WO2020113509A1 - 一种供电管理设备以及控制方法 - Google Patents

一种供电管理设备以及控制方法 Download PDF

Info

Publication number
WO2020113509A1
WO2020113509A1 PCT/CN2018/119523 CN2018119523W WO2020113509A1 WO 2020113509 A1 WO2020113509 A1 WO 2020113509A1 CN 2018119523 W CN2018119523 W CN 2018119523W WO 2020113509 A1 WO2020113509 A1 WO 2020113509A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
power
module
load
Prior art date
Application number
PCT/CN2018/119523
Other languages
English (en)
French (fr)
Inventor
范团宝
孙建杰
李智勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202310672243.9A priority Critical patent/CN116826896A/zh
Priority to PCT/CN2018/119523 priority patent/WO2020113509A1/zh
Priority to CN201880097156.2A priority patent/CN112640247B/zh
Publication of WO2020113509A1 publication Critical patent/WO2020113509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters

Definitions

  • the embodiments of the present application relate to the technical field of power supply management, in particular to a power supply management device and a control method.
  • Batteries are often used as power sources to provide electrical energy for various devices. Since the internal resistance of the battery has the characteristic of increasing with decreasing temperature, when the battery temperature decreases, the internal resistance of the battery will gradually increase, and the load current will gradually increase, which will cause the polarization phenomenon of the battery. When the polarization of the battery is serious, the battery output voltage will drop rapidly. In this case, when the device detects that the battery output voltage is lower than the preset voltage, the device will notify the processor to back up the system files and gradually close some running programs to ensure that the device is not shut down when the device is shut down. Will cause data loss.
  • the embodiments of the present application provide a power supply management device and a control method, which are used to effectively manage the power supply of the device when the output voltage of the battery decreases due to the polarization phenomenon.
  • an embodiment of the present application provides a power supply management device, including: a voltage detection module for detecting an output voltage of a battery, and when the output voltage of the battery is lower than a first preset voltage, the voltage control module Sending a first instruction; a voltage control module, configured to switch the load circuit from the normal power consumption mode to the limited power consumption mode according to the first instruction to reduce the load current of the load circuit.
  • the voltage control module when the output voltage of the battery is lower than the first preset voltage due to polarization, the voltage control module will reduce the load current of the load circuit due to the load of the load circuit The decrease in current will cause the output voltage of the battery to increase and maintain the system. Because the output voltage of the battery increases, the battery can continue to provide power to the load. Therefore, the situation that the device is shut down in advance due to the low output voltage of the battery can be avoided, and the power supply time of the battery can be made longer than that of the battery. It takes a long time to adopt this solution, so it can improve the user experience.
  • the voltage detection module is also used to send a second instruction to the voltage control module when the condition is met; the voltage control module is also used to Restore the load circuit to the normal power consumption mode according to the second instruction to increase the load current again; wherein, the preset condition includes at least one of the following: the output voltage of the battery is higher than the second preset voltage, The remaining power of the battery is greater than the preset power or the operating temperature of the battery is within the preset operating temperature range; the second preset voltage is higher than the first preset voltage.
  • the voltage control module in addition to reducing the load current of the load circuit, can increase the load current of the load circuit when the normal power consumption mode needs to be restored, therefore, the output of the power management device to the battery can be realized
  • the flexible control of voltage, and the battery can resume normal operation after the polarization problem is alleviated.
  • the power supply management device further includes: a power detection module for detecting the remaining power; a temperature detection module for The operating temperature is detected; the condition includes that the output voltage of the battery is higher than the second preset voltage, the remaining power of the battery is greater than the preset power, and the operating temperature of the battery is within the preset operating temperature range.
  • the power supply management device in addition to detecting the output voltage of the battery, the power supply management device will also detect the remaining capacity of the battery through the power detection module and the operating temperature of the battery through the temperature detection module, and when the output voltage of the battery is high Only when the second preset voltage, the remaining power of the battery is greater than the preset power, and the operating temperature of the battery is within the preset operating temperature range, the power management device only meets the user's business functions by restoring the normal power consumption mode demand. Therefore, the condition for the power supply management device to return to the normal power consumption mode is stricter, thereby enhancing the effect of the solution proposed in the embodiments of the present application.
  • the voltage control module includes: a clock frequency modulation module, Used to reduce the clock frequency of the load circuit to reduce the load current.
  • the voltage control module includes: a load voltage regulation module , Used to reduce the load voltage of the load circuit to reduce the load current.
  • the voltage control module includes: a high-power peripheral The control module is used to reduce the power of high-power peripherals to reduce the load current.
  • the voltage control module further includes: a controller for The first instruction controls at least one of the clock frequency modulation module, the load voltage regulation module, or the high-power peripheral control module to switch the load circuit from the normal power consumption mode to the limited power consumption mode.
  • the voltage control module may further include a controller, the controller may receive an instruction from the voltage detection module, and then the controller controls the clock frequency modulation module, the load voltage regulation module, or the high-power peripheral
  • the control module executes the first instruction.
  • the embodiment of the present application proposes a method of using a controller to execute software to control the load current without using a hardware circuit.
  • the clock frequency modulation module is configured to reduce the load voltage of the load circuit according to the first instruction.
  • the clock frequency modulation module can directly adjust based on the first instruction without receiving an instruction from the controller.
  • the voltage detection module includes: a voltage comparator, which is used to perform the following At least one item: comparing the output voltage of the battery with the first preset voltage to determine that the output voltage of the battery is lower than the first preset voltage; or, comparing the output voltage of the battery with the second preset The voltage is compared to determine that the output voltage of the battery is higher than the second preset voltage.
  • the voltage comparator includes a single-limit comparator and a hysteresis comparator Or window comparator.
  • the clock frequency modulation module includes: a frequency divider, a logical AND gate, and Energy dissipation module; the first end of the logic AND gate is connected to the second end of the flip-flop, the second end of the logic AND gate is connected to the first end of the frequency divider; the frequency divider is used to reduce the clock frequency; the logic The AND gate is used to generate the enable signal for the frequency divider to enter the working state.
  • the voltage detection module further includes a debounce module, a logical OR Gate and trigger; the first end of the voltage comparator is connected to the output end of the battery, and the second end of the voltage comparator is connected to the first end of the debounce module.
  • the second end of the debounce module is connected to the first end of the logical NOR gate, and the second end of the logical NOR gate is connected to the first end of the flip-flop; the logical NOR gate is used to implement the logical NOR gate Function; the debounce module is used to remove the transient glitch or noise of the output voltage drop signal of the battery; the trigger is used to latch the state of the voltage drop signal.
  • the load voltage regulation module includes a voltage regulation control switch and a voltage drop Voltage conversion circuit; the voltage regulation control switch is connected to the trigger; the voltage regulation control switch is used to trigger the voltage regulation control operation according to the instruction of the trigger; the buck conversion circuit is used to regulate the load voltage of the load circuit .
  • the load voltage regulation module includes a voltage regulation control switch and a low voltage Differential linear regulator; the voltage regulation control switch is connected to the trigger; the voltage regulation control switch is used to trigger the voltage regulation control operation according to the instruction of the trigger; the low voltage difference linear regulator is used to regulate the load of the load circuit Voltage.
  • an embodiment of the present application provides a power supply management system.
  • the power supply management system includes: a power supply management device and the load circuit as described in the first aspect or any possible implementation manner thereof.
  • the power management system is one or a group of chips, and the power management system further includes: a chip interface, coupled with the battery, for collecting the The output voltage of the battery.
  • an embodiment of the present application provides a control method including: detecting an output voltage of a battery; when the output voltage of the battery is lower than a first preset voltage, switching the load circuit from a normal power consumption mode To limit the power consumption mode, to reduce the load current of the load circuit.
  • the method further includes: when the output voltage of the battery is higher than the second preset voltage, restoring the load circuit to the normal power consumption Mode to increase the load current of the load circuit.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program, the computer program including program instructions, which when executed by a processor causes the processor to execute as described above The method described in any of the third aspects.
  • an embodiment of the present application provides a computer program product, characterized in that, when the computer program product runs on a computer, the computer is caused to perform the method as described in any one of the foregoing third aspects.
  • FIG. 1 is a schematic diagram of an embodiment of a power supply management device in an embodiment of this application
  • FIG. 2A is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • FIG. 2B is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • FIG. 2C is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • 2D is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • 2E is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • 3A is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • 3B is a schematic diagram of another embodiment of the power supply management device in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • 5A is a schematic diagram of another embodiment of a power supply management device in an embodiment of this application.
  • 5B is a schematic diagram of an embodiment of a voltage comparator in an embodiment of this application.
  • FIG. 6 is a flowchart of an embodiment of a control method in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another experimental effect of an embodiment of the present application.
  • the embodiments of the present application provide a power supply management device and a control method, which are used to effectively manage the power supply of the device when the battery output voltage decreases.
  • Polarization voltage refers to the voltage when the battery passes current and the electrode deviates from the equilibrium electrode potential, causing the electrode to polarize.
  • Open circuit voltage refers to the terminal voltage of the battery in the open circuit state.
  • the open circuit voltage of the battery is equal to the difference between the positive electrode potential and the negative electrode potential of the battery when the battery is disconnected (ie, when no current passes through the two poles).
  • Voltage comparator refers to a circuit that discriminates and compares input signals. In the embodiment of the present application, the voltage comparator is mainly used to compare the detected battery output voltage with a preset voltage.
  • Clock frequency refers to the fundamental frequency of the clock in a synchronous circuit. It can be measured in “several cycles per second", for example, in units of hertz (Hz).
  • the clock frequency is an important indicator for evaluating the performance of the central processing unit (CPU).
  • the clock frequency may also be the clock frequency of other hardware modules.
  • High-power peripherals In the embodiment of the present application, it refers to a circuit or a device or device with a larger power used for supporting in a load circuit, for example, a display screen or a speaker.
  • Instruction In the embodiment of the present application, it may refer to an instruction signal sent by one hardware module to another hardware module, or a logic statement sent by a processor or controller to a hardware or software device, to implement a notification or control function,
  • the specifics are not limited here.
  • Glitch In this embodiment of the present application, there is a pulse in the circuit output waveform that has a short time, is irregular, and is not useful for the present invention, which may interfere with the output result.
  • Noise refers to the interference signal in the circuit in the embodiment of the present application.
  • the power supply management device and the control method proposed in the implementation of this application are mainly applied to the scenario where the battery is at a low voltage due to polarization. Specifically, when the voltage of the battery in the device decreases to a certain degree, the power supply management device will trigger a series of operations to adjust the output voltage of the battery according to the state of the battery at this time, so that the output voltage of the battery rises to be maintained The normal working state of the device, thereby extending the standby time of the device.
  • the power supply management device proposed in the embodiments of the present application may be or include a chip with higher processing performance, or may be or include an integrated microprocessor, which is not specifically limited herein.
  • the power supply management device proposed in the embodiments of the present application can be applied not only to mobile embedded devices with batteries or other devices, for example, to terminal devices that have the ability to independently store electrical energy in addition to the battery, It can also be applied to an independent device that does not contain a battery and specifically controls the power supply, which is not specifically limited here.
  • the battery may be a lead-acid battery, a lithium battery, or a nickel-metal hydride battery. limited. In the embodiments of the present application and subsequent embodiments, the lithium battery is used as an example for description.
  • the power supply management device and the control method proposed in the embodiments of the present application are introduced below.
  • the power supply management device proposed in the embodiment of the present application may be triggered to perform a voltage regulation operation.
  • the reason why the battery is at a low voltage may be that the device adjusts the high-power peripherals to a higher power, for example, the speaker of the device is in a large power consumption state for a long time, or the device 'S display screen is highlighted for a long time. That is to say, the device is in a large power consumption state for a long time can cause the current flowing through the device to increase, and the increase in current will increase the polarization of the battery, which will cause the polarization voltage to increase.
  • the output voltage of the battery open circuit voltage-battery polarization voltage, where the open circuit voltage is the terminal voltage of the battery under open circuit conditions, and the battery polarization voltage is the battery electrochemical polarization, concentration polarization or ohmic polarization phenomenon.
  • the open circuit voltage is a fixed value, so when the polarization voltage of the battery increases, the output voltage of the battery will decrease.
  • the operating temperature of the battery may suddenly decrease and the output voltage of the battery may decrease.
  • the cause of the voltage decrease may also be a polarization problem caused by other events, which is not specifically limited herein.
  • the power supply management device proposed in the embodiments of the present application can increase the output voltage of the battery by reducing the polarization voltage of the battery.
  • the power supply management device 10 includes a voltage detection module 101 and a voltage control module 102, the voltage detection module 101 is connected to the output terminal of the battery, and the voltage detection module 101 is used to detect the output voltage of the battery; In addition, the voltage detection module 101 is also connected to the voltage control module 102. Therefore, the voltage detection module 101 can generate signal communication with the voltage control module 102.
  • the voltage detection module 101 is used to detect the output voltage of the battery in real time, and when the output voltage of the battery is lower than the first preset voltage, the voltage detection module 101 will send the first voltage to the voltage control module 102 One instruction.
  • the first preset voltage is set according to the specific battery and the condition of the device powered by the battery, so it varies depending on the battery and the device.
  • the voltage control module 102 is configured to switch the load circuit from the normal power consumption mode to the limited power consumption mode according to the first instruction to reduce the load current of the load circuit. Specifically, the voltage control module 102 may adjust the first load current to a second load current, the second load current is lower than the first load current, so that the second output voltage output by the battery is higher than the first output voltage .
  • the first output voltage is the output voltage of the battery detected by the voltage detection module 101 that is lower than the first preset voltage
  • the second output voltage is the output voltage of the battery after the load current changes.
  • the second output voltage is not only higher than the first output voltage, but may also be higher than the first preset voltage.
  • the normal power consumption mode refers to a state in which the battery does not generate polarization phenomenon or the polarization phenomenon is relatively weak when the load circuit is in a large power consumption state.
  • High-power state, or the processor is in a state of high clock frequency for high-speed calculation. Specifically, the following will introduce the classification in detail, and will not repeat them here.
  • the limited power consumption mode refers to the state of limiting the power consumption of the load circuit, because, when the output voltage of the battery is low, in order to prevent the battery from shutting down the device due to the output voltage being too low, it is necessary to limit the load electric circuit In order to delay the reduction of the output voltage of the battery, the power consumption of some modules in this embodiment is referred to as the limited power consumption mode in this embodiment.
  • the load current of the load circuit has a certain correspondence with the output voltage of the battery.
  • the reduction of the load current of the load circuit may cause the output of the battery Increase in voltage.
  • the load circuit is a circuit that uses the voltage provided by the battery as a power supply within the system, including but not limited to various processors, controllers, digital circuits, algorithm circuits, analog circuits, digital-analog hybrid circuits, or hardware acceleration Circuit. It should also be understood that, when the load voltage regulation module, clock frequency modulation module, and high-power peripheral control module, which will be described in detail later, are hardware circuits, the load voltage regulation module, the clock frequency modulation module, and the high-power peripheral Control modules and the like can be included in the load circuit.
  • the voltage control module when the output voltage of the battery is lower than the first preset voltage due to the polarization phenomenon, the voltage control module will reduce the load current of the load circuit, because the decrease of the load current of the load circuit will cause the The output voltage of the battery rises to maintain the system. Because the output voltage of the battery increases, the battery can continue to provide power to the load. Therefore, the situation that the device is shut down in advance due to the low output voltage of the battery can be avoided, and the power supply time of the battery can be made longer than that of the battery. It takes a long time to adopt this solution, so it can improve the user experience.
  • the voltage control module may have multiple implementation forms. The following are separately explained:
  • the voltage control module only includes the clock frequency modulation module:
  • the power supply management device 20 includes a voltage detection module 201 and a voltage control module 202.
  • the voltage control module 202 includes a clock frequency modulation module 2021.
  • the voltage detection module 201 is connected to the output terminal of the battery, and the voltage detection module 201 is connected to the clock frequency modulation module 2021.
  • the voltage detection module 201 is specifically configured to detect the first output voltage output by the battery, and when the first output voltage is lower than the first preset voltage, send a first frequency reduction instruction to the clock frequency modulation module 2021.
  • the clock frequency modulation module 2021 is configured to reduce the first clock frequency to the second clock frequency according to the first frequency reduction instruction, so that the first load current is reduced to the second load current.
  • the clock frequency in this embodiment may also be the clock frequency of other hardware modules, as long as the clock frequency of the load circuit working with the clock can adopt this adjustment scheme.
  • the clock frequency may be the clock frequency of a central processing unit (CPU), the clock frequency of a graphics processor (graphics processing unit, GPU), or the network processor (neural processing unit, NPU) )
  • the clock frequency is not limited here.
  • the higher the clock frequency the higher the load current. Therefore, when the first clock frequency is reduced to the second clock frequency, the load current will be reduced accordingly. When the first clock frequency is reduced to the second clock frequency, the first load current is correspondingly reduced to the second load current.
  • the reduction of the load current will lead to the reduction of the battery polarization voltage, and the output voltage of the battery is equal to the difference between the open circuit voltage and the battery polarization voltage, so when the battery polarization voltage decreases, the battery output voltage will Rise. Therefore, in this embodiment, when the first load current is reduced to the second load current, the output voltage of the battery will increase from the first output voltage to the second output voltage, and the second output voltage is higher than the first A preset voltage.
  • the voltage control module includes only the high-power peripheral control module:
  • the power supply management device 20 includes a voltage detection module 201 and a voltage control module 202.
  • the voltage control module 202 includes a high-power peripheral control module 2022.
  • the voltage detection module 201 is connected to the output terminal of the battery, and the voltage detection module 201 is connected to the high-power peripheral control module 2022.
  • the voltage detection module 201 is specifically configured to detect the first output voltage of the battery, and when the first output voltage is lower than the first preset voltage, send a first power reduction instruction to the high-power peripheral control module 2022.
  • the high-power peripheral control module 2022 is configured to reduce the first power of the high-power peripheral to the second power according to the first power reduction command, so that the first load current is reduced to the second load current.
  • the high-power peripheral refers to a device or device with a larger power in the load circuit, for example, it may be a display screen, a speaker, or other devices or devices with a larger power, specifically here No limitation.
  • the high-power peripheral is used as a display screen or a speaker as an example for description.
  • the power of the display screen can be adjusted according to the brightness of the light, for example, the brighter the light corresponds to the larger power.
  • the power of the speaker can be adjusted according to the volume, for example, a larger volume corresponds to a larger power.
  • the high-power peripheral control module 2022 can appropriately lower the brightness of the display screen, the volume of the speaker, and the power of other high-power peripherals to reduce the first power. This is the second power.
  • the power of each high-power peripheral device varies depending on the device, which is not limited here.
  • the decrease of the load current will cause the decrease of the battery polarization voltage, and because the output voltage of the battery is equal to the difference between the open circuit voltage and the battery polarization voltage, when the battery polarization voltage decreases, the battery output voltage Will rise. Therefore, in this embodiment, when the first load current is reduced to the second load current, the output voltage of the battery will increase from the first output voltage to the second output voltage, and the second output voltage is higher than the first A preset voltage.
  • the voltage control module includes a clock frequency modulation module and a high-power peripheral control module:
  • the power supply management device 20 includes a voltage detection module 201 and a voltage control module 202.
  • the voltage control module 202 includes a clock frequency modulation module 2021 and a high-power peripheral control module 2022.
  • the voltage detection module 201 is connected to the output of the battery, the clock frequency modulation module 2021 and the high-power peripheral control module 2022 are connected in parallel, and the clock frequency modulation module 2021 and the high-power peripheral control module 2022 are respectively connected to the voltage detection module 201 is connected.
  • the order in which the voltage detection module 201 sends instructions can be divided into the following situations:
  • the voltage detection module 201 is specifically used to first send a second frequency reduction instruction to the clock frequency modulation module 2021, and then send a second power reduction instruction to the high-power peripheral control module 2022.
  • the first instruction includes The second frequency down command and the second power down command.
  • the clock frequency modulation module 2021 is specifically configured to reduce the first clock frequency to the third clock frequency according to the second frequency-down instruction, so that the first load current is reduced to the third load current.
  • the high-power peripheral control module 2022 is specifically configured to reduce the third power of the high-power peripheral to a fourth power according to the second power reduction instruction, so that the third load current is reduced to the second load current.
  • the voltage detection module 201 is specifically used to first send a third power reduction instruction to the high-power peripheral control module 2022, and then send a third frequency reduction instruction to the clock frequency modulation module 2021.
  • the first instruction includes The third frequency down command and the third power down command.
  • the high-power peripheral control module 2022 is specifically configured to reduce the first power of the high-power peripheral to the fifth power according to the third power reduction instruction, so that the first load current is reduced to the fourth load current.
  • the clock frequency modulation module 2021 is specifically configured to reduce the first clock frequency to the fourth clock frequency according to the third frequency reduction instruction, so that the fourth load current is reduced to the second load current.
  • the voltage detection module 201 when the voltage detection module 201 detects that the first output voltage of the battery is lower than the first preset voltage, the voltage detection module 201 can simultaneously control the clock frequency modulation module 2021 and the high-power peripheral The module 2022 sends a first instruction.
  • the first instruction includes a frequency reduction instruction and a power reduction instruction.
  • the clock frequency modulation module 2021 is specifically used to appropriately reduce the clock frequency according to the frequency reduction instruction.
  • the high-power peripheral control module 2022 is specifically used to appropriately reduce the power of the high-power peripheral according to the power reduction instruction.
  • the clock frequency modulation module 2021 and the high-power peripheral control module 2022 act on the load current of the load circuit at the same time, so that the first load current is reduced to the second load current.
  • Voltage control module includes clock frequency modulation module, high-power peripheral control module and load voltage regulation module:
  • the power supply management device 20 includes a voltage detection module 201 and a voltage control module 202, wherein the voltage control module 202 includes a clock frequency modulation module 2021, a load voltage regulation module 2023, and a high-power peripheral control module 2022.
  • the output terminal of the battery is connected to the voltage detection module 201.
  • the voltage detection module 201 is connected to the clock frequency modulation module 2021, high power peripheral control module 2022 and load voltage regulation module 2023, and the clock frequency modulation module 2021, high power peripheral control module 2022 and load voltage regulation module 2023 are three The two are connected in parallel.
  • the clock frequency modulation module 2021 is connected to the load voltage regulation module 2023. Therefore, signal communication can be realized between the clock frequency modulation module 2021 and the load voltage regulation module 2023.
  • the voltage detection module 201 is used to send the first instruction to the clock frequency modulation module 2021;
  • the clock frequency modulation module 2021 is configured to reduce the first clock frequency to the fifth clock frequency according to the first instruction, so that the first load current is reduced to the fifth load current. In addition, after reducing the load current of the load circuit, the clock frequency modulation module 2021 is also used to send a step-down command to the load voltage regulation module 2023.
  • the load voltage regulation module 2023 is configured to reduce the first load voltage to the second load voltage according to the step-down instruction. Since the reduction of the load voltage of the load circuit will cause the reduction of the load current of the load circuit, the fifth load current can be reduced to the second load current.
  • the voltage detection module 201 when the voltage detection module 201 sends an instruction to the clock and frequency modulation module 2021, it can also send an instruction to the high-power peripheral control module 2022 at the same time, so that the clock and frequency modulation module 2021 and the high-power peripheral control module 2022 work together Load current of the load circuit to reduce the load current. Because the clock frequency modulation module 2021 and the high-power peripheral control module 2022 work together to reduce the load current, the details will not be repeated here.
  • the voltage detection module 201 is used to send the first instruction to the clock frequency modulation module 2021, the high-power peripheral control module 2022, and the load voltage regulation module 2023 at the same time.
  • the clock frequency modulation module 2021 is used to reduce the clock frequency according to the first instruction, so that the load current of the load circuit is reduced.
  • the high-power peripheral control module 2022 is configured to reduce the power of at least one high-power peripheral according to the first instruction, so that the load current of the load circuit is reduced.
  • the power supply management device further includes a delay module 203, which is located between the voltage detection module 201 and the load voltage regulation module 2023, and is used to delay the sending of the first command to the load voltage regulation The time of the module 2023 is such that the delay triggers the load voltage regulation module 2023 to perform the operation of reducing the load voltage of the load circuit.
  • a delay module 203 which is located between the voltage detection module 201 and the load voltage regulation module 2023, and is used to delay the sending of the first command to the load voltage regulation The time of the module 2023 is such that the delay triggers the load voltage regulation module 2023 to perform the operation of reducing the load voltage of the load circuit.
  • the voltage control module includes a clock frequency modulation module and a load voltage regulation module:
  • the power supply management device 20 includes a voltage detection module 201, a voltage control module 202 and a delay module 203, wherein the voltage control module 202 includes a clock frequency modulation module 2021 and a load voltage regulation module 2023.
  • the voltage detection module, the clock frequency modulation module, the load voltage regulation module, and the delay module may be hardware circuits, software products controlled by a controller, or a combination of software and hardware.
  • the above modules are hardware circuits, they can be integrated on one or more chips in the form of integrated circuits. Such chips can also be sold or used as independent products.
  • the high-power peripheral control module is mostly a software product controlled by a controller.
  • the computer software product can be stored in a storage medium during actual production, including several instructions To enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the functions of each module in each embodiment of this application.
  • a computer device which may be a personal computer, server, or network device, etc.
  • such software products can also be sold as independent products or use.
  • the power supply management device may communicate with each other through the clock frequency modulation module 2021, the high-power peripheral control module 2022, and the load voltage regulation module 2023. Cooperate to reduce the load current of the load circuit. As the load current decreases, the polarization voltage of the battery will also decrease, thereby gradually increasing the output voltage of the battery. Because the output voltage of the battery increases, the battery can continue to provide power to the load. Therefore, the situation that the device is shut down in advance due to the low output voltage of the battery can be avoided, and the power supply time of the battery can be made longer than that of the battery. It takes a long time to adopt this solution, so it can improve the user experience.
  • the power supply management device 30 includes a voltage detection module 301, a voltage control module 302, a power detection module 303, and a temperature detection module 304.
  • the voltage detection module 301 is connected to the output terminal of the battery, and the voltage detection module 301 is connected to the voltage control module 302.
  • the power detection module 303 is connected in parallel with the temperature detection module 304, and the power detection module 303 and the temperature detection module 304 are respectively connected to the voltage control module 302.
  • the voltage detection module 301 is used to detect the output voltage of the battery in real time, and when the output voltage of the battery is lower than the first preset voltage, the voltage detection module 301 will send the first voltage to the voltage control module 302 One instruction.
  • the voltage control module 302 is configured to switch the load circuit from the normal power consumption mode to the limited power consumption mode according to the first instruction to reduce the load current of the load circuit. Specifically, the voltage control module 302 may adjust the first load current to a second load current, the second load current is lower than the first load current, so that the output voltage of the battery rises from the first output voltage to the first Two output voltage.
  • the power detection module 303 is used to detect the remaining power of the battery; the temperature detection module 304 is used to detect the operating temperature of the battery.
  • the voltage detection module 301 when the second output voltage is higher than the second preset voltage, the voltage detection module 301 also sends a second instruction to the voltage control module 302.
  • the voltage control module 302 When the voltage control module 302 receives the second instruction, the voltage control module 302 is also used to obtain the remaining power of the battery and determine whether the remaining power of the battery is greater than the preset power; Working temperature, and determine whether the operating temperature of the battery is within the preset operating temperature range; and, when the remaining power of the battery is greater than the preset power level and the operating temperature of the battery is within the preset operating temperature range, the voltage control module 302 is also used to restore the load circuit to the normal power consumption mode. Specifically, the voltage control module 302 may adjust the second load current to a sixth load current, the sixth load current is higher than the second load current and lower than the first load current, so that the sixth load current The corresponding sixth output voltage is lower than the second output voltage and higher than the first preset voltage.
  • a series of voltage regulation operations of the voltage control module 302 may also be triggered when at least one of the following conditions is true: the output voltage of the battery is higher than the second preset voltage, the battery The remaining power is greater than the preset power or the battery's operating temperature is within the preset operating temperature range.
  • the voltage detection module 301 when the voltage detection module 301 sends the second command to the voltage control module 302, it may be executed in the following manner, please refer to FIG. 3B for details.
  • the voltage control module 302 includes a clock frequency modulation module 3021, a high-power peripheral control module 3022, and a load voltage regulation module 3023.
  • the voltage detection module 301 is connected to the clock frequency modulation module 3021, the high-power peripheral control module 3022 and the load voltage regulation module 3023, and the clock frequency modulation module 3021, the high-power peripheral control module 3022 and the load voltage regulation module 3023 are three The two are connected in parallel.
  • the clock frequency modulation module 3021 is connected to the load voltage regulation module 3023. Therefore, signal communication can be achieved between the clock frequency modulation module 3021 and the load voltage regulation module 3023.
  • the power supply management device further includes a delay module 305, which is located between the voltage detection module 301 and the clock frequency modulation module 3021, and is used to delay the second instruction from being sent to the clock frequency modulation module 3021. Time so that the delay triggers the clock frequency modulation module 3021 to perform the operation of increasing the clock frequency.
  • a delay module 305 which is located between the voltage detection module 301 and the clock frequency modulation module 3021, and is used to delay the second instruction from being sent to the clock frequency modulation module 3021. Time so that the delay triggers the clock frequency modulation module 3021 to perform the operation of increasing the clock frequency.
  • the voltage detection module 301 when the voltage detection module 301 sends the second instruction to the voltage control module 302, the voltage detection module 301 can also directly send a boosting instruction to the load voltage regulation module 3023.
  • the load voltage regulation module 3023 executes After the step-up instruction is completed, the load voltage regulation module 3023 is also used to send an instruction to the clock frequency modulation module 3021 to trigger the clock frequency modulation module 3021 to perform the operation of increasing the clock frequency, so that the power and clock frequency can meet the user's business demand.
  • the voltage detection module, the clock frequency modulation module, the load voltage regulation module, and the delay module may be hardware circuits or software products controlled by a controller. As described in detail above, the specific I will not repeat them here.
  • the power detection module and the temperature detection module are software programs located in the controller, and can work in conjunction with the aforementioned various software products.
  • the voltage detection module 301 can detect the output voltage of the battery in real time.
  • the voltage control module 302 will reduce the load current of the load circuit to increase the output of the battery Voltage. Since the load current of the load circuit is positively correlated with the polarization voltage of the battery and the output voltage of the battery is negatively correlated with the polarization voltage of the battery, the load current is negatively correlated with the output voltage of the battery, so , The voltage control module 302 can adjust the load voltage by adjusting the load current, so that the battery can appropriately increase the output voltage of the battery at a lower voltage, and will not affect the normal use of the function of the device because the load current is too low .
  • the output voltage of the battery can be adjusted appropriately, so that the battery can provide power to the load under different voltage states. Therefore, it can avoid the abnormal shutdown of the battery, and can make the power supply time of the battery longer than the time when this solution is not taken. Long, therefore, can improve the user experience.
  • FIG. 4 Please refer to FIG. 4 as follows:
  • the power supply management device 40 includes a voltage detection module 401 and a voltage control module 402.
  • the voltage control module 402 includes a clock frequency modulation module 4021, a high-power peripheral control module 4022, a load voltage regulation module 4023, and a controller 4024.
  • the clock frequency modulation module 4021, the high-power peripheral control module 4022 and the load voltage regulation module 4023 are connected in parallel with each other and are respectively connected to the controller 4024, so that the clock FM module 4021 and the high-power peripheral control module 4022 And the load voltage regulation module 4023 can directly receive or execute the instructions of the controller 4024.
  • the voltage detection module 401 is connected to the output terminal of the battery, and the voltage detection module 401 is connected to the controller 4024.
  • the voltage detection module 401 is used to detect the output voltage of the battery in real time, and when the output voltage of the battery is lower than the first preset voltage, the voltage detection module 401 will send a first instruction to the controller 4024.
  • the controller 4024 is configured to receive and process the first instruction, and send instructions to the clock frequency modulation module 4021, the high-power peripheral control module 4022, or the load voltage regulation module 4023, so that the controller 4024 performs frequency modulation by the clock
  • the module 4021, the high-power peripheral control module 4022 and the load voltage regulation module 4023 reduce the load current of the load circuit.
  • the high-power peripheral control module 4022 in the voltage control module 402 can reduce the load current of the load circuit by reducing the power of the high-power peripheral; the clock frequency modulation module 4021 in the voltage control module 402 can reduce the clock frequency of the processor Thereby, the load current of the load circuit is reduced; the load voltage regulation module 4023 in the voltage control module 402 can reduce the load current of the load circuit by reducing the load voltage of the load circuit. Specifically, the above has been described in detail and will not be repeated here .
  • the controller 4024 in this embodiment may be a combination logic controller or a microprogram controller, which is not specifically limited herein.
  • the controller 4024 is a microprogram controller
  • the clock frequency modulation module 4021, the high-power peripheral control module 4022 and the load voltage regulation module 4023 may be software products located in the voltage control module 402, These software products may be stored in one or more storage media, where several instructions are included to make the controller 4024 call several instructions to control these modules.
  • the controller 4024 is a combinational logic controller
  • the clock frequency modulation module 4021, the high-power peripheral control module 4022, and the load voltage regulation module 4023 may also be hardware circuits.
  • the combinational logic controller can Each module sends logical instructions to enable the aforementioned modules to perform corresponding operations to adjust the output voltage of the battery.
  • the voltage detection module in the power supply management device can also directly send instructions to the controller, and then The controller controls the clock frequency modulation module, the high-power peripheral control module or the load voltage regulation module to regulate the load current of the load circuit, thereby achieving the effect of regulating the battery output voltage. Therefore, the implementation flexibility of the scheme is improved.
  • the voltage control module when the output voltage of the battery is lower than the first preset voltage due to the polarization phenomenon, the voltage control module will reduce the load current of the load circuit, and the decrease of the load current of the load circuit will cause the output of the battery The voltage rises.
  • the battery can continue to provide power to the load. Therefore, the situation that the device is shut down in advance due to the low output voltage of the battery can be avoided, and the power supply time of the battery can be made longer than that of the battery. It takes a long time to adopt this solution, so it can improve the user experience.
  • FIG. 5A The general structure of the power supply management device in the embodiment of the present application is described above. To facilitate further understanding and specific implementation, the following describes the detailed circuit structure of the power supply management device in the embodiment of the present application, please refer to FIG. 5A.
  • the number in the dotted circle in FIG. 5A represents the connection end of the device. When the number is 1, it means that the connection end is the first end of the device, when the value is 2 , It means that the connection end is the second end of the device.
  • the label in this embodiment is only for easy understanding and description, and does not have any limited meaning.
  • FIG. 5A The circuit diagram can be completely marked by other methods, which is not limited here.
  • the voltage detection module 501 the load voltage regulation module 502, the high-power peripheral control module 503, the clock frequency modulation module 504, and the interface 505.
  • the output end of the battery is connected to the first end of the interface 505, and the second end of the interface 505 is connected to the voltage detection module 501.
  • the voltage detection module 501 is respectively controlled by the load voltage regulation module 502 and high-power peripherals
  • the module 503 and the clock frequency modulation module 504 are connected. Therefore, the voltage detection module 501 can work with the load voltage regulation module 502, the high-power peripheral control module 503, and the clock frequency modulation module 504 on the load current, so that the load current is reduced from the first load current to the second load current
  • the output voltage of the battery is increased from the first output voltage to the second output voltage.
  • the interface 505 may be a chip interface, coupled with the battery, and used to collect the output voltage of the battery.
  • the voltage detection module 501 may further include:
  • a voltage comparator 5011 A voltage comparator 5011, a debounce module 5012, a logical NOR gate 5013, and a flip-flop 5014.
  • the first end of the voltage comparator 5011 is connected to the output end of the battery, and the second end of the voltage comparator 5011 is connected to the first end of the debounce module 5012.
  • the second end of the debounce module 5012 is connected to the first end of the logic NOR gate 5013, and the second end of the logic NOR gate 5013 is connected to the first end of the flip-flop 5014.
  • the voltage comparator is used to compare the output voltage of the battery with the first preset voltage to determine that the output voltage of the battery is lower than the first preset voltage.
  • the voltage comparator 5011 may be a zero-crossing comparator, for example, a zero-level comparator, or a single-limit comparator, for example, a non-zero-level comparator, or a hysteretic comparator, For example, a hysteresis comparator; it can also be a dual-limit comparator, for example, a window comparator, which is not specifically limited here.
  • a zero-crossing comparator for example, a zero-level comparator, or a single-limit comparator, for example, a non-zero-level comparator, or a hysteretic comparator,
  • a hysteresis comparator a hysteresis comparator
  • it can also be a dual-limit comparator, for example, a window comparator, which is not specifically limited here.
  • a window comparator which is not specifically limited here.
  • the window comparator also known as a dual limit comparator, has two threshold levels and can detect whether the level of the input analog signal is between the given two threshold levels.
  • the lower threshold level is the first preset voltage mentioned above, assuming U1; the upper threshold level is the second preset voltage mentioned above, assuming U2, and U2>U1.
  • the debounce module 5012 when the output of the window comparator is high, the debounce module 5012 can be triggered to start working.
  • the logical NOR gate 5013 is used to implement a logical NOR function. Specifically, the output is high level (logic 1) only when both inputs A and B are low level (logic 0). It can also be understood that any input is at a high level (logic 1) and the output is at a low level (logic 0).
  • the debounce module 5012 refers to a debounce circuit composed of different devices, and is used to remove the instant glitch of the battery output voltage drop signal.
  • the debounce module in this embodiment may be composed of RS flip-flops, or may be composed of multiple D flip-flops in cascade, and may also be designed in a state diagram, which is not specifically limited here.
  • the structure of the de-jittering module and the process of de-interference processing are common knowledge of those skilled in the art, and are not specifically limited here.
  • the flip-flop 5014 is used to latch the state of the voltage drop signal.
  • the flip-flop is a storage circuit sensitive to the edge of the pulse signal.
  • the flip-flop can update the state under the action of the rising or falling edge of the pulse signal.
  • the specific circuit structure of the flip-flop may be a master-slave circuit structure, a maintenance blocking circuit structure, or a circuit structure formed using transmission delay, which is not specifically limited here.
  • the flip-flop 5014 is also used to end the latch state after receiving the reset signal. Since the specific structure and principle of the trigger 5014 are common knowledge of those skilled in the art, they will not be repeated here.
  • the load voltage regulation module 502 may further include:
  • the voltage regulation control switch 5021 and the step-down conversion circuit (buck circuit) 5022, or the voltage regulation control switch 5021 and the low dropout linear regulator (LDO) 5023 are the voltage regulation control switch 5021 and the low dropout linear regulator (LDO) 5023.
  • the second end of the voltage regulation control switch 5021 is connected to the second end of the trigger 5014 or the processor, and the first end of the voltage regulation control switch 5021 is connected to the step-down conversion circuit 5022 or the low dropout linear voltage regulator The device 5023 is connected.
  • the voltage regulation control switch 5021 is used to trigger the voltage regulation control operation according to the instruction of the trigger 5014 or the processor.
  • the step-down conversion circuit 5022 is used to regulate the voltage across the load, and the low-dropout linear regulator 5023 is also used to regulate the voltage across the load. It should be noted that the step-down conversion circuit 5022 and the low-dropout linear regulator 5023 can be applied together in the load voltage regulation module 502, or the step-down conversion circuit 5022 can perform the voltage regulation operation only. Only the low-dropout linear regulator 5023 implements the voltage regulation operation, which is not specifically limited here.
  • step-down conversion circuit 5022 and the low-dropout linear regulator 5023 are common knowledge of those skilled in the art, and are not specifically limited herein.
  • the high-power peripheral control module 503 may further include:
  • the speaker control module 5031 the display screen control module 5032, and other peripheral control modules 5033.
  • the second end of the trigger 5014 is connected to the speaker control module 5031, the display screen control module 5032, and other peripheral control modules 5033.
  • the high-power peripheral control module 503 is used to control the power of the speaker control module 5031, the display control module 5032, and other peripheral control modules 5033 to adjust the load current.
  • reducing the power of the high-power peripheral can cause the load current Reduction.
  • the volume of the speaker can be lowered, and the light brightness of the display screen can also be lowered, which is not specifically limited here.
  • the clock frequency modulation module 504 may further include:
  • the number of the frequency divider 5042 is equal to the number of the logic AND gate 5041, the number of the frequency divider 5042 and the energy dissipation module 5044 The number is equal.
  • the first end of the logical AND gate 5041 is connected to the second end of the flip-flop 5014, and the second end of the logical AND gate 5041 is connected to the first end of the frequency divider 5042.
  • the third end of the frequency divider 5042 is connected to the energy consumption mode 5044 block, and the second end of the frequency divider 5042 is connected to the clock signal 5043.
  • the frequency divider 5042 is used to reduce the clock frequency.
  • the logical AND gate 5041 is used to generate an enable signal for the frequency divider to enter the working state.
  • the energy consumption module 5044 can be connected to the frequency divider 5042 and the logical AND gate 5041.
  • the frequency divider 5042 can be adjusted to enter the energy consumption module 5044 Clock frequency.
  • the clock frequency modulation module 504, the high-power peripheral control module 503, and the load voltage regulation module 502 cooperate with each other to reduce the load current of the load circuit.
  • the polarization voltage of the battery will also decrease, which can gradually increase the battery output voltage.
  • the battery can continue to provide power to the load. Therefore, the situation that the device is shut down in advance due to the low output voltage of the battery can be avoided, and the power supply time of the battery can be made longer than that of the battery. It takes a long time to adopt this solution, so it can improve the user experience.
  • control method includes the following steps:
  • the power supply management device may be connected to the output end of the battery through the interface, so that the power supply management device can detect the output voltage of the battery.
  • the manner in which the power supply management device detects the output voltage of the battery may be to compare the received output voltage of the battery with the first preset voltage, and when the output voltage of the battery is lower than the first preset voltage, step 602 is performed.
  • the first preset voltage and the second preset voltage in this embodiment are the two threshold voltage values in the voltage comparator in the power supply management device.
  • the threshold voltage is removed as the first preset Voltage, take the upper threshold voltage as the second preset voltage.
  • the power supply management device when the output voltage of the battery is lower than the first preset voltage, the power supply management device will reduce the load current of the load circuit.
  • the way for the power supply management device to reduce the load current of the load circuit may be any of the following:
  • the power supply management device can reduce the clock frequency of the processor. When the clock frequency of the processor decreases, the load current of the load circuit will decrease.
  • the power supply management device can also reduce the load current of the load circuit by reducing the load voltage across the load circuit. It should be noted that before the power supply management device reduces the load current at both ends of the load circuit, the power supply management device must first reduce the clock frequency of the processor.
  • the power supply management device may reduce the load current of the load circuit by reducing the power of a high-power peripheral device, which may be a display screen, a speaker, or other devices with greater power.
  • a high-power peripheral device which may be a display screen, a speaker, or other devices with greater power.
  • the reduction of the load current of the load circuit can lead to the reduction of the battery polarization voltage.
  • the battery polarization voltage is caused by the battery electrochemical polarization, concentration polarization or ohmic polarization phenomenon in the battery internal current output path Pressure drop.
  • the polarization voltage of the battery is equal to the difference between the open circuit voltage and the output voltage of the battery, where the open circuit voltage is the terminal voltage of the battery under open circuit conditions, and the open circuit voltage is a fixed value, so when the battery When the polarization voltage decreases, the output voltage of the battery will increase.
  • this embodiment uses a mobile terminal as an example in conjunction with specific data to introduce the power supply management device and the control method.
  • the output voltage of the battery of mobile terminals such as mobile phones, tablet computers and other devices may be different.
  • the load current of the load circuit of different devices is also mostly different.
  • the specifics are not limited here. As shown in FIG. 7, when the battery is at an operating temperature of -20°C, at the initial moment, the output voltage of the battery is 3.45V, and the load current of the load circuit of the mobile terminal is 0.52A. When just at the operating temperature of -20 °C, the output voltage of the battery begins to decrease.
  • the power supply management device reduces the load current of the load circuit in the above three ways. As shown in FIG. 7, the load current of the load circuit is reduced from 0.52A to 0.2A. At this time, due to the decrease of the load current of the load circuit, the polarization voltage of the battery is reduced, which in turn causes the output voltage of the battery As shown in Figure 7, the battery's output voltage gradually increased from 3.14V to 3.4V. It should be noted that when the load current of the load circuit decreases, the output voltage of the battery is relatively slow in the process of rising, and may even be delayed by one to two seconds.
  • the following takes the actual product equipped with a lithium battery as an example to introduce the influence of the power supply management device and the control method in this embodiment on the product.
  • the initial value of the state of the chart (SOC) of the product is 0.95 (that is, 95%), and the product's load circuit's load circuit is detected at a working temperature of -10°C through the running software Each time the load current decreases by 185mA or each time by 415mA, the output voltage of the battery and the remaining power of the product in a certain period of time.
  • SOC state of the chart
  • the power supply management device reduces the load current from 1000mA to 585mA, that is, the load current is reduced by a total of 415mA.
  • the polarization voltage of the battery decreases, so the output voltage of the battery will increase.
  • the output voltage of the battery increased by 146.7mV within 600ms from the beginning of the reduction of the load current; the output voltage of the battery increased by 200.9mV within the time of 1.6s from the beginning of the reduction of the load current, and With the extension of time, the output voltage of the battery will gradually increase.
  • the voltage control module when the output voltage of the battery is lower than the first preset voltage due to polarization, the voltage control module will reduce the load current of the load circuit, because the load current of the load circuit decreases Will cause the output voltage of the battery to increase. Because the output voltage of the battery increases, the battery can continue to provide power to the load. Therefore, the situation that the device is shut down in advance due to the low output voltage of the battery can be avoided, and the power supply time of the battery can be made longer than that of the battery. It takes a long time to adopt this solution, so it can improve the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Sources (AREA)

Abstract

一种供电管理设备以及控制方法,用于在电池因极化现象而导致输出电压降低时,对设备的供电做有效管理。供电管理设备(10)包括:电压检测模块(101),用于检测电池的输出电压,当所述电池的输出电压低于第一预设电压时,向所述电压控制模块(102)发送第一指令;电压控制模块(102),用于根据所述第一指令将负载电路从正常功耗模式切换为限制功耗模式,以降低所述负载电路的负载电流。

Description

一种供电管理设备以及控制方法 技术领域
本申请实施例涉及供电管理技术领域,尤其涉及一种供电管理设备以及控制方法。
背景技术
电池常作为电源为各种各样的设备提供电能。由于电池的内阻具有随温度的降低而增大的特性,所以,当电池温度降低时,该电池的内阻将逐渐增大,负载电流也随之逐渐升高,进而引起电池极化现象。当电池的极化现象比较严重时,电池输出电压将急速下降。在这种情况下,当该设备检测到电池输出电压低于预设电压时,该设备将通知处理器对系统文件进行备份,并逐步关闭正在运行的部分程序,以保证在该设备关机时不会造成数据丢失。
但是,当电池因极化现象而导致输出电压在逐渐下降的过程中,处理器对系统文件进行备份的操作和处理器关闭正在运行的部分程序的操作会加速该设备的电池耗电,进而加速电池输出电压下降,于是,将加速该设备执行关机操作,因此,将降低用户体验。
发明内容
本申请实施例提供了一种供电管理设备以及控制方法,用于在电池因极化现象而导致输出电压降低时,对设备的供电做有效管理。
第一方面,本申请实施例提供了一种供电管理设备,包括:电压检测模块,用于检测电池的输出电压,当该电池的输出电压低于第一预设电压时,向该电压控制模块发送第一指令;电压控制模块,用于根据该第一指令将负载电路从正常功耗模式切换为限制功耗模式,以降低该负载电路的负载电流。
本申请实施例所提出的方案中,当该电池的输出电压因极化现象而低于该第一预设电压时,该电压控制模块将降低该负载电路的负载电流,由于该负载电路的负载电流降低将导致该电池的输出电压升高进而能够维持系统工作。又因为,该电池的输出电压升高,可以使该电池继续为负载提供电能,因此,可以避免因电池的输出电压过低而导致设备提前关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
根据第一方面,本申请实施例第一方面的第一种实施方式中,该电压检测模块还用于在满足条件时,向该电压控制模块发送第二指令;该电压控制模块,还用于根据该第二指令将该负载电路恢复为该正常功耗模式,以重新升高该负载电流;其中,该预设条件包括如下至少一项:该电池的输出电压高于第二预设电压、该电池的剩余电量大于预设电量或该电池的工作温度处于预设工作温度范围内;该第二预设电压高于该第一预设电压。
本申请实施例中,该电压控制模块除了降低负载电路的负载电流之外,可以在需要恢复正常功耗模式时升高该负载电路的负载电流,因此,可以实现该供电管理设备对电池的 输出电压的灵活管控,并且使该电池可以在极化问题缓解后恢复正常工作。
根据第一方面的第一种实施方式,本申请实施例第一方面的第二种实施方式中,该供电管理设备还包括:电量检测模块,用于检测该剩余电量;温度检测模块,用于检测该工作温度;该条件包括该电池的输出电压高于第二预设电压、该电池的剩余电量大于预设电量、和该电池的工作温度处于预设工作温度范围内。
本申请实施例中,该供电管理设备除了检测电池的输出电压之外,还将通过电量检测模块检测电池的剩余电量,以及通过温度检测模块检测电池的工作温度,并且,当电池的输出电压高于第二预设电压、该电池的剩余电量大于预设电量、且该电池的工作温度处于预设工作温度范围内时,该供电管理设备才通过恢复正常功耗模式来满足用户的业务功能的需求。因此,该供电管理设备恢复正常功耗模式的条件更加严密,从而增强了本申请实施例所提出的方案的效果。
根据第一方面、第一方面的第一种实施方式至第一方面的第二种实施方式,本申请实施例第一方面的第三种实施方式中,该电压控制模块包括:时钟调频模块,用于降低该负载电路的时钟频率,以降低该负载电流。
根据第一方面、第一方面的第一种实施方式至第一方面的第三种实施方式,本申请实施例第一方面的第四种实施方式中,该电压控制模块包括:负载电压调控模块,用于降低该负载电路的负载电压,以降低该负载电流。
根据第一方面、第一方面的第一种实施方式至第一方面的第四种实施方式,本申请实施例第一方面的第五种实施方式中,该电压控制模块包括:大功率外设控制模块,用于降低大功率外设的功率,以降低该负载电流。
根据第一方面的第三种实施方式至第一方面的第五种实施方式,本申请实施例第一方面的第六种实施方式中,该电压控制模块还包括:控制器,用于根据该第一指令控制该时钟调频模块、该负载电压调控模块或该大功率外设控制模块中的至少一个,以将该负载电路从该正常功耗模式切换为该限制功耗模式。
本申请实施例中,提出了该电压控制模块还可能包括控制器,该控制器可以接收电压检测模块的指令,然后,由控制器控制时钟调频模块、该负载电压调控模块或该大功率外设控制模块执行该第一指令。本申请实施例提出了一种不通过硬件电路而采用控制器执行软件控制负载电流的方式。
根据第一方面的第三种实施方式,本申请实施例第一方面的第七种实施方式中,该时钟调频模块,用于根据该第一指令降低该负载电路的负载电压。
本申请实施例中,提出了该时钟调频模块可以不接收控制器的指令,直接基于第一指令进行调整操作。
根据第一方面的第一种实施方式至第一方面的第七种实施方式,本申请实施例第一方面的第八种实施方式中,该电压检测模块包括:电压比较器,用于执行如下至少一项:将该电池的输出电压与该第一预设电压进行比较,以确定该电池的输出电压低于该第一预设电压;或者,将该电池的输出电压与该第二预设电压进行比较,以确定该电池的输出电压高于该第二预设电压。
根据第一方面的第一种实施方式至第一方面的第八种实施方式,本申请实施例第一方面的第九种实施方式中,该电压比较器包括单限比较器、滞回比较器或窗口比较器。
根据第一方面的第一种实施方式至第一方面的第九种实施方式,本申请实施例第一方面的第十种实施方式中,该时钟调频模块包括:分频器、逻辑与门和耗能模块;该逻辑与门的第一端与触发器的第二端相连,该逻辑与门的第二端与分频器的第一端相连;该分频器用于降低时钟频率;该逻辑与门用于产生分频器进入工作状态的使能信号。
根据第一方面的第一种实施方式至第一方面的第十种实施方式,本申请实施例第一方面的第十一种实施方式中,该电压检测模块还包括去抖模块、逻辑或非门和触发器;该电压比较器的第一端与电池的输出端相连,该电压比较器的第二端与去抖模块的第一端相连。该去抖模块的第二端与该逻辑或非门的第一端相连,该逻辑或非门的第二端与触发器的第一端相连;该逻辑或非门,用于实现逻辑或非功能;该去抖模块,用于去除电池的输出电压跌落信号的瞬间毛刺或噪声;该触发器,用于锁存电压跌落信号的状态。
根据第一方面的第一种实施方式至第一方面的第十一种实施方式,本申请实施例第一方面的第十二种实施方式中,该负载电压调控模块包括调压控制开关和降压式变换电路;该调压控制开关与该触发器相连;该调压控制开关用于根据该触发器的指令触发调压控制操作;该降压式变换电路用于调节该负载电路的负载电压。
根据第一方面的第一种实施方式至第一方面的第十二种实施方式,本申请实施例第一方面的第十三种实施方式中,该负载电压调控模块包括调压控制开关和低压差线性稳压器;该调压控制开关与该触发器相连;该调压控制开关用于根据该触发器的指令触发调压控制操作;该低压差线性稳压器用于调节该负载电路的负载电压。
第二方面,本申请实施例提供了一种供电管理系统,该供电管理系统包括:如第一方面或其任一种可能的实现方式所介绍的供电管理设备和该负载电路。
根据第二方面,本申请实施例第二方面的第一种实施方式中,该供电管理系统是一个或者一组芯片,该供电管理系统还包括:芯片接口,与该电池耦合,用于采集该电池的输出电压。
第三方面,本申请实施例提供了一种控制方法,该控制方法包括:检测电池的输出电压;当该电池的输出电压低于第一预设电压时,将负载电路从正常功耗模式切换为限制功耗模式,以降低负载电路的负载电流。
根据第三方面,本申请实施例第三方面的第一种实施方式中,该方法还包括:当该电池的输出电压高于第二预设电压时,将该负载电路恢复为该正常功耗模式,以升高负载电路的负载电流。
第四方面,本申请实施例提供了一种计算机可读存储介质,该计算机存储介质存储有计算机程序,该计算机程序包括程序指令,该程序指令当被处理器执行时使该处理器执行如前述第三方面中任一项所介绍的方法。
第五方面,本申请实施例提供了一种计算机程序产品,其特征在于,当该计算机程序产品在计算机上运行时,使得计算机执行如前述第三方面中任一项所介绍的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请实施例中供电管理设备的一个实施例的示意图;
图2A为本申请实施例中供电管理设备的另一个实施例的示意图;
图2B为本申请实施例中供电管理设备的另一个实施例的示意图;
图2C为本申请实施例中供电管理设备的另一个实施例的示意图;
图2D为本申请实施例中供电管理设备的另一个实施例的示意图;
图2E为本申请实施例中供电管理设备的另一个实施例的示意图;
图3A为本申请实施例中供电管理设备的另一个实施例的示意图;
图3B为本申请实施例中供电管理设备的另一个实施例的示意图;
图4为本申请实施例中供电管理设备的另一个实施例的示意图;
图5A为本申请实施例中供电管理设备的另一个实施例的示意图;
图5B为本申请实施例中电压比较器的一个实施例的示意图;
图6为本申请实施例中控制方法的一个实施例的流程图;
图7为本申请实施例的实验效果示意图;
图8为本申请实施例的另一实验效果示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种供电管理设备以及控制方法,用于在电池输出电压降低时,对设备的供电做有效管理。
下面对本申请实施例所涉及的一些词语进行介绍:
极化电压:指当电池有电流通过,电极偏离了平衡电极电位而造成电极极化时的电压。
开路电压(open circuit voltage,OCV):指电池在开路状态下的端电压。电池的开路电压等于电池在断路时(即没有电流通过两极时)电池的正极电极电势与负极的电极电势之差。
电压比较器:指对输入信号进行鉴别与比较的电路,在本申请实施例中,该电压比较器主要用于将检测到的电池输出电压与预设电压进行比较。
时钟频率(clock rate):指同步电路中时钟的基础频率,它可以以“若干次周期每秒”来度量,例如,量度单位赫兹(Hz)。该时钟频率是评定处理器(central processing unit,CPU)性能的重要指标。在本申请实施例中,该时钟频率除了指处理器的时钟频率之外,还可以是其他硬件模块的时钟频率。
大功率外设:在本申请实施例中,指负载电路中用于支持的功率较大的器件或设备,例如,显示屏或者扬声器等的电路。
指令:在本申请实施例中,可以指一个硬件模块向另一个硬件模块发送的指示信号,也可以指处理器或者控制器对硬件或者软件设备发送的逻辑语句,用来实现通知或控制功能,具体此处不做限定。
毛刺:本申请实施例中指电路输出波形中存在时间很较短、无规律且对本发明没有用处的可能会对输出结果产生干扰的脉冲。
噪声:本申请实施例中指电路中的干扰信号。
为了便于理解,下面对本申请中的应用场景进行简单介绍:
本申请实施中所提出的供电管理设备以及控制方法主要应用于电池因为极化而处于低电压的场景。具体地,当设备中的电池的电压降低到一定的程度时,该供电管理设备将根据此时该电池的状态触发一系列调整电池的输出电压的操作,从而使得电池的输出电压上升到可以维持该设备的正常工作的状态,进而延长该设备的待机时间。
需要注意的是,本申请实施例所提出的供电管理设备可以是或包括具有较高处理性能的芯片,也可以是或包括集成的微处理器,具体此处不做限定。
还应注意的是,本申请实施例所提出的供电管理设备不仅可以应用于带电池的移动嵌入式设备或其他设备中,例如可以应用于除了该电池外具有独立储存电能能力的终端设备中,还可以应用于内部不包含电池的专门控制供电的独立设备中,具体此处不做限定。
除此之外,本申请实施例所涉及的供电管理设备在不同的设备中控制的电池的种类可能不尽相同,该电池可以是铅酸电池、锂电池或者镍氢电池,具体此处不做限定。在本申请实施例以及后续实施例中,仅以锂电池为例进行介绍。
为便于理解,下面对本申请实施例所提出的供电管理设备以及控制方法进行介绍。本实施例中,当电池因为极化而处于低电压的状态时可以触发本申请实施例所提出的供电管理设备进行调压操作。
需要注意的是,该电池处于低电压的原因可以是该设备将大功率外设调至较高的功率,例如,将该设备的扬声器长时间处于较大的功耗状态,或者,将该设备的显示屏幕长时间处于高亮的状态。也就是说,该设备长时间处于大功耗状态可以使得流过该设备的电流升高,而电流的升高将加重电池的极化,于是将造成极化电压升高。由于,电池的输出电压=开路电压-电池极化电压,其中,开路电压为电池在开路条件下的端电压,电池极化电压为电池电化学极化、浓差极化或者欧姆极化现象在电池内部电流输出通路上产生的压降。并且,该开路电压为定值,所以,当该电池极化电压升高时,将导致该电池的输出电压降低。
除此之外,还可以是该电池的工作温度突然降低而导致该电池的输出电压降低。因为,该电池的内阻具有随温度的降低而升高的特性,所以,当该电池的工作温度突然降低时, 该电池的内阻增加,从而导致该电池极化电压升高。由于,电池的输出电压=开路电压-电池极化电压,所以,当该电池极化电压升高时,将导致该电池的输出电压降低。
应当理解的是,本申请实施例中,该电压降低的原因还可能是由其他事件造成的极化问题,具体此处不做限定。本申请实施例所提出的供电管理设备将可以通过降低电池的极化电压来提升该电池的输出电压。
下面对本申请实施例所提出的供电管理设备的工作原理进行介绍。如图1所示,该供电管理设备10包括电压检测模块101和电压控制模块102,该电压检测模块101与电池的输出端相连,并且,该电压检测模块101用于检测该电池的输出电压;此外,该电压检测模块101还与该电压控制模块102相连,因此,该电压检测模块101可以与该电压控制模块102之间产生信号交流。
在实际应用中,该电压检测模块101用于实时检测该电池的输出电压,并且,当该电池的输出电压低于第一预设电压时,该电压检测模块101将向电压控制模块102发送第一指令。其中,该第一预设电压为根据具体的电池以及电池所供能的设备的情况设置的,所以因电池的不同和设备的不同而有所差异。
该电压控制模块102,用于根据该第一指令将负载电路从正常功耗模式切换为限制功耗模式,以降低负载电路的负载电流。具体地,该电压控制模块102可以将第一负载电流调整为第二负载电流,该第二负载电流低于该第一负载电流,以使得该电池输出的第二输出电压高于第一输出电压。其中,该第一输出电压即为该电压检测模块101检测到的低于该第一预设电压的电池的输出电压,该第二输出电压为负载电流发生改变后的电池的输出电压,该第二输出电压不仅高于该第一输出电压,还可能高于该第一预设电压。
本实施例中的,正常功耗模式指负载电路处于大功耗状态时,该电池不会产生极化现象或者极化现象比较微弱的状态,该大功耗状态指大功率外设的处于较大功率的状态,或者处理器处于高时钟频率进行高速计算的状态。具体的,后文将分类详细介绍,此处不再赘述。类似的,该限制功耗模式指限制负载电路的功耗的状态,因为,当电池的输出电压较低时,为了预防该电池因输出电压过低而导致设备关机,所以要限制负载电电路中的部分模块的功耗,以延缓电池的输出电压的降低,本实施例中将这样的状态称作限制功耗模式。
需要注意的是,本实施例中,该负载电路的负载电流与该电池的输出电压具有一定的对应关系,例如,在本实施例中,该负载电路的负载电流的降低可以导致该电池的输出电压的升高。
应该理解的是,负载电路是系统内部利用电池提供的电压作为电源工作的电路,包括但不限定于各种处理器、控制器、数字电路、算法电路、模拟电路、数模混合电路或硬件加速电路。还应理解的是,后文将详细介绍的负载电压调控模块、时钟调频模块和大功率外设控制模块等模块为硬件电路时,该负载电压调控模块、该时钟调频模块和该大功率外设控制模块等都可以包含于该负载电路中。
本实施例中,当该电池的输出电压因极化现象而低于该第一预设电压时,该电压控制模块将降低该负载电路的负载电流,由于该负载电路的负载电流降低将导致该电池的输出 电压升高进而能够维持系统工作。又因为,该电池的输出电压升高,可以使该电池继续为负载提供电能,因此,可以避免因电池的输出电压过低而导致设备提前关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
在一些可行的实施方式中,该电压控制模块可以有多种实现形式。下面分别进行说明:
一、电压控制模块仅包括时钟调频模块:
本实施例中,如图2A所示,该供电管理设备20包括电压检测模块201和电压控制模块202,该电压控制模块202包括时钟调频模块2021。该电压检测模块201与电池的输出端相连,且该电压检测模块201与时钟调频模块2021相连。
该电压检测模块201,具体用于检测该电池输出的第一输出电压,当该第一输出电压低于第一预设电压时,向时钟调频模块2021发送第一降频指令。
该时钟调频模块2021,用于根据该第一降频指令将第一时钟频率降低至第二时钟频率,以使得该第一负载电流降低至该第二负载电流。
本实施例中的时钟频率除了指处理器的时钟频率之外,还可以是其他硬件模块的时钟频率,只要是利用时钟工作的负载电路其时钟频率均可采用本调整方案。例如,该时钟频率可以是中央处理器(central processing unit,CPU)的时钟频率,也可以是图形处理器(graphics processing unit,GPU)的时钟频率,还可以是网络处理器(neural processing unit,NPU)的时钟频率,具体此处不做限定。
一般地,该时钟频率越高,负载电流越高。所以,当该第一时钟频率降低至该第二时钟频率时,该负载电流也将随之降低。当第一时钟频率降低至该第二时钟频率时,该第一负载电流也对应地降低为该第二负载电流。
此外,负载电流的降低会导致电池极化电压的降低,并且,该电池的输出电压等于开路电压和电池极化电压的差,所以,当该电池极化电压降低时,该电池的输出电压将升高。所以,在本实施例中,当该第一负载电流降低为该第二负载电流,该电池的输出电压将从第一输出电压升高到第二输出电压,该第二输出电压高于该第一预设电压。
二、电压控制模块仅包括大功率外设控制模块:
本实施例中,如图2B所示,该供电管理设备20包括电压检测模块201和电压控制模块202,该电压控制模块202包括大功率外设控制模块2022。该电压检测模块201与电池的输出端相连,且该电压检测模块201与该大功率外设控制模块2022相连。
该电压检测模块201,具体用于检测该电池的第一输出电压,当该第一输出电压低于第一预设电压时,向大功率外设控制模块2022发送第一降功率指令。
该大功率外设控制模块2022,用于根据该第一降功率指令将大功率外设的第一功率降低至第二功率,以使得该第一负载电流降低为该第二负载电流。
本实施例中,该大功率外设指负载电路中的功率较大的器件或设备,例如,可以是显示屏,也可以是扬声器,还可以是其他功率较大的器件或设备,具体此处不做限定。在本实施例以及后续实施例中,仅以该大功率外设为显示屏或者扬声器为例进行介绍。应当理解的是,该显示屏的功率可以根据灯光的亮度进行调整,例如,越亮的灯光对应越大的功率。类似的,扬声器的功率可以根据音量的大小进行调整,例如,越大的音量对应越大的 功率。所以,该大功率外设控制模块2022可以适当调低显示屏的灯光亮度,也可以适当调低扬声器的音量,还可以适当调整其他的大功率外设的功率,以使得将该第一功率降低为该第二功率。当然,在实际应用中,各个大功率外设的功率因设备的不同而有所差异,具体此处不做限定。
应当理解的是,由于大功率外设的功率降低,所以,该设备的耗电能力将降低,进而导致该负载电流从该第一负载电流降低到该第二负载电流。
由于,负载电流的降低会导致电池极化电压的降低,又由于,该电池的输出电压等于开路电压和电池极化电压的差,所以,当该电池极化电压降低时,该电池的输出电压将升高。所以,在本实施例中,当该第一负载电流降低为该第二负载电流,该电池的输出电压将从第一输出电压升高到第二输出电压,该第二输出电压高于该第一预设电压。
三、电压控制模块包括时钟调频模块和大功率外设控制模块:
本实施例中,如图2C所示,该供电管理设备20包括电压检测模块201和电压控制模块202,该电压控制模块202包括时钟调频模块2021和大功率外设控制模块2022。该电压检测模块201与电池的输出端相连,该时钟调频模块2021和该大功率外设控制模块2022并联,并且,该时钟调频模块2021和该大功率外设控制模块2022分别与该电压检测模块201相连。
本实施例中,根据该电压检测模块201发送指令的顺序可以分为以下几种情况:
(一)、先向时钟调频模块发送指令,再向大功率外设控制模块发送指令:
本实施例中,该电压检测模块201,具体用于先向该时钟调频模块2021发送第二降频指令,再向该大功率外设控制模块2022发送第二降功率指令,该第一指令包括该第二降频指令和该第二降功率指令。
该时钟调频模块2021,具体用于根据该第二降频指令将第一时钟频率降低至第三时钟频率,以使得该第一负载电流降低为该第三负载电流。
该大功率外设控制模块2022,具体用于根据该第二降功率指令将大功率外设的第三功率降低至第四功率,以使得该第三负载电流降低为该第二负载电流。
本实施例中,通过降低时钟频率和降低大功率外设的功率来降低负载电流的原理与前文类似,具体此处不再赘述。
(二)、先向大功率外设控制模块发送指令,再向时钟调频模块发送指令:
本实施例中,该电压检测模块201,具体用于先向该大功率外设控制模块2022发送第三降功率指令,再向该时钟调频模块2021发送第三降频指令,该第一指令包括该第三降频指令和该第三降功率指令。
该大功率外设控制模块2022,具体用于根据该第三降功率指令将大功率外设的第一功率降低至第五功率,以使得该第一负载电流降低为该第四负载电流。
该时钟调频模块2021,具体用于根据该第三降频指令将第一时钟频率降低至第四时钟频率,以使得该第四负载电流降低为该第二负载电流。
本实施例中,通过降低时钟频率和降低大功率外设的功率来降低负载电流的原理与前文类似,具体此处不再赘述。
(三)、同时向时钟调频模块和大功率外设控制模块发送指令:
在一些可行的实施方式中,当该电压检测模块201检测到该电池的第一输出电压低于第一预设电压时,该电压检测模块201可以同时向时钟调频模块2021和大功率外设控制模块2022发送第一指令,当然,该第一指令包括降频指令和降功率指令。
该时钟调频模块2021,具体用于根据该降频指令适当降低时钟频率。
该大功率外设控制模块2022,具体用于根据该降功率指令适当降低大功率外设的功率。
应当理解的是,此时该时钟调频模块2021和该大功率外设控制模块2022同时作用于负载电路的负载电流,以使得将该第一负载电流降低至该第二负载电流。
本实施例中,通过降低时钟频率和降低大功率外设的功率来降低负载电流的原理与前文类似,具体此处不再赘述。
四、电压控制模块包括时钟调频模块、大功率外设控制模块和负载电压调控模块:
在实际应用中,还可能存在另一种实施方式,如图2D所示。该供电管理设备20包括电压检测模块201和电压控制模块202,其中,该电压控制模块202包括时钟调频模块2021、负载电压调控模块2023和大功率外设控制模块2022。
该电池的输出端与电压检测模块201相连。该电压检测模块201分别与该时钟调频模块2021、大功率外设控制模块2022和负载电压调控模块2023相连,并且,该时钟调频模块2021、大功率外设控制模块2022和负载电压调控模块2023三者之间相互并联。此外,该时钟调频模块2021与该负载电压调控模块2023连接,因此,该时钟调频模块2021与该负载电压调控模块2023之间可以实现信号交流。
本实施例中,该电压检测模块201用于向时钟调频模块2021发送第一指令;
该时钟调频模块2021,用于根据该第一指令将第一时钟频率降低至第五时钟频率,以使得该第一负载电流降低为该第五负载电流。此外,在降低负载电路的负载电流之后,该时钟调频模块2021,还用于向该负载电压调控模块2023发送降压指令。
该负载电压调控模块2023,用于根据该降压指令将该第一负载电压降低至第二负载电压。由于,该负载电路的负载电压的降低会导致负载电路的负载电流的降低,于是,可以使该第五负载电流降低至该第二负载电流。
当然,该电压检测模块201向该时钟调频模块2021发送指令时,也可以同时向该大功率外设控制模块2022发送指令,以使得该时钟调频模块2021和该大功率外设控制模块2022共同作用于该负载电路的负载电流,以使得该负载电流降低。由于,前文已列举出该时钟调频模块2021和该大功率外设控制模块2022共同作用以降低负载电流的情况,具体此处不再赘述。
在一些可行的实施例中,该电压检测模块201用于同时向时钟调频模块2021、大功率外设控制模块2022和负载电压调控模块2023发送第一指令。
该时钟调频模块2021,用于根据该第一指令降低时钟频率,以使得负载电路的负载电流降低。
与此同时,该大功率外设控制模块2022,用于根据该第一指令降低至少一个大功率外设的功率,以使得负载电路的负载电流降低。
除此之外,该供电管理设备还包括延时模块203,该延时模块203位于该电压检测模块201和该负载电压调控模块2023之间,用于延迟该第一指令发送到该负载电压调控模块2023的时间,以使得延迟触发该负载电压调控模块2023执行降低负载电路的负载电压的操作。
本实施例中,通过降低时钟频率和降低大功率外设的功率来降低负载电流的原理与前文类似,具体此处不再赘述。
五、电压控制模块包括时钟调频模块和负载电压调控模块:
在实际应用中,还可能存在另一种实施方式,如图2E所示。该供电管理设备20包括电压检测模块201、电压控制模块202和延时模块203,其中,该电压控制模块202包括时钟调频模块2021、负载电压调控模块2023。
本实施例中,该时钟调频模块2021和该负载电压调控模块2023之间相互作用共同降低负载电流的原理前文已做详细介绍,具体此处不再赘述。
本实施例中,该电压检测模块、该时钟调频模块、该负载电压调控模块以及该延时模块可以是硬件电路,也可以是由控制器控制的软件产品,或者是软件和硬件的结合。当上述各个模块为硬件电路时可以以集成电路的形式集成于一个或者多个芯片上,这样的芯片也可以作为独立的产品进行销售或者使用。该大功率外设控制模块多为由控制器控制的软件产品,当前述的各个模块都为软件产品时,在实际生产时可以将该计算机软件产品存储在一个存储介质中,其中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例中各个模块的全部或部分功能,当然,这样的软件产品也可以作为独立的产品进行销售或者使用。
本实施例中,当电池的输出电压因极化现象而低于该第一预设电压时,该供电管理设备可以通过时钟调频模块2021、大功率外设控制模块2022和负载电压调控模块2023相互配合降低负载电路的负载电流。由于负载电流降低,该电池的极化电压也将降低,从而逐渐升高电池的输出电压。又因为,该电池的输出电压升高,可以使该电池继续为负载提供电能,因此,可以避免因电池的输出电压过低而导致设备提前关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
除了上文介绍的实施方式外,在实际应用中,还有一些可行的实施方式,具体如下:
在这些可行的实施方式中,如图3A所示,该供电管理设备30包括电压检测模块301、电压控制模块302、电量检测模块303以及温度检测模块304。该电压检测模块301与电池的输出端相连,该电压检测模块301与该电压控制模块302相连。此外,该电量检测模块303与温度检测模块304并联,并且,该电量检测模块303和温度检测模块304分别与该电压控制模块302相连。
在实际应用中,该电压检测模块301用于实时检测该电池的输出电压,并且,当该电池的输出电压低于第一预设电压时,该电压检测模块301将向电压控制模块302发送第一指令。
该电压控制模块302,用于根据该第一指令将负载电路从正常功耗模式切换为限制功耗模式,以降低该负载电路的负载电流。具体地,该电压控制模块302可以将第一负载电 流调整为第二负载电流,该第二负载电流低于该第一负载电流,以使得该电池的输出电压由第一输出电压升高到第二输出电压。
本实施例中,该电量检测模块303,用于检测该电池的剩余电量;该温度检测模块304,用于检测该电池的工作温度。
此外,当该第二输出电压高于第二预设电压时,该电压检测模块301,还用向该电压控制模块302发送第二指令。
当该电压控制模块302接收到该第二指令时,该电压控制模块302,还用于获取该电池的剩余电量,并判断该电池的剩余电量是否大于预设电量;还用于获取该电池的工作温度,并判断该电池的工作温度是否处于预设工作温度范围内;并且,当该电池的剩余电量大于预设电量且该电池的工作温度处于预设工作温度范围内时,该电压控制模块302还用于将该负载电路恢复为该正常功耗模式。具体地,该电压控制模块302可以将该第二负载电流调整为第六负载电流,该第六负载电流高于该第二负载电流且低于该第一负载电流,以使得该第六负载电流对应的第六输出电压低于该第二输出电压且高于该第一预设电压。
应当理解的是,在实际应用中,也可以当下列条件中至少一个条件成立时就触发该电压控制模块302的一系列调压操作:该电池的输出电压高于第二预设电压、该电池的剩余电量大于预设电量或该电池的工作温度处于预设工作温度范围内。
由于,在不同的应用场景中,该条件可能有所差异,具体此处不做限定。在本实施例以及后续实施例中,仅以当该电池的输出电压高于第二预设电压,该电池的剩余电量大于预设电量,和该电池的工作温度处于预设工作温度范围内,这三个者同时成立时才能满足条件,为例进行介绍。
本实施例中,该电压检测模块301向该电压控制模块302发送第二指令时可以参照如下方式执行,具体请参阅图3B。
该电压控制模块302包括时钟调频模块3021、大功率外设控制模块3022和负载电压调控模块3023。
该电压检测模块301分别与该时钟调频模块3021、大功率外设控制模块3022和负载电压调控模块3023相连,并且,该时钟调频模块3021、大功率外设控制模块3022和负载电压调控模块3023三者之间相互并联。此外,该时钟调频模块3021与该负载电压调控模块3023连接,因此,该时钟调频模块3021与该负载电压调控模块3023之间可以实现信号交流。
除此之外,该供电管理设备还包括延时模块305,该延时模块305位于该电压检测模块301和该时钟调频模块3021之间,用于延迟该第二指令发送到该时钟调频模块3021的时间,以使得延迟触发该时钟调频模块3021执行升高时钟频率的操作。
除此之外,该电压检测模块301向该电压控制模块302发送第二指令时具体还可以由该电压检测模块301直接向负载电压调控模块3023发送升压指令,当该负载电压调控模块3023执行完该升压指令后,该负载电压调控模块3023还用于向该时钟调频模块3021发送指令以触发该时钟调频模块3021执行升高时钟频率的操作,以使得功率和时钟频率可以满足用户的业务需求。
本实施例中,通过升高时钟频率和升高大功率外设的功率的原理与前文类似,具体此处不再赘述。
本实施例中,该电压检测模块、该时钟调频模块、该负载电压调控模块以及该延时模块可以是硬件电路,也可以是由控制器控制的软件产品,由于前文已做详细介绍,具体此处不再赘述。此外,该电量检测模块和该温度检测模块为位于控制器中的软件程序,可以与前述各个软件产品结合工作。
本实施例中,该电压检测模块301可以实时检测电池的输出电压,当电池的输出电压低于第一预设电压时,该电压控制模块302将降低负载电路的负载电流以升高电池的输出电压。由于,该负载电路的负载电流与电池的极化电压成正相关,且该电池的输出电压与该电池的极化电压成负相关,所以,该负载电流与该电池的输出电压成负相关,于是,该电压控制模块302可以通过调整负载电流来调整负载电压,从而使该电池可以在较低电压时适当升高电池的输出电压,又不会因为负载电流过低而影响设备的功能的正常使用。该电池的输出电压可以适当调整,可以使该电池在不同的电压状态下为负载提供电能,因此,可以避免因电池异常关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
在实际应用中,还存在另一种可行的实施方式,请参阅图4,具体如下:
该供电管理设备40包括电压检测模块401和电压控制模块402。其中,该电压控制模块402包括:时钟调频模块4021、大功率外设控制模块4022、负载电压调控模块4023和控制器4024。并且,该时钟调频模块4021、该大功率外设控制模块4022和该负载电压调控模块4023相互并联且分别与该控制器4024相连,以使得该时钟调频模块4021、该大功率外设控制模块4022和该负载电压调控模块4023可以直接接收或者执行该控制器4024的指令。
该电压检测模块401与电池的输出端相连,并且,该电压检测模块401与该控制器4024相连。
该电压检测模块401用于实时检测该电池的输出电压,并且,当该电池的输出电压低于第一预设电压时,该电压检测模块401将向控制器4024发送第一指令。
该控制器4024,用于接收并处理该第一指令,并向该时钟调频模块4021、该大功率外设控制模块4022或该负载电压调控模块4023发送指令,以使得该控制器4024通过时钟调频模块4021、该大功率外设控制模块4022和该负载电压调控模块4023降低负载电路的负载电流。
该电压控制模块402中的大功率外设控制模块4022可以通过降低大功率外设的功率从而降低负载电路的负载电流;该电压控制模块402中的时钟调频模块4021可以通过降低处理器的时钟频率从而降低负载电路的负载电流;该电压控制模块402中的负载电压调控模块4023可以通过降低负载电路的负载电压从而降低负载电路的负载电流,具体的,前文已作详细介绍,此处不再赘述。
本实施例中的控制器4024可以是组合逻辑控制器,还可以是微程序控制器,具体此处不做限定。
需要注意的是,当该控制器4024是微程序控制器时,该时钟调频模块4021、该大功率外设控制模块4022和该负载电压调控模块4023可以是位于电压控制模块402中的软件产品,这些软件产品可以存储在一个或者多个存储介质中,其中,包括若干指令用以使得控制器4024调用若干指令控制这些模块。
此外,当该控制器4024是组合逻辑控制器时,该时钟调频模块4021、该大功率外设控制模块4022和该负载电压调控模块4023还可能是硬件电路,该组合逻辑控制器可以通过向前述各个模块发送逻辑指令,以使得前述各个模块执行相应的操作从而达到调整电池的输出电压的目的。
本实施例中,该供电管理设备中的电压检测模块除了直接向时钟调频模块、大功率外设控制模块或负载电压调控模块发送指令之外,还可以直接向控制器发送指令,然后,再由控制器控制时钟调频模块、大功率外设控制模块或负载电压调控模块对该负载电路的负载电流进行调控,进而达到调控该电池输出电压的效果。因此,提高了该方案的实现灵活性。此外,当该电池的输出电压由于极化现象而低于该第一预设电压时,该电压控制模块将降低该负载电路的负载电流,由于该负载电路的负载电流降低将导致该电池的输出电压升高。又因为,该电池的输出电压升高,可以使该电池继续为负载提供电能,因此,可以避免因电池的输出电压过低而导致设备提前关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
上面对本申请实施例中的供电管理设备的大致结构进行了介绍,为便于进一步理解以及具体实现,下面对本申请实施例中的供电管理设备的详细电路结构进行说明,请参阅图5A。需要注意的是,为便于阅读和理解,图5A中的虚线圆圈内的数字代表该器件的连接端,当数字为1时,则表示该连接端为该器件的第一端,当数值为2时,则表示该连接端为该器件的第二端,可以理解的是,本实施例中的标注仅为方便理解和描述,不具有任何的限定含义,本领域技术人员根据图5A所示的电路图完全可以采用其他的标注方式,具体此处不做限定。
本实施例所提出的供电管理设备包括:
电压检测模块501、负载电压调控模块502、大功率外设控制模块503、时钟调频模块504以及接口505。
该电池的输出端与接口505的第一端相连,该接口505的第二端与该电压检测模块501相连,此外,该电压检测模块501分别与该负载电压调控模块502、大功率外设控制模块503以及时钟调频模块504相连。于是,该电压检测模块501可以与该负载电压调控模块502、大功率外设控制模块503以及时钟调频模块504共同作用于负载电流,以使得该负载电流由第一负载电流降低至第二负载电流,进而达到降低电池的输出电压的效果,即将该电池的输出电压由第一输出电压调高为第二输出电压。
本实施例中,该接口505可以是芯片接口,与该电池耦合,用于采集该电池的输出电压。
本实施例中,电压检测模块501还可以进一步包括:
电压比较器5011、去抖模块5012、逻辑或非门5013以及触发器5014。
该电压比较器5011的第一端与电池的输出端相连,该电压比较器5011的第二端与去抖模块5012的第一端相连。该去抖模块5012的第二端与该逻辑或非门5013的第一端相连,该逻辑或非门5013的第二端与触发器5014的第一端相连。
该电压比较器,用于将该电池的输出电压与该第一预设电压进行比较,以确定该电池的输出电压低于该第一预设电压。
应当理解的是,该电压比较器5011可以是过零比较器,例如,零电平比较器,也可以是单限比较器,例如,非零电平比较器,也可以是滞回比较器,例如,迟滞比较器;还可以是双限比较器,例如,窗口比较器,具体此处不做限定。为便于理解,在本实施例以及后续实施例中,仅以窗口比较器为例进行介绍。
窗口比较器,又称为双限比较器,具有两个门限电平,可以检测输入模拟信号的电平是否处在给定的两个门限电平之间。在本实施例中,如图5B所示,下门限电平为前文该的第一预设电压,假设为U1;上门限电平为前文该的第二预设电压,假设为U2,且U2>U1。
当电池的输出电压Ui大于U1且小于U2时,A1和A2都输出高电平,所以U0输出高电平。
当Ui小于U1时,A2虽然输出高电平,但是A1输出低电平,输出电压U0经A2输出端的二极管箝位,输出为低电平。
当Ui大于U2时,A2虽然输出高电平,但是A1输出低电平,输出电压U0经A2输出端的二极管箝位,输出为低电平。
本实施例中,当该窗口比较器输出为高电平时可以触发去抖模块5012开始工作。
此外,还应理解的是,不同的电压比较器在设置参数或者连接方式可能存在一定的差异,本实施例所列举的窗口比较器的电路图仅仅是为了举例介绍,对在实际应用中所用到的电压比较器不做具体限定。此外,由于该电压比较器的应用是本领域技术人员的公知常识,因此,具体此处不再赘述。
该逻辑或非门5013,用于实现逻辑或非功能。具体地,只有当两个输入A和B都为低电平(逻辑0)时输出为高电平(逻辑1)。也可以理解为任意输入为高电平(逻辑1),输出为低电平(逻辑0)。
该去抖模块5012指由不同器件构成的去抖电路,用于去除电池的输出电压跌落信号的瞬间毛刺。本实施例中的去抖模块可以由RS触发器构成,也可以由多个D触发器级联构成,还可以状态图设计,具体此处不做限定。该去抖模块的结构以及去干扰处理的过程均为本领域技术人员的公知常识,具体此处不做限定。
该触发器5014,用于锁存电压跌落信号的状态。该触发器是对脉冲信号边沿敏感的存储电路,该触发器可以在该脉冲信号的上升沿或者下降沿作用下更新状态。该触发器的具体电路结构可以是主从电路结构、维持阻塞电路结构或者利用传输时延构成的电路结构,具体此处不做限定。
此外,该触发器5014,还用于在接收复位信号后结束锁存状态。由于,该触发器5014具体的结构和原理是本领域技术人员的公知常识,所以,具体此处不再赘述。
本实施例中,负载电压调控模块502还可以进一步包括:
调压控制开关5021和降压式变换电路(buck电路)5022,或者,调压控制开关5021和低压差线性稳压器(low dropout regulator,LDO)5023。
该调压控制开关5021的第二端与该触发器5014的第二端或者该处理器相连,该调压控制开关5021的第一端与该降压式变换电路5022或者该低压差线性稳压器5023相连。
其中,该调压控制开关5021,用于根据该触发器5014或者该处理器的指令触发调压控制操作。
该降压式变换电路5022,用于调节该负载两端的电压,并且,该低压差线性稳压器5023也是用于调节该负载两端的电压。需要注意的是,该降压式变换电路5022和该低压差线性稳压器5023可以一起应用于该负载电压调控模块502中,也可以仅由降压式变换电路5022实施调压操作,还可以仅由低压差线性稳压器5023实施调压操作,具体此处不做限定。
此外,该降压式变换电路5022和该低压差线性稳压器5023的结构和工作原理为本领域技术人员的公知常识,具体此处不做限定。
本实施例中,该大功率外设控制模块503还可以进一步包括:
扬声器控制模块5031、显示屏控制模块5032以及其他外设控制模块5033。
该触发器5014的第二端与该扬声器控制模块5031、显示屏控制模块5032和其他外设控制模块5033相连。
该大功率外设控制模块503,用于控制扬声器控制模块5031、显示屏控制模块5032以及其他外设控制模块5033的功率来调整负载电流,一般地,降低大功率外设的功率可以导致负载电流的降低。具体地,可以调低扬声器的音量,还可以调低显示屏的灯光亮度,具体此处不做限定。
本实施例中,该时钟调频模块504还可以进一步包括:
逻辑与门5041、分频器5042、耗能模块5044以及时钟信号5043,该分频器5042的数量与该逻辑与门5041的数量相等,该分频器5042的数量与该耗能模块5044的数量相等。
该逻辑与门5041的第一端与该触发器5014的第二端相连,该逻辑与门5041的第二端与分频器5042的第一端相连。该分频器5042的第三端与耗能模5044块相连,该分频器5042的第二端与时钟信号5043相连。
该分频器5042用于降低时钟频率。
该逻辑与门5041用于产生分频器进入工作状态的使能信号。
应当理解的是,该耗能模块5044可以通过与分频器5042和逻辑与门5041相连,当该逻辑与门5041处于使能状态时,该分频器5042便可以调整进入该耗能模块5044的时钟频率。
还应理解的是,本实施例中时钟调频模块504中的逻辑与门5041可以只有一个,也可以有多个,具体此处不做限定。类似的,该分频器5042、耗能模块5044以及时钟信号5043这些器件的个数也不做限定。本实施例中的图5A中所示的各个器件的个数仅仅是为了举例介绍,在实际应用中,这些器件的个数由具体的应用场景而定,此处不再赘述。
本实施例中,当电池的输出电压低于该第一预设电压时,该时钟调频模块504、大功率外设控制模块503和负载电压调控模块502相互配合降低负载电路的负载电流。由于负 载电流降低,该电池的极化电压也将降低,从而可以逐渐升高电池的输出电压。又因为,该电池的输出电压升高,可以使该电池继续为负载提供电能,因此,可以避免因电池的输出电压过低而导致设备提前关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
前文对该供电管理设备以及控制方法中的供电管理设备进行了介绍,下面将对该供电管理设备的控制方法进行介绍。请参阅图6,该控制方法包括如下步骤:
601、检测电池的输出电压;
本实施例中,当该供电管理设备与电池连接之后,该供电管理设备可以通过接口与该电池的输出端相连,于是,该供电管理设备便可以检测该电池的输出电压。
该供电管理设备检测电池的输出电压的方式可以是将接收到的电池的输出电压与第一预设电压进行比较,当该电池的输出电压低于第一预设电压时,执行步骤602。
本实施例中的该第一预设电压和该第二预设电压是该供电管理设备中的电压比较器中的两个门限电压值,本实施例中,取下门限电压为第一预设电压,取上门限电压为第二预设电压。
602、当该电池的输出电压低于第一预设电压时,降低负载电路的负载电流;
本实施例中,当该电池的输出电压低于第一预设电压时,该供电管理设备将降低负载电路的负载电流。
该供电管理设备降低负载电路的负载电流的方式可以是如下任意一种:
(1)该供电管理设备可以降低处理器的时钟频率,当该处理器的时钟频率降低时,该负载电路的负载电流将降低。
(2)该供电管理设备也可以通过降低负载电路两端的负载电压来降低负载电路的负载电流。需要注意的是,该供电管理设备在降低该负载电路两端的负载电流之前,该供管理设备必须先降低处理器的时钟频率。
(3)该供电管理设备可以通过降低大功率外设的功率来降低该负载电路的负载电流,该大功率外设可以是显示屏、扬声器或者其他功率较大的设备。
本实施例中,由于负载电路的负载电流的降低可以导致电池极化电压的降低,电池极化电压为电池电化学极化、浓差极化或者欧姆极化现象在电池内部电流输出通路上产生的压降。又由于,该电池的极化电压等于该开路电压与该电池的输出电压的差,其中,开路电压为电池在开路条件下的端电压,并且,该开路电压为定值,所以,当该电池极化电压降低时,将导致该电池的输出电压升高。
为便于理解,本实施例结合具体的数据以移动终端为例对该供电管理设备以及控制方法进行介绍。
一般地,移动终端,例如,手机、平板电脑等设备的电池的输出电压可能有所差异,类似的,不同设备的负载电路的负载电流也大多不同,此处,以图7中的数据为例仅仅为了方便介绍,具体此处不做限定。如图7所示,当电池处于-20℃的工作温度时,在初始时刻,该电池的输出电压为3.45V,该移动终端的负载电路的负载电流为0.52A。当刚处于该-20℃的工作温度时,该电池的输出电压开始下降,随着时间的延长,该电池的输出电压在 继续下降,直到该电池的输出电压低于第一预设电压3.15V时,该供电管理设备通过上述三种方式降低负载电路的负载电流。如图7所示,该负载电路的负载电流由0.52A降低到0.2A,此时,由于负载电路的负载电流的降低,导致了电池的极化电压的降低,进而导致了该电池的输出电压的升高,如图7所示,该电池的输出电压由3.14V逐渐升高到3.4V。应当注意的是,当该负载电路的负载电流降低时,该电池的输出电压在上升的过程中比较缓慢,甚至会延迟一到两秒的时间。当然,不同的设备在电池的输出电压的回升的时间是有所差异的,具体此处不做限定。应当理解的是,如图8所示,当电池处于-10℃的工作温度时,该电池的输出电压的变化趋势与该电池处于-20℃的工作温度时的情况类似,前文已做详细介绍,具体此处不再赘述。
下面以实际的装有锂电池的产品为例,介绍本实施例中的供电管理设备以及控制方法对该产品的影响。
本实施例中,该产品的剩余电量(state of chart,SOC)的初始值为0.95(即95%),通过跑分软件检测该产品在-10℃的工作温度下,该产品的负载电路的负载电流每降低185mA或者每降低415mA时,在一定时间内,该电池的输出电压的收益以及该产品的剩余电量的收益。具体情况如表1所示。
表1
Figure PCTCN2018119523-appb-000001
Figure PCTCN2018119523-appb-000002
为便于理解,以电池的剩余电量为95%的情况为例进行介绍。此时,供电管理设备将负载电流由1000mA降低到585mA,即负载电流一共减低了415mA,由于负载电流降低导致电池的极化电压降低,于是,该电池的输出电压将升高。例如,在距离开始降低负载电流的600ms的时间里,该电池的输出电压升高了146.7mV;在距离开始降低负载电流的1.6s的时间里,该电池的输出电压升高了200.9mV,并且,随着时间的延长,该电池的输出电压还将逐渐上升。
本实施例所提出的方案中,当该电池的输出电压因极化现象低于该第一预设电压时,该电压控制模块将降低该负载电路的负载电流,由于该负载电路的负载电流降低将导致该电池的输出电压升高。又因为,该电池的输出电压升高,可以使该电池继续为负载提供电能,因此,可以避免因电池的输出电压过低而导致设备提前关机的情况,进而可以使该电池的供电时间比没有采取本方案的时间长,因此,可以提升用户体验。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种供电管理设备,其特征在于,包括:
    电压检测模块,用于检测电池的输出电压,当所述电池的输出电压低于第一预设电压时,向所述电压控制模块发送第一指令;
    电压控制模块,用于根据所述第一指令将负载电路从正常功耗模式切换为限制功耗模式,以降低所述负载电路的负载电流。
  2. 根据权利要求1所述的供电管理设备,其特征在于,
    所述电压检测模块还用于在满足预设条件时,向所述电压控制模块发送第二指令;
    所述电压控制模块,还用于根据所述第二指令将所述负载电路恢复为所述正常功耗模式,以重新升高所述负载电流;
    其中,所述预设条件包括如下至少一项:所述电池的输出电压高于第二预设电压、所述电池的剩余电量大于预设电量、或所述电池的工作温度处于预设工作温度范围内;
    所述第二预设电压高于所述第一预设电压。
  3. 根据权利要求2所述的供电管理设备,其特征在于,所述供电管理设备还包括:
    电量检测模块,用于检测所述剩余电量;
    温度检测模块,用于检测所述工作温度;
    所述预设条件包括所述电池的输出电压高于第二预设电压、所述电池的剩余电量大于预设电量、和所述电池的工作温度处于预设工作温度范围内。
  4. 根据权利要求1至3中任一项所述的供电管理设备,其特征在于,所述电压控制模块包括:时钟调频模块,用于降低所述负载电路的时钟频率,以降低所述负载电流。
  5. 根据权利要求1至4中任一项所述的供电管理设备,其特征在于,所述电压控制模块包括:负载电压调控模块,用于降低所述负载电路的负载电压,以降低所述负载电流。
  6. 根据权利要求1至5中任一项所述的供电管理设备,其特征在于,所述电压控制模块包括:大功率外设控制模块,用于降低大功率外设的功率,以降低所述负载电流。
  7. 根据权利要求4至6中任一项所述的供电管理设备,其特征在于,所述电压控制模块还包括:控制器,用于根据所述第一指令控制所述时钟调频模块、所述负载电压调控模块或所述大功率外设控制模块中的至少一个,以将所述负载电路从所述正常功耗模式切换为所述限制功耗模式。
  8. 根据权利要求4所述的供电管理设备,其特征在于,所述时钟调频模块,用于根据所述第一指令降低所述负载电路的负载电压。
  9. 根据权利要求1至8中任意一项所述的供电管理设备,其特征在于,所述电压检测模块包括:
    电压比较器,用于执行如下至少一项:
    将所述电池的输出电压与所述第一预设电压进行比较,以确定所述电池的输出电压低于所述第一预设电压;
    或者,
    将所述电池的输出电压与所述第二预设电压进行比较,以确定所述电池的输出电压高 于所述第二预设电压。
  10. 一种供电管理系统,其特征在于,包括:如权利要求1至9中任一项所述的供电管理设备和所述负载电路。
  11. 根据权利要求10所述的供电管理系统,其特征在于,所述供电管理系统是一个或者一组芯片,所述供电管理系统还包括:芯片接口,与所述电池耦合,用于采集所述电池的输出电压。
  12. 一种控制方法,其特征在于,包括:
    检测电池的输出电压;
    当所述电池的输出电压低于第一预设电压时,将负载电路从正常功耗模式切换为限制功耗模式,以降低负载电路的负载电流。
PCT/CN2018/119523 2018-12-06 2018-12-06 一种供电管理设备以及控制方法 WO2020113509A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202310672243.9A CN116826896A (zh) 2018-12-06 2018-12-06 一种供电管理设备以及控制方法
PCT/CN2018/119523 WO2020113509A1 (zh) 2018-12-06 2018-12-06 一种供电管理设备以及控制方法
CN201880097156.2A CN112640247B (zh) 2018-12-06 2018-12-06 一种供电管理设备以及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119523 WO2020113509A1 (zh) 2018-12-06 2018-12-06 一种供电管理设备以及控制方法

Publications (1)

Publication Number Publication Date
WO2020113509A1 true WO2020113509A1 (zh) 2020-06-11

Family

ID=70974023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119523 WO2020113509A1 (zh) 2018-12-06 2018-12-06 一种供电管理设备以及控制方法

Country Status (2)

Country Link
CN (2) CN112640247B (zh)
WO (1) WO2020113509A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710887A (zh) * 2020-12-08 2021-04-27 深圳佑驾创新科技有限公司 电压检测电路、车载电子设备的控制装置及控制方法
CN112821518A (zh) * 2021-02-24 2021-05-18 陈锐涛 宽电压供电智能充电电路及其电池充电器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280847A (zh) * 2013-04-22 2013-09-04 京东方科技集团股份有限公司 供电电路和显示装置
CN104145400A (zh) * 2012-02-29 2014-11-12 Nec能源元器件株式会社 电池控制系统、电池组、电子设备和充电器
CN205544470U (zh) * 2015-04-10 2016-08-31 半导体元件工业有限责任公司 抑制电子设备中的电池过度放电的系统和电子设备
JP2018182915A (ja) * 2017-04-14 2018-11-15 キヤノン株式会社 電子機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011065496A1 (ja) * 2009-11-30 2013-04-18 京セラ株式会社 制御装置、制御システム及び制御方法
JP5527895B2 (ja) * 2010-11-18 2014-06-25 パナソニック株式会社 二次電池の制御装置および制御方法
JP2015062340A (ja) * 2011-09-02 2015-04-02 エイディシーテクノロジー株式会社 管理装置
CN103034547B (zh) * 2011-09-28 2015-09-23 联想(北京)有限公司 基于电池的电子设备运行方法及电子设备
CN102437618B (zh) * 2011-12-29 2015-01-14 三一汽车制造有限公司 电池控制装置、车辆和电池控制方法
CN103246335B (zh) * 2012-02-13 2016-01-27 联想(北京)有限公司 状态控制方法和电子设备
CN202616815U (zh) * 2012-03-31 2012-12-19 深圳市金溢科技有限公司 车载单元
US10086709B2 (en) * 2016-06-14 2018-10-02 Ford Global Technologies, Llc Variable wakeup of a high-voltage charger based on low-voltage system parameters
CN106604369B (zh) * 2016-10-26 2020-01-03 惠州Tcl移动通信有限公司 一种具有双模式切换功能的终端设备
CN106658685A (zh) * 2016-12-30 2017-05-10 北京数字天域科技有限责任公司 一种智能移动终端基于低电量状态下的通讯方法及装置
CN107205025B (zh) * 2017-05-19 2021-07-23 杭州青奇科技有限公司 一种共享交通工具的模式切换方法、系统及装置
CN108366449B (zh) * 2018-01-24 2020-05-19 广东德洛斯照明工业有限公司 一种光电一体路灯控制装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145400A (zh) * 2012-02-29 2014-11-12 Nec能源元器件株式会社 电池控制系统、电池组、电子设备和充电器
CN103280847A (zh) * 2013-04-22 2013-09-04 京东方科技集团股份有限公司 供电电路和显示装置
CN205544470U (zh) * 2015-04-10 2016-08-31 半导体元件工业有限责任公司 抑制电子设备中的电池过度放电的系统和电子设备
JP2018182915A (ja) * 2017-04-14 2018-11-15 キヤノン株式会社 電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710887A (zh) * 2020-12-08 2021-04-27 深圳佑驾创新科技有限公司 电压检测电路、车载电子设备的控制装置及控制方法
CN112821518A (zh) * 2021-02-24 2021-05-18 陈锐涛 宽电压供电智能充电电路及其电池充电器

Also Published As

Publication number Publication date
CN112640247A (zh) 2021-04-09
CN116826896A (zh) 2023-09-29
CN112640247B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2021008572A1 (zh) 一种终端设备的供电系统、方法、芯片及终端设备
US11749829B2 (en) Series-parallel switching device and battery pack including series-parallel switching device
US8884589B2 (en) Method and system for power switch temperature regulation
US20150268678A1 (en) System and method for current management in a portable device
US20150145468A1 (en) Device and chip for controlling charging, and user terminal
WO2016101509A1 (zh) 一种充电控制方法及装置
US9966781B2 (en) Apparatus for battery charger with controlled charge current and associated methods
US20190190284A1 (en) Open-Loop Limiting of a Charging Phase Pulsewidth
US9612643B2 (en) Controlling the CPU slew rates based on the battery state of charge
WO2020113509A1 (zh) 一种供电管理设备以及控制方法
TWI634722B (zh) 電池並聯搭接的控制方法
CN104124734A (zh) 一种充电系统及充电方法
WO2021018272A1 (zh) 一种充放电保护电路、终端设备及电池放电控制方法
CN113036880A (zh) 充电装置、电子设备及充电方法
CN103066632A (zh) 充电控制方法
US20230253813A1 (en) Charging Method, Terminal and Storage Medium
US9837836B2 (en) Charging method using compensation impedance in CV charging mode
US20210034089A1 (en) Voltage regulator wake-up
CN112688383A (zh) 供电控制电路、供电控制方法、装置及电子设备
WO2023001009A1 (zh) 充放电控制方法、充电设备及存储介质
WO2017172042A1 (en) Power supply control system
WO2014190831A1 (zh) 一种电池控制方法、装置、终端及计算机存储介质
CN203645561U (zh) 一种智能供电系统
US10254812B1 (en) Low inrush circuit for power up and deep power down exit
WO2015154377A1 (zh) 大负载终端的电源控制方法及装置、计算机程序及载体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942347

Country of ref document: EP

Kind code of ref document: A1