大后反应特征与反应器特征不匹配造成的放大失败的技术难题。
冶金反应过程包含着化学反应和物理传输两部分。其化学反应的本质是指冶金化学反应途径和规律在特定的物理环境中是不发生改变的。例如:煤炭的燃烧、硫化矿的分解等在常压下其起始反应温度是固定的。但是同样的化学反应,在不同的反应装备,不同的操作条件和不同规模的装备内,其转化效果、反应速率,甚至反应产物不同。这是由于不同结构特征的反应器提供的反应环境出现了差异,导致物质传递过程的不同,进而带来了化学反应结果的差异。因此,冶金过程的放大核心思想是保证放大后冶金装备内的物理环境与化学反应所需要的环境相匹配,即可实现冶金过程的可靠放大。
2.提出了“单一因素”原理,抓住了冶金过程中的主要矛盾,找到了复杂冶金体系下起着领导、决定性的影响因素,简化了放大准则的建立,解决了数学模型的建立困难的问题。
冶金过程往往是参与反应的物质多,反应途径复杂,多相共存的反应过程,因此构建准确的数学方程很有难度。本发明提出了“单一因素”原理,即抓住冶金过程中起领导性、有决定性的影响因素,它通常控制着反应的速率,控制着物理场的变化,从而简化冶金过程。如:在扩散控制的反应过程中,探究搅拌因素对于化学反应和物理流场变化的规律;在化学反应控制的反应中,探究温度场变化和相间接触面积变化对反应的影响规律;产物形貌有一定要求的,探究外力分布的影响,从而发掘过程的“单一因素”。
3.建立了宏观动力学、物理模拟与数值仿真、热态实验相耦合的研究方法,既保证了从机理上深度解析反应过程,又避免了复杂的数学模型的建立,故放大方法适用范围更广泛。
附图说明
图1为冶金过程放大研究平台与放大流程。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
实施例
冶金过程放大研究平台与放大流程见图1。
步骤一:
以冶金宏观动力学为基础,利用差热分析法、热重分析法、差示扫描量热法的一种或几种相结合的方法,将物质的传输效应考虑在内,探索冶金宏观化学反应的规律或特性,考察化学反应的效率与多个影响因素之间的定量关系,建立不同因素与反应效果间的冶金反应的总包速率方程,即R=f(P、T、C、X);其中,R为冶金反应过程的反应速率,f为函数关系,P为压力,T为温度,C为浓度,X为其他影响因素;明确冶金反应过程中,控制反应速率的主要环节,得到反应特性。
步骤二:
利用物理模拟技术和数值仿真技术,解析反应器的特性。利用粒子测速技术、高速照相技术、红外成像技术、多普勒技术分析物理模型内的温度场、速度场、浓度场等物理场分布。对于需要更细致的分析,可以借助ANSYS数值仿真技术,多角度地分析物理场的变化规律,构建不同规模、结构、操作下反应器物理特性,从而得到适用于冶金反应特性的反应器及其结构,建立物理场的特征参数(如温度、压力、浓度、速度等)与操作、结构条件的唯象方程。
步骤三:
根据步骤一确定的反应特性和步骤二确定的反应器的物理场特性,确定冶金化学反应与物质传递过程中的关键性矛盾—“单一因素”。冶金宏观动力学将冶金中的限制步骤分为物理 传递控制、化学反应控制和物理传递与化学反应混合控制。单一影响因素原理即在宏观动力学和“物理场”解析研究的基础上,重点研究物理因素的改变对冶金化学反应和传质效果的影响规律,从而在多种物理场中找到决定性的、控制着整体化学反应速率的单一物理因素;
步骤四:
根据单一因素对冶金反应过程的影响,得到单一因素放大准数;
步骤五:
根据单一因素放大准数放大过程中保持不变的准则,构建放大准则。例如,通过宏观动力学研究发现,某冶金过程受扩散控制,则单一影响因素原理重点围绕着反应物的扩散过程,研究搅拌速度、搅拌类型、搅拌结构等关键参数对物质扩散的影响规律,从而发现其中起决定性的搅拌准数,构建放大准则。
步骤六:
构建放大准则并检验。探究“单一因素”与化学反应速率和“物理场”间的量化关系,建立“单一因素”与操作、反应器尺寸间的数学方程,并通过方程预测反应器放大后的结果。利用数值仿真模拟技术或热态实验构建扩大规模的生产模型,计算其中的化学反应和物理传递结果,验证放大准则。
具体实施例一
本实施例中引入了“薄材原理”,建立了冶金反应过程中以温度效应为主要矛盾的放大方法。
具体流程为:
富硼渣是高炉炼铁产生的含硼废渣,硼含量约为12%,是工业提硼的理想原料。但高温下得到的富硼渣冷却后活性低,不宜作提硼原料。
步骤一:
从宏观冶金动力学角度利用化学成分分析了不同冷却速率下富硼渣的冶金反应过程与温度的关系,其关系式为:,η B=61.21+1.25ΔT(ΔT变化范围:2℃/min~20℃/min),其中η B为冷却后富硼渣的利用率,ΔT为冷却过程温度梯度。
根据关系式发现温度对富硼渣的冶金反应速率影响很大,根据正交实验,确定了不同冷却温度及冷却速率下,富硼渣内的物相变化,发现:富硼渣冷却过程的主要矛盾即为:温度效应带来的硼镁酸盐与镁橄榄石和玻璃相的竞争析出。因此,冷却温度和冷却速率为富硼渣冶金反应过程中的最关键工艺。
步骤二:
根据对冷却温度场的物理模拟,确定工业规模的缓冷槽(槽尺寸: 1500mm×900mm×150mm)和缓冷炉(炉尺寸:4524mm×2488mm×2065mm)。、
步骤三:
根据步骤一确定的冷却温度和冷却速率为富硼渣冶金反应过程中的最关键工艺,和步骤二确定的反应器的物理场特性,确定温度为单一因素;
步骤四:
依据冷却过程相变化特征,即两段缓冷特征,即富硼渣1500~1200℃的范围内以大于10℃/min的速度快冷,1200℃以下以不大于3℃/min的速度慢冷,这样硼镁酸盐就可以选择性的析出。因此,引入“薄材原理”,引入Fo数(物体内部温度传播深度与物体特征尺寸的相对大小)和Bi数(料内部导热热阻与内部放热热阻的相对大小)准数;
步骤五:
以Fo数和Bi数准数为依据建立冷却过程中熔体内温度变化的冷却模型。最终确定了富硼渣缓冷放大原则,即富硼渣必须以厚度小于0.15m的形式冷却,即以“薄材”形式缓冷才能保证硼的提取率。因此,在装备放大过程中,预热温度700~900℃,渣层厚度不大于0.15m,快冷段环境温度600~900℃,保温段环境温度780~980℃,即可保证硼的高效提取。工业放大实验结果表明:富硼渣中硼活性平均为80.0%,比规定指标高出5个百分点,放大准则预测下的缓冷槽内温度分布于工业中实测温度相符。
具体实施例二
本实施例中建立了固-液机械搅拌体系下以浓度分布效应为主要矛盾的放大方法,发明了氧化铝种分槽的放大方法。
具体流程为:铝酸钠溶液的晶种分解是拜耳法生产氧化铝的关键工序之一,它不仅影响产品氧化铝的数量和质量,而且直接影响循环效率及其他工序。晶种分解是从铝酸钠溶液中析出固体氢氧化铝的过程,为固-液两相反应。其中引入的机械搅拌既能保证固体颗粒分布的均匀性也能保证反应体系中液相浓度和反应温度的均匀与稳定。利用物理与数值仿真模拟相结合的手段,对种分槽内液固多相体系的流体流动状态、液固混合状态分析发现,由于搅拌桨结构、操作等影响,致使种分槽底部出现沉积问题,恶化了后序中氧化铝的产量与质量。因此,种分槽放大过程中的主要矛盾为:如何保证析出固体颗粒的均匀分布,不出现局部浓度过大的堆积效应。
一种氧化铝种分槽的放大方法,包括以下步骤:
步骤一:
利用粒子浓度测量仪测量了不同工况下,种分槽内颗粒物的浓度分布规律,得到关系式为Q=0.57Fr -0.34,其中,Q为底部均匀度,Fr为弗鲁得准数。根据关系式发现,当搅拌桨转 速逐渐增大时,固体颗粒物逐渐悬浮于溶液中,槽底部不会出现沉积现象,即搅拌转速为种分过程的关键影响因素。
步骤二:
利用物理模拟与数值仿真模拟相结合的手段,对种分槽内液固多相体系的流体流动状态、液固混合状态的场特性进行分析,确定放大后的种分槽及其结构。放大后的种分槽为平底机械搅拌槽,槽体直径14m,高30米,有效容积4500m 3
步骤三:
根据步骤一确定的反应特性和步骤二确定的反应器的物理场特性,确定反应的单一因素为临界搅拌转速;
步骤四:
根据步骤三的固体颗粒浓度和临界悬浮转速的关系为依据,构建了以临界悬浮转速为核心影响因素的放大准数:N js=N js0η -0.868,其中N js为放大后的临界悬浮转速,N js0为种分槽放大前的临界悬浮转速,η为种分槽放大的体积倍数;
步骤五:
根据固体颗粒浓度分布特性和临界悬浮转数在种分槽尺寸变化的规律,建立放大准则,实现了由实验室到工业4万吨级种分槽的高倍数快速放大,放大后种分槽功耗比现有种分槽降低了31.2%。
具体实施例三
本实施例中建立了反应机理复杂、多相、多种物理场相耦合的冶金反应体系下,以能量分布效应为主要矛盾的放大方法。
具体流程:
球形氢氧化镍作为电池材料的重要原料,广泛应用于电子能源、电镀、航天和军工等重要领域。球形氢氧化镍合成釜的放大难点在于合成反应的机理复杂,反应过程为液相生成固体晶体的多相反应,反应过程中涉及浓度分布、温度分布、停留时间分布、搅拌强度、速度分布等多种物理场相耦合。同时,氢氧化镍产品的球形度影响着后续电池的充放电性等性能,因此,对产品的形貌有着严格的要求。
步骤一:
通过实际生产过程发现,体系中的搅拌处于过搅拌的状态,固液两相分布均匀且温度均匀,因此消除掉浓度效应和温度效应。从晶体生长理论出发,晶体的生长时间和搅拌能量的强度是影响晶体生长习性和形貌的重要因素。利用刺激-响应技术测量了不同工况下,合成釜内物料的停留时间分布,发现不同工况下停留时间相差不大。进而对比了不同工况下,反应 釜内的湍动能分布,发现搅拌能量的强度对于氢氧化镍晶体的生长习性和形貌有着重要的影响。因此,本发明技术确定了影响产品质量与产能的单一因素为搅拌能量强度。
步骤二:
利用数值仿真模拟与物理模拟相结合的手段,构建了不同反应器结构和搅拌力场作用下产物颗粒在反应器内的停留时间,利用粒子测速技术、颗粒浓度分析仪等同时分别测量了反应器内流场分布、浓度分布和温度分布;模拟了不同结构反应器内流体流动状态与能耗关系,确定该反应过程的反应器类型及其结构。合成釜直径2.4m,高径比1.1,公称体积为10.51m 3
步骤三:
根据步骤一确定的反应特性和步骤二确定的反应器的物理场特性,确定反应时段的单一因素为恒定线速度;
步骤四:
根据确定的单一因素,根据单一因素对冶金反应过程的影响关系,确定单一因素放大准数为U E≥7m/s。其中U E为搅拌桨末端线速度;
步骤五:
确立了以恒定线速度作为放大准则并通过实验验证,实现了由实验室150L到工业10m 3规模的高倍数快速放大。

Claims (10)

  1. 一种冶金过程的放大方法,其特征在于,包括以下步骤:
    步骤一:
    运用冶金宏观反应动力学研究方法,确定冶金反应过程与压力、浓度、温度的关系,其关系式为:R=f(P、T、C、X);其中,R为冶金反应过程的反应速率,f为函数关系,P为压力,T为温度,C为浓度,X为其他影响因素;确定冶金反应过程中,影响反应速率的最关键的工艺步骤,得到反应特性;
    步骤二:
    利用物理模拟和/或数值仿真模拟方法确定反应器的物理场特性,优化反应器,确定适用于冶金反应特性的反应器及其结构;
    步骤三:
    根据步骤一确定的反应特性和步骤二确定的反应器的物理场特性,确定反应时段的单一因素,所述的单一因素是特定冶金反应时段内存在的一个决定性的因素;
    步骤四:
    根据确定的单一因素,根据单一因素对冶金反应过程的影响关系,确定单一因素放大准数;
    步骤五:
    根据单一因素放大准数放大过程中保持不变的放大准则,利用热态实验或模拟仿真手段求解中试规模试验结果,验证放大准则,得到放大方案,进行工业化,完成冶金过程的放大。
  2. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤一中,所述的确定的冶金反应过程,与温度、压力、浓度或其他因素的关系与反应器的结构无关,且在特定时间区段仅与某一个关键因素有关。
  3. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤一中,所述的冶金宏观反应动力学研究方法中,选用差热分析法、热重分析法、差示扫描量热法、粒子浓度测量法、成分分析方法中的一种或几种结合,得到总包速率方程,即R=f(P、T、C、X),并确定反应控制步骤。
  4. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤二中,所述的反应器的物理场包括压力场、流场、浓度场、磁场、搅拌物理场和其他影响冶金反应过程的物理场。
  5. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤二中,确定适用于冶金反应特性的反应器及其结构,在冶金过程放大中,要求反应器及其结构的物理场特性和冶金反应规律的要求相对应。
  6. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤二中,所述的利用物理模拟和数值仿真模拟方法确定反应器的场特性,具体为物理模拟为粒子测速、高速照相、多普勒、红外成像,得到水模型实验;数值仿真模拟是ANSYS/FLUENT仿真得到的仿真细化模拟。
  7. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤二中,根据物理模拟和数值仿真模拟得到物质传输规律,根据唯象论,确定唯象方程。
  8. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤三中,所述的单一因素,是在特定冶金反应时段内必然会存在的一个决定性因素。
  9. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的步骤四中,所述的确定单一因素放大准数,是以冶金过程放大在特定时段可以建立的单一因素为基础的单一因素放大准则。
  10. 如权利要求1所述的冶金过程的放大方法,其特征在于,所述的冶金过程的放大方法中,适用于冶金反应特性的反应器及其结构、单一因素的确定,要建立在宏观动力学研究、物理模拟与数值仿真模拟、热态实验验证相耦合的冶金过程放大研究平台基础上,按照冶金过程反应器的放大方法的步骤可以精准完成冶金过程的放大。
PCT/CN2018/119969 2018-12-06 2018-12-10 一种冶金过程的放大方法 WO2020113593A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021532166A JP2022510465A (ja) 2018-12-06 2018-12-10 冶金プロセスのスケールアップ方法
AU2018452089A AU2018452089B2 (en) 2018-12-06 2018-12-10 Scale-up method for metallurgical process
US17/298,497 US20220019719A1 (en) 2018-12-06 2018-12-10 Amplification method for metallurgical process
EP18942086.2A EP3893130A4 (en) 2018-12-06 2018-12-10 PROCESS FOR VALUATION OF METALLURGICAL PROCESSES
CA3120496A CA3120496A1 (en) 2018-12-06 2018-12-10 Amplification method for metallurgical process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811485574.7 2018-12-06
CN201811485574.7A CN109583110A (zh) 2018-12-06 2018-12-06 一种冶金过程的放大方法

Publications (1)

Publication Number Publication Date
WO2020113593A1 true WO2020113593A1 (zh) 2020-06-11

Family

ID=65927556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119969 WO2020113593A1 (zh) 2018-12-06 2018-12-10 一种冶金过程的放大方法

Country Status (7)

Country Link
US (1) US20220019719A1 (zh)
EP (1) EP3893130A4 (zh)
JP (1) JP2022510465A (zh)
CN (1) CN109583110A (zh)
AU (1) AU2018452089B2 (zh)
CA (1) CA3120496A1 (zh)
WO (1) WO2020113593A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166698B (zh) * 2022-02-08 2022-04-26 中国矿业大学(北京) 一种竞争吸附下煤微孔道气体扩散能力评估方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259156A (ja) * 1996-03-21 1997-10-03 Hitachi Ltd 材料設計方法およびその方法を行う材料設計装置
CN105045994A (zh) * 2015-07-13 2015-11-11 首钢总公司 一种优化带式焙烧机热工制度的方法
CN105868434A (zh) * 2015-07-30 2016-08-17 南京航空航天大学 一种激光3d打印复合材料熔池内增强相与熔体界面传热传质的模拟方法
CN107641675A (zh) * 2017-08-11 2018-01-30 武汉科技大学 一种corex气化炉内燃料冶金性能演变图的绘制方法
CN108897902A (zh) * 2018-04-04 2018-11-27 上海大学 喷雾干燥塔中物料蒸发的数值模拟方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654077A (en) * 1985-11-19 1987-03-31 St. Joe Minerals Corporation Method for the pyrometallurgical treatment of finely divided materials
FI124239B (fi) * 2006-02-23 2014-05-15 Picodeon Ltd Oy Elementti, jossa on sähköä johtava kalvomainen rakenne lämmittävän ja/tai jäähdyttävän vaikutuksen synnyttämiseksi sähkövirran avulla
CN1818099A (zh) * 2006-03-24 2006-08-16 陈科正 高效益冶金炉及工艺
CN101775424A (zh) * 2008-09-11 2010-07-14 华东理工大学 维生素b12发酵过程优化与放大的方法与装置
CN104774902A (zh) * 2008-09-11 2015-07-15 华东理工大学 一种发酵过程优化与放大的方法与装置
CN102154102B (zh) * 2010-12-14 2012-12-19 长春黄金研究院 一种极端低温环境下生物冶金菌种工程放大的方法
CN204220982U (zh) * 2014-10-29 2015-03-25 天津诚泰翔科技发展有限公司 一种冶金设备
JP6750533B2 (ja) * 2017-02-23 2020-09-02 日本製鉄株式会社 溶鋼の流動を模擬する方法
CN207404855U (zh) * 2017-09-20 2018-05-25 青岛科技大学 二次铝灰碱溶粗液分解装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259156A (ja) * 1996-03-21 1997-10-03 Hitachi Ltd 材料設計方法およびその方法を行う材料設計装置
CN105045994A (zh) * 2015-07-13 2015-11-11 首钢总公司 一种优化带式焙烧机热工制度的方法
CN105868434A (zh) * 2015-07-30 2016-08-17 南京航空航天大学 一种激光3d打印复合材料熔池内增强相与熔体界面传热传质的模拟方法
CN107641675A (zh) * 2017-08-11 2018-01-30 武汉科技大学 一种corex气化炉内燃料冶金性能演变图的绘制方法
CN108897902A (zh) * 2018-04-04 2018-11-27 上海大学 喷雾干燥塔中物料蒸发的数值模拟方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893130A4 *
TANG JUN-JIE; LIU GUAN-TING; TIAN LEI; LIU YAN; ZHANG TING-AN: "Proportional geometric amplification and power variation of spherical sintered oxyhydroxide reactor", THE THIRD ACADEMIC CONFERENCE OF CHINA NON-FERROUS METAL METALLURGY-COLLECTED PAPERS ON SUSTAINABLE DEVELOPMENT OF NON-FERROUS METAL METALLURGY; OCTOBER 14-16, 2016,, 16 October 2016 (2016-10-16), CN, pages 285 - 289, XP009528226 *

Also Published As

Publication number Publication date
JP2022510465A (ja) 2022-01-26
CN109583110A (zh) 2019-04-05
AU2018452089A1 (en) 2021-06-24
US20220019719A1 (en) 2022-01-20
AU2018452089B2 (en) 2022-09-08
EP3893130A4 (en) 2022-08-31
EP3893130A1 (en) 2021-10-13
CA3120496A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
Liu et al. Experimental investigation on molten slag granulation for waste heat recovery from various metallurgical slags
Liu et al. Simulation and application of bottom-blowing in electrical arc furnace steelmaking process
WO2020113593A1 (zh) 一种冶金过程的放大方法
CN101329243A (zh) 一种用于铁矿石结晶水含量的测定方法
Wojtalik et al. Nucleation and growth kinetics of MoS2 nanoparticles obtained by chemical wet synthesis in a jet reactor
Wang et al. Dimensional analysis of average diameter of bubbles for bottom blown oxygen copper furnace
RU2780298C1 (ru) Способ амплификации металлургического процесса
CN117171983A (zh) 基于关键场耦合的富氧底吹熔炼炉建模仿真方法及装置
Zhang et al. Preparation and thermal properties of high-purified molten nitrate salt materials with heat transfer and storage
Tsai et al. Numerical simulation of the solidification processes of copper during vacuum continuous casting
Bruno Aluminum carbothermic technology
Liu et al. Computational fluid dynamics study on the effect of stirring parameters on solid–liquid suspension in the slurry electrolysis square tank
CN105424685A (zh) 一种富锰渣中锰含量的检测方法
Liu et al. CFD Investigation of Melting Behaviors of Two Alloy Particles During Multiphase Vacuum Refining Process
Zhang et al. Study on topologically close-packed and crystal clusters of Cu 10 Ag 90 alloy at the critical crystalline cooling rate
CN104034573A (zh) 一种镍基合金的消解方法
Tian et al. Numerical simulation of the influence of operating parameters on the inner characteristics in a hydrogen-enriched shaft furnace
Sun et al. Partition model for trace elements between liquid metal and silicate melts involving the interfacial transition structure: An exploratory two-phase first-principles molecular dynamics study
Azarafza et al. Experimental and numerical study of iron pyrite nanoparticles synthesis based on hydrothermal method in a laboratory-scale stirred autoclave
Zhang et al. Particle distribution model of gibbsite precipitation process in alumina production
Xu et al. Flow Characteristics of the Liquid Film During Centrifugal Granulation of Liquid Slag on the Surface of Rotary Cup
Wang et al. Dynamic model of bottom blown oxygen copper smelting process
CN111815067A (zh) 一种基于gpu并行计算的钢液中枝晶生长的预测方法
Zhao et al. Thermodynamic analysis of nucleation during pyrolysis process of aluminum chloride solution
Jiang et al. Analysis of melt flow characteristics in large bottom-blowing furnace strengthened by oxygen lance jet at different positions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3120496

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021532166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018452089

Country of ref document: AU

Date of ref document: 20181210

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018942086

Country of ref document: EP

Effective date: 20210706