CN108897902A - 喷雾干燥塔中物料蒸发的数值模拟方法 - Google Patents

喷雾干燥塔中物料蒸发的数值模拟方法 Download PDF

Info

Publication number
CN108897902A
CN108897902A CN201810301623.0A CN201810301623A CN108897902A CN 108897902 A CN108897902 A CN 108897902A CN 201810301623 A CN201810301623 A CN 201810301623A CN 108897902 A CN108897902 A CN 108897902A
Authority
CN
China
Prior art keywords
spray drying
drying tower
particle
model
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810301623.0A
Other languages
English (en)
Inventor
戚严文
许京荆
朱远
李盛鹏
许德坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810301623.0A priority Critical patent/CN108897902A/zh
Publication of CN108897902A publication Critical patent/CN108897902A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本发明公开了一种喷雾干燥塔内悬浮液物料干燥的数值模拟方法。使用一种结构科学合理,干燥效果佳、耗能少、成本低、效率高、易于实现的喷雾干燥塔,提供了一种喷雾干燥塔内物料干燥的数值模拟方法,采用计算流体动力学软件FLUENT对该喷雾干燥塔内物料的蒸发过程及伴随的传热传质过程进行数值计算,避免了实验或盲目设计导致的高成本和原料浪费,对提高物料产品质量以及塔的产量具有一定的指导意义。本发明在一定程度上避免实验或盲目设计导致的高成本和技术风险;本发明数值模拟仿真过程的程序易于实现,对于物料高效和高质量干燥过程应用具有显著的价值。

Description

喷雾干燥塔中物料蒸发的数值模拟方法
技术领域
本发明涉及一种干燥工艺设备中实际工况的实验分析方法,特别是涉及一种使用计算机软件对干燥过程进行仿真分析方法,应用于干燥工艺过程控制技术领域。
背景技术
喷雾干燥设备是一种新型高效干燥工艺设备。它可使溶液、乳浊液、糊状液及热敏性物料经喷雾干燥。一般在几秒钟内蒸发水分转变为符合生产要求的粉状、颗粒状空心球或圆粒状产品。喷雾干燥技术已广泛应用于食品、化工、医药以及环保等领域,随着现代技术的发展,一些与原料颗粒大小相关的技术行业,如陶瓷、化学工业、添加剂等工业,对原料颗粒大小要求苛刻,进一步推动了造粒技术的迅猛发展。
由于喷雾干燥涉及了复杂的气液两相间的传热传质过程,在干燥塔内直接进行测量极其困难,而大型工业化装置又无法直接制作一台装置供试验用,目前喷雾干燥装置的设计大多依据小型装置的实验结果进行小试放大和设计人员的经验,使得实际设计出的喷雾干燥总有这样或者那样的问题。使用计算机软件对干燥过程进行仿真,可以得到干燥塔内部温度场、速度场、颗粒轨迹以及粒径分布,对于干燥塔设计及相关干燥问题的解决具有十分重要的意义,但目前对喷雾干燥塔中悬浮液物料蒸发的测量分析方法还不够理想,这成为亟待解决的技术问题。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种喷雾干燥塔中物料蒸发的数值模拟方法,采用数值模拟的方法也在一定程度上避免实验或盲目设计导致的高成本和技术风险,并且对于提高产品质量与产量具有重要的指导意义。
为达到上述目的,本发明采用如下技术方案:
一种喷雾干燥塔中物料蒸发的数值模拟方法,步骤如下:
(1)使用三维绘图软件绘制喷雾干燥塔的三维几何模型图:
利用ANSYS Workbench中的建模模块Design Model对喷雾干燥塔三维模型进行建模;作为本发明优选的技术方案,喷雾干燥塔外部有保温层,在设置壁面边界条件的时候需要考虑壁面传热系数,在FLUENT软件中创建新材料,根据物料的物理性质输入相关参数进行建模;在建立喷雾干燥塔的有限元模型并进行求解时,采用基于ANSYS Workbench中的FLUENT软件的数值模拟方法;
(2)建立喷雾干燥塔的有限元模型并进行求解,具体如下:
A.设定数值模拟的假设条件;
a)不考虑液滴之间的碰撞;
b)液滴-颗粒当作球体计算;
c)忽略颗粒内部与外部的温度差;
B.使用欧拉-拉格朗日方法对热空气-颗粒相进行建模,干燥介质-热空气为连续相,液滴-颗粒为离散相,那么热空气所需满足的方程如下:
质量守恒方程为:
运动方程为:
能量方程为:
式中:ρF为流体密度(kg/m3),t为时间(s),ux、uy、uz为流体速度分量(m/s),p为流体压力(Pa),u流体速度矢量(m/s),τxx、τxy、τxz作用在流体微元上的粘性应力分量(Pa),fx、fy、fz作用在流体微元上的力(N),E为流体微元的总能(J),包含有内能、动能和势能之和,T为流体温度(K),hj为组分j的焓值(J/kg),keff为有效热传导系数[W/(m·K)],τeff为有效粘性力(Pa),Jj为组分j的扩散通量;
C.采用拉格朗日方法对离散相进行建模,液滴运动、传热及传质过程满足的方程如下:
颗粒运动方程:
传热方程:
当颗粒温度低于沸点温度时传质方程:
Ni=ki(Ci,s-Ci,∞)
当液滴温度高于沸点:
式中,h为流体的焓值(J/kg),Nu为努赛尔数,即Nusselt,FD(u-up)为颗粒的单位质量曳力(N),up为颗粒运动速度(m/s),u为干燥介质的运动速度(m/s),gx为x向重力加速度(m/s2),t为时间(s),ρp为颗粒密度(kg/m3),ρF为流体密度(kg/m3),Fxi包含有虚拟质量力以及压力梯度力,也就是在此次仿真中只考虑了拖曳力、重力、虚拟质量力以及压力梯度力,忽略了其他作用在颗粒上的力,mp为颗粒质量(kg),cp为颗粒比热[J/(kg·k)],Tp为颗粒温度(K),T为干燥介质温度(K),Ap为液滴表面积(m2),hfg为汽化潜热,J/kg,Ni为蒸汽摩尔流率[mol/(m2·s)],ki为传质系数(m/s);Ci,s为液滴表面的蒸汽浓度[mol/m3],Ci,∞为气相的蒸汽浓度(mol/m3),Di,m为蒸汽扩散系数(m2/s),Red为雷诺数,Sc为传质施密特数,k为干燥介质导热率[W/(m·K)],dp为颗粒直径(m),cp,∞为干燥介质比热[J/(kg·K)];
D.使用k-ε湍流模型,湍动能k及湍动能耗散率ε公式如下:
式中ρF为流体密度(kg/m3),u流体速度矢量(m/s),t为时间(s),μ为分子粘度(Pa·s),μt为湍流粘度(Pa·s),Pk是湍流剪切产出项[kg/(m·s3)],Cε1、Cε2、σk、σε为常数,分别为1.44、1.92、1、1.3;
E.选用喷嘴模型:根据FLUENT软件中提供的雾化模型,对于喷雾干燥塔的喷嘴模型进行选择,根据喷雾干燥塔中物料蒸发实际情况主要输入喷嘴模型参数和流量;在FLUENT软件中提供5种喷嘴雾化模型:平口喷嘴雾化、压力-旋流雾化、靶式雾化、气体辅助雾化以及气泡雾化,能够满足工程应用,根据喷雾干燥塔中物料蒸发的实际工况选用其中的任意一种或者任意几种的组合喷嘴雾化模型;
F.在ANSYS Workbench的FLUENT软件中导入喷雾干燥塔的三维几何模型,在步骤A、B、C、D、E的假设及信息基础上的建立计算域及物理模型,设置各项参数,主要模拟计算出喷雾塔内液滴到颗粒的蒸发过程、颗粒停留时间、蒸发量、连续相温度场和速度场;
G.设计喷雾干燥实验模型,并将步骤F的数值模拟结果与实验结果进行对比分析,验证了数值模拟方法的适用性。
作为本发明优选的技术方案,所用的喷雾干燥系统主要包括:加热系统、干燥塔系统、除尘系统、引送风系统、管道系统和加料系统及出料系统,所述加热系统通过加热器的空气加热室使空气预热后进入喷雾干燥塔,所述加料系统向喷雾干燥塔内输送物料,液滴在喷雾干燥塔内完成蒸发形成产品进行收集,此外从喷雾干燥塔输出的废气夹带产品混合物通过旋风分离器进行分离,再通过脉冲布袋除尘器进行净化处理,回收得到产品。
本发明喷雾干燥塔中物料蒸发的数值模拟方法,优选适用于喷雾干燥塔中对陶瓷、中药、冶金或煤炭进行干燥的数值模拟仿真过程。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明使用一种结构科学合理,干燥效果佳、耗能少、成本低、效率高、易于实现的喷雾干燥塔,提供了一种喷雾干燥塔内物料干燥的数值模拟方法,采用计算流体动力学软件FLUENT对该喷雾干燥塔内物料的蒸发过程及伴随的传热传质过程进行数值计算,得到的仿真结果完善了喷雾干燥机理,避免了实验或盲目设计导致的高成本和原料浪费,对提高物料产品质量以及塔的产量具有一定的指导意义;
2.本发明在一定程度上避免实验或盲目设计导致的高成本和技术风险;
3.本发明数值模拟仿真过程的程序易于实现,对于物料高效和高质量干燥过程应用具有显著的价值。
附图说明
图1为本发明实施例一喷雾干燥装置的结构示意图。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例一:
在本实施例中,参见图1,本实施例所用的喷雾干燥系统主要包括:加热系统、干燥塔系统、除尘系统、引送风系统、管道系统和加料系统及出料系统,所述加热系统通过加热器的空气加热室使空气预热后进入喷雾干燥塔,所述加料系统向喷雾干燥塔内输送物料,液滴在喷雾干燥塔内完成蒸发形成产品进行收集,此外从喷雾干燥塔输出的废气夹带产品混合物通过旋风分离器进行分离,再通过脉冲布袋除尘器进行净化处理,回收得到产品。本实施例喷雾干燥塔中物料蒸发的数值模拟方法适用于喷雾干燥塔中对陶瓷物料进行干燥的数值模拟仿真过程。
在被实施例中,参见图1,一种喷雾干燥塔中物料蒸发的数值模拟方法,对喷雾干燥塔配合使用的喷雾干燥塔中陶瓷物料蒸发进行数值模拟仿真,步骤如下:
(1)使用三维绘图软件绘制喷雾干燥塔的三维几何模型图:
利用ANSYS Workbench中的D M建模模块对喷雾干燥塔三维模型进行建模:
使用ANSYS内嵌建模软件进行三维模型的建立,喷雾干燥塔外部有一层保温层,因而在设置壁面边界条件的时候需要考虑壁面传热系数,选用FLUENT软件内嵌的压力-旋流喷嘴,对于悬浮液物料而言,在FLUENT中创建新材料,根据物料的物理性质输入相关参数,即对陶瓷物料进行建模;
其次,建立喷雾干燥塔的有限元模型并进行求解,需要说明的是,本实施例中为基于ANSYS Workbench中的FLUENT的数值模拟方法;
(2)建立喷雾干燥塔的有限元模型并进行求解,具体如下:
A.陶瓷液滴在喷雾干燥塔中运动情况复杂,考虑塔内的传热传质过程,采用数值模拟方法完全再现液滴的运动和传热传质过程比较困难,也不易得到理想结果。因此,本实施例的陶瓷物料在喷雾干燥塔中蒸发过程的数值模拟主要基于以下假设:
a)不考虑液滴之间的碰撞;
b)液滴-颗粒当作球体计算,即为了后续计算的简便,假设液滴-颗粒为球体;
c)忽略颗粒内部与外部的温度差,实际情况下,液滴在蒸发过程中,内部温度和外部温度是不一致的,但是最终干燥完成之后温度保持一致,因而,忽略液滴内外温差对于最后求解结果影响并不大;
B.使用欧拉-拉格朗日方法对热空气-颗粒相进行建模,干燥介质-热空气为连续相,液滴-颗粒为离散相,那么热空气所需满足的方程如下:
质量守恒方程为:
运动方程为:
能量方程为:
式中:ρF为流体密度(kg/m3),t为时间(s),ux、uy、uz为流体速度分量(m/s),p为流体压力(Pa),u流体速度矢量(m/s),τxx、τxy、τxz作用在流体微元上的粘性应力分量(Pa),fx、fy、fz作用在流体微元上的力(N),E为流体微元的总能(J),包含有内能、动能和势能之和,T为流体温度(K),hj为组分j的焓值(J/kg),keff为有效热传导系数[W/(m·K)],τeff为有效粘性力(Pa),Jj为组分j的扩散通量;
C.采用拉格朗日方法对离散相进行建模,液滴运动、传热及传质过程满足的方程如下:
颗粒运动方程:
传热方程:
当颗粒温度低于沸点温度时传质方程:
Ni=ki(Ci,s-Ci,∞)
当液滴温度高于沸点:
式中,h为流体的焓值(J/kg),Nu为努赛尔数(Nusselt),FD(u-up)为颗粒的单位质量曳力(N),up为颗粒运动速度(m/s),u为干燥介质的运动速度(m/s),gx为x向重力加速度(m/s2),t为时间(s),ρp为颗粒密度(kg/m3),ρF为流体密度(kg/m3),Fxi包含有虚拟质量力以及压力梯度力,也就是在本实施例仿真中只考虑了拖曳力、重力、虚拟质量力以及压力梯度力,忽略了其他作用在颗粒上的力,mp为颗粒质量(kg),cp为颗粒比热[J/(kg·k)],Tp为颗粒温度(K),T为干燥介质温度(K),Ap为液滴表面积(m2),hfg为汽化潜热,J/kg,Ni为蒸汽摩尔流率[mol/(m2·s)],ki为传质系数(m/s);Ci,s为液滴表面的蒸汽浓度[mol/m3],Ci,∞为气相的蒸汽浓度(mol/m3),Di,m为蒸汽扩散系数(m2/s),Red为雷诺数,Sc为传质施密特数,k为干燥介质导热率[W/(m·K)],dp为颗粒直径(m),cp,∞为干燥介质比热[J/(kg·K)];
D.使用k-ε湍流模型,湍动能k及湍动能耗散率ε公式如下:
式中ρF为流体密度(kg/m3),u流体速度矢量(m/s),t为时间(s),μ为分子粘度(Pa·s),μt为湍流粘度(Pa·s),Pk是湍流剪切产出项[kg/(m·s3)],Cε1、Cε2、σk、σε为常数,分别为1.44、1.92、1、1.3;
E.选用喷嘴模型:根据FLUENT软件中提供的雾化模型,对于喷雾干燥塔的喷嘴模型进行选择,根据喷雾干燥塔中物料蒸发实际情况主要输入喷嘴模型参数和流量;本实施例根据喷雾干燥塔中物料蒸发的实际工况选用压力-旋流雾化的喷嘴雾化模型;
F.在ANSYS Workbench的FLUENT软件中导入喷雾干燥塔的三维几何模型,在步骤A、B、C、D、E的假设及信息基础上的建立计算域及物理模型,设置各项参数,模拟计算出喷雾塔内液滴到颗粒的蒸发过程、颗粒停留时间、蒸发量、连续相温度场和速度场;
G.设计喷雾干燥实验模型,并将步骤F的数值模拟结果与实验结果进行对比分析,验证了数值模拟方法的适用性。
本实施例喷雾干燥塔中悬浮液物料蒸发的数值模拟方法,采用计算流体动力学软件FLUENT对喷雾干燥塔内液滴蒸发过程及伴随的传热传质过程进行数值计算,得到的仿真结果完善了喷雾干燥机理,对于改善产品质量性能以及提高塔的生产产量具有重要的指导意义,且在一定程度上避免实验或盲目设计导致的高成本和技术风险。
实施例二:
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,本发明实施例所用的喷雾干燥系统主要包括加热系统、干燥塔系统、除尘系统、引送风系统、管道系统、加料及出料系统等。其中,空气加热室、喷雾干燥塔、旋风分离器以及脉冲布袋除尘器、物料储存罐以及各种输送管道作为主要部分。对于液滴蒸发起主要作用的是喷雾干燥塔,液滴在喷雾干燥塔内完成蒸发形成产品。本实施例数值模拟仿真方法并不针对特定的物料,还适用于很多种物料中药、冶金、煤炭的物料干燥工艺仿真模拟分析。本实施例喷雾干燥塔中悬浮液物料蒸发的数值模拟方法,适用于多种物料的高质量和高效干燥工艺,采用计算流体动力学软件FLUENT对喷雾干燥塔内液滴蒸发过程及伴随的传热传质过程进行数值计算,得到的仿真结果完善了喷雾干燥机理,对于改善产品质量性能以及提高塔的生产产量具有重要的指导意义,且在一定程度上避免实验或盲目设计导致的高成本和技术风险。
上面对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明喷雾干燥塔中物料蒸发的数值模拟方法的技术原理和发明构思,都属于本发明的保护范围。

Claims (5)

1.一种喷雾干燥塔中物料蒸发的数值模拟方法,其特征在于,步骤如下:
(1)使用三维绘图软件绘制喷雾干燥塔的三维几何模型图:
利用ANSYS Workbench中的建模模块Design Model对喷雾干燥塔三维模型进行建模;
(2)建立喷雾干燥塔的有限元模型并进行求解,具体如下:
A.设定数值模拟的假设条件;
a)不考虑液滴之间的碰撞;
b)液滴-颗粒当作球体计算;
c)忽略颗粒内部与外部的温度差;
B.使用欧拉-拉格朗日方法对热空气-颗粒相进行建模,干燥介质-热空气为连续相,液滴-颗粒为离散相,那么热空气所需满足的方程如下:
质量守恒方程为:
运动方程为:
能量方程为:
式中:ρF为流体密度(kg/m3),t为时间(s),ux、uy、uz为流体速度分量(m/s),p为流体压力(Pa),u流体速度矢量(m/s),τxx、τxy、τxz作用在流体微元上的粘性应力分量(Pa),fx、fy、fz作用在流体微元上的力(N),E为流体微元的总能(J),包含有内能、动能和势能之和,T为流体温度(K),hj为组分j的焓值(J/kg),keff为有效热传导系数[W/(m·K)],τeff为有效粘性力(Pa),Jj为组分j的扩散通量;
C.采用拉格朗日方法对离散相进行建模,液滴运动、传热及传质过程满足的方程如下:
颗粒运动方程:
传热方程:
当颗粒温度低于沸点温度时传质方程:
Ni=ki(Ci,s-Ci,∞)
当液滴温度高于沸点:
式中,h为流体的焓值(J/kg),Nu为努赛尔数,即Nusselt,FD(u-up)为颗粒的单位质量曳力(N),up为颗粒运动速度(m/s),u为干燥介质的运动速度(m/s),gx为x向重力加速度(m/s2),t为时间(s),ρp为颗粒密度(kg/m3),ρF为流体密度(kg/m3),Fxi包含有虚拟质量力以及压力梯度力,也就是在此次仿真中只考虑了拖曳力、重力、虚拟质量力以及压力梯度力,忽略了其他作用在颗粒上的力,mp为颗粒质量(kg),cp为颗粒比热[J/(kg·k)],Tp为颗粒温度(K),T为干燥介质温度(K),Ap为液滴表面积(m2),hfg为汽化潜热,J/kg,Ni为蒸汽摩尔流率[mol/(m2·s)],ki为传质系数(m/s);Ci,s为液滴表面的蒸汽浓度[mol/m3],Ci,∞为气相的蒸汽浓度(mol/m3),Di,m为蒸汽扩散系数(m2/s),Red为雷诺数,Sc为传质施密特数,k为干燥介质导热率[W/(m·K)],dp为颗粒直径(m),cp,∞为干燥介质比热[J/(kg·K)];
D.使用k-ε湍流模型,湍动能k及湍动能耗散率ε公式如下:
式中ρF为流体密度(kg/m3),u流体速度矢量(m/s),t为时间(s),μ为分子粘度(Pa·s),μt为湍流粘度(Pa·s),Pk是湍流剪切产出项[kg/(m·s3)],Cε1、Cε2、σk、σε为常数,分别为1.44、1.92、1、1.3;
E.选用喷嘴模型:根据FLUENT软件中提供的雾化模型,对于喷雾干燥塔的喷嘴模型进行选择,根据喷雾干燥塔中物料蒸发实际情况主要输入喷嘴模型参数和流量;
F.在ANSYS Workbench的FLUENT软件中导入喷雾干燥塔的三维几何模型,在步骤A、B、C、D、E的假设及信息基础上的建立计算域及物理模型,设置各项参数,主要模拟计算出喷雾塔内液滴到颗粒的蒸发过程、颗粒停留时间、蒸发量、连续相温度场和速度场;
G.设计喷雾干燥实验模型,并将步骤F的数值模拟结果与实验结果进行对比分析,验证了数值模拟方法的适用性。
2.根据权利要求1所述的喷雾干燥塔中物料蒸发的数值模拟方法,其特征在于:在所述步骤(2)中的步骤E中,在FLUENT软件中提供5种喷嘴雾化模型:平口喷嘴雾化、压力-旋流雾化、靶式雾化、气体辅助雾化以及气泡雾化,根据喷雾干燥塔中物料蒸发的实际工况选用其中的任意一种或者任意几种的组合喷嘴雾化模型。
3.根据权利要求1所述的喷雾干燥塔中物料蒸发的数值模拟方法,其特征在于:所用的喷雾干燥系统主要包括:加热系统、干燥塔系统、除尘系统、引送风系统、管道系统和加料系统及出料系统,所述加热系统通过加热器的空气加热室使空气预热后进入喷雾干燥塔,所述加料系统向喷雾干燥塔内输送物料,液滴在喷雾干燥塔内完成蒸发形成产品进行收集,此外从喷雾干燥塔输出的废气夹带产品混合物通过旋风分离器进行分离,再通过脉冲布袋除尘器进行净化处理,回收得到产品。
4.根据权利要求3所述的喷雾干燥塔中物料蒸发的数值模拟方法,其特征在于:适用于喷雾干燥塔中对陶瓷、中药、冶金或煤炭进行干燥的数值模拟仿真过程。
5.根据权利要求1所述的喷雾干燥塔中物料蒸发的数值模拟方法,其特征在于:在所述步骤(1)中,喷雾干燥塔外部有保温层,在设置壁面边界条件的时候需要考虑壁面传热系数,在FLUENT软件中创建新材料,根据物料的物理性质输入相关参数进行建模;在建立喷雾干燥塔的有限元模型并进行求解时,采用基于ANSYS Workbench中的FLUENT软件的数值模拟方法。
CN201810301623.0A 2018-04-04 2018-04-04 喷雾干燥塔中物料蒸发的数值模拟方法 Pending CN108897902A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810301623.0A CN108897902A (zh) 2018-04-04 2018-04-04 喷雾干燥塔中物料蒸发的数值模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810301623.0A CN108897902A (zh) 2018-04-04 2018-04-04 喷雾干燥塔中物料蒸发的数值模拟方法

Publications (1)

Publication Number Publication Date
CN108897902A true CN108897902A (zh) 2018-11-27

Family

ID=64342313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810301623.0A Pending CN108897902A (zh) 2018-04-04 2018-04-04 喷雾干燥塔中物料蒸发的数值模拟方法

Country Status (1)

Country Link
CN (1) CN108897902A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113593A1 (zh) * 2018-12-06 2020-06-11 东北大学 一种冶金过程的放大方法
CN112069689A (zh) * 2020-09-10 2020-12-11 西北工业大学 一种航空发动机燃油雾化特性的仿真方法及系统
CN112329169A (zh) * 2020-11-03 2021-02-05 华南农业大学 热风滚筒式凤凰单枞茶茶叶杀青机的流动与传热过程数值模拟分析的方法
RU2780298C1 (ru) * 2018-12-06 2022-09-21 Нортистерн Юниверсити Способ амплификации металлургического процесса

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145069A1 (en) * 2003-01-21 2004-07-29 Low David Nicholson Nozzle valve type spray dryer
CN104636552A (zh) * 2015-02-06 2015-05-20 江苏迪萨机械有限公司 一种基于ansys cfx软件的氨基湿法脱硫喷淋单塔内脱硫过程的数值模拟计算方法
CN106682348A (zh) * 2017-01-09 2017-05-17 福州大学 采用低雷诺数湍流模型计算筛板萃取塔液液流场的方法
CN107871046A (zh) * 2017-11-20 2018-04-03 北京宇航系统工程研究所 一种低温推进剂贮箱内喷雾掺混的仿真方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145069A1 (en) * 2003-01-21 2004-07-29 Low David Nicholson Nozzle valve type spray dryer
CN104636552A (zh) * 2015-02-06 2015-05-20 江苏迪萨机械有限公司 一种基于ansys cfx软件的氨基湿法脱硫喷淋单塔内脱硫过程的数值模拟计算方法
CN106682348A (zh) * 2017-01-09 2017-05-17 福州大学 采用低雷诺数湍流模型计算筛板萃取塔液液流场的方法
CN107871046A (zh) * 2017-11-20 2018-04-03 北京宇航系统工程研究所 一种低温推进剂贮箱内喷雾掺混的仿真方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
姬卫川: "蒸发器用分流器的理论分析与实验研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *
张柏清等: "单喷嘴混流压力式喷雾干燥三维数值模拟", 《中国陶瓷》 *
林永明等: "大型湿法烟气脱硫喷淋塔内阻力特性数值模拟", 《中国电机工程学报》 *
龙小军: "单喷嘴混流压力式喷雾干燥塔三维数值模拟", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113593A1 (zh) * 2018-12-06 2020-06-11 东北大学 一种冶金过程的放大方法
RU2780298C1 (ru) * 2018-12-06 2022-09-21 Нортистерн Юниверсити Способ амплификации металлургического процесса
CN112069689A (zh) * 2020-09-10 2020-12-11 西北工业大学 一种航空发动机燃油雾化特性的仿真方法及系统
CN112329169A (zh) * 2020-11-03 2021-02-05 华南农业大学 热风滚筒式凤凰单枞茶茶叶杀青机的流动与传热过程数值模拟分析的方法

Similar Documents

Publication Publication Date Title
Mezhericher et al. Spray drying modelling based on advanced droplet drying kinetics
Goula et al. Influence of spray drying conditions on residue accumulation—Simulation using CFD
CN108897902A (zh) 喷雾干燥塔中物料蒸发的数值模拟方法
Jin et al. Numerical study of the drying process of different sized particles in an industrial-scale spray dryer
Langrish et al. Prospects for the modelling and design of spray dryers in the 21st century
Anandharamakrishnan et al. A study of particle histories during spray drying using computational fluid dynamic simulations
Papadakis et al. Air temperature and humidity profiles in spray drying. 1. Features predicted by the particle source in cell model
Yamamoto et al. Numerical simulation of supercritical carbon dioxide flows across critical point
Bellinghausen Spray drying from yesterday to tomorrow: An industrial perspective
Jubaer et al. On the effect of turbulence models on CFD simulations of a counter-current spray drying process
Gabites et al. Air flow patterns in an industrial milk powder spray dryer
Ali et al. CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder
Malafronte et al. Prediction of regions of coalescence and agglomeration along a spray dryer—Application to skim milk powder
Langrish New engineered particles from spray dryers: research needs in spray drying
Mezhericher et al. Droplet–droplet interactions in spray drying by using 2D computational fluid dynamics
Niu et al. Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model
Harvie et al. Numerical simulations of gas flow patterns within a tall-form spray dryer
Wei et al. Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion
Woo et al. Numerical probing of a low velocity concurrent pilot scale spray drying tower for mono-disperse particle production–unusual characteristics and possible improvements
Wu et al. Simulation of spray drying of a solution atomized in a pulsating flow
Afshar et al. A practical CFD modeling approach to estimate outlet boundary conditions of industrial multistage spray dryers: Inert particle flow field investigation
Gimbun et al. Unsteady RANS and detached eddy simulation of the multiphase flow in a co-current spray drying
Crowe Droplet-gas interaction in counter-current spray dryers
Menshutina et al. CFD analysis of the dispersed phase behavior for micropowders production via spray drying and ultrasonic atomization
Ali et al. CFD modeling of a counter-current spray drying tower

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181127