WO2021008572A1 - 一种终端设备的供电系统、方法、芯片及终端设备 - Google Patents

一种终端设备的供电系统、方法、芯片及终端设备 Download PDF

Info

Publication number
WO2021008572A1
WO2021008572A1 PCT/CN2020/102266 CN2020102266W WO2021008572A1 WO 2021008572 A1 WO2021008572 A1 WO 2021008572A1 CN 2020102266 W CN2020102266 W CN 2020102266W WO 2021008572 A1 WO2021008572 A1 WO 2021008572A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
controller
mode
voltage
Prior art date
Application number
PCT/CN2020/102266
Other languages
English (en)
French (fr)
Inventor
孙霓
赵春江
张成旭
朱建伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20839807.3A priority Critical patent/EP3993217B1/en
Priority to US17/627,483 priority patent/US20220263324A1/en
Priority to CN202080051959.1A priority patent/CN114128078A/zh
Publication of WO2021008572A1 publication Critical patent/WO2021008572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • This application relates to the technical field of terminal equipment, and in particular to a power supply system, method, chip and terminal equipment for terminal equipment.
  • the battery pack of the terminal device includes multiple batteries
  • the battery pack usually adopts a parallel mode.
  • the positive pole of multiple batteries is connected to the positive pole, and the negative pole is connected to the negative pole.
  • the output voltage of each battery in the battery pack is the same and is equal to the output voltage of the battery pack.
  • the battery has internal resistance and the internal resistance of the battery increases as the battery temperature decreases, when the ambient temperature is low, the battery temperature is correspondingly low, and the internal resistance of the battery becomes larger, which in turn causes the battery output voltage to decrease, which is likely to cause terminal equipment Shut down.
  • the stability of the terminal device may be reduced.
  • the technical solution of the present application provides a power supply system, method, chip, and terminal device for a terminal device, which can switch between a series mode and a parallel mode, which improves the stability of the terminal device while also increasing the battery life.
  • the technical solution of the present application provides a power supply system for terminal equipment, which includes: a battery pack, a bypass circuit, a step-down circuit, and a controller;
  • the battery pack includes at least two batteries;
  • the output end of the battery pack is connected The input end of the step-down circuit, the output end of the step-down circuit is connected to the power consumption components of the terminal equipment;
  • one end of the bypass circuit is connected to the input end of the step-down circuit, and the other end of the bypass circuit is connected to the output end of the step-down circuit;
  • the controller Used to control the operation of the step-down circuit and stop the bypass circuit when the batteries in the battery pack need to be switched to the series mode, and also used to control the bypass circuit when the batteries in the battery pack need to be switched to the parallel mode , Control the step-down circuit to stop working.
  • the controller of the system can switch between series mode and parallel mode. Switching the battery pack to series mode can increase the output voltage, so as to prevent the terminal device from shutting down due to insufficient power supply, and can improve the stability of the user when using the terminal device. However, when the battery pack is switched to the parallel mode, it is not necessary to use a step-down circuit, so the discharge efficiency of the battery pack can be improved, the battery life can be increased, and the user experience can be improved.
  • the controller is used to control the step-down circuit to work and control the bypass circuit to stop working, including: the controller determines that the output voltage of the battery pack is greater than or equal to the first preset At the voltage threshold, the step-down circuit is controlled to work, and the bypass circuit is controlled to stop working.
  • the first preset voltage threshold may be greater than the maximum output voltage of the battery pack in parallel mode and less than the minimum output voltage of the battery pack in series mode.
  • the controller compares the output voltage of the battery pack with the first preset voltage threshold to determine the working status of the bypass circuit and the step-down circuit.
  • the controller is further configured to determine the battery pack when determining that the voltage across the power consuming element is lower than the second preset voltage threshold The battery inside needs to be switched to series mode.
  • the controller can determine the voltage across the power consuming element according to the current output voltage of the battery pack, the current flowing through the power consuming element, and the impedance of each circuit device.
  • the second preset voltage threshold may be set as the shutdown threshold voltage of the terminal device.
  • the controller is also used to determine that the batteries in the battery pack need to be switched to series according to the output voltage of the battery pack and the temperature of the battery pack mode.
  • the output voltage of the battery pack can be sampled by ADC.
  • the controller can detect the resistance of the thermistor to obtain the temperature corresponding to the resistance, and then determine the temperature of the battery.
  • the controller is also used to determine the battery in the battery pack by looking up the table according to the output voltage of the battery pack and the temperature of the battery pack Need to switch to serial mode.
  • the output voltage and temperature status recorded in the table can be inexhaustible to reduce the storage space of the terminal equipment.
  • the output voltage and temperature status correspond to a status point.
  • the measured output voltage and temperature of the battery pack can be taken to the nearest defined status point whole.
  • the controller selects a table corresponding to the load current according to the load current, and when the load current is greater than the preset current, it is determined that it is in a heavy load scenario, At this time, it corresponds to a large load meter; when the load current is less than or equal to the preset current, it is determined to be in a small load scenario, and it corresponds to a small load meter.
  • the controller can measure the voltage across the current-sense resistor of the discharge path in real time, and the ratio of the voltage across the current-sense resistor to the impedance of the current-sense resistor is the load current.
  • the controller determines the operating mode required by the batteries in the battery pack in this scenario by looking up the table according to the output voltage of the battery pack and the temperature of the battery pack.
  • serial mode can be used first to prevent abnormal shutdown of the device; in small-load scenarios, parallel mode can be used to increase the battery life of the device.
  • the controller is further configured to obtain a corresponding value according to the output voltage of the battery pack and the temperature of the battery pack, when the value is less than or equal to When the preset value is set, it is determined that the batteries in the battery pack need to be switched to series mode.
  • This implementation can reduce the storage space occupied by the terminal device when determining the operating mode that the battery pack should be in.
  • the controller is configured to use the output voltage of the battery pack and the temperature of the battery pack to obtain the function value as a value using a preset function.
  • the value is less than or equal to the preset value, it is determined that the batteries in the battery pack need to be switched to series mode; the function value of the preset function is positively correlated with the temperature of the battery pack, and the function value of the preset function is positively correlated with the output voltage of the battery pack.
  • the preset value represents the threshold voltage when switching between series mode and parallel mode at 0°C.
  • the battery pack When the function value is greater than the preset value, the battery pack should be in parallel mode; when the function value is less than or equal to the preset value, The battery pack should be in series mode.
  • the factor affecting the preset value may be the low-temperature discharge capacity of the battery used. The stronger the low-temperature discharge capacity of the battery used, the smaller the preset value may be.
  • the controller is also used to select a preset value according to the load current.
  • the load current is greater than the preset current, it corresponds to a large load scene, and then corresponds to the first preset value; when the load current is less than or equal to the preset current, it corresponds to a small load scene.
  • the second preset value corresponds to the second preset value.
  • the first preset value is smaller than the second preset value, indicating that the parallel mode is more inclined to use in a light load scenario to increase the battery life of the device.
  • the controller is further configured to determine that the batteries in the battery pack need to be switched to the series mode when it is determined that the low temperature mode button is triggered.
  • the button of the low temperature mode button can be a virtual button or a physical button.
  • the control interface of the terminal device can add a "low temperature mode".
  • the terminal device In response to a user's trigger, the terminal device enters the low temperature mode and the battery pack is switched to the series mode.
  • the power supply system switches to automatic mode, and the controller of the power supply system automatically selects the most suitable working mode.
  • the controller is further configured to determine that the power of the battery pack is lower than the preset power or determine that the low power mode button is triggered, Make sure that the batteries in the battery pack need to be switched to series mode.
  • the button of the low battery mode button can be a virtual button or a physical button.
  • the control interface of the terminal device can add a "low battery mode” button to enable the user to actively choose to enter the "low battery mode”; the terminal device can also add a button “allow the terminal device to automatically enter the low battery mode” to enable the user to allow the terminal The device automatically enters low battery mode.
  • the "low temperature mode” and the “low battery mode” can be selected by the user at the same time, for example, the above two modes can be set on the control interface of the terminal device at the same time.
  • the bypass circuit includes any of the following switching devices: transistors, relays, load switches, and metal oxide semiconductor field effect transistors.
  • the step-down circuit includes any one of the following: Buck circuit, switched capacitor, three-level DC-DC circuit, and single-ended primary inductor converter.
  • the battery pack includes at least two batteries: a first battery and a second battery; the battery pack also includes: a first switch tube , The second switch tube and the third switch tube; the positive pole of the first battery is connected to the input terminal of the step-down circuit; the negative pole of the first battery is connected to the positive pole of the second battery through the second switch tube, and the negative pole of the second battery is grounded; One end of the switching tube is connected to the negative electrode of the first battery, and the other end of the first switching tube is grounded; one end of the third switching tube is connected to the input terminal of the buck circuit, and the other end of the third switching tube is connected to the positive electrode of the second battery;
  • the controller controls the first switch tube and the third switch tube to open, and controls the second switch tube to close; when the battery needs to be switched to the parallel mode, the controller controls the second switch tube to open, Control the first switching tube and the third
  • the controller controls the first switch tube, the second switch tube, and the third switch tube to be in different switch combination states, so as to realize the switching between the series and parallel of the batteries in the battery pack.
  • the power supply system further includes: a first capacitor; the first terminal of the first capacitor is connected to the output terminal of the battery pack, and The second end of a capacitor is grounded.
  • the controller controls the first switching tube and the third switching tube to open, and controls the second switching tube to close, including: when the battery needs to be switched to the series mode, the controller controls the first switching tube, The second switching tube and the third switching tube are both disconnected, and the second switching tube is controlled to close after the first preset time.
  • the first capacitor can be used for voltage stabilization and filtering, thereby improving the quality of power supply.
  • the length of the first preset time is greater than the length of the dead time of the switch tube, and setting the first preset time can avoid a short circuit between the positive and negative electrodes of the battery cell during the switching process.
  • the power supply system further includes: a second capacitor.
  • the first end of the second capacitor is connected to the output end of the buck circuit, and the second end of the second capacitor is grounded.
  • the second capacitor can be used for voltage stabilization and filtering, thereby improving the quality of power supply.
  • the first capacitor and the second capacitor can be used to maintain the output voltage of the power supply system relatively stable during the dead time.
  • the bypass circuit when the batteries in the battery pack need to be switched to parallel mode, the bypass circuit is controlled to work, and the step-down circuit is controlled to stop working
  • the controller controls the second switching tube to open, and controls the first switching tube and the third switching tube to close, including:
  • the controller controls the first switching tube, the second switching tube, and the third switching tube to be turned off. After the second preset time, the controller controls the first switching tube and the third switching tube to close. After the third preset time, the controller controls the bypass circuit to work and controls the step-down circuit to stop working. In order to avoid a short circuit between the positive and negative poles of the battery during the switching process, it is necessary to control the battery pack to switch to series mode, and then control the bypass circuit to work and the step-down circuit to stop working, so the third preset time is greater than the dead time of the switch tube.
  • the time zone can ensure that when the controller controls the switching between the step-down circuit and the bypass circuit, the first switch tube and the third switch tube are already in the conducting state.
  • the controller controls the first switching tube and the third switching tube to close after the second preset time, including: when the controller When judging that the voltage of the first battery is greater than the voltage of the second battery, the controller controls the first switch tube to close after the second preset time, and after the fourth preset time, the controller controls the third switch tube to close; or, when the control When the device determines that the voltage of the first battery is less than the voltage of the second battery, after the second preset time, the controller controls the third switch tube to close, and after the fourth preset time, the controller controls the first switch tube to close; or, When the controller determines that the voltage of the first battery is equal to the voltage of the second battery, the controller controls the first switching tube and the third switching tube to close after the second preset time.
  • the fourth preset time may be referred to as the balance time, and may be the time during which the voltage between the batteries is balanced during the process of switching the battery pack from the series mode to the parallel mode. Since the controller controls the high-voltage battery to switch power supply first, and the low-voltage battery to switch power supply later, the voltage difference between the batteries is reduced, so the inrush current between the batteries can be reduced.
  • the technical solution of the present application provides a chip, which includes a bypass circuit and a step-down circuit.
  • the input end of the step-down circuit is connected to the output end of the battery pack, and the output end of the step-down circuit is connected to the power-consuming components of the terminal equipment; one end of the bypass circuit is connected to the input end of the step-down circuit, and the other end of the bypass circuit is connected to the step-down The output of the circuit.
  • the bypass circuit and the step-down circuit are both connected to the controller of the terminal device.
  • the chip includes both a step-down circuit and a bypass circuit.
  • the size of the hardware device can be reduced and the cost can be saved.
  • the technical solution of the present application provides a power supply method for terminal equipment, which is applied to the power supply system of the terminal equipment.
  • the power supply system includes: a battery pack, a bypass circuit, a step-down circuit, and a controller.
  • the battery pack includes at least two batteries; the output end of the battery pack is connected to the input end of the step-down circuit, and the output end of the step-down circuit is connected to the power consumption components of the terminal equipment; one end of the bypass circuit is connected to the input end of the step-down circuit , The other end of the bypass circuit is connected to the output terminal of the step-down voltage; when the batteries in the battery pack are in series mode, the step-down circuit is controlled to work, and the bypass circuit is controlled to stop working; when the batteries in the battery pack are in parallel mode, Control the bypass circuit to work, and control the step-down circuit to stop working.
  • This method can control the batteries in the battery pack to switch between the series mode and the parallel mode.
  • Switching the battery pack to the series mode can increase the output voltage, so as to prevent the terminal device from shutting down due to insufficient power supply, and can improve the stability of the user when using the terminal device.
  • the battery pack is switched to the parallel mode, it is not necessary to use a step-down circuit, so the discharge efficiency of the battery pack can be improved, the battery life can be increased, and the user experience can be improved.
  • the method further includes: determining that the batteries in the battery pack need to be switched to the series mode according to the output voltage of the battery pack and the temperature of the battery pack.
  • the output voltage of the battery pack can be sampled by ADC. By detecting the resistance of the thermistor, the temperature corresponding to the resistance is obtained, and then the current battery temperature is determined.
  • determining that the batteries in the battery pack need to be switched to the series mode according to the output voltage of the battery pack and the temperature of the battery pack include:
  • the output voltage of the battery pack and the temperature of the battery pack it is determined by looking up the table that the batteries in the battery pack need to be switched to the series mode.
  • the output voltage and temperature status recorded in this table can be inexhaustible to reduce the storage space of the terminal equipment.
  • the output voltage and temperature status correspond to the state point.
  • the output voltage and temperature of the actually measured battery pack can be moved to the nearest defined state point. Rounding.
  • the method further includes: selecting a table corresponding to the load current according to the load current, and determining that the load current is greater than the preset current.
  • the load scene corresponds to the heavy load meter at this time; when the load current is less than or equal to the preset current, it is determined to be in the light load scene, and this time corresponds to the small load meter.
  • This method combines the output voltage of the load and the battery pack with the battery temperature as the criterion.
  • the series mode is preferred to prevent abnormal shutdown of the device; in the scene of small load, it is more inclined Use parallel mode to increase the battery life of the device.
  • the method further includes: when determining that the voltage across the power consuming element is lower than a second preset voltage threshold, determining the battery pack
  • the battery inside needs to be switched to series mode.
  • the voltage across the consuming element can be determined according to the current output voltage of the battery pack, the current flowing through the consuming element, and the impedance of each circuit device.
  • the second preset voltage threshold can be set as the shutdown threshold voltage of the terminal device. When the voltage across the power consuming element is less than or equal to the second preset voltage threshold, the voltage output capability of the current parallel mode is not sufficient to support the normal operation of the power consuming element. , Should switch to series mode.
  • the method further includes: obtaining a corresponding value according to the output voltage of the battery pack and the temperature of the battery pack, when the value is less than or equal to When the preset value is set, it is determined that the batteries in the battery pack need to be switched to series mode. This method can reduce the storage space occupied by the interrupt device when determining the working mode of the battery pack.
  • the method further includes: using the output voltage of the battery pack and the temperature of the battery pack to obtain a function value as a value using a preset function, When the function value is less than or equal to the preset value, it is determined that the batteries in the battery pack need to be switched to series mode; the function value of the preset function is positively correlated with the temperature of the battery pack, and the function value of the preset function is positively related to the output voltage of the battery pack. Related. Select the preset value according to the load current.
  • the load current When the load current is greater than the preset current, it corresponds to a large load scene, and then corresponds to the first preset value; when the load current is less than or equal to the preset current, it corresponds to a small load scene, and then corresponds to the second preset value.
  • the first preset value is smaller than the second preset value, indicating that the parallel mode is more inclined to use in a light load scenario to increase the battery life of the device.
  • the method further includes: determining that the batteries in the battery pack need to be switched to the series mode when the low temperature mode button is triggered.
  • a "low temperature mode" can be added to the control interface of the terminal device.
  • the terminal device enters the low temperature mode and the battery pack is switched to the series mode.
  • the method further includes: when it is determined that the power of the battery pack is lower than the preset power or it is determined that the low power mode button is triggered, Make sure that the batteries in the battery pack need to be switched to series mode.
  • a "low battery mode” button can be added to the control interface of the terminal device to enable the user to actively choose to enter the "low battery mode”; the terminal device can also add a button to "allow the terminal device to automatically enter the low battery mode" to enable the user to allow The terminal device automatically enters the low battery mode.
  • the "low temperature mode” and the “low battery mode” can be selected by the user at the same time, for example, the above two modes can be set on the control interface of the terminal device at the same time.
  • the technical solution of the present application also provides a terminal device.
  • the terminal device includes any of the above-mentioned power supply systems, and further includes: power-consuming components.
  • the power supply system is used to supply power to power-consuming components.
  • the controller of the power supply system can control the battery pack to switch between the series mode and the parallel mode. Since the series mode can increase the output voltage, the terminal device is prevented from shutting down due to insufficient power supply, thereby improving the stability of the user when using the terminal device. In the parallel mode, it is unnecessary to use a step-down circuit, so the discharge efficiency of the battery pack can be improved, and the endurance of the terminal device can be increased.
  • the power supply system of the terminal device includes a battery pack, a bypass circuit, a step-down circuit, and a controller.
  • the battery pack includes a first battery and a second battery.
  • the positive electrode of the first battery is connected to the input terminal of the step-down circuit
  • the negative electrode of the first battery is connected to the positive electrode of the second battery through the second switch tube
  • the negative electrode of the second battery is grounded.
  • One end of the first switch tube is connected to the negative electrode of the first battery, and the other end is grounded.
  • One end of the third switch tube is connected to the input end of the step-down circuit, and the other end is connected to the positive electrode of the second battery.
  • the battery pack can be controlled to switch to the parallel mode. In the parallel mode, it is not necessary to use a step-down circuit to improve the discharge efficiency of the battery pack , Increase battery life.
  • the battery pack can be controlled to switch to series mode, because the series mode can increase the output voltage, thereby avoiding terminal equipment due to insufficient power supply And shut down.
  • the controller is used for determining that the batteries in the battery pack need to be switched to the series mode when determining that the voltage across the power consuming element is lower than the second preset voltage threshold.
  • the controller is also used to determine that the batteries in the battery pack need to be switched to the series mode according to the output voltage of the battery pack and the temperature of the battery pack.
  • the controller can also determine that the batteries in the battery pack need to be switched to series mode when it is determined that the low-temperature mode button is triggered; when it is determined that the power of the battery pack is lower than the preset power or the low-power mode button is triggered, the battery is determined The batteries in the group need to be switched to series mode.
  • the controller controls the battery pack to switch from the parallel mode to the series mode
  • the battery pack is initially in the parallel mode
  • the second switch tube in the parallel mode is in the off state
  • the first switch tube and the third switch tube are in the closed state.
  • the step-down circuit When the battery pack is switched from parallel mode to series mode, the working status of the step-down circuit and the bypass circuit can be switched at the same time.
  • the step-down circuit In order to prevent the high voltage generated by the battery series from directly impacting the subsequent circuit, the step-down circuit must be Start working before the second switch tube is closed.
  • the need to start the step-down circuit in advance is because the opening of the step-down circuit is not completed instantaneously, but requires a certain start-up time, which is the transition time between switching the step-down circuit and controlling the closing of the second switch tube, or Called the lead time.
  • the controller switches the working status of the step-down circuit and the bypass circuit, it first controls the first switch tube and the third switch tube to be turned off, and maintains the second The switching tube is turned off, and the second switching tube is controlled to close after the first preset time.
  • the first preset time can be the dead time of the switch tube, or it can be greater than the dead time of the switch tube, so as to provide sufficient time for the switch tube to complete the switching, and further reduce the battery cell's own positive and negative poles during the switching process. Possibility of short circuit.
  • the output voltage of the power supply system within the first preset time is maintained relatively stable by the first capacitor and the second capacitor.
  • the controller controls the battery pack to switch from the series mode to the parallel mode
  • the battery pack is initially in the series mode
  • the second switching tube in the series mode is in the closed state
  • the first and third switching tubes are in the open state.
  • the switch tubes in the battery pack are not switched at the same time, but first control the second switch tube to be turned off And keep the first switching tube and the third switching tube off, and then controlling the first switching tube and the third switching tube to close after the second preset time.
  • the second preset time can be the dead time of the switching tube, or It can be greater than the dead time of the switch tube to provide sufficient time for the switch tube to complete the switching, and further reduce the possibility of short circuit between the positive and negative electrodes of the battery cell during the switching process.
  • the output voltage of the power supply system within the first preset time is maintained relatively stable by the first capacitor and the second capacitor.
  • the switching of the step-down circuit and the bypass circuit requires a third preset time after the state of the first switch tube and the third switch tube are switched. That is, you need to control the battery pack to switch to series mode before you can control the bypass circuit to work and control the step-down circuit to stop working, so the third preset time needs to be greater than the dead time of the switch tube to ensure that the controller controls the step-down circuit When switching with the bypass circuit, the first switching tube and the third switching tube are already in a conducting state.
  • this application when the batteries are in series mode, due to the difference in capacity or self-discharge rate between the batteries, the voltage between the batteries will be unequal. At this time, if the battery is directly switched to the parallel mode, it will cause the difference between the batteries. The impact current is too large and damage the battery. In order to reduce the inrush current, this application also sets a fourth preset time, which can also be referred to as the balance time, which is the time for the voltage between the batteries to equalize when the battery pack is switched from the series mode to the parallel mode.
  • the controller determines that the voltage of the first battery is less than the voltage of the second battery, it first controls the second switching tube to turn off, and after the second preset time, controls the third switching tube to turn on, and then controls it after the fourth preset time
  • the first switch tube is closed, and after the third preset time, the bypass circuit is controlled to work and the step-down circuit is controlled to stop working.
  • the controller determines that the voltage of the first battery is equal to the voltage of the second battery, the two batteries can be connected at the same time and there is no inrush current between the batteries.
  • the controller first controls the second switch tube to turn off, and waits for the second preset time.
  • the first switching tube and the third switching tube are controlled to be closed, and after the third preset time, the bypass circuit is controlled to work and the step-down circuit is controlled to stop working.
  • the controller determines that the voltage of the first battery is greater than the voltage of the second battery, the controller first controls the second switch tube to turn off, and after the second preset time, controls the first switch tube to turn on, and after the fourth preset time Then control the third switch tube to close, and after the third preset time, control the bypass circuit to work and control the step-down circuit to stop working.
  • the high-voltage battery is switched to supply power first, and the low-voltage battery is switched to supply power after the balance time has elapsed, the voltage difference between the batteries is reduced, thereby reducing the inrush current between the batteries.
  • the controller determines that the output voltage of the battery pack is higher than the first preset voltage threshold, the controller determines that the step-down circuit is working at this time, and the bypass circuit Not working; when the controller determines that the output voltage of the battery pack is lower than or equal to the first preset voltage threshold, the controller determines that the bypass circuit is working at this time, and the step-down circuit is not working, so as to realize the bypass circuit and the step-down circuit. Automatic switching.
  • the first preset voltage threshold is greater than the maximum output voltage of the battery pack in parallel mode and less than the minimum output voltage of the battery pack in series mode.
  • the button of the low temperature mode button may be a virtual button or a physical button.
  • the button of the low battery mode button can be a virtual button or a physical button.
  • connection in the above technical solution may be a direct connection or an indirect connection.
  • the output terminal of the battery pack if the output terminal of the battery pack is connected to the input terminal of the step-down circuit, the output terminal of the battery pack can be directly connected to the input terminal of the step-down circuit, or it can also be the battery pack.
  • the output terminal is connected to the input terminal of the step-down circuit through a resistor.
  • the power-consuming components in the above technical solutions can be CPU (full name: Central Processing Unit), GPU (full name: Graphics Processing Unit), baseband processor, memory, display screen, radio frequency device, audio device and sensor At least any device in.
  • the power consuming component can also be other power consuming components in the terminal device.
  • the terminal device in the above technical solution may be a mobile phone, such as a smart phone or a folding screen mobile phone. It can also be a tablet or wearable device. It can also be a head-mounted device, such as a virtual reality device or an augmented reality device. Of course, the terminal device can also be another terminal device with a battery.
  • the battery pack in the above technical solution may be two batteries, three batteries, or more batteries.
  • controller in the above technical solution may be an application processor or a power management unit PMU.
  • controller can also be other processors.
  • the controller in the power supply system can control the step-down circuit to work and stop the bypass circuit when the batteries in the battery pack are in series mode; it can also control the bypass circuit to work when the batteries in the battery pack are in parallel mode , Control the step-down circuit to stop working.
  • the series mode can increase the output voltage, and can prevent the terminal device from shutting down due to insufficient power supply, thereby improving the stability of the user using the terminal device.
  • Parallel mode eliminates the need for a step-down circuit, which can improve the discharge efficiency of the battery pack and increase the battery life.
  • Figure 1 is a schematic diagram of a folding screen architecture when multiple batteries are used for power supply
  • Figure 2 is a schematic diagram when multiple batteries are used for power supply
  • FIG. 3 is a schematic diagram of multiple batteries provided in an embodiment of the application in parallel mode
  • FIG. 4 is a schematic diagram when multiple batteries provided in an embodiment of the application are in series mode
  • FIG. 5 is a schematic diagram of a power supply system for terminal equipment according to an embodiment of the application.
  • Fig. 6 is a circuit diagram of a power supply system provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another power supply system for terminal equipment provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a discharge capability evaluation circuit provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the mode boundary provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another mode boundary provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a control interface of a terminal device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of a control interface of another terminal device provided by an embodiment of the application.
  • FIG. 13a is a control sequence diagram of switching from parallel mode to series mode according to an embodiment of the application.
  • FIG. 13b is a schematic diagram of the parasitic capacitance of the NMOS transistor provided by an embodiment of the application.
  • FIG. 13c is a Vgs curve of the NMOS transistor turn-on and turn-off process provided by an embodiment of the application;
  • FIG. 14 is a simulation diagram of a parallel mode provided by an embodiment of the application.
  • 15 is a simulation diagram of the series mode provided by an embodiment of the application.
  • FIG. 16 is a simulation diagram during mode switching provided by an embodiment of the application.
  • FIG. 17 is a simulation diagram of voltage before and after battery mode switching provided by an embodiment of the application.
  • FIG. 19 is a simulation diagram of the embodiment of the application when the series mode is switched to the parallel mode
  • 20 is another control sequence diagram for switching from series mode to parallel mode according to an embodiment of the application.
  • FIG. 21 is another control sequence diagram for switching from series mode to parallel mode according to an embodiment of the application.
  • FIG. 22 is a simulation diagram of handover without balance time provided by an embodiment of the application.
  • FIG. 23 is a handover simulation diagram with balance time provided by an embodiment of the application.
  • 24 is a schematic diagram of automatic control of a battery working mode provided by an embodiment of the application.
  • 25 is a schematic diagram of automatic control of another battery working mode provided by an embodiment of the application.
  • FIG. 26 is a schematic diagram of a chip provided by an embodiment of the application.
  • FIG. 27 is a flowchart of a power supply method for terminal equipment according to an embodiment of the application.
  • FIG. 28 is a flowchart of a power supply method when the battery pack is switched from parallel mode to series mode according to an embodiment of the application;
  • FIG. 29 is a flowchart of the power supply method when the battery pack is switched from series mode to parallel mode according to an embodiment of the application;
  • FIG. 30 is a schematic diagram of a terminal device provided by an embodiment of the application.
  • the terminal device can be a mobile phone, a laptop computer, a wearable electronic device (such as a smart watch), a tablet computer, an augmented reality (AR) device, which is powered by multiple batteries, Virtual reality (virtual reality, VR) equipment and vehicle-mounted equipment, etc.
  • AR augmented reality
  • Figure 1 is a schematic diagram of a folding screen architecture when multiple batteries are used for power supply.
  • One side of a terminal device with a folding screen includes a first battery 101 and a first main board 103, and the other side includes a second battery 102 and a second main board 104.
  • the battery pack formed by the first battery 101 and the second battery 102 is the terminal device powered by.
  • FIG. 2 is a schematic diagram when multiple batteries are used for power supply.
  • the device includes a SIP main board 201, a first battery 101, and a second battery 102. Among them, the battery pack formed by the first battery 101 and the second battery 102 provides power to the terminal device.
  • the battery pack of the terminal device When the battery pack of the terminal device includes multiple batteries, the battery pack usually adopts a parallel mode.
  • FIG. 3 is a schematic diagram of multiple batteries provided in an embodiment of the application in parallel mode.
  • the positive electrode of the first battery 101 is connected to the positive electrode of the second battery 102 to form the positive electrode of the battery pack, and the negative electrode of the first battery 101 is connected to the negative electrode of the second battery 102 to form the negative electrode of the battery pack.
  • the output voltage of each battery in the battery pack is the same, which is equal to the output voltage of the battery pack, and the output voltage of the battery pack is lower, and the output voltage range can be 3.6V-4.2V.
  • the battery has internal resistance and the internal resistance of the battery increases as the battery temperature decreases, when the ambient temperature is low, the battery temperature is correspondingly low, and the internal resistance of the battery becomes larger, which can rise from about 20m ⁇ to about 1 ⁇ . Under the impact of the same current, the increase in the internal resistance of the battery will cause the output voltage of the battery to decrease, and the output voltage of the battery pack will decrease accordingly.
  • the shutdown threshold voltage of the mobile phone for example, the shutdown threshold voltage of the mobile phone is 2.6V
  • the output voltage of the battery pack is low, which may also easily cause the terminal device to shut down.
  • an embodiment of the present application provides a power supply system for terminal equipment.
  • the power supply system includes a battery pack, a bypass circuit, a step-down circuit, and a controller.
  • the power supply system includes a controller that can control the battery pack to perform Switch between series mode and parallel mode.
  • the schematic diagram when the battery pack is in parallel mode can be seen in FIG. 3, and the schematic diagram when the battery pack is in series mode can be seen in FIG.
  • the controller can also control the step-down circuit to work and control the bypass circuit to stop working when it is determined that the batteries in the battery pack need to be switched to the series mode; it can also control the bypass circuit when the batteries in the battery pack need to be switched to the parallel mode Work and control the step-down circuit to stop working.
  • the controller can control the switching between the series mode and the parallel mode according to actual application scenarios. Since the series mode can increase the output voltage, the terminal device can be prevented from shutting down due to insufficient power supply, and the stability of the user's use of the terminal device can be improved. In parallel mode, there is no need to use a step-down circuit, because the discharge efficiency of the battery pack can be improved, so the battery life can be increased, thereby improving the user experience.
  • FIG. 5 is a schematic diagram of a power supply system for terminal equipment according to an embodiment of the application.
  • the power supply system of the terminal device includes: a battery pack 601, a bypass circuit 602, a step-down circuit 603, a controller 604, and a power consumption component 605.
  • FIG. 6 is a circuit diagram of the power supply system provided by an embodiment of the application.
  • the output end of the battery pack 601 is connected to the input end of the step-down circuit 603, the output end of the step-down circuit 603 is connected to the power consumption element 605 of the terminal equipment, and the two ends of the bypass circuit 602 are connected across the input end and output of the step-down circuit 603 end.
  • the controller 604 is connected to the battery pack 601, the bypass circuit 602, and the step-down circuit 603.
  • the step-down circuit 603 is controlled to work, and the bypass circuit 602 is controlled to stop working.
  • the output voltage of the battery pack 601 is higher than the normal working voltage of the power consumption element 605, so the battery pack 601 cannot directly supply power to the power consumption element 605, and the step-down circuit 603 is required to step down the output voltage of the battery pack 601.
  • the controller 604 can determine that the battery needs to be switched to the series mode according to various criteria, for example, according to the voltage across the power consumption element, or according to the output voltage and battery temperature of the battery pack, or according to the power of the battery pack.
  • the controller 604 can also determine that the battery needs to be switched to the series mode based on the above at least two criteria. For example, the battery pack needs to be switched to the series mode according to the voltage at both ends of the power consuming element, and according to the output of the battery pack. When the voltage and battery temperature determine that the battery pack needs to be switched to the series mode, the battery pack is controlled to switch to the series mode. The battery pack is controlled to switch to the series mode only when multiple criteria are met, thereby improving the accuracy of the controller when determining that the battery pack needs to be switched to the series mode.
  • the step-down circuit 603 is not specifically limited in this embodiment, and a circuit with a step-down function can be used.
  • the step-down circuit 603 can be any of the following: Buck circuit, switched capacitor, Three-level DC-DC circuit and single-ended primary inductor converter (single ended primary inductor converter).
  • the controller 604 determines that the batteries in the battery pack 601 need to be switched to the parallel mode, it controls the bypass circuit 602 to work, so that the bypass circuit 602 bypasses the step-down circuit 603.
  • the output voltage of the battery pack 601 is low and can be used to supply power to the power consumption element 605, and the step-down circuit 603 is not required to step down the output voltage of the battery pack 601.
  • the controller 604 described in the above embodiment may be specifically implemented by a processor (CPU) of a terminal device, or a PMU (Power Management Unit, power management unit), or a combination of a CPU and a PMU during product implementation.
  • a processor CPU
  • PMU Power Management Unit, power management unit
  • bypass circuit 602 The implementation of the bypass circuit 602 is not specifically limited in this embodiment, and the bypass circuit 602 works when the battery pack adopts the parallel mode.
  • the bypass circuit 602 may include the following switching devices:
  • MOS tube Metal Oxide Semiconductor
  • the MOS tube can be an NMOS tube or a PMOS tube.
  • Fig. 6 shows a case where the bypass circuit 602 includes one switching device.
  • the bypass circuit 602 may also include multiple switching devices. When multiple switching devices are included, multiple switching devices are connected in series, and multiple switching devices The types can be the same or different. For example, when the bypass circuit 602 includes two identical switching devices and both are NMOS transistors, the bypass circuit 602 may include at least two NMOS transistors connected in series.
  • the terminal device provided in the embodiment of the application includes a controller that can control the step-down circuit to work and control the bypass circuit to stop working when it is determined that the batteries in the battery pack need to be switched to the series mode; it can also determine that the batteries in the battery pack need to be switched
  • the bypass circuit is controlled to work, and the step-down circuit is controlled to stop working.
  • the controller can control the battery pack to switch between the series mode and the parallel mode according to the actual application scenario. Because the series mode can increase the output voltage, the terminal device is prevented from shutting down due to insufficient power supply, thereby improving the stability of the user using the terminal device.
  • parallel mode it is not necessary to use a step-down circuit, because the discharge efficiency of the battery pack can be improved, so the battery life can be increased and the user experience can be improved.
  • the battery pack of the power supply system can switch between parallel mode and series mode. The following first explains the working principle of switching the battery from parallel mode to series mode.
  • FIG. 7 is a schematic diagram of another power supply system for terminal equipment according to an embodiment of the application.
  • the battery pack 601 of the power supply system includes at least the following two batteries: a first battery 601a and a second battery 601b.
  • the output voltage of the first battery 601a is V1
  • the output voltage of the second battery 601b is V2.
  • the battery pack 601 further includes: a first switching tube Q1, a second switching tube Q2, and a third switching tube Q3.
  • the positive electrode of the first battery 601a is connected to the input terminal of the step-down circuit 603, the negative electrode of the first battery 601a is connected to the positive electrode of the second battery 601b through the second switch Q2, and the negative electrode of the second battery 601b is grounded.
  • One end of the first switch tube Q1 is connected to the negative electrode of the first battery 601a, and the other end is grounded.
  • One end of the third switch tube Q3 is connected to the input end of the step-down circuit 603, and the other end is connected to the positive electrode of the second battery 601b.
  • the switch tubes Q1, Q2, and Q3 can be any one or a combination of transistors, relays, load switches and metal oxide semiconductor field effect transistors.
  • Q1, Q2, and Q3 in a specific product can use the same type of switching tube, so that the controller can use the same control signal for control, which is not specifically limited in the embodiment of the present application.
  • the controller can control the different switch combination states of Q1, Q2 and Q3, and realize the series and parallel connection of the first battery 601a and the second battery 601b.
  • the bypass circuit 602 includes a fourth switch tube Q4, and the step-down circuit 603 is a Buck circuit as an example.
  • the controller is not shown in the figure.
  • the controller determines that the first battery 601a and the second battery 601b need to be switched to the series mode, it controls the first switching tube Q1 and the third switching tube Q3 to turn off, and controls the second switching tube Q2 is closed.
  • the power supply system may also include a first capacitor C1 and a second capacitor C2.
  • the first terminal of the first capacitor C1 is connected to the output terminal of the battery pack 601, and the second terminal of the first capacitor C1 is grounded.
  • the first end of the second capacitor C2 is connected to the input end of the power consumption element 605, and the second end of the second capacitor C2 is grounded.
  • Both the first capacitor C1 and the second capacitor C2 can be used for voltage stabilization and filtering, thereby improving the quality of power supply.
  • the first capacitor C1 and the second capacitor C2 may actually be equivalent capacitors formed by multiple capacitors.
  • the controller determines that the first battery 601a and the second battery 601b need to be switched to the parallel mode, it controls the second switching tube Q2 to open, and controls the first switching tube Q1 and the third switching tube Q3 to close.
  • the following specifically describes the implementation manner in which the controller determines that the batteries in the battery pack 601 switch between the parallel mode and the series mode.
  • Method 1 Judge the working mode of the battery pack by the voltage across the power consuming element.
  • the controller can determine the voltage across the power consuming element according to the current output voltage of the battery pack, the current flowing through the power consuming element, and the impedance of each circuit device. When the controller determines that the voltage across the power consuming element is lower than the second preset voltage threshold, it determines that the battery pack needs to be switched from the parallel mode to the series mode.
  • the second preset voltage threshold may be set as the shutdown threshold voltage of the terminal device, for example, the shutdown threshold voltage may be 2.6V.
  • FIG. 8 is a schematic diagram of a discharge capability evaluation circuit provided by an embodiment of the application.
  • the first switching tube Q1 and the third switching tube Q3 are both closed, the second switching tube is turned off, and the bypass circuit works.
  • Rcell1, Rcell2 are the equivalent internal resistances of the batteries of the first battery 601a and the second battery 601b
  • Rconnector is the equivalent impedance of the battery connector
  • Rpcb is the equivalent impedance of the wiring on the board
  • Rq1, Rq3, and Rq4 are respectively Is the equivalent impedance when the switches Q1, Q3 and Q4 are turned on, and the above-mentioned impedances are all known parameters.
  • the controller can measure the voltage across the current sense resistor (Current Sense Resistor) R0 of the discharge path in real time, and determine the current Iload flowing through the power consumption element 605 according to the ratio of the voltage across the current sense resistor to the impedance of the current sense resistor.
  • the battery included in the battery pack can be connected to the terminal device through the battery connector, and the current detection resistor R0 can be arranged near the battery connector to detect the current of the battery pack.
  • the output voltage Vout of the power supply system can be determined by the following formula:
  • Vout V1-((Rcell1+Rq1)//(Rcell2+Rq3)+Rconnector+Rq4+Rpcb+R0) ⁇ Iload(1)
  • Rcell1+Rq1)//(Rcell2+Rq3) represents the resistance when Rcell1 and Rq1 connected in series are connected in parallel with Rcell2 and Rq3 connected in series, when Vout determined by formula (1) ⁇ second preset voltage threshold At this time, the voltage output capability that characterizes the current parallel mode is insufficient to support the normal operation of the power consumption element 605, and the series mode should be switched to.
  • the battery internal resistance Rcell1 and Rcell2 can both be related to the battery temperature, and the battery internal resistance will increase as the temperature decreases. Therefore, in a low temperature environment, the Vout determined by formula (1) is greater than the actual output voltage of the power supply system.
  • different battery temperatures can be set Corresponding to different second preset voltage thresholds. When the battery temperature is low, the corresponding second preset voltage threshold is higher.
  • the corresponding relationship between the battery temperature and the second preset voltage threshold is stored in the terminal device in advance, which can be detected in real time
  • the temperature of the battery pack obtains the second preset voltage threshold corresponding to the current temperature, and compares the output voltage Vout of the current power supply system determined according to formula (1) with the second preset voltage threshold corresponding to the current temperature to determine whether the battery pack is Should switch to series mode.
  • the relationship between battery internal resistance Rcell1 and Rcell2 with temperature can be a predetermined functional relationship
  • the temperature of the first battery 601a and the second battery 601b can be detected in real time, and then based on the predetermined
  • the determined functional relationship determines the corresponding resistances Rcell1 and Rcell2 at the current temperature, and then determines the output voltage Vout of the current power supply system according to formula (1), and compares the output voltage Vout of the power supply system with the second preset voltage threshold, and then It is determined whether the battery pack should be switched to the series mode.
  • the second preset voltage threshold may be set as the shutdown threshold voltage of the terminal device, for example, the shutdown threshold voltage may be 2.6V.
  • the temperature can be measured by a thermistor.
  • the corresponding relationship between the resistance of the thermistor and the temperature can be a predetermined functional relationship.
  • the controller obtains the battery temperature corresponding to the resistance by measuring the resistance of the thermistor inside the battery .
  • NTC Negative Temperature Coefficient, negative temperature coefficient
  • type thermistors can be used in the battery.
  • Method 2 Judge the working mode of the battery pack by looking up the table.
  • the controller can select the table corresponding to the load current according to the load current. When the load current is greater than the preset current, it corresponds to a large load meter, and when the load current is less than or equal to the preset current, it corresponds to a small load meter.
  • the controller can determine the working mode of the battery pack by looking up the corresponding table according to the output voltage of the battery pack and the temperature of the battery pack.
  • the controller can measure the voltage across the current-sense resistor of the discharge path in real time, and the ratio of the voltage across the current-sense resistor to the impedance of the current-sense resistor is the load current.
  • the output voltage of the battery pack can be sampled by ADC.
  • the controller obtains the temperature corresponding to the resistance value by detecting the resistance value of the thermistor, and then determines the temperature of the battery.
  • NTC type thermistor can be used in the battery.
  • the controller determines whether the current load current is greater than the preset current, and the preset current is determined according to the actual terminal device, which is not specifically limited in the embodiment of the present application.
  • the controller determines that it is in a heavy load scenario at this time, and when the load current is less than the preset current, the controller determines that it is in a light load scenario at this time.
  • the heavy load scenario and the small load scenario correspond to different tables.
  • the following is an example to illustrate the principle that the controller determines the working mode of the battery pack through the table.
  • the load current is greater than the preset current, it is determined that it is a heavy load scenario, which corresponds to the heavy load meter.
  • the detected battery voltage is 3.5V and the battery temperature is 0°C, it can be seen from Table 1 that the battery pack should be switched to parallel mode.
  • the voltage/temperature status in the table does not need to be exhausted, and the measured voltage and temperature can be rounded to the nearest defined status point.
  • the battery voltage is 3.7V
  • the battery temperature is 2°C
  • first determine the corresponding large load meter and then judge that the defined state point closest to 3.7V is 3.5V, which is the closest to 2°C
  • the defined state point is 0°C, so (3.7V, 2°C) is rounded to (3.5V, 0°C), and the corresponding parallel discharge mode is determined by the table.
  • FIG. 9 is a schematic diagram of the mode boundary provided by an embodiment of the application.
  • the mode boundaries of the heavy load scene and the light load scene can be determined.
  • the mode boundary corresponding to the heavy load scene (Table 1) is a solid line
  • the mode boundary corresponding to the light load scene (Table 2) is The mode boundary is a dotted line, and the above table can be represented more vividly through this figure.
  • the coordinates of the state point can be expressed as (battery temperature, battery voltage), and the working mode of the battery at this time can be determined according to the area where the state point is located.
  • the load current and the preset current determine the current mode boundary.
  • the mode boundary of the heavy load is to the right of the mode boundary of the light load.
  • the mode boundary determined by the table is a straight line.
  • the mode boundary may also be a curve.
  • the mode boundary is determined by the actual working conditions of the terminal device.
  • the table corresponding to different terminal devices may be different, and the corresponding mode boundary may also be different.
  • the series mode is preferred to prevent abnormal shutdown of the device; in the scene of small load, the parallel mode is more inclined to increase the battery life of the device.
  • Method 3 Use the function value to determine the operating mode of the battery pack.
  • the preset function f can also be used to replace the above table.
  • the controller substitutes the output voltage U and battery temperature T of the battery pack 601 into the preset function f to obtain the function value.
  • the function value is less than or When it is equal to the preset value, it is determined that the batteries in the battery pack 601 need to be switched to the series mode.
  • the controller is further configured to select the preset value according to the magnitude of the load current, when the load current is greater than the preset current, corresponding to the first preset value, and when the load current is less than or equal to the preset current, corresponding to the second preset value,
  • the first preset value is smaller than the second preset value. That is, the heavy load scene corresponds to the first preset value, and the light load scene corresponds to the second preset value.
  • the preset value represents the threshold voltage when switching between series mode and parallel mode at 0°C.
  • a heavy load scenario corresponds to the first preset value.
  • the function value>the first preset value the battery pack should be in parallel mode; when the function value ⁇ the first preset value, the series mode is suitable.
  • the preset value can be obtained in advance through experiments. For example, when the battery temperature is determined to be 0°C, a discharge test is performed for batteries of different voltages, and the voltage drop is measured. If the voltage drops to the shutdown threshold voltage of the terminal device during the discharge test (for example, 2.6V) or less, the voltage is the corresponding preset value under the current load condition.
  • the shutdown threshold voltage of the terminal device during the discharge test for example, 2.6V
  • the factor affecting the preset value is mainly the low-temperature discharge capacity of the battery used.
  • the function value of the preset function is positively correlated with the battery temperature T, and the function value of the preset function is positively correlated with the output voltage U of the battery pack.
  • the preset function is set according to the actual working needs of the terminal device. No specific restrictions.
  • the first preset value is 3, and the second preset value is 2.5.
  • the batteries in the battery pack 601 should be in series mode, and when f>3, the batteries in the battery pack 601 should be in parallel mode.
  • the batteries in the battery pack 601 should be in series mode, and when f>2.5, the battery pack should be in parallel mode.
  • the parallel mode is more inclined to use in a light load scenario to increase the battery life of the device.
  • the terminal device can switch the operating mode of the battery pack through the above-mentioned embodiments. In addition, it can also perform forced switching via the control interface of the terminal device, that is, the switching is triggered by the user using the terminal device.
  • FIG. 11 is a schematic diagram of a control interface of a terminal device according to an embodiment of the application.
  • the user can determine whether to enter the low temperature mode according to the current ambient temperature. For example, when the user is outdoors in a cold, the user can choose to enter the "low temperature mode” in order to enable the terminal device to work stably.
  • the control interface of the terminal device can display the battery temperature in real time. When the battery temperature is lower than the preset temperature value (for example, -10°C), the user should be prompted to enter the "low temperature mode” to upgrade the terminal The stability of the device.
  • the controller determines that the low temperature mode button is triggered and the battery pack is switched to the series mode.
  • the power supply system switches to automatic mode, and the controller of the power supply system automatically selects the most suitable working mode.
  • control interface of the terminal device is provided with a "low temperature mode".
  • the low temperature mode is entered, and the battery pack is switched to the series mode. In this case, it has nothing to do with the ambient temperature of the terminal device, but based on the user triggering the "low temperature mode", the battery pack is switched to the series mode.
  • buttons can be physical buttons or corresponding icons on the touch screen.
  • FIG. 12 is a schematic diagram of a control interface of another terminal device according to an embodiment of the application.
  • the terminal device may also have a setting button that allows the terminal device to automatically enter the low battery mode.
  • a setting button that allows the terminal device to automatically enter the low battery mode.
  • an option "Allow the terminal device to automatically enter the low battery mode" can be added to the control interface, and the user can enable this option to allow the terminal device to automatically enter the low battery mode.
  • Enter the low power mode that is, when the controller determines that the power of the battery pack is lower than the preset power
  • the control terminal device automatically enters the "low power mode" and determines that the battery pack is in series mode.
  • the embodiment of the present application does not specifically limit the preset power.
  • the preset power can be 10%, 15%, etc. of the total power, and the user can also adjust the preset power on the terminal device according to actual conditions.
  • the "low temperature mode” and the “low battery mode” can be selected by the user at the same time, for example, the above two modes can be set on the control interface of the terminal device at the same time.
  • the controller can switch the battery pack from parallel mode to series mode through any of the above methods.
  • the following takes the first switching tube Q1, the second switching tube Q2, and the third switching tube Q3 as an example, with reference to the drawings The working principle of the controller controlling the battery pack to switch from parallel mode to series mode is specifically explained.
  • FIG. 13a is a control sequence diagram of switching from the parallel mode to the series mode according to an embodiment of the application.
  • the controller controls the bypass circuit 602 and the step-down circuit 603 through the enable signal.
  • the enable signal may be a level signal, which can control the working state of the switching tubes in the bypass circuit 602 and the step-down circuit 603.
  • the controller controls the bypass circuit 602 to work, and when the enable signal of the bypass circuit 602 is at a low level, the controller controls the bypass circuit 602 to stop working.
  • the controller controls the step-down circuit 603 to work, and when the enable signal of the step-down circuit 603 is at a low level, the controller controls the step-down circuit 603 to stop working.
  • Vgs is the voltage between the gate and the source of the switching tube. When Vgs is high, the switching tube is turned on, and when Vgs is low, the switching tube is turned off.
  • the switching of the step-down circuit 603 and the bypass circuit 602 may be before the state switching of the switch tubes Q1, Q2, and Q3.
  • the battery is in the parallel mode.
  • the second switching tube Q2 is in the off state, and the first switching tube Q1 and the third switching tube Q3 are in the closed state.
  • the first battery 601a is short-circuited; or when the first switching tube Q1 and When the second switching tube Q2 is turned on at the same time, the positive and negative electrodes of the second battery 601b are short-circuited, or when the first switching tube Q1, the second switching tube Q2, and the third switching tube Q3 are all turned on at the same time, the positive terminal of the first battery 601a There is a short-circuit between the negative electrodes and a short-circuit between the positive and negative electrodes of the second battery 601b.
  • the switching tubes in the battery pack 601 do not switch at the same time, but first control the first switching tube Q1 and the third switching tube Q3 to turn off, and keep the second switching tube Q2 turned off, and wait for the first preset time.
  • the second switch Q2 is controlled to be turned on, and the first preset time may be the dead time of the NMOS transistor (Dead Time).
  • FIG. 13b is a schematic diagram of the parasitic capacitance of the NMOS transistor provided by an embodiment of the application
  • FIG. 13c is a Vgs curve of the NMOS transistor's turn-on and turn-off process provided by the embodiment of the application.
  • the dead time is set to avoid short circuit between the positive and negative electrodes of the battery cell during the switching process.
  • the NMOS tube there is a parasitic capacitance C GS between the gate and the source.
  • the control signal of the controller comes, it takes a certain time for the parasitic capacitance C GS between the gate and the source to charge and discharge, so the NMOS tube There will be a delay in turning on and off.
  • the smaller the C GS of the selected NMOS tube the stronger the driving ability of the control signal, the shorter the charging and discharging time, the smaller the delay, and the smaller the dead time can be set.
  • C GS Due to the limitation of semiconductor technology, C GS has a large dispersion. In order to avoid short circuit between the positive and negative electrodes of the battery cell during the switching process, sufficient dead time should be ensured.
  • the capacitance value of C GS is 1.28 nF.
  • the drive control chip selects AUIRS2191S, its drive capacity is 3.5A, and the measured dead time when the drive chip drives the above-mentioned NMOS tube should be ⁇ 100ns.
  • the first preset time can also be greater than the dead time of the NMOS tube, so as to provide sufficient time for the switching tube to complete the switching, and further reduce the possibility of a short circuit between the positive and negative electrodes of the battery cell during the switching process.
  • the first preset time may be greater than the dead time, for example, it may be set to 110 ns.
  • the first switching tube Q1 and the third switching tube Q3 are first controlled to be turned off, and the second switching tube Q2 is kept open, and the second switching tube Q2 is controlled to close after the dead time, so the switching tube Q1 is controlled during the dead time , Q2 and Q3 are all disconnected, and the battery in the battery pack is not connected to the circuit.
  • the first capacitor C1 and the second capacitor C2 can maintain the output voltage of the power supply system relatively stable during the dead time.
  • the power consuming components are powered by the first capacitor C1 and the second capacitor C2, so the length of the dead time should be proportional to the sum of the capacitance of the first capacitor C1 and the second capacitor C2, that is, the dead time The longer is, the larger the sum of the capacitance values of C1 and C2 is required.
  • the sum of the capacitance values of the first capacitor C1 and the second capacitor C2 included in the terminal equipment can usually reach the level of 200 ⁇ F, and the dead time is usually of the level of 100 ns, and the sum of the capacitance values of the first capacitor C1 and the second capacitor C2 can satisfy
  • the output voltage of the power supply system is maintained relatively stable during the dead time, which is described in detail below with an example.
  • U drop is used to represent the voltage drop during the dead time. From formula (3), it can be determined that U drop satisfies the following formula:
  • the controller simultaneously switches the working states of the bypass circuit 602 and the step-down circuit 603, that is, controls the step-down circuit 603 to work while controlling the bypass circuit 602 to stop working, switches the step-down circuit 603 and the bypass circuit 602, and controls the second switch
  • the transition time between the closing of the tube Q2 may be referred to as the lead time.
  • the step-down circuit 603 When the battery pack is switched from the parallel mode to the series mode, the step-down circuit 603 needs to start working before the second switching tube Q2 is closed to prevent the high voltage generated by the battery series from directly impacting the subsequent circuit.
  • the need to start the step-down circuit 603 in advance is because the opening of the step-down circuit 603 is not completed instantaneously, but requires a certain start-up time.
  • the start-up time is the lead time.
  • the lead time is related to the chip model of the step-down circuit 603. Different chips Models can correspond to different lead times. For example, if the core type of the step-down circuit 603 is TPS54610, its startup time is 3.35ms, so the lead time should be ⁇ 3.35ms.
  • the controller of the power supply system controls the battery pack to switch from the parallel mode to the series mode according to real-time information such as the temperature of the battery pack, battery output voltage, and load current. Therefore, the controller can control the battery pack to switch from parallel mode to series mode in scenarios such as low ambient temperature (such as outdoor in winter), low battery power and heavy load. Since the series mode can increase the output voltage, it can reduce the terminal The probability of the device shutting down due to insufficient power supply improves the stability of terminal device applications in the above-mentioned scenarios, thereby improving the user experience in the above-mentioned scenarios. The following is a specific description in conjunction with the simulation diagram.
  • FIG. 14 is a simulation diagram of the parallel mode provided by an embodiment of the application.
  • the conditions of the simulation are: the battery voltage is 4.0V, the battery internal resistance is 1 ⁇ (the battery internal resistance is larger at low temperatures), the load current is 2A, and the shutdown threshold voltage of the terminal device is 2.6V.
  • the output voltage V(out) of the battery pack drops to 2.5V, which is already lower than the shutdown threshold voltage of the terminal device, which will cause abnormal shutdown of the terminal device.
  • FIG. 15 is a simulation diagram of the series mode provided by an embodiment of the application.
  • V(out) is the input voltage of the power consuming element, which corresponds to the voltage at point A in Figure 7, and V(out) is 3.4 V is still higher than the shutdown threshold voltage of the terminal device, and the terminal device will not shut down abnormally at this time.
  • the controller also realizes the smooth switching of the bypass circuit and the step-down circuit during the process of controlling the battery to switch from the parallel mode to the series mode, which reduces the voltage impact of the higher output voltage of the batteries in series on the subsequent circuit. It also avoids the short circuit of the positive and negative electrodes of the battery during the switching process, and further improves the stability of the terminal device.
  • the following is a specific description in conjunction with the simulation diagram.
  • FIG. 16 is a simulation diagram during mode switching provided by an embodiment of the application.
  • V(input) is the total input voltage of the first battery 601a and the second battery 602b ( The black line in the figure)
  • V(n006) is the voltage of node B at the left end of the inductor L1 in the step-down circuit 603 (the dark gray line in the figure)
  • V(out) is the input voltage of the power consuming element, which corresponds to Figure 7.
  • the voltage at point A (the light gray line in the figure).
  • FIG. 17 is a simulation diagram of the voltage before and after the battery mode switch provided by an embodiment of the application.
  • V(input) is the total input voltage of the first battery 601a and the second battery 602b.
  • V(input) is changed from The original about 3.8V was increased to about 7.6V.
  • V(out) we can find that the voltage fluctuation range of V(out) before and after the battery mode switch is small, indicating that the battery is switched to the series mode to the subsequent circuit. The impact is small and the output voltage can be maintained relatively stable.
  • the above embodiments illustrate the operating principle of the controller controlling the battery to switch from the parallel mode to the series mode.
  • the following describes the operating principle of the controller controlling the battery to switch from the serial mode to the parallel mode.
  • the controller determines that the first battery 601a and the second battery 601b need to be switched to the parallel mode, it controls the second switching tube Q2 to turn off, and controls the first switching tube Q1 and the third switching tube Q3 to turn on.
  • controller determines that the batteries in the battery pack 601 need to be switched from the series mode to the parallel mode can be referred to the related description in the second embodiment, which will not be repeated in this embodiment.
  • FIG. 18 is a control sequence diagram for switching from series mode to parallel mode according to an embodiment of the application.
  • the controller controls the battery to switch from series mode to parallel mode, it needs to make the bypass circuit 602 work and stop the step-down circuit 603.
  • the switching of the step-down circuit 603 and the bypass circuit 602 needs to be after the state switching of the switch tubes Q1, Q2, and Q3.
  • the battery pack is in series mode.
  • the second switching tube Q2 is in the closed state
  • the first switching tube Q1 and the third switching tube Q3 are in the open state
  • the switching tube controls the battery to switch from the series mode to the parallel mode.
  • the first switching tube Q1 and the third switching tube Q3 continue to be disconnected.
  • the switching tubes in the battery pack 601 do not switch at the same time, but first control the second switching tube Q2 to turn off, and then control the first switch after the second preset time.
  • the switching tube Q1 and the third switching tube Q3 are closed, and after a third preset time, the bypass circuit 602 is controlled to work and the step-down circuit 603 is stopped.
  • the second preset time may be the dead time.
  • the sum of the dead time and the third preset time is the Lag time.
  • the battery pack In order to avoid a short circuit between the positive and negative electrodes of the battery during the switching process, the battery pack needs to be controlled to switch to series mode before controlling the bypass circuit 602 to work and the step-down circuit 603 to stop working, so the third preset time needs to be greater than the NMOS
  • the dead time of the tube is to ensure that when the controller controls the switching of the step-down circuit 603 and the bypass circuit 602, the first switching tube Q1 and the third switching tube Q3 are already in the conducting state.
  • the first switching tube Q1, the second switching tube Q2, and the third switching tube Q3 are all off.
  • the first capacitor C1 and the second capacitor C2 are used to maintain the output voltage of the power supply system during the dead time. stable.
  • the controller of the power supply system provided by the embodiment of the present application can control the battery pack to switch from the series mode to the parallel mode according to real-time information such as the temperature of the battery pack, battery output voltage, and load current. Therefore, the controller can control the battery pack to switch from series mode to parallel mode in a scenario where the ambient temperature is relatively normal, the battery pack is sufficiently charged, and the load is small, so as to improve the discharge efficiency of the battery pack, extend the battery life of the terminal device, and improve users Use experience in the above scenarios.
  • the controller can stabilize the switching process when controlling the battery to switch from the series mode to the parallel mode, which further improves the stability of the terminal device.
  • the following is a specific description in conjunction with the simulation diagram.
  • FIG. 19 is a simulation diagram when the series mode is switched to the parallel mode according to the embodiment of the application.
  • V(out) Observing the curve of V(out), it can be found that when the battery is switched from series mode to parallel mode, the voltage fluctuation range of V(out) is small, and it is always higher than the shutdown threshold voltage of the terminal device, indicating that the battery is excessively switching modes Smooth, has less impact on the subsequent circuit, and can maintain the relative stability of the output voltage.
  • the controller acquires the voltages of the first battery 601a and the second battery 601b through ADC sampling.
  • the controller determines that the voltage V1 of the first battery 601a is greater than the voltage V2 of the second battery 601b, the controller first controls the second switch Q2 to turn off
  • the first switching tube Q1 is controlled to close
  • the balance time Balance time
  • the third switching tube Q3 is controlled to close
  • the bypass circuit 602 is controlled to work and control the voltage drop
  • the circuit 603 stops working.
  • the second preset time may be a dead time.
  • the dead time and the third preset time please refer to the above-mentioned power supply system embodiment, and this embodiment will not be repeated here.
  • the balance time may be referred to as the fourth preset time, which is the time during which the battery pack is switched from the series mode to the parallel mode, and the voltage between the batteries is balanced.
  • the balance time is determined by the voltage difference between the first battery 601a and the second battery 601b, and the internal resistance of the first battery 601a and the second battery 601b. The greater the voltage difference between the batteries and the greater the internal resistance of the batteries, the longer the balancing time required. If there is no pressure difference between the two batteries, the balance time may not be required.
  • the balance time is ⁇ 10us to reduce the impact current between the batteries to less than 0.5A .
  • the controller determines that the voltage V1 of the first battery 601a is less than the voltage V2 of the second battery 601b, the controller first controls the second switching tube Q2 to turn off, and after the second preset time, it controls the third switching tube Q3 to turn on. After the fourth preset time, the first switch tube Q1 is controlled to close, and after the third preset time, the bypass circuit 602 is controlled to work and the step-down circuit 603 is controlled to stop working.
  • the controller determines that the voltage V1 of the first battery 601a is equal to the voltage V2 of the second battery 601b, the controller first controls the second switch Q2 to turn off, and after a second preset time, it controls the first switch Q1 and the third switch The tube Q3 is closed, and after the third preset time, the bypass circuit 602 is controlled to work and the step-down circuit 603 is controlled to stop working.
  • the controller determines that the voltage V1 of the first battery 601a is greater than the voltage V2 of the second battery 601b, the controller first controls the second switching tube Q2 to turn off, and after the second preset time, it controls the first switching tube Q1 to turn on. After the fourth preset time, the third switch tube Q3 is controlled to close, and after the third preset time, the bypass circuit 602 is controlled to work and the step-down circuit 603 is controlled to stop working.
  • the control principle of the controller will be explained by taking as an example that the battery voltage V2 of the second battery 601b in the battery pack 601 is higher than the battery voltage V1 of the first battery 601a.
  • the control principle of the controller is similar, and will not be repeated here.
  • FIG. 20 is another control sequence diagram for switching from the series mode to the parallel mode according to an embodiment of the application.
  • the controller first controls the second switching tube Q2 to turn off, and after the dead time, controls the third switching tube Q3 to turn on.
  • the second battery 601b with a higher voltage is first connected to the circuit to start power supply.
  • the controller controls the first switch Q1 to close.
  • the first battery 601b with a lower voltage is connected to the circuit and starts to supply power. Because the high-voltage battery switches to supply power first, and the low-voltage battery switches to supply power afterwards. Reduce the voltage difference between the batteries, thus reducing the inrush current between the batteries.
  • the bypass circuit 602 is controlled to work and the step-down circuit 603 is controlled to stop working. At this time, the battery is switched from the series mode to the parallel mode.
  • the MOS tube in the battery pack can be in a switching state, that is, the switching tube has two states of open and closed, or it can be in a linear state, that is, the MOS tube is in the linear region, and the working state of the MOS tube changes linearly rather than instantaneously, to further Reducing the inrush current will be described in detail below with reference to the drawings.
  • FIG. 21 is another control sequence diagram for switching from the series mode to the parallel mode according to an embodiment of the application.
  • the first switching tube Q1 When the first switching tube Q1 works in the linear region, the first switching tube Q1 gradually switches from the off state to the closed state during the balance time, thereby reducing the inrush current between the batteries.
  • the following is a specific description in conjunction with the simulation diagram.
  • FIG. 22 is a simulation diagram of handover without balance time provided by an embodiment of the application.
  • FIG. 23 is a simulation diagram of handover with balance time provided by an embodiment of the application.
  • the foregoing system embodiment illustrates the working principle when the controller controls the battery to perform mode switching.
  • the controller controls the battery to switch from series mode to parallel mode, it controls the bypass circuit to work and the step-down circuit stops working.
  • the controller controls the battery to switch from parallel mode to series mode, it controls the step-down circuit to work and bypass.
  • the circuit stops working.
  • the embodiment of the present application also provides another control scheme for the step-down circuit and the bypass circuit, which can simplify the control signal and control process, which will be described in detail below with reference to the drawings.
  • the output voltage of the battery pack is collected through ADC (Analog-to-Digital Converter, digital-to-analog converter) and sent to the controller.
  • ADC Analog-to-Digital Converter, digital-to-analog converter
  • the controller determines that the step-down circuit is working and the bypass circuit is not working at this time; when the controller determines that the output voltage of the battery pack is lower than or equal to the first
  • the controller determines that the bypass circuit is working and the step-down circuit is not working at this time, so as to realize automatic switching between the bypass circuit and the step-down circuit.
  • FIG. 24 is a schematic diagram of automatic control of a battery working mode according to an embodiment of the application.
  • the first preset voltage threshold is represented by Vth.
  • the controller controls the bypass circuit 602 to open and controls the step-down circuit 603 to close.
  • the controller controls the bypass circuit 602 to close and the step-down circuit 603 to open.
  • the first preset voltage threshold is greater than the maximum output voltage of the battery pack in parallel mode and less than the minimum output voltage of the battery pack in series mode.
  • the maximum output voltage of the battery pack is about 4.2V-4.3V.
  • the minimum output voltage of the battery pack is about 7.2V, that is, the first battery 601a and the second battery 601b are connected in series, and the output voltage of each battery is about 3.6V.
  • the value of the first preset voltage threshold Vth can be greater than the maximum output voltage in parallel connection and less than the minimum output voltage in series connection, that is, it satisfies: 7.2V>Vth>4.3V, for example, Vth may be 4.5V.
  • Vth may be 4.5V.
  • the following also provides a hysteresis control method, for example: when the output voltage of the battery pack is close to the first At a preset voltage threshold Vth1, there may be a voltage glitch when the ADC measures the output voltage of the battery pack, that is, the voltage oscillates due to interference, and the relationship between the output voltage of the battery pack and the first preset voltage threshold Vth1 will occur repeatedly.
  • the change causes the controller to repeatedly switch the bypass circuit and the step-down circuit enable. Therefore, the hysteresis voltage interval is increased to reduce the impact of this problem on the power supply system.
  • FIG. 25 is a schematic diagram of another automatic control for enabling the bypass circuit and the step-down circuit according to an embodiment of the application.
  • Vth1 represent the first preset voltage threshold in FIG. 24, and the hysteresis voltage interval is Vth3-Vth2.
  • Vth2 is greater than Vth1
  • Vth1 is greater than Vth3, that is, Vth2>Vth1>Vth3.
  • Vth2 and Vth3 can be set according to actual conditions.
  • Vth2 should be greater than the maximum value of the voltage glitch
  • Vth3 should be smaller than the minimum value of the voltage glitch, so as to suppress the influence of the voltage glitch during the switching process.
  • the hysteresis voltage interval can include the voltage range of the voltage glitch.
  • the range can be determined by experimental measurement in advance. For example, when the output voltage of the battery pack is Vth1, the working modes of the buck circuit and the bypass circuit can be repeatedly switched to obtain the voltage range of the voltage glitch.
  • the controller judges the relationship between the output voltage of the battery pack and Vth2. When the output voltage of the battery pack is less than Vth2, the controller judges that the output voltage of the battery pack is affected by the voltage glitch at this time, and maintains the current bypass circuit and the step-down circuit. Can stay the same.
  • the controller judges the relationship between the output voltage of the battery pack and Vth3. When the output voltage of the battery pack is greater than Vth3, the controller judges that the output voltage of the battery pack is affected by the voltage glitch at this time, and maintains the current bypass circuit and the step-down circuit. Can stay the same.
  • the impact of voltage glitches when the ADC detects the output voltage of the battery pack can be reduced.
  • the controller of this embodiment compares the output voltage of the battery pack with the first preset voltage threshold to determine the operating status of the bypass circuit and the step-down circuit.
  • the operating mode of the battery pack can be switched even after the bypass circuit is switched.
  • the working state of the circuit and the step-down circuit simplifies the control signal and control flow.
  • the step-down circuit and the bypass circuit of the above embodiments may belong to two different chips respectively.
  • An embodiment of the present application also provides a chip that includes both a step-down circuit and a bypass circuit, which will be described in detail below with reference to the drawings.
  • FIG. 26 is a schematic diagram of a chip provided by an embodiment of the application.
  • the chip also includes a step-down circuit 602 and a bypass circuit 603.
  • bypass circuit 602 One end of the bypass circuit 602 is connected to the input end of the step-down circuit 603, and the other end of the bypass circuit 602 is connected to the output end of the step-down circuit 603.
  • the bypass circuit 602 and the step-down circuit 603 are both connected to the controller of the terminal device, and receive the control signal sent by the controller to switch the working state.
  • the step-down circuit 603 works.
  • the circuit circuit 602 stops working; when the batteries in the battery pack 601 are in parallel mode, the bypass circuit 602 works, and the step-down circuit 603 stops working.
  • controller the step-down circuit, the bypass circuit, and the battery pack in the chip embodiment can be referred to the descriptions of other embodiments, which are not repeated here.
  • the chip includes both the step-down circuit 602 and the bypass circuit 603, when the power supply system uses the chip, the size of the hardware device can be reduced and the cost can be saved.
  • an embodiment of the present application also provides a power supply method for terminal equipment.
  • FIG. 27 is a flowchart of a power supply method for terminal equipment according to an embodiment of the application.
  • the method is applied to a power supply system of terminal equipment, and the power supply system includes: a battery pack, a bypass circuit, a step-down circuit, and a controller.
  • the battery pack includes at least two batteries.
  • the output end of the battery pack is connected to the input end of the step-down circuit, and the output end of the step-down circuit is connected to the power consumption components of the terminal equipment; both ends of the bypass circuit are connected across the step-down circuit Input and output.
  • the method includes the following steps:
  • Method 1 According to the current output voltage of the battery pack, the current flowing through the consuming components and the impedance of each circuit device, determine the voltage across the consuming components. When it is determined that the voltage across the power consumption element is lower than the second preset voltage threshold, it is determined that the battery pack needs to be switched from the parallel mode to the series mode.
  • the second preset voltage threshold may be set as the shutdown threshold voltage of the terminal device, for example, the shutdown threshold voltage may be 2.6V.
  • the voltage across the current-sense resistor of the discharge path can be measured in real time, and the current flowing through the power consuming element can be determined based on the ratio of the voltage across the current-sense resistor to the impedance of the current-sense resistor.
  • Method 2 According to the output voltage of the battery pack and the temperature of the battery pack, through a look-up table, it is determined that the batteries in the battery pack need to be switched to the series mode. Specifically, the table corresponding to the load current can be selected according to the load current. When the load current is greater than the preset current, it corresponds to a large load table, and when the load current is less than or equal to the preset current, it corresponds to a small load table.
  • the voltage across the current-sense resistor of the discharge path can be measured in real time, and the ratio of the voltage across the current-sense resistor to the impedance of the current-sense resistor is the load current.
  • the output voltage of the battery pack can be sampled by ADC.
  • an NTC-type thermistor can be used in the battery.
  • the series mode is preferred to prevent abnormal shutdown of the device; in small load scenarios, the parallel mode is more inclined to increase the battery life of the device.
  • the preset function f can also be used to replace the table of the method 3.
  • the controller substitutes the output voltage U and battery temperature T of the battery pack into the preset function f to obtain the function value.
  • the value is less than or equal to the preset value, it is determined that the batteries in the battery pack need to be switched to series mode.
  • the function value of the preset function is positively correlated with the temperature of the battery pack, and the function value of the preset function is positively correlated with the output voltage of the battery pack.
  • the preset value is selected according to the size of the load current. When the load current is greater than the preset current, it corresponds to the first preset value. When the load current is less than or equal to the preset current, it corresponds to the second preset value. The first preset value is less than The second preset value. That is, the heavy load scene corresponds to the first preset value, and the light load scene corresponds to the second preset value.
  • the preset value represents the threshold voltage when switching between series mode and parallel mode at 0°C.
  • a heavy load scenario corresponds to the first preset value.
  • the battery pack When the battery voltage is greater than the first preset value, the battery pack should be in parallel mode; when the battery voltage is less than or equal to the first preset value, the series mode is suitable.
  • the working mode of the battery pack needs to be switched.
  • it can also be forced to switch through the control interface of the terminal device. For example, add “low temperature mode” to the control interface of the terminal device.
  • the control interface of the terminal device When the user chooses to enter the "low temperature mode” , Make sure the low temperature mode button is triggered, at this time the battery pack should switch to series mode.
  • the power supply system switches to automatic mode, and the controller of the power supply system automatically selects the most suitable working mode.
  • the low battery mode button is triggered.
  • the battery pack should be switched to series mode.
  • the power supply system switches to automatic mode, and the controller of the power supply system automatically selects the most suitable working mode.
  • the step-down circuit when the batteries in the battery pack are in series mode, the step-down circuit is controlled to work, and the bypass circuit is controlled to stop working; it can also be used when the batteries in the battery pack are in parallel mode, Control the bypass circuit to work, and control the step-down circuit to stop working. Therefore, the batteries in the battery pack can be controlled to switch between series mode and parallel mode, and the batteries in the battery pack can be controlled in parallel in scenarios such as low ambient temperature (such as outdoor in winter), low battery power and heavy load.
  • Switching the mode to the serial mode can greatly reduce the probability of abnormal shutdown of the terminal device, improve the stability of the terminal device application in the above-mentioned scenarios, and thereby improve the user experience in the above-mentioned scenarios.
  • the batteries in the battery pack are controlled to switch from series mode to parallel mode to improve the discharge efficiency of the battery pack, extend the end-use time of the terminal device, and improve the user experience Use experience under the scene.
  • the embodiment of the present application also provides another power supply method for terminal equipment, which can make the battery pack switch smoothly between the series mode and the parallel mode, so as to reduce the influence of the switching process on the output voltage of the power supply system, thereby improving
  • the stability of the terminal device is described in detail below by taking the method applied to the power supply system shown in FIG. 7 as an example.
  • the following first explains the power supply method when the battery pack is switched from the parallel mode to the series mode.
  • FIG. 28 is a flowchart of the power supply method when the battery pack is switched from the parallel mode to the series mode according to an embodiment of the application.
  • the method includes the following steps:
  • S2801 First control the step-down circuit to work and the bypass circuit to stop working.
  • the switching of the step-down circuit and the bypass circuit needs to be before the state switching of the switch tubes Q1, Q2, and Q3.
  • S2802 Control the first switching tube, the second switching tube and the third switching tube to turn off.
  • S2803 Control the second switch tube to close after the first preset time.
  • the switching tubes in the battery pack do not switch at the same time, but first control the first switching tube Q1 and the third switching tube Q3 to be turned off After the first preset time, the second switch Q2 is controlled to turn on.
  • the first preset time may be the dead time of the NMOS transistor.
  • the dead time please refer to the second embodiment of the above system, which will not be repeated in this embodiment.
  • This method realizes the smooth switching of the bypass circuit and the step-down circuit when the battery is switched from the parallel mode to the series mode, reduces the voltage impact of the higher output voltage after the battery is connected in series on the subsequent circuit, and further improves the terminal equipment The stability.
  • the following describes the power supply method when the battery pack is switched from series mode to parallel mode.
  • FIG. 29 is a flowchart of the power supply method when the battery pack is switched from series mode to parallel mode according to an embodiment of the application.
  • the method includes the following steps:
  • S2901 First control the first switching tube, the second switching tube and the third switching tube to be turned off.
  • the switching of the step-down circuit and the bypass circuit needs to be performed after the switch tubes Q1, Q2 and Q3 complete the state switching.
  • S2902 Control the first switching tube and the third switching tube to close after the second preset time.
  • the second preset time may be the dead time of the NMOS transistor.
  • the dead time please refer to the second embodiment of the above system, which will not be repeated in this embodiment.
  • the voltage between the batteries will be unequal.
  • the controller will control the lower voltage battery to connect to the circuit to start power supply. Because the high voltage battery is switched first Power supply, switching power supply after low-voltage battery reduces the voltage difference between the batteries, thus reducing the inrush current between the batteries.
  • the balance time may also be referred to as the fourth preset time, and the balance time is determined by the voltage difference between the batteries and the internal resistance of each battery. The greater the voltage difference between the batteries and the greater the internal resistance of the batteries, the longer the balancing time required. If there is no pressure difference between the two batteries, no balancing time is required.
  • controlling the first switching tube and the third switching tube to close after the second preset time is specifically:
  • the first switch tube is controlled to be closed after the second preset time, and the third switch tube is controlled to be closed after the fourth preset time.
  • the third switch tube is controlled to be closed after the second preset time, and the first switch tube is controlled to be closed after the fourth preset time.
  • the first switch tube and the third switch tube can be controlled to be closed at the same time after the second preset time.
  • S2903 Control the bypass circuit to work and the step-down circuit to stop working after the third preset time.
  • the switch tubes in the battery pack do not switch at the same time, but first control the second switch tube Q2 to turn off, and then control the first switch after the second preset time
  • the tube Q1 and the third switch tube Q3 are closed, and after a third preset time, the bypass circuit is controlled to work and the step-down circuit stops working.
  • the sum of the dead time and the third preset time can be called the lag time.
  • the third preset time needs to be greater than the dead time of the NMOS transistor to ensure that when the controller controls the switching of the step-down circuit 603 and the bypass circuit 602, the first switch transistor Q1 and the third switch transistor Q3 are already in the conducting state.
  • the power supply method can realize smooth switching between the bypass circuit and the step-down circuit when the battery is switched from the parallel mode to the series mode, and also reduces the current impact between the batteries during the switching process and protects the battery.
  • an embodiment of the present application also provides a terminal device, which is described in detail below with reference to the accompanying drawings.
  • FIG. 30 is a schematic diagram of a terminal device according to an embodiment of the application.
  • the terminal device 3000 includes: a power supply system 3001 and power consumption components 3002.
  • the power supply system 3001 includes: a battery pack, a bypass circuit, a step-down circuit, and a controller.
  • the battery pack includes at least two batteries. The output end of the battery pack is connected to the input end of the step-down circuit, and the output end of the step-down circuit is connected to the power consumption components of the terminal equipment; both ends of the bypass circuit are connected across the step-down circuit Input and output.
  • the power supply system of the terminal equipment includes a controller, which controls the step-down circuit to work and controls the bypass circuit to stop working when the batteries in the battery pack are in series mode; it can also be used when the batteries in the battery pack are in parallel mode, Control the bypass circuit to work, control the step-down circuit to stop working, and can control the batteries in the battery pack to switch between series mode and parallel mode, and in low ambient temperature (such as outdoor in winter), low battery power and Scenarios such as heavy load control that the batteries in the battery pack are switched from parallel mode to series mode, which can greatly reduce the probability of abnormal shutdown of the terminal device, improve the stability of the terminal device when used in the above scenarios, and improve the user’s experience in the above scenarios. Under the use experience.
  • the batteries in the battery pack are controlled to switch from series mode to parallel mode to improve the discharge efficiency of the battery pack, extend the end-use time of the terminal device, and improve the user experience Use experience under the scene.
  • the types and application scenarios of the terminal device are not specifically limited in the embodiments of the present application, and may be a folding screen mobile phone or other terminal devices with batteries.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” means that there can be three relationships.
  • a and/or B can mean: only A, only B, and A and B, where A and B can be singular or plural .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种终端设备的供电系统、方法、芯片及终端设备,涉及充电领域。该供电系统包括:电池组、旁路电路、降压电路和控制器;电池组包括至少两块电池;电池组的输出端连接降压电路的输入端,降压电路的输出端连接终端设备的耗电元件;旁路电路的一端连接降压电路的输入端,旁路电路的另一端连接降压电路的输出端;控制器用于在电池组内的电池需要切换为串联模式时,控制降压电路工作,控制旁路电路停止工作;还用于在电池组内的电池需要切换为并联模式时,控制旁路电路工作,控制降压电路停止工作。利用该系统,能够根据实际情况自动实现串联模式和并联模式之间的切换,提升终端设备的稳定性的同时也能够增加续航。

Description

一种终端设备的供电系统、方法、芯片及终端设备
本申请要求于2019年7月18日提交中国专利局、申请号为201910651651X、发明名称为“一种终端设备的供电系统、方法、芯片及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端设备技术领域,尤其涉及一种终端设备的供电系统、方法、芯片及终端设备。
背景技术
随着技术的普及,越来越多终端设备的电池组采用多块电池供电。当终端设备的电池组包括多块电池时,电池组通常采用并联模式。
当电池组采用并联模式时,多块电池的正极与正极相连,负极与负极相连,电池组内各电池的输出电压相同且均等于电池组的输出电压。而由于电池存在内阻且电池的内阻随电池温度降低而增大,当环境温度低时,电池温度相应也低,电池的内阻变大,进而造成电池的输出电压降低,容易引起终端设备关机。
因此,电池组采用并联模式时可能会降低终端设备的稳定性。
发明内容
本申请技术方案提供了一种终端设备的供电系统、方法、芯片及终端设备,可以在串联模式和并联模式之间切换,提升终端设备的稳定性的同时也可以增加续航。
第一方面,本申请技术方案提供了一种终端设备的供电系统,该系统包括:电池组、旁路电路、降压电路和控制器;电池组包括至少两块电池;电池组的输出端连接降压电路的输入端,降压电路的输出端连接终端设备的耗电元件;旁路电路的一端连接降压电路的输入端,旁路电路的另一端连接降压电路的输出端;控制器,用于在电池组内的电池需要切换为串联模式时,控制降压电路工作,控制旁路电路停止工作,还用于在电池组内的电池需要切换为并联模式时,控制旁路电路工作,控制降压电路停止工作。
该系统的控制器可以在串联模式和并联模式之间进行切换。电池组切换为串联模式能够提高输出电压,从而避免终端设备因为供电不足而关机,能够提高用户使用终端设备时的稳定性。而电池组切换为并联模式可以不必使用降压电路,因此可以提高电池组的放电效率,增加电池的续航能力,提升了用户的使用体验。
结合第一方面,在第一种可能的实现方式中,控制器,用于控制降压电路工作,控制旁路电路停止工作,包括:控制器确定电池组的输出电压大于或等于第一预设电压阈值时,控制降压电路工作,控制旁路电路停止工作。
该第一预设电压阈值可以大于并联模式的电池组的最大输出电压且小于串联模式的电池组的最小输出电压。控制器通过将电池组的输出电压与第一预设电压阈值进行比较,进而确定旁路电路和降压电路的工作状态。
结合第一方面及上述任一种可能的实现方式,在第二种可能的实现方式中,控制器还 用于在判断耗电元件两端的电压低于第二预设电压阈值时,确定电池组内的电池需要切换为串联模式。
控制器可以根据电池组当前的输出电压、流经耗电元件的电流以及各电路器件的阻抗,确定耗电元件两端的电压。其中,该第二预设电压阈值可以设置为终端设备的关机门限电压。当耗电元件两端的电压小于等于第二预设电压阈值时,表征当前并联模式的电压输出能力不足以支撑耗电元件正常工作,应切换到串联模式。
结合第一方面及上述任一种可能的实现方式,在第三种可能的实现方式中,控制器还用于根据电池组的输出电压和电池组的温度确定电池组内的电池需要切换为串联模式。电池组的输出电压可以通过ADC采样得到。控制器可以通过检测热敏电阻的阻值,获取该阻值对应的温度,进而确定电池的温度。
结合第一方面及上述任一种可能的实现方式,在第四种可能的实现方式中,控制器还用于根据电池组的输出电压和电池组的温度通过查表,确定电池组内的电池需要切换为串联模式。表中记录的输出电压与温度状态可以不穷尽,以减少占用终端设备的存储空间,输出电压与温度状态对应形成状态点,实测的电池组的输出电压和温度可向最近的已定义状态点取整。
结合第一方面及上述任一种可能的实现方式,在第五种可能的实现方式中,控制器根据负载电流选择与负载电流对应的表,负载电流大于预设电流时确定处于大负载场景,此时对应大负载表;负载电流小于或等于预设电流时确定处于小负载场景,此时对应小负载表。控制器可以实时测量放电通路的检流电阻两端的电压,则检流电阻两端的电压与检流电阻的阻抗的比值即为负载电流。在获取相应的表后,控制器根据电池组的输出电压和电池组的温度通过查表,确定该场景下电池组内的电池需要的工作模式。
在低温、低电压、大负载的场景下,可以优先使用串联模式,防止设备异常关机;在小负载的场景下,可以使用并联模式以增加设备的续航时间。
结合第一方面及上述任一种可能的实现方式,在第六种可能的实现方式中,控制器还用于根据电池组的输出电压和电池组的温度获得对应的数值,当数值小于或等于预设值时,确定电池组内的电池需要切换为串联模式。
该实现方式在判断电池组应处于的工作模式时可以减少占用终端设备的存储空间。
结合第一方面及上述任一种可能的实现方式,在第七种可能的实现方式中,控制器用于将电池组的输出电压和电池组的温度利用预设函数获得函数值作为数值,当函数值小于或等于预设值时,确定电池组内的电池需要切换为串联模式;预设函数的函数值与电池组的温度正相关,预设函数的函数值与电池组的输出电压正相关。
例如,该预设值表征的是0℃时,串联模式和并联模式切换时的门限电压,当函数值大于预设值时,电池组应处于并联模式;当函数值小于等于预设值时,电池组应处于串联模式。影响该预设值的因素可以为所用电池的低温放电能力,所用电池的低温放电能力越强,则预设值可以越小。
控制器还用于根据负载电流选择预设值,负载电流大于预设电流时对应大负载场景,此时对应第一预设值;负载电流小于或等于预设电流时对应小负载场景,此时对应第二预 设值。其中,第一预设值小于第二预设值,表明小负载场景下更倾向于使用并联模式以增加设备的续航时间。
结合第一方面及上述任一种可能的实现方式,在第八种可能的实现方式中,控制器还用于在确定低温模式按钮被触发时,确定电池组内的电池需要切换为串联模式。
可以理解的,低温模式按钮的按钮,可以为虚拟按钮,也可以为实体按键。
终端设备的控制界面可以增加“低温模式”,响应于用户的触发,终端设备进入低温模式,电池组被切换到串联模式。而当用户退出“低温模式”后,供电系统切换到自动模式,供电系统的控制器自动选择最合适的工作模式。
结合第一方面及上述任一种可能的实现方式,在第九种可能的实现方式中,控制器还用于在确定电池组的电量低于预设电量或确定低电量模式按钮被触发时,确定电池组内的电池需要切换为串联模式。
可以理解的,低电量模式按钮的按钮,可以为虚拟按钮,也可以实体按键。
终端设备的控制界面可以增加“低电量模式”按钮以使用户能够主动选择进入“低电量模式”;终端设备还可以增加“允许终端设备自动进入低电量模式”的按钮,以使用户能够允许终端设备自动进入低电量模式。
进一步的,“低温模式”和“低电量模式”可以供用户同时选择,例如同时在终端设备的控制界面上设置上述两种模式。
结合第一方面及上述任一种可能的实现方式,在第十种可能的实现方式中,旁路电路包括以下任意开关器件:晶体管、继电器、负载开关和金属氧化物半导体场效应管。降压电路包括以下任意一种:Buck电路、开关电容(switched capacitor)、三电平直流-直流电路和单端初级电感变换器(single ended primary inductor converter)。
结合第一方面及上述任一种可能的实现方式,在第十一种可能的实现方式中,电池组至少包括两块电池:第一电池和第二电池;电池组还包括:第一开关管、第二开关管和第三开关管;第一电池的正极连接降压电路的输入端;第一电池的负极通过第二开关管连接第二电池的正极,第二电池的负极接地;第一开关管的一端连接第一电池的负极,第一开关管的另一端接地;第三开关管的一端连接降压电路的输入端,所述第三开关管的另一端连接第二电池的正极;在电池需要切换为串联模式时,控制器控制第一开关管和第三开关管断开,控制第二开关管闭合;在电池需要切换为并联模式时,控制器控制第二开关管断开,控制第一开关管和第三开关管闭合。
控制器通过控制第一开关管、第二开关管和第三开关管处于不同开关组合状态,实现电池组内电池的串联和并联的切换。
结合第一方面及上述任一种可能的实现方式,在第十二种可能的实现方式中,该供电系统还包括:第一电容;第一电容的第一端连接电池组的输出端,第一电容的第二端接地。在电池需要切换为串联模式时,控制器控制第一开关管和第三开关管断开,控制第二开关管闭合,包括:在电池需要切换为串联模式时,控制器控制第一开关管、第二开关管和第三开关管均断开,第一预设时间后再控制第二开关管闭合。
第一电容可以用于稳压和滤波,从而提高供电质量。该第一预设时间的长度大于开关 管的死区时间的长度,设置该第一预设时间可以避免电池单体在切换过程中自身的正负极间短路。
结合第一方面及上述任一种可能的实现方式,在第十三种可能的实现方式中,该供电系统还包括:第二电容。第二电容的第一端连接降压电路的输出端,第二电容的第二端接地。
第二电容可以用于稳压和滤波,从而提高供电质量。第一电容和第二电容可以用于在死区时间内维持供电系统的输出电压相对稳定。
结合第一方面及上述任一种可能的实现方式,在第十四种可能的实现方式中,在电池组内的电池需要切换为并联模式时,控制旁路电路工作,控制降压电路停止工作,在电池需要切换为并联模式时,控制器控制第二开关管断开,控制第一开关管和第三开关管闭合,包括:
在电池需要切换为并联模式时,控制器控制第一开关管、第二开关管和第三开关管均断开,第二预设时间后控制器控制第一开关管和第三开关管闭合,第三预设时间后控制器控制旁路电路工作,控制降压电路停止工作。为了避免电池在切换过程中自身正负极间短路,需要先控制电池组切换为串联模式,然后才能控制旁路电路工作及降压电路停止工作,所以该第三预设时间大于开关管的死区时间,可以确保控制器控制降压电路和旁路电路的切换时,第一开关管和第三开关管已经处于导通状态。
结合第一方面及上述任一种可能的实现方式,在第十五种可能的实现方式中,第二预设时间后控制器控制第一开关管和第三开关管闭合,包括:当控制器判断第一电池的电压大于第二电池的电压时,第二预设时间后,控制器控制第一开关管闭合,第四预设时间后,控制器控制第三开关管闭合;或,当控制器判断第一电池的电压小于第二电池的电压时,第二预设时间后,控制器控制第三开关管闭合,第四预设时间后,控制器再控制第一开关管闭合;或,当控制器判断第一电池的电压等于第二电池的电压时,控制器第二预设时间后,控制器控制第一开关管和第三开关管闭合。
该第四预设时间可以称为平衡时间,可以是电池组从串联模式切换为并联模式的过程中,电池间电压均衡的时间。由于控制器控制高电压的电池先切换供电,低电压的电池后切换供电,减小了电池间的电压差,因此能够降低电池间的冲击电流。
第二方面,本申请技术方案提供了一种芯片,该芯片包括:旁路电路和降压电路。降压电路的输入端连接电池组的输出端,降压电路的输出端连接终端设备的耗电元件;旁路电路的一端连接在降压电路的输入端,旁路电路的另一端连接降压电路的输出端。旁路电路和降压电路均与终端设备的控制器连接,当电池组内的电池需要切换为串联模式时,响应于控制器的控制信号,所述降压电路工作,旁路电路停止工作;当电池组内的电池为并联模式时,响应于控制器的控制信号,旁路电路工作,降压电路停止工作。
由上,该芯片同时包括降压电路和旁路电路,当供电系统使用该芯片时能够减少硬件设备的尺寸,节省成本。
第三方面,本申请技术方案提供了一种终端设备的供电方法,应用于终端设备的供电系统,该供电系统包括:电池组、旁路电路、降压电路和控制器。其中,电池组包括至少 两块电池;电池组的输出端连接降压电路的输入端,降压电路的输出端连接终端设备的耗电元件;旁路电路的一端连接在降压电路的输入端,旁路电路的另一端连接降压电压的输出端;当电池组内的电池为串联模式时,控制降压电路工作,控制旁路电路停止工作;当电池组内的电池为并联模式时,控制旁路电路工作,控制降压电路停止工作。
该方法可以控制电池组内的电池在串联模式和并联模式之间进行切换。电池组切换为串联模式可以提高输出电压,从而避免终端设备因为供电不足而关机,能够提高用户使用终端设备时的稳定性。而电池组切换为并联模式可以不必使用降压电路,因此可以提高电池组的放电效率,增加电池的续航能力,提升了用户的使用体验。
结合第三方面,在第一种可能的实现方式中,该方法还包括:根据电池组的输出电压和电池组的温度确定电池组内的电池需要切换为串联模式。电池组的输出电压可以通过ADC采样得到。通过检测热敏电阻的阻值,获取该阻值对应的温度,进而确定当前电池的温度。
结合第三方面及上述任一种可能的实现方式,在第二种可能的实现方式中,根据电池组的输出电压和电池组的温度确定电池组内的电池需要切换为串联模式,包括:
根据电池组的输出电压和电池组的温度通过查表,确定电池组内的电池需要切换为串联模式。该表中记录的输出电压与温度状态可以不穷尽,以减少占用终端设备的存储空间,输出电压与温度状态对应形成状态点,实测的电池组的输出电压和温度可向最近的已定义状态点取整。
结合第三方面及上述任一种可能的实现方式,在第三种可能的实现方式中,该方法还包括:根据负载电流选择与负载电流对应的表,负载电流大于预设电流时确定处于大负载场景,此时对应大负载表;负载电流小于或等于预设电流时确定处于小负载场景,此时对应小负载表。
该方式将负载、电池组的输出电压与电池温度结合作为判据,在低温、低电压、大负载的场景下,优先使用串联模式,防止设备异常关机;在小负载的场景下,更倾向于使用并联模式以增加设备的续航时间。
结合第三方面及上述任一种可能的实现方式,在第四种可能的实现方式中,该方法还包括:在判断耗电元件两端的电压低于第二预设电压阈值时,确定电池组内的电池需要切换为串联模式。可以根据电池组当前的输出电压、流经耗电元件的电流以及各电路器件的阻抗,确定耗电元件两端的电压。该第二预设电压阈值可以设置为终端设备的关机门限电压,当耗电元件两端的电压小于等于第二预设电压阈值时,表征当前并联模式的电压输出能力不足以支撑耗电元件正常工作,应切换到串联模式。
结合第三方面及上述任一种可能的实现方式,在第五种可能的实现方式中,该方法还包括:根据电池组的输出电压和电池组的温度获得对应的数值,当数值小于或等于预设值时,确定电池组内的电池需要切换为串联模式。该方法在判断电池组应处于的工作模式时可以减少占用中断设备的存储空间。
结合第三方面及上述任一种可能的实现方式,在第六种可能的实现方式中,该方法还包括:将电池组的输出电压和电池组的温度利用预设函数获得函数值作为数值,当函数值 小于或等于预设值时,确定电池组内的电池需要切换为串联模式;预设函数的函数值与电池组的温度正相关,预设函数的函数值与电池组的输出电压正相关。根据负载电流选择预设值,负载电流大于预设电流时对应大负载场景,此时对应第一预设值;负载电流小于或等于预设电流时对应小负载场景,此时对应第二预设值。其中,第一预设值小于第二预设值,表明小负载场景下更倾向于使用并联模式以增加设备的续航时间。
结合第三方面及上述任一种可能的实现方式,在第七种可能的实现方式中,该方法还包括:在确定低温模式按钮被触发时,确定电池组内的电池需要切换为串联模式。可以在终端设备的控制界面增加“低温模式”,响应于用户的触发,终端设备进入低温模式,电池组被切换到串联模式。
结合第三方面及上述任一种可能的实现方式,在第八种可能的实现方式中,该方法还包括:在确定电池组的电量低于预设电量或确定低电量模式按钮被触发时,确定电池组内的电池需要切换为串联模式。可以在终端设备的控制界面增加“低电量模式”按钮以使用户能够主动选择进入“低电量模式”;终端设备还可以增加“允许终端设备自动进入低电量模式”的按钮,以使用户能够允许终端设备自动进入低电量模式。
进一步的,“低温模式”和“低电量模式”可以供用户同时选择,例如同时在终端设备的控制界面上设置上述两种模式。
第四方面,本申请技术方案还提供了一种终端设备,该终端设备包括上述任一种供电系统,还包括:耗电元件。该供电系统用于给耗电元件供电。
由于该终端设备包括上述的供电系统,该供电系统的控制器可以控制电池组在串联模式和并联模式之间进行切换。由于串联模式可以提高输出电压,从而避免终端设备因为供电不足而关机,进而提高用户使用终端设备时的稳定性。而并联模式时可以不必使用降压电路,因此可以提高电池组的放电效率,增加终端设备的续航能力。
结合第四方面,在第一种可能的实现方式中,该终端设备的供电系统包括电池组、旁路电路、降压电路、控制器。其中,电池组包括第一电池和第二电池。第一电池的正极连接降压电路的输入端,第一电池的负极通过第二开关管连接第二电池的正极,第二电池的负极接地。第一开关管的一端连接第一电池的负极,另一端接地。第三开关管的一端连接降压电路的输入端,另一端连接第二电池的正极。
当第一电池和第二电池的电量充足且工作在小负载场景、非低温的环境时,可以控制电池组切换至并联模式,并联模式时可以不必使用降压电路,以提高电池组的放电效率,增加电池的续航能力。
当第一电池和第二电池的电量不足、或工作在大负载场景或工作在低温的环境时,可以控制电池组切换至串联模式,由于串联模式可以提高输出电压,从而避免终端设备因为供电不足而关机。
控制器用于在判断耗电元件两端的电压低于第二预设电压阈值时,确定电池组内的电池需要切换为串联模式。控制器还用于根据电池组的输出电压和电池组的温度确定电池组内的电池需要切换为串联模式。
此外,控制器还能够在确定低温模式按钮被触发时,确定电池组内的电池需要切换为 串联模式;在确定电池组的电量低于预设电量或确定低电量模式按钮被触发时,确定电池组内的电池需要切换为串联模式。
当控制器控制电池组由并联模式切换为串联模式时,初始时电池组处于并联模式,并联模式时的第二开关管处于断开状态,第一开关管和第三开关管处于闭合状态。
在电池组由并联模式切换为串联模式的过程中,可以同时对降压电路和旁路电路的工作状态进行切换,为防止电池串联产生的高电压直接冲击后级电路,降压电路需在第二开关管闭合之前开始工作。需要提前使降压电路开始工作是由于降压电路的打开不是瞬间完成的,而需要一定的启动时间,该启动时间即切换降压电路与控制第二开关管闭合之间的过渡时间,也可以称为超前时间。
为了避免电池在切换过程中自身正负极间短路,控制器对降压电路和旁路电路的工作状态进行切换后,首先控制第一开关管和第三开关管均断开,并保持第二关管关断,待第一预设时间后再控制第二开关管闭合。该第一预设时间可以为开关管的死区时间,也可以大于开关管的死区时间,以为开关管完成切换提供充足的时间,进一步降低电池单体在切换过程中自身的正负极间短路的可能性。
在第一预设时间内供电系统的输出电压由第一电容与第二电容维持相对稳定。
当控制器控制电池组由串联模式切换为并联模式时,初始时电池组处于串联模式,串联模式时的第二开关管处于闭合状态,第一开关管和第三开关管处于断开状态。
在电池组由串联模式切换为并联模式的过程中,为了避免电池在切换过程中自身正负极间短路,电池组内的开关管并不是同时进行切换,而是首先控制第二开关管断开并保持第一开关管和第三开关管断开,待第二预设时间后再控制第一开关管和第三开关管闭合,该第二预设时间可以为开关管的死区时间,也可以大于开关管的死区时间,以为开关管完成切换提供充足的时间,进一步降低电池单体在切换过程中自身的正负极间短路的可能性。
在第一预设时间内供电系统的输出电压由第一电容与第二电容维持相对稳定。
为了防止切换过程中串联的电池输出的较高电压直接冲击后级电路,对于降压电路和旁路电路的切换需要在第一开关管和第三开关管的状态切换之后第三预设时间。即需要先控制电池组切换为串联模式后,才能控制旁路电路工作及控制降压电路停止工作,所以该第三预设时间需要大于开关管的死区时间,以确保控制器控制降压电路和旁路电路的切换时,第一开关管和第三开关管已经处于导通状态。
在一种实现方式中,当电池处于串联模式时,由于电池间存在容量差异或者自放电速率差异,会导致各个电池之间的电压不等,此时如果直接切换为并联模式会导致电池之间的冲击电流过大进而损伤电池。为了降低冲击电流,本申请还设置了第四预设时间,也可以称为平衡时间,是电池组从串联模式切换为并联模式的过程中,电池间电压均衡的时间。
当控制器判断第一电池的电压小于第二电池的电压时,先控制第二开关管断开,待第二预设时间后先控制第三开关管闭合,待第四预设时间后再控制第一开关管闭合,待第三预设时间后控制旁路电路工作且控制降压电路停止工作。
当控制器判断第一电池的电压等于第二电池的电压时,此时两电池可以同时接入,电池间无冲击电流,控制器先控制第二开关管断开,待第二预设时间后控制第一开关管和第 三开关管闭合,待第三预设时间后控制旁路电路工作且控制降压电路停止工作。
当控制器判断第一电池的电压大于第二电池的电压时,控制器先控制第二开关管断开,待第二预设时间后先控制第一开关管闭合,待第四预设时间后再控制第三开关管闭合,待第三预设时间后控制旁路电路工作且控制降压电路停止工作。
由于高电压的电池先切换供电,经过平衡时间后低电压的电池才切换供电,因此减小了电池间的电压差,因此降低了电池间的冲击电流。
为了简化控制降压电路和旁路电路时的控制信号和控制流程,当控制器判断电池组的输出电压高于第一预设电压阈值时,控制器确定此时降压电路工作,旁路电路不工作;当控制器判断电池组的输出电压低于或等于第一预设电压阈值时,控制器确定此时旁路电路工作,降压电路不工作,以实现旁路电路和降压电路的自动切换。
该第一预设电压阈值大于并联模式的电池组的最大输出电压且小于串联模式的电池组的最小输出电压。
其中,上述技术方案中,低温模式按钮的按钮,可以为虚拟按钮,也可以为实体按键。低电量模式按钮的按钮,可以为虚拟按钮,也可以实体按键。
可以理解的,上述技术方案中的“连接”可以为直接连接,也可以为间接连接。例如:所述电池组的输出端连接所述降压电路的输入端,可以为,所述电池组的输出端直接连接所述降压电路的输入端,或者,也可以为,所述电池组的输出端通过电阻连接降压电路的输入端。
可以理解的,上述技术方案中的耗电元件,可以为,CPU(全称:Central Processing Unit)、GPU(全称:Graphics Processing Unit)、基带处理器、存储器、显示屏、射频器件、音频器件和传感器中的至少任一器件。当然,耗电元件也可以为终端设备中的其他耗电元件。
可以理解的,上述技术方案中的终端设备,可以为手机,例如智能手机、折叠屏手机。也可以为平板电脑、穿戴式设备。也可以为头戴式设备,例如虚拟现实设备或增强现实设备。当然,终端设备也可以为其他具有电池的终端设备。
可以理解的,上述技术方案中的电池组可以为两块电池,也可以为三块电池,当然也可以为更多块电池。
可以理解的,上述技术方案中的控制器可以为应用处理器,也可以为电源管理单元PMU。当然,控制器也可以为其他处理器。
从以上技术方案可以看出,本申请技术方案具有以下有益效果:
该供电系统中的控制器能够当电池组内的电池为串联模式时,控制降压电路工作,控制旁路电路停止工作;还能够当电池组内的电池为并联模式时,控制旁路电路工作,控制降压电路停止工作。串联模式可以提高输出电压,可以避免终端设备因为供电不足而关机,进而提高用户使用终端设备的稳定性。并联模式可以不必使用降压电路,可以提高电池组的放电效率,增加电池的续航能力。
附图说明
图1为折叠屏架构下采用多块电池供电时的示意图;
图2为采用多块电池供电时的示意图;
图3为本申请实施例提供的多块电池采用并联模式时的示意图;
图4为本申请实施例提供的多块电池采用串联模式时的示意图;
图5为本申请实施例提供的一种终端设备的供电系统的示意图;
图6为本申请实施例提供的供电系统的电路图;
图7为本申请实施例提供的另一种终端设备的供电系统的示意图;
图8为本申请实施例提供的放电能力评估电路的示意图;
图9为本申请实施例提供的模式边界的示意图;
图10为本申请实施例提供的另一种模式边界的示意图;
图11为本申请实施例提供的一种终端设备的控制界面的示意图;
图12为本申请实施例提供的另一种终端设备的控制界面的示意图;
图13a为本申请实施例提供的由并联模式切换为串联模式的控制时序图;
图13b为本申请实施例提供的NMOS管的寄生电容的示意图;
图13c为本申请实施例提供的NMOS管导通过程和断开过程的Vgs曲线;
图14为本申请实施例提供的并联模式的仿真图;
图15为本申请实施例提供的串联模式的仿真图;
图16为本申请实施例提供的模式切换时的仿真图;
图17为本申请实施例提供的电池模式切换前后电压的仿真图;
图18为本申请实施例提供的一种由串联模式切换为并联模式的控制时序图;
图19为本申请实施例串联模式切换为并联模式时的仿真图;
图20为本申请实施例提供的另一种由串联模式切换为并联模式的控制时序图;
图21为本申请实施例提供的再一种由串联模式切换为并联模式的控制时序图;
图22为本申请实施例提供的无平衡时间的切换仿真图;
图23为本申请实施例提供的有平衡时间的切换仿真图;
图24为本申请实施例提供的一种电池工作模式的自动控制示意图;
图25为本申请实施例提供的另一种电池工作模式的自动控制示意图;
图26为本申请实施例提供的一种芯片的示意图;
图27为本申请实施例提供的一种终端设备的供电方法的流程图;
图28为本申请实施例提供的电池组由并联模式切换为串联模式时的供电方法的流程图;
图29为本申请实施例提供的电池组由串联模式切换为并联模式时的供电方法的流程图;
图30为本申请实施例提供的一种终端设备的示意图。
具体实施方式
随着技术的普及,越来越多的终端设备使用多块电池为其供电。本申请实施例不具体限定终端设备的类型,终端设备可以为使用多块电池供电的手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备以及车载设备等。
下面首先介绍具有多块电池供电的终端设备。
参见图1,该图为折叠屏架构下采用多块电池供电时的示意图。
具有折叠屏的终端设备的一侧包括第一电池101和第一主板103,另一侧包括第二电池102和第二主板104,第一电池101和第二电池102形成的电池组为终端设备供电。
参见图2,该图为采用多块电池供电时的示意图。
该设备包括SIP主板201、第一电池101和第二电池102。其中,第一电池101和第二电池102形成的电池组为终端设备供电。
当终端设备的电池组包括多块电池时,电池组通常采用并联模式,下面以终端设备为手机、终端设备的电池组包括两块电池:第一电池和第二电池为例进行说明。
参见图3,该图为本申请实施例提供的多块电池采用并联模式时的示意图。
当电池组采用并联模式时,第一电池101的正极与第二电池102的正极相连后形成电池组的正极,第一电池101的负极与第二电池102的负极相连后形成电池组的负极。
此时,电池组内各电池的输出电压相同,等于电池组的输出电压,电池组的输出电压较低,输出电压范围可以为3.6V-4.2V。由于电池存在内阻且电池的内阻随电池温度降低而增大,当环境温度低时,电池温度相应也低,电池的内阻变大,能够从约20mΩ上升至约1Ω。在相同电流的冲击下,电池内阻升高会造成电池的输出电压降低,电池组的输出电压相应降低。当电池组的输出电压低于手机的关机门限电压(例如,手机的关机门限电压为2.6V)时,会引起手机关机。该类问题常会出现在寒冷的冬天,影响用户在户外使用手机。此外,当电池电量较低时,电池组的输出电压较低,也容易引起终端设备关机。
因此,电池组采用并联模式时会降低终端设备的稳定性。
为了解决上述技术问题,本申请实施例提供了一种终端设备的供电系统,该供电系统包括电池组、旁路电路、降压电路和控制器,该供电系统包括的控制器能够控制电池组进行串联模式和并联模式间的切换。其中,电池组处于并联模式时的示意图可以参见图3,电池组处于串联模式时的示意图可以参见图4。控制器还能够在确定电池组内的电池需要切换为串联模式时,控制降压电路工作,控制旁路电路停止工作;还能够确定电池组内的电池需要切换为并联模式时,控制旁路电路工作,并控制降压电路停止工作。控制器可以根据实际的应用场景控制串联模式和并联模式之间的切换,由于串联模式可以提高输出电压,从而避免终端设备因为供电不足而关机,能够提高用户使用终端设备的稳定性。而并联模式时不必使用降压电路,因为可以提高电池组的放电效率,因此可以增加电池的续航能力,进而提升了用户的使用体验。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。
供电系统实施例一:
参见图5,该图为本申请实施例提供的一种终端设备的供电系统的示意图。
本申请实施例提供的终端设备的供电系统包括:电池组601、旁路电路602、降压电路603、控制器604和耗电元件605。
参见图6,该图为本申请实施例提供的供电系统的电路图。
电池组601的输出端连接降压电路603的输入端,降压电路603的输出端连接终端设 备的耗电元件605,旁路电路602的两端跨接在降压电路603的输入端和输出端。
控制器604连接电池组601、旁路电路602和降压电路603。
当控制器604确定电池组601内的电池需要切换为串联模式时,控制降压电路603工作,控制旁路电路602停止工作。在串联模式,电池组601的输出电压高于耗电元件605正常工作的电压,因此电池组601不能直接向耗电元件605供电,需要降压电路603对电池组601的输出电压进行降压。
控制器604可以根据多种判据确定电池需要切换为串联模式,例如可以根据耗电元件两端的电压,或者根据电池组的输出电压和电池温度,或者根据电池组的电量等。
可以理解的是,控制器604还可以同时根据上述至少两种判据确定电池需要切换为串联模式,例如根据耗电元件两端的电压判断电池组需要切换为串联模式,且,根据电池组的输出电压和电池温度判断电池组需要切换为串联模式时,才控制电池组切换为串联模式。多种判据均满足要求时才控制电池组切换为串联模式,进而提高控制器确定电池组需要切换为串联模式时的准确性。
本实施例中也不具体限定降压电路603的实现方式,可以采用具有降压功能的电路即可,例如降压电路603具体可以为以下任意一种:Buck电路、开关电容(switched capacitor)、三电平直流-直流电路和单端初级电感变换器(single ended primary inductor converter)。
当控制器604确定电池组601内的电池需要切换为并联模式时,控制旁路电路602工作,以使旁路电路602将降压电路603旁路。在并联模式,电池组601的输出电压较低,可用于向耗电元件605供电,不需要降压电路603对电池组601的输出电压进行降压。
可以理解的是,当电池组不需要工作在串联模式时,可以工作在并联模式。
以上实施例介绍的控制器604在产品实现时,具体可以为终端设备的处理器(CPU),或,PMU(Power Management Unit,电源管理单元),或,CPU和PMU联合来实现。
本实施例中不具体限定旁路电路602的实现方式,旁路电路602在电池组采用并联模式时工作。例如该旁路电路602可以包括以下的开关器件:
晶体管(Transistor)、继电器、负载开关和金属氧化物半导体场效应管(Metal Oxide Semiconductor,简称MOS管)。其中,MOS管可以为NMOS管或PMOS管。
图6中示出旁路电路602包括一个开关器件的情况,实际产品中,旁路电路602也可以包括多个开关器件,当包括多个开关器件时,多个开关器件串联,多个开关器件的类型可以相同,也可以不相同。例如:当旁路电路602包括两个相同的开关器件且均为NMOS管时,该旁路电路602中可以至少包括两个串联的NMOS管。
本申请实施例提供的终端设备包括的控制器能够在确定电池组内的电池需要切换为串联模式时,控制降压电路工作,控制旁路电路停止工作;还能够确定电池组内的电池需要切换为并联模式时,控制旁路电路工作,控制降压电路停止工作。控制器可以根据实际的应用场景控制电池组在串联模式和并联模式之间进行切换,由于串联模式可以提高输出电压,从而避免终端设备因为供电不足而关机,进而提高用户使用终端设备的稳定性。而并联模式时可以不必使用降压电路,因为可以提高电池组的放电效率,因此可以增加电池的续航能力进而提升了用户的使用体验。
该供电系统的电池组能够实现并联模式和串联模式之间的切换,下面首先说明电池由并联模式切换为串联模式的工作原理,
供电系统实施例二:
参见图7,该图为本申请实施例提供的另一种终端设备的供电系统的示意图。
该供电系统的电池组601至少包括以下两块电池:第一电池601a和第二电池601b。第一电池601a的输出电压为V1,第二电池601b的输出电压为V2。电池组601还包括:第一开关管Q1、第二开关管Q2和第三开关管Q3。
第一电池601a的正极连接降压电路603的输入端,第一电池601a的负极通过第二开关管Q2连接第二电池601b的正极,第二电池601b的负极接地。
第一开关管Q1的一端连接第一电池601a的负极,另一端接地。第三开关管Q3的一端连接降压电路603的输入端,另一端连接第二电池601b的正极。
开关管Q1、Q2和Q3可以为晶体管、继电器、负载开关和金属氧化物半导体场效应管中的任意一种或者多种的组合。通常具体产品中Q1、Q2和Q3可以采用同种类型的开关管,以便于控制器可以利用同样的控制信号进行控制,本申请实施例不作具体限定。控制器可以控制Q1、Q2和Q3不同开关组合状态,实现第一电池601a和第二电池601b的串联和并联。
本实施例中以旁路电路602包括第四开关管Q4,该降压电路603为Buck电路为例进行介绍。
控制器在该图中未示出,当控制器确定第一电池601a和第二电池601b需要切换为串联模式时,控制第一开关管Q1和第三开关管Q3断开,控制第二开关管Q2闭合。
该供电系统中还可以包括第一电容C1和第二电容C2。其中,第一电容C1的第一端连接电池组601的输出端,第一电容C1的第二端接地。第二电容C2的第一端连接耗电元件605的输入端,第二电容C2的第二端接地。第一电容C1和第二电容C2均可以用于稳压和滤波,从而提高供电质量。此外,对于实际的终端设备,第一电容C1和第二电容C2实际可以为多个电容形成的等效电容。
当控制器确定第一电池601a和第二电池601b需要切换为并联模式时,控制第二开关管Q2断开,控制第一开关管Q1和第三开关管Q3闭合。
下面具体说明控制器确定电池组601内的电池进行并联模式和串联模式间的切换的实现方式。
方式一:通过耗电元件两端的电压来判断电池组的工作模式。
控制器可以根据电池组当前的输出电压、流经耗电元件的电流以及各电路器件的阻抗,确定耗电元件两端的电压。当控制器判断耗电元件两端的电压低于第二预设电压阈值时,确定电池组需要从并联模式切换为串联模式。该第二预设电压阈值可以设置为终端设备的关机门限电压,例如关机门限电压可以为2.6V。
下面结合附图具体进行说明。
参见图8,该图为本申请实施例提供的放电能力评估电路的示意图。
当电池组处于并联模式时,第一开关管Q1和第三开关管Q3均闭合,第二开关管关 断,旁路电路工作。处于并联模式的第一电池601a和第二电池601b的电芯电压相等,即V1=V2。
Rcell1、Rcell2为分别表示第一电池601a和第二电池601b的电池的等效内阻,Rconnector为电池连接器的等效阻抗,Rpcb为板上走线的等效阻抗,Rq1、Rq3和Rq4分别为开关管Q1、Q3和Q4导通时的等效阻抗,上述各阻抗均为已知参量。
控制器可以实时测量放电通路的检流电阻(Current Sense Resistor)R0两端的电压,根据检流电阻两端的电压与检流电阻的阻抗的比值确定流经耗电元件605的电流Iload。电池组包括的电池可以通过电池连接器接入终端设备,该检流电阻R0可以设置在电池连接器的附近以检测电池组的电流。供电系统的输出电压Vout可由以下公式确定:
Vout=V1-((Rcell1+Rq1)//(Rcell2+Rq3)+Rconnector+Rq4+Rpcb+R0)×Iload      (1)
公式(1)中(Rcell1+Rq1)//(Rcell2+Rq3)表示串联的Rcell1与Rq1同串联的Rcell2与Rq3并联时的电阻,当由公式(1)确定的Vout≤第二预设电压阈值时,表征当前并联模式的电压输出能力不足以支撑耗电元件605正常工作,应切换到串联模式。
需要注意的是,电池内阻Rcell1和Rcell2可以均与电池温度有关,电池内阻会随着温度降低而变大。因此在低温环境下,通过公式(1)确定的Vout大于供电系统的实际输出电压,为了及时使电池组601的电池切换到串联模式,在一种可能的实现方式中,可以使不同的电池温度对应不同的第二预设电压阈值,电池温度较低时,对应的第二预设电压阈值较高,预先在终端设备中存储电池温度和第二预设电压阈值的对应关系,可以通过实时检测电池组的温度获取当前温度对应的第二预设电压阈值,将根据公式(1)确定当前的供电系统的输出电压Vout与当前温度对应的第二预设电压阈值进行比较,进而确定电池组是否应切换到串联模式。
在另一种可能的实现方式中,由于电池内阻Rcell1和Rcell2随温度变化的关系可以为预先确定的函数关系,因此可以实时检测第一电池601a和第二电池601b的温度,然后根据该预先确定的函数关系确定出当前温度下对应的阻Rcell1和Rcell2,进而根据公式(1)确定当前的供电系统的输出电压Vout,将供电系统的输出电压Vout与第二预设电压阈值进行比较,进而确定电池组是否应切换到串联模式,此时该第二预设电压阈值可以设置为终端设备的关机门限电压,例如关机门限电压可以为2.6V。
可以通过热敏电阻来测量温度,热敏电阻的阻值与温度的对应关系可以为预先确定的函数关系,控制器通过测量电池内部的热敏电阻的阻值,获取该阻值对应的电池温度。电池内可以采用NTC(Negative Temperature Coefficient,负温度系数)型的热敏电阻。
方式二:通过查表法来判断电池组的工作模式。
控制器可以根据负载电流,选择与负载电流对应的表。负载电流大于预设电流时对应大负载表,负载电流小于或等于预设电流时对应小负载表。控制器可以根据电池组的输出电压和电池组的温度通过查找对应的表,确定电池组的工作模式。
控制器可以实时测量放电通路的检流电阻两端的电压,则检流电阻两端的电压与检流电阻的阻抗的比值即为负载电流。电池组的输出电压可以通过ADC采样得到。控制器通过检测热敏电阻的阻值,获取该阻值对应的温度,进而确定电池的温度,电池内可以采用NTC 型的热敏电阻。
控制器判断当前的负载电流是否大于预设电流,该预设电流根据实际的终端设备确定,本申请实施例不作具体限定。当负载电流大于预设电流时,控制器确定此时处于大负载场景,当负载电流小于预设电流时,控制器确定此时处于小负载场景。大负载场景和小负载场景对应不同的表。
下面以表1所示的大负载表和表2所示的小负载表为例进行说明。表中的“串”表示串联模式,“并”表示并联模式。
表1 大负载表
Figure PCTCN2020102266-appb-000001
表2 小负载表
Figure PCTCN2020102266-appb-000002
下面举例说明控制器通过表确定电池组应处于的工作模式的原理。
例如:当负载电流大于预设电流时,确定此时为大负载场景,对应大负载表。当检测到的电池电压为3.5V、电池温度为0℃时,由表1可知电池组应切换为并联模式。
由于终端设备的存储空间有限,表中的电压/温度状态可以不需穷尽,实测的电压和温度可向最近的已定义状态点取整。例如,当负载电流大于预设电流、电池电压3.7V且电池温度2℃时,首先确定对应大负载表,然后判断和3.7V最接近的已定义状态点是3.5V,和2℃最接近的已定义状态点是0℃,所以(3.7V,2℃)取整后为(3.5V,0℃),由表确定对应并联放电模式。
参见图9,该图为本申请实施例提供的模式边界的示意图。
根据表1和表2的对应数据可以确定大负载场景和小负载场景下的模式边界,该图中大负载场景(表1)对应的模式边界为实线,小负载场景(表2)对应的模式边界为虚线,通过该图可以更加形象表示上述的表。状态点的坐标可以表示为(电池温度,电池电压),根据该状态点所处的区域即可确定此时电池应处于的工作模式。
根据负载电流与预设电流的大小关系,确定当前的模式边界,当状态点落在模式边界 右侧时,表示该场景下采用并联模式最优,应该向并联模式切换;当状态点落在模式边界左侧时,表示该场景下采用串联模式最优,应该向串联模式切换。需要注意的是,大负载的模式边界比小负载的模式边界靠右。
以上说明中由表确定的模式边界为直线,此外,该模式边界还可以为曲线,具体可以参见图10所示的模式边界的示意图。
上例仅为方便说明,模式边界由终端设备的实际工作情况来确定,不同的终端设备对应的表可能不同,相应的模式边界也可能存在差异。
由上可以看出:在低温、低电压、大负载的场景下,优先使用串联模式,防止设备异常关机;在小负载的场景下,更倾向于使用并联模式以增加设备的续航时间。
方式三:利用函数值来判断电池组的工作模式。
为了减少占用终端设备的存储空间,还可以用预设函数f来代替上述的表,控制器将电池组601的输出电压U和电池温度T代入预设函数f获得函数值,当函数值小于或等于预设值时,确定电池组601内的电池需要切换为串联模式。
控制器还用于根据负载电流的大小选择所述预设值,所述负载电流大于预设电流时对应第一预设值,当负载电流小于或等于预设电流时对应第二预设值,第一预设值小于第二预设值。即大负载场景对应第一预设值,小负载场景对应第二预设值。
该预设值表征的是0℃时,串联模式和并联模式切换时的门限电压。例如大负载场景对应第一预设值,当函数值>第一预设值时,电池组应处于并联模式;当函数值≤第一预设值时,适合串联模式。
该预设值可以通过实验预先获得,例如:在确定的电池温度为0℃时,针对不同电压的电池进行放电测试,测量电压跌落,若放电测试时电压跌落至终端设备的关机门限电压(例如2.6V)以下,则该电压为当前负载条件下对应的预设值。
影响该预设值的因素主要为所用电池的低温放电能力,所用电池的低温放电能力越强,则预设值可以越小。预设函数的函数值与电池温度T正相关,预设函数的函数值与电池组的输出电压U正相关,预设函数根据终端设备的实际工作需求设定,本申请实施例对预设函数不做具体限定。
下面以预设函数为线性函数f=a×T+U并结合表1和表2的数据为例进行说明。可以理解的是,预设函数f还可能是其它类型的函数,例如指数函数等。例如预设函数如下:
f=0.05×T+U      (2)
此外,第一预设值为3,第二预设值为2.5。大负载场景下,当f≤3时,电池组601内的电池应处于串联模式,当f>3时,电池组601内的电池应处于并联模式。小负载场景下,当f≤2.5时,电池组601内的电池应处于串联模式,当f>2.5时,电池组应处于并联模式。
例如当负载电流大于预设电流且当前电池电压为3.7V、电池温度为2℃时,此时对应第一预设值,由式(2)可以确定f=3.8,由于f>3,所以对应并联模式。可以发现,上述方式与方式三中查找表相比,获得了相同的结果。
此外,由于在大负载场景对应第一预设值大于负载场景对应第二预设值,这也表明小负载场景下更倾向于使用并联模式以增加设备的续航时间。
终端设备可以通过上述实施方式切换电池组的工作模式,此外,还可以经由终端设备的控制界面进行强制切换,即由使用终端设备的用户来触发进行切换。下面结合附图具体说明。
参见图11,该图为本申请实施例提供的一种终端设备的控制界面的示意图。
在终端设备的控制界面增加“低温模式”。在一种可能的实现方式中,用户可以根据当前的环境温度判断是否进入低温模式,例如当用户处于寒冷的户外时,为了使终端设备能够稳定工作,用户可以选择进入“低温模式”。在另一种可能的实现方式中,终端设备的控制界面可以实时显示电池的温度,当电池温度低于预设温度值(例如-10℃)时,提示用户应当进入“低温模式”以提升终端设备的稳定性。当用户选择进入“低温模式”后,控制器确定低温模式按钮被触发,电池组被切换到串联模式。当用户退出“低温模式”后,供电系统切换到自动模式,供电系统的控制器自动选择最合适的工作模式。
可以理解的,终端设备的控制界面设有“低温模式”,响应于用户的触发,进入低温模式,电池组被切换到串联模式。在这种情况下,跟终端设备所处的环境温度可以没有关系,而是基于用户触发“低温模式”,电池组被切换到串联模式。
可以理解的是,以上的按钮可以为实体按键,也可以为触摸屏幕上对应的图标。
参见图12,该图为本申请实施例提供的另一种终端设备的控制界面的示意图。
在终端设备的控制界面增加“低电量模式”,当用户主动选择进入“低电量模式”后,控制器确定低电量模式按钮被触发,电池组应切换到串联模式。当用户退出“低电量模式”后,供电系统切换到自动模式,供电系统的控制器自动选择最合适的工作模式。
进一步的,终端设备还可以具有允许自动进入低电量模式的设置按钮,例如可以在控制界面上增加一个“允许终端设备自动进入低电量模式”的选项,用户可以通过开启该选项以允许终端设备自动进入低电量模式,即控制器判断电池组的电量低于预设电量时,控制终端设备自动进入“低电量模式”,确定电池组为串联模式。本申请实施例对预设电量不作具体限定,例如预设电量可以取总电量的10%、15%等,用户也可以在终端设备上根据实际情况调整该预设电量。
进一步的,“低温模式”和“低电量模式”可以供用户同时选择,例如同时在终端设备的控制界面上设置上述两种模式。
控制器可以通过上述任意一种方式能够实现电池组由并联模式切换向串联模式,下面以第一开关管Q1、第二开关管Q2和第三开关管Q3均为NMOS管为例,结合附图具体说明控制器控制电池组由并联模式切换为串联模式的工作原理。
一并参见图13a和图7,图13a为本申请实施例提供的由并联模式切换为串联模式的控制时序图。
其中,控制器通过使能信号控制旁路电路602和降压电路603。该使能信号可以为电平信号,能够控制旁路电路602和降压电路603中开关管的工作状态。
当旁路电路602的使能信号为高电平时,控制器控制旁路电路602工作,当旁路电路602的使能信号为低电平时,控制器控制旁路电路602停止工作。
当降压电路603的使能信号为高电平时,控制器控制降压电路603工作,当降压电路 603的使能信号为低电平时,控制器控制降压电路603停止工作。
Vgs为开关管栅极和源极之间的电压,当Vgs为高电平时,开关管导通,当Vgs为低电平时,开关管关断。
当控制器控制电池从并联模式切换为串联模式时,需要使降压电路603工作并使旁路电路602停止工作。为了防止电池直接串联后输出的较高电压直接冲击后级电路,对于降压电路603和旁路电路602的切换可以在开关管Q1、Q2和Q3的状态切换之前。
初始时电池处于并联模式,在并联模式第二开关管Q2处于断开状态,第一开关管Q1和第三开关管Q3处于闭合状态。
为了避免电池在切换过程自身正负极间短路,例如,当第二开关管Q2和第三开关管Q3同时导通时第一电池601a的正负极间短路;或当第一开关管Q1和第二开关管Q2同时导通时第二电池601b的正负极间短路,或当第一开关管Q1、第二开关管Q2和第三开关管Q3均同时导通时第一电池601a的正负极间短路且第二电池601b的正负极间也短路。电池组601内的开关管并不是同时进行切换,而是首先控制第一开关管Q1和第三开关管Q3均断开,并保持第二关管Q2关断,待第一预设时间后再控制第二开关管Q2闭合,该第一预设时间可以为NMOS管的死区时间(Dead time)。
一并参见图13b和图13c,图13b为本申请实施例提供的NMOS管的寄生电容的示意图,图13c为本申请实施例提供的NMOS管导通过程和断开过程的Vgs曲线。
本申请实施例设置死区时间是为了避免电池单体在切换过程中自身的正负极间短路。对于NMOS管,在栅极和源极之间存在寄生电容C GS,当控制器的控制信号到来后,由于栅极和源极间的寄生电容C GS充电和放电需要一定的时间,所以NMOS管的导通和断开会存在延迟。所选用NMOS管的C GS越小,控制信号的驱动能力越强,则充放电时间越短,延迟越小,则可以设置较小的死区时间。
由于半导体工艺限制,C GS离散性较大,为避免电池单体在切换过程中自身的正负极间短路,应当保证足够的死区时间。例如,当选择的NMOS管的型号为DMG7430LFG时,其C GS的电容值为1.28nF。当驱动控制芯片选择AUIRS2191S时,其驱动能力为3.5A,该驱动芯片驱动上述NMOS管时实测的死区时间应≥100ns。
可以理解的是,该第一预设时间也可以大于NMOS管的死区时间,以为开关管完成切换提供充足的时间,进一步降低电池单体在切换过程中自身的正负极间短路的可能性,例如:当死区时间为100ns时,该第一预设时间可以大于死区时间,例如可以设置为110ns。
由于首先控制第一开关管Q1和第三开关管Q3均断开,并保持第二开关管Q2断开,经过死区时间后再控制第二开关管Q2闭合,因此死区时间内开关管Q1、Q2和Q3均断开,电池组内的电池未接入电路,此时第一电容C1和第二电容C2在死区时间内能够维持供电系统的输出电压相对稳定。
在死区时间内,耗电元件由第一电容C1和第二电容C2进行供电,因此死区时间的长短应该与第一电容C1和第二电容C2的电容值之和成正比,即死区时间越长,所需C1和C2的电容值之和越大。终端设备包括的第一电容C1和第二电容C2的电容值之和通常可达到200μF级别,而死区时间通常为是100ns级别,第一电容C1与第二电容C2的电容 值之和可以满足在死区时间内维持供电系统的输出电压相对稳定,下面举例具体说明。
以Q表示电荷量、U before表示死区时间前第一电容C1和第二电容C2两端的电压、U after表示死区时间后第一电容C1和第二电容C2两端的电压、T DeadTime表示死区时间长度、以I pulse表示死区时间内的负载电流,由电荷守恒定律可以得到以下公式:
Q=(C1+C2)×U before=(C1+C2)×U after+I pluse×T DeadTime   (3)
以U drop表示死区时间内的电压跌落,由公式(3)可以确定U drop满足以下公式:
Figure PCTCN2020102266-appb-000003
当第一电容C1和第二电容C2的电容值之和为200μF,即C1+C2=200uF、死区时间T DeadTime=100ns、死区时间内的负载电流I pulse=10A时,由公式(4)可以确定死区时间内的电压跌落U drop=5mV,该电压跌落较小,几乎不会影响终端设备的正常工作。由此可见,第一电容C1与第二电容C2的电容值之和可以满足在死区时间内维持供电系统的输出电压相对稳定。
控制器同时切换旁路电路602和降压电路603的工作状态,即在控制旁路电路602停止工作的同时控制降压电路603工作,切换降压电路603和旁路电路602与控制第二开关管Q2闭合之间的过渡时间可以称为超前时间(Lead time)。
在电池组由并联模式切换为串联模式的过程中,降压电路603需在第二开关管Q2闭合之前开始工作,以防止电池串联产生的高电压直接冲击后级电路。需要提前使降压电路603开始工作是由于降压电路603打开不是瞬间完成的,而需要一定的启动时间,该启动时间即超前时间,超前时间和降压电路603的芯片型号相关,不同的芯片型号可以对应不同的超前时间。例如,若降压电路603的芯型号为TPS54610时,其启动时间为3.35ms,所以超前时间应≥3.35ms。本申请实施例提供的供电系统的控制器根据电池组的温度、电池输出电压和负载电流等实时信息控制电池组由并联模式切换为串联模式。因此,控制器能够在环境温度较低(例如冬季的户外)、电池组电量较低和大负载等场景控制电池组由并联模式切换为串联模式,由于串联模式可以提高输出电压,因此能够降低终端设备因供电不足而关机的概率,提升了终端设备应用在上述场景时的稳定性,进而提升了用户在上述场景下的使用体验。下面结合仿真图具体说明。
参见图14,该图为本申请实施例提供的并联模式的仿真图。
该仿真的条件为:电池电压为4.0V,电池内阻为1Ω(低温下电池内阻较大),负载电流为2A,终端设备的关机门限电压为2.6V。则当电池处于并联模式时,电池组的输出电压V(out)跌落到2.5V,已经低于了终端设备的关机门限电压,此时会造成终端设备的异常关机。
参见图15,该图为本申请实施例提供的串联模式的仿真图。
在相同的仿真条件下,由于控制器控制电池由并联模式切换为串联模式,此时V(out)为耗电元件的输入电压,即对应图7中A点的电压,V(out)为3.4V,仍然高于终端设备的关机门限电压,此时终端设备不会出现异常关机。
进一步的,控制器在控制电池由并联模式切换为串联模式的过程中还实现了旁路电路和降压电路的平滑切换,降低了电池串联后较高的输出电压对后级电路的电压冲击,还避 免了切换过程中电池自身的正负极短路,进一步提升了终端设备的稳定性。下面结合仿真图具体说明。
参见图16,该图为本申请实施例提供的模式切换时的仿真图。
当控制器在控制电池由并联模式切换为串联模式时,旁路电路602停止工作,降压电路603开始工作,图中V(input)为第一电池601a和第二电池602b的总输入电压(图中为黑色线条),V(n006)为降压电路的603内电感L1左端节点B的电压(图中为深灰色线条),V(out)为耗电元件的输入电压,即对应图7中A点的电压(图中为浅灰色线条),观察V(out)的曲线可以发现,在电池切换为串联模式前后,V(out)的电压波动范围较小,表明实现了旁路电路和降压电路的平滑切换,对终端设备稳定性的影响较小。
还可以参见图17,该图为本申请实施例提供的电池模式切换前后电压的仿真图。
该图更加清晰的反映电池模式切换前后电压的变化,其中V(input)为第一电池601a和第二电池602b的总输入电压,当电池由并联模式切换为串联模式时,V(input)由原先的约3.8V增加至约7.6V,而观察V(out)的曲线可以发现,在电池模式切换前后V(out)的电压波动范围较小,表明电池切换为串联模式后对后级电路的影响较小,能够维持输出电压的相对稳定。
以上实施例说明了控制器控制电池由并联模式切换为串联模式的工作原理,下面说明控制器控制电池由串联模式切换为并联模式的工作原理。
供电系统实施例三:
继续参见图7,当控制器确定第一电池601a和第二电池601b需要切换为并联模式时,控制第二开关管Q2断开,控制第一开关管Q1和第三开关管Q3闭合。
控制器确定电池组601内的电池需要由串联模式切换为并联模式的各种方式可以参见实施例二中的相关说明,本实施例在此不在赘述。下面具体说明控制器控制电池组由串联模式切换为并联模式的工作原理。
参见图18,该图为本申请实施例提供的一种由串联模式切换为并联模式的控制时序图。
当控制器控制电池从串联模式切换为并联模式时,需要使旁路电路602工作并使降压电路603停止工作,为了防止切换过程中串联的电池输出的较高电压直接冲击后级电路,对于降压电路603和旁路电路602的切换需要在开关管Q1、Q2和Q3的状态切换之后。
初始时电池组处于串联模式,此时第二开关管Q2处于闭合状态,第一开关管Q1和第三开关管Q3处于断开状态,开关管控制电池由串联模式切换为并联模式时,保持第一开关管Q1和第三开关管Q3继续断开。为了避免电池在切换过程中自身正负极间短路,电池组601内的开关管并不是同时进行切换,而是首先控制第二开关管Q2断开,待第二预设时间后再控制第一开关管Q1和第三开关管Q3闭合,第三预设时间后再控制旁路电路602工作及所述降压电路603停止工作。该第二预设时间可以为死区时间,关于死区时间的具体说明可以参见上述系统实施例二,本实施例在此不再赘述。死区时间和第三预设时间之和为滞后时间(Lag time)。
为了避免电池在切换过程中自身正负极间短路,需要先控制电池组切换为串联模式, 然后才能控制旁路电路602工作及降压电路603停止工作,所以该第三预设时间需要大于NMOS管的死区时间,以确保控制器控制降压电路603和旁路电路602的切换时,第一开关管Q1和第三开关管Q3已经处于导通状态。
在死区时间内,第一开关管Q1、第二开关管Q2和第三开关管Q3均关,此时第一电容C1和第二电容C2用于维持死区时间内供电系统的输出电压相对稳定。
本申请实施例提供的供电系统的控制器能够根据电池组的温度、电池输出电压和负载电流等实时信息控制电池组由串联模式切换为并联模式。因此,控制器能够在环境温度较正常、电池组电量充足且小负载的场景控制电池组由串联模式切换为并联模式,以提升电池组的放电效率,延长终端设备的续航时间,进而提升了用户在上述场景下的使用体验。
此外,控制器在控制电池由串联模式切换为并联模式的过程中能够使切换过程稳定进行,进一步提升了终端设备的稳定性。下面结合仿真图具体说明。
参见图19,该图为本申请实施例串联模式切换为并联模式时的仿真图。
观察V(out)的曲线可以发现,当电池由串联模式切换为并联模式时,V(out)的电压波动范围较小,并且始终高于终端设备的关机门限电压,表明电池进行模式切换时过度平滑,对后级电路的影响较小,能够维持输出电压的相对稳定。
当电池处于串联模式时,由于电池间存在容量差异或者自放电速率差异,会导致各个电池之间的电压不等,此时如果直接切换为并联模式会导致电池之间的冲击电流过大进而损伤电池。下面结合附图具体说明控制器在控制电池由串联模式切换为并联模式时降低冲击电流的原理。
供电系统实施例四:
控制器通过ADC采样获取第一电池601a和第二电池601b的电压,当控制器判断第一电池601a的电压V1大于第二电池601b的电压V2时,控制器先控制第二开关管Q2断开,待第二预设时间后控制第一开关管Q1闭合,待平衡时间(Balance time)后再控制第三开关管Q3闭合,待第三预设时间后控制旁路电路602工作且控制降压电路603停止工作。其中,第二预设时间可以为死区时间,关于死区时间和第三预设时间的说明可以参见上述供电系统实施例,本实施例在此不再赘述。
平衡时间(Balance time)可以称为第四预设时间,是电池组从串联模式切换为并联模式的过程中,电池间电压均衡的时间。继续以图7为例,平衡时间由第一电池601a和第二电池601b之间的电压差,以及第一电池601a和第二电池601b的内阻决定的。电池间的电压差越大,电池内阻越大,则需要的平衡时间越长。若两个电池没有压差,则可以不需要平衡时间。例如:当第一电池601a和第二电池601b的电池电压分别为4.1V和4.0V,且电池内阻均为260mΩ时,则平衡时间≥10us,以将电池间的冲击电流降低至0.5A以下。当控制器判断第一电池601a的电压V1小于第二电池601b的电压V2时,控制器先控制第二开关管Q2断开,待第二预设时间后先控制第三开关管Q3闭合,待第四预设时间后再控制第一开关管Q1闭合,待第三预设时间后控制旁路电路602工作且控制降压电路603停止工作。
当控制器判断第一电池601a的电压V1等于第二电池601b的电压V2时,控制器先控 制第二开关管Q2断开,待第二预设时间后控制第一开关管Q1和第三开关管Q3闭合,待第三预设时间后控制旁路电路602工作且控制降压电路603停止工作。
当控制器判断第一电池601a的电压V1大于第二电池601b的电压V2时,控制器先控制第二开关管Q2断开,待第二预设时间后先控制第一开关管Q1闭合,待第四预设时间后再控制第三开关管Q3闭合,待第三预设时间后控制旁路电路602工作且控制降压电路603停止工作。
下面以电池组601内第二电池601b的电池电压V2高于第一电池601a的电池电压V1为例进行说明控制器的控制原理。对于第二电池601b的电池电压V2低于第一电池601a的电池电压V1的情况,控制器的控制原理类似,在此不再赘述。
参见图20,该图为本申请实施例提供的另一种由串联模式切换为并联模式的控制时序图。
控制器先控制第二开关管Q2断开,经过死区时间后,控制第三开关管Q3闭合,此时电压较高的第二电池601b先接入电路开始供电。经过平衡时间后,控制器再控制第一开关管Q1闭合,此时电压较低的第一电池601b后接入电路开始供电,由于高电压的电池先切换供电,低电压的电池后切换供电,减小了电池间的电压差,因此降低了电池间的冲击电流。待第三预设时间后控制旁路电路602工作且控制降压电路603停止工作,此时电池由串联模式切换为并联模式。
电池组内的MOS管可以处于开关态,即开关管具有断开和闭合两种状态,也可以处于线性态,即MOS管处于线性区,MOS管的工作状态线性变化而不是瞬间完成,以进一步降低冲击电流,下面结合附图具体说明。
参见图21,该图为本申请实施例提供的再一种由串联模式切换为并联模式的控制时序图。
当第一开关管Q1工作在线性区时,第一开关管Q1在平衡时间内由关断状态逐渐转换为闭合状态,因此降低了电池间的冲击电流。下面结合仿真图具体说明。
参见图22,该图为本申请实施例提供的无平衡时间的切换仿真图。
观察该图I(V_a)曲线可以发现,由串联模式向并联模式切换的过程中,若电池间存在电压差,则互相之间的冲击电流可达到约10A量级(即图中深灰色的线条出现了明显的尖峰),会对电池造成损害。
参见图23,该图为本申请实施例提供的有平衡时间的切换仿真图。
观察该图I(V_a)曲线可以发现,在设置平衡时间后,由串联模式向并联模式切换的过程中,冲击电流大小约为0.5A(即图中深灰色的线条的尖峰明显减小),冲击电流的降低效果明显,能够有效保护电池。
上述系统实施例说明了控制器控制电池进行模式切换时的工作原理。其中,控制器在控制电池由串联模式切换为并联模式时,控制旁路电路工作、降压电路停止工作,控制器在控制电池由并联模式切换为串联模式时,控制降压电路工作、旁路电路停止工作。本申请实施例还提供了另一种对降压电路和旁路电路的控制方案,能够简化控制信号和控制流程,下面结合附图具体说明。
供电系统实施例五:
通过ADC(Analog-to-Digital Converter,数模转换器)采集电池组的输出电压,发送给控制器。当控制器判断电池组的输出电压高于第一预设电压阈值时,控制器确定此时降压电路工作,旁路电路不工作;当控制器判断电池组的输出电压低于或等于第一预设电压阈值时,控制器确定此时旁路电路工作,降压电路不工作,以实现旁路电路和降压电路的自动切换。下面结合附图具体说明。
参见图24,该图为本申请实施例提供的一种电池工作模式的自动控制示意图。
其中,第一预设电压阈值用Vth表示,当电池组的输出电压低于Vth时,控制器控制旁路电路602打开且控制降压电路603关闭。
当电池组的输出电压高于Vth时,控制器控制旁路电路602关闭且降压电路603打开。
第一预设电压阈值大于并联模式的电池组的最大输出电压且小于串联模式的电池组的最小输出电压。
例如,当电池处于并联模式时,电池组的最大输出电压约为4.2V-4.3V。当电池处于串联模式时,电池组的最小输出电压约为7.2V,即第一电池601a和第二电池601b串联,每个电池的输出电压约为3.6V。第一预设电压阈值Vth的取值可以大于并联时的最大输出电压,小于串联时的最小输出电压,即满足:7.2V>Vth>4.3V,例如Vth可以为4.5V。以上数值仅是举例说明,不同终端设备可能对应不同的电池参数,本申请中不具体限定Vth的取值。
进一步地,为了避免电池组的输出电压因为干扰存在毛刺或者电压振荡而反复切换旁路电路和降压电路使能,下面还提供了一种迟滞控制方式,例如:当电池组的输出电压接近第一预设电压阈值Vth1时,ADC测量电池组的输出电压时可能存在电压毛刺,即电压由于干扰存在振荡,此时会导致电池组的输出电压和第一预设电压阈值Vth1的大小关系反复发生变化,进而导致控制器反复切换旁路电路和降压电路使能,因此通过增加迟滞电压区间以降低该问题对供电系统的影响。
参见图25,该图为本申请实施例提供的另一种旁路电路和降压电路使能的自动控制示意图。
以Vth1表示图24中的第一预设电压阈值,迟滞电压区间为Vth3-Vth2。其中,Vth2大于Vth1,Vth1大于Vth3,即Vth2>Vth1>Vth3。Vth2和Vth3可以根据实际情况设定,Vth2应大于电压毛刺的最大值,Vth3应小于电压毛刺的最小值,进而抑制切换过程中电压毛刺的影响,即迟滞电压区间可以包括电压毛刺的电压范围,该范围可以预先通过实验测量确定,例如可以在电池组的输出电压为Vth1时反复切换降压电路和旁路电路的工作模式以获取电压毛刺的电压范围。
本实施例中不必比较输出电压与Vth1的关系,而是可以直接比较输出电压是否大于Vth2,是否小于Vth3。
控制器判断电池组的输出电压与Vth2的大小关系,当电池组的输出电压小于Vth2时,控制器判断此时电池组的输出电压受到电压毛刺的影响,保持当前旁路电路和降压电路使能不变。
控制器判断电池组的输出电压与Vth3的大小关系,当电池组的输出电压大于Vth3时,控制器判断此时电池组的输出电压受到电压毛刺的影响,保持当前旁路电路和降压电路使能不变。
通过增加迟滞电压区间,能够降低ADC检测电池组的输出电压时电压毛刺的影响。此外,还可以通过加入去抖时间控制来降低电压毛刺的影响,例如在控制器首次确认电池进行模式切换后的预设时间内不会再次进行模式切换,本申请实施例对预设时间的长度不作具体限定。
本实施例的控制器通过将电池组的输出电压与第一预设电压阈值进行比较,进而确定旁路电路和降压电路的工作状态,能够在电池组的工作模式进行切换后即使切换旁路电路和降压电路的工作状态,并且简化了控制信号和控制流程。
芯片实施例一:
以上实施例的降压电路和旁路电路可以分别属于两个不同的芯片,本申请实施例还提供了一种芯片,该芯片同时包括降压电路和旁路电路,下面结合附图具体说明。
参见图26,该图为本申请实施例提供的一种芯片的示意图。
该芯片同时包括降压电路602和旁路电路603。
旁路电路602的一端连接在降压电路603的输入端,旁路电路602的另一端连接降压电路603的输出端。
旁路电路602和降压电路603均连接终端设备的控制器,接收控制器发送的控制信号来切换工作状态,当电池组601内的电池需要切换为串联模式时,降压电路603工作,旁路电路602停止工作;当电池组601内的电池为并联模式时,旁路电路602工作,降压电路603停止工作。
可以理解的,芯片实施例中控制器、降压电路、旁路电路和电池组等其他描述可以参考其他实施例的描述,在此不再赘述。
由于该芯片同时包括降压电路602和旁路电路603,当供电系统使用该芯片时能够减少硬件设备的尺寸,节省成本。
方法实施例一:
基于上述实施例提供的终端设备的供电系统,本申请实施例还提供了一种终端设备的供电方法。
参见图27,该图为本申请实施例提供的一种终端设备的供电方法的流程图。
该方法应用于终端设备的供电系统,该供电系统包括:电池组、旁路电路、降压电路和控制器。其中,电池组包括至少两块电池,电池组的输出端连接降压电路的输入端,降压电路的输出端连接终端设备的耗电元件;旁路电路的两端跨接在降压电路的输入端和输出端。该供电系统的工作原理可以参见上述供电系统实施例,本申请实施例在此不再赘述。
该方法包括以下步骤:
S2701:当电池组内的电池为串联模式时,控制降压电路工作,控制旁路电路停止工作。
S2702:当电池组内的电池为并联模式时,控制旁路电路工作,控制降压电路停止工作。
继续参见图7所示的供电系统,下面具体说明确定电池组内的电池需要切换工作模式 的方法。
方法一:根据电池组当前的输出电压、流经耗电元件的电流以及各电路器件的阻抗,确定耗电元件两端的电压。当判断耗电元件两端的电压低于第二预设电压阈值时,确定电池组需要从并联模式切换为串联模式。该第二预设电压阈值可以设置为终端设备的关机门限电压,例如关机门限电压可以为2.6V。
可以实时测量放电通路的检流电阻两端的电压,根据检流电阻两端的电压与检流电阻的阻抗的比值确定流经耗电元件的电流。
此外还可以根据电池组的输出电压和电池组的温度确定电池组内的电池需要切换为串联模式,下面具体说明可能的实现方式。
方法二:根据电池组的输出电压和电池组的温度通过查找表,确定电池组内的电池需要切换为串联模式。具体的,可以根据负载电流选择与负载电流对应的表,负载电流大于预设电流时对应大负载表,负载电流小于或等于预设电流时对应小负载表。
可以实时测量放电通路的检流电阻两端的电压,则检流电阻两端的电压与检流电阻的阻抗的比值即为负载电流。电池组的输出电压可以通过ADC采样得到。此外,通过检测热敏电阻的阻值,获取该阻值对应的温度,进而确定当前电池的温度,电池内可以采用NTC型的热敏电阻。
在低温、低电压、大负载的场景下,优先使用串联模式,防止设备异常关机;在小负载的场景下,更倾向于使用并联模式以增加设备的续航时间。
方法三:为了减少占用终端设备的存储空间,还可以用预设函数f来代替方法三的表,控制器将电池组的输出电压U和电池温度T代入预设函数f获得函数值,当函数值小于或等于预设值时,确定电池组内的电池需要切换为串联模式。该预设函数的函数值与电池组的温度正相关,且该预设函数的函数值与电池组的输出电压正相关。
进一步的,根据负载电流的大小选择预设值,负载电流大于预设电流时对应第一预设值,当负载电流小于或等于预设电流时对应第二预设值,第一预设值小于第二预设值。即大负载场景对应第一预设值,小负载场景对应第二预设值。
该预设值表征的是0℃时,串联模式和并联模式切换时的门限电压。例如大负载场景对应第一预设值,当电池电压>第一预设值时,电池组应处于并联模式;当电池电压≤第一预设值时,适合串联模式。
可以通过上述方式确定电池组的工作模式需要进行切换,此外,还可经由终端设备的控制界面进行强制切换,例如在终端设备的控制界面增加“低温模式”,当用户选择进入“低温模式”后,确定低温模式按钮被触发,此时电池组应切换到串联模式。当用户退出“低温模式”后,供电系统切换到自动模式,供电系统的控制器自动选择最合适的工作模式。
再例如还可以在在终端设备的控制界面增加“低电量模式”,当用户主动选择进入“低电量模式”后,确定低电量模式按钮被触发,此时电池组应切换到串联模式。当用户退出“低电量模式”后,供电系统切换到自动模式,供电系统的控制器自动选择最合适的工作模式。
关于上述各方法的具体说明可以参见供电系统实施例二,本实施例在此不再赘述。
利用本申请实施例提供的终端设备的供电方法,当电池组内的电池为串联模式时,控制降压电路工作,控制旁路电路停止工作;还能够当电池组内的电池为并联模式时,控制旁路电路工作,控制降压电路停止工作。因此可以控制电池组内的电池在串联模式和并联模式之间进行切换,并且在环境温度较低(例如冬季的户外)、电池组电量较低和大负载等场景控制电池组内的电池由并联模式切换为串联模式,能够极大地降低终端设备异常关机的发生概率,提升了终端设备应用在上述场景时的稳定性,进而提升了用户在上述场景下的使用体验。在环境温度较正常、电池组电量充足且小负载的场景控制电池组内的电池由串联模式切换为并联模式,以提升电池组的放电效率,延长终端设备的续航时间,进而提升了用户在上述场景下的使用体验。
方法实施例二:
进一步的,本申请实施例还提供了另一种终端设备的供电方法,能够使电池组在串联模式和并联模式之间切换平滑,以降低切换过程对供电系统的输出电压的影响,进而提升了终端设备的稳定性,下面以该方法应用于图7所示的供电系统为例具体说明。
下面首先说明电池组由并联模式切换为串联模式时的供电方法。
参见图28,该图为本申请实施例提供的电池组由并联模式切换为串联模式时的供电方法的流程图。
该方法包括以下步骤:
S2801:先控制降压电路工作及旁路电路停止工作。
继续参见图7,为了防止电池直接串联后输出的较高电压直接冲击后级电路,对于降压电路和旁路电路的切换需要在开关管Q1、Q2和Q3的状态切换之前。
S2802:再控制第一开关管、第二开关管和第三开关管均断开。
S2803:第一预设时间后再控制第二开关管闭合。
为了避免电池组在切换工作模式的过程中单体电池正负极间短路,电池组内的开关管并不是同时进行切换,而是首先控制第一开关管Q1和第三开关管Q3均断开,待第一预设时间后再控制第二开关管Q2闭合,该第一预设时间可以为NMOS管的死区时间。关于死区时间的具体说明可以参见上述系统实施例二,本实施例在此不再赘述。
该方法在电池由并联模式切换为串联模式的过程中实现了旁路电路和降压电路的平滑切换,降低了电池串联后较高的输出电压对后级电路的电压冲击,进一步提升了终端设备的稳定性。
下面说明电池组由串联模式切换为并联模式时的供电方法。
参见图29,该图为本申请实施例提供的电池组由串联模式切换为并联模式时的供电方法的流程图。
该方法包括以下步骤:
S2901:先控制第一开关管、第二开关管和第三开关管均断开。
为了防止切换过程中串联的电池输出的较高电压直接冲击后级电路,对于降压电路和旁路电路的切换需要在开关管Q1、Q2和Q3完成状态切换之后。
S2902:第二预设时间后再控制第一开关管和第三开关管闭合。
该第二预设时间可以为NMOS管的死区时间。关于死区时间的具体说明可以参见上述系统实施例二,本实施例在此不再赘述。
当电池处于串联模式时,由于电池间存在容量差异或者自放电速率差异,会导致各个电池之间的电压不等,此时如果直接切换为并联模式会导致电池之间的冲击电流过大,导致电芯损伤,为了缓解冲击电流,可以使电压较高的电池先接入电路开始供电,经过平衡时间后,控制器再控制电压较低的电池接入电路开始供电,由于高电压的电池先切换供电,低电压的电池后切换供电,减小了电池间的电压差,因此降低了电池间的冲击电流。
该平衡时间也可以称为第四预设时间,平衡时间由各电池之间的电压差,以及各电池的内阻决定。电池间的电压差越大,电池的内阻越大,则需要的平衡时间越长。若两个电池没有压差,则不需要平衡时间。
因此,第二预设时间后再控制第一开关管和第三开关管闭合具体为:
当判断第一电池的电压大于第二电池的电压时,第二预设时间后先控制第一开关管闭合,第四预设时间后再控制第三开关管闭合。
当判断第一电池的电压小于第二电池的电压时,第二预设时间后先控制第三开关管闭合,第四预设时间后再控制第一开关管闭合。
当判断第一电池的电压等于第二电池的电压时,此时两个电池没有压差,第二预设时间后可以控制第一开关管和第三开关管同时闭合。
S2903:第三预设时间后再控制旁路电路工作及降压电路停止工作。
为了避免电池在切换过程中自身正负极间短路,电池组内的开关管并不是同时进行切换,而是首先控制第二开关管Q2断开,待第二预设时间后再控制第一开关管Q1和第三开关管Q3闭合,第三预设时间后再控制旁路电路工作及所述降压电路停止工作。死区时间和第三预设时间之和可以称为滞后时间。
该第三预设时间需要大于NMOS管的死区时间,以确保控制器控制降压电路603和旁路电路602的切换时,第一开关管Q1和第三开关管Q3已经处于导通状态。
该供电方法在电池由并联模式切换为串联模式的过程中可以实现旁路电路和降压电路的平滑切换,还降低了切换过程中电池间的电流冲击,保护了电池。
终端设备实施例一:
基于上述实施例提供的终端设备的供电系统,本申请实施例还提供了一种终端设备,下面结合附图具体说明。
参见图30,该图为本申请实施例提供的一种终端设备的示意图。
该终端设备3000包括:供电系统3001和耗电元件3002。该供电系统3001包括:电池组、旁路电路、降压电路和控制器。其中,电池组包括至少两块电池,电池组的输出端连接降压电路的输入端,降压电路的输出端连接终端设备的耗电元件;旁路电路的两端跨接在降压电路的输入端和输出端。
该供电系统的工作原理可以参见上述各终端系统实施例,本实施例在此不再赘述。
该终端设备的供电系统包括控制器,该控制器当电池组内的电池为串联模式时,控制降压电路工作,控制旁路电路停止工作;还能够当电池组内的电池为并联模式时,控制旁 路电路工作,控制降压电路停止工作,能够控制电池组内的电池在串联模式和并联模式之间进行切换,并且在环境温度较低(例如冬季的户外)、电池组电量较低和大负载等场景控制电池组内的电池由并联模式切换为串联模式,能够极大地降低终端设备异常关机的发生概率,提升了终端设备应用在上述场景时的稳定性,进而提升了用户在上述场景下的使用体验。在环境温度较正常、电池组电量充足且小负载的场景控制电池组内的电池由串联模式切换为并联模式,以提升电池组的放电效率,延长终端设备的续航时间,进而提升了用户在上述场景下的使用体验。
本申请实施例中不具体限定终端设备的类型和应用场景,可以为折叠屏手机,也可以为其他具有电池的终端设备。
应当理解,在本申请实施例中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及存在A和B三种情况,其中A,B可以是单数或者复数。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (21)

  1. 一种终端设备的供电系统,其特征在于,包括:电池组、旁路电路、降压电路和控制器;所述电池组包括至少两块电池;
    所述电池组的输出端连接所述降压电路的输入端,所述降压电路的输出端连接所述终端设备的耗电元件;所述旁路电路的一端连接所述降压电路的输入端,所述旁路电路的另一端连接所述降压电路的输出端;
    所述控制器,用于在所述电池组内的所述电池需要切换为串联模式时,控制所述降压电路工作,控制所述旁路电路停止工作;还用于在所述电池组内的所述电池需要切换为并联模式时,控制所述旁路电路工作,控制所述降压电路停止工作。
  2. 根据权利要求1所述的供电系统,其特征在于,所述控制器,用于控制所述降压电路工作,控制所述旁路电路停止工作,包括:
    所述控制器确定所述电池组的输出电压大于或等于第一预设电压阈值时,控制所述降压电路工作,控制所述旁路电路停止工作。
  3. 根据权利要求1所述的供电系统,其特征在于,所述控制器还用于在判断所述耗电元件两端的电压低于第二预设电压阈值时,确定所述电池组内的所述电池需要切换为串联模式。
  4. 根据权利要求1所述的供电系统,其特征在于,所述控制器还用于根据所述电池组的输出电压和所述电池组的温度确定所述电池组内的所述电池需要切换为串联模式。
  5. 根据权利要求4所述的供电系统,其特征在于,所述控制器还用于根据所述电池组的输出电压和所述电池组的温度通过查表,确定所述电池组内的所述电池需要切换为串联模式。
  6. 根据权利要求5所述的供电系统,其特征在于,所述控制器根据负载电流选择与所述负载电流对应的表,所述负载电流大于预设电流时对应大负载表,所述负载电流小于或等于所述预设电流时对应小负载表。
  7. 根据权利要求4所述的供电系统,其特征在于,所述控制器还用于根据所述电池组的输出电压和所述电池组的温度获得对应的数值,当所述数值小于或等于预设值时,确定所述电池组内的所述电池需要切换为串联模式。
  8. 根据权利要求7所述的供电系统,其特征在于,所述控制器,用于将所述电池组的输出电压和所述电池组的温度利用预设函数获得函数值作为所述数值,当所述函数值小于或等于预设值时,确定所述电池组内的所述电池需要切换为串联模式;所述预设函数的函数值与所述电池组的温度正相关,所述预设函数的函数值与所述电池组的输出电压正相关。
  9. 根据权利要求1-8任一项所述的供电系统,其特征在于,所述控制器还用于在确定低温模式按钮被触发时,确定所述电池组内的所述电池需要切换为串联模式。
  10. 根据权利要求1-8任一项所述的供电系统,其特征在于,所述控制器还用于在确定电池组的电量低于预设电量或确定低电量模式按钮被触发时,确定所述电池组内的所述电池需要切换为串联模式。
  11. 根据权利要求1-10任一项所述的供电系统,其特征在于,所述电池组至少包括两 块电池:第一电池和第二电池;所述电池组还包括:第一开关管、第二开关管和第三开关管;
    所述第一电池的正极连接所述降压电路的输入端;
    所述第一电池的负极通过所述第二开关管连接所述第二电池的正极,所述第二电池的负极接地;
    所述第一开关管的一端连接所述第一电池的负极,所述第一开关管的另一端接地;
    所述第三开关管的一端连接所述降压电路的输入端,所述第三开关管的另一端连接所述第二电池的正极;
    在所述电池需要切换为串联模式时,所述控制器控制所述第一开关管和所述第三开关管断开,控制所述第二开关管闭合;在所述电池需要切换为并联模式时,所述控制器控制所述第二开关管断开,控制所述第一开关管和所述第三开关管闭合。
  12. 根据权利要求11所述的供电系统,其特征在于,还包括:第一电容;所述第一电容的第一端连接所述电池组的输出端,所述第一电容的第二端接地;
    在所述电池需要切换为串联模式时,所述控制器控制所述第一开关管和所述第三开关管断开,控制所述第二开关管闭合,包括:
    在所述电池组内的所述电池需要切换为串联模式时,所述控制器控制所述第一开关管、所述第二开关管和所述第三开关管均断开,第一预设时间后再控制所述第二开关管闭合。
  13. 根据权利要求12所述的供电系统,其特征在于,还包括:第二电容;所述第二电容的第一端连接所述降压电路的输出端,所述第二电容的第二端接地。
  14. 根据权利要求12或13所述的供电系统,其特征在于,在所述电池需要切换为并联模式时,控制所述旁路电路工作,控制所述降压电路停止工作,在所述电池需要切换为并联模式时,所述控制器控制所述第二开关管断开,所述控制所述第一开关管和所述第三开关管闭合,包括:
    在所述电池需要切换为并联模式时,所述控制器控制所述第一开关管、所述第二开关管和所述第三开关管均断开,第二预设时间后所述控制器控制所述第一开关管和第三开关管闭合,第三预设时间后所述控制器控制所述旁路电路工作,控制所述降压电路停止工作。
  15. 根据权利要求14所述的供电系统,其特征在于,第二预设时间后所述控制器控制所述第一开关管和第三开关管闭合,包括:
    当所述控制器判断所述第一电池的电压大于所述第二电池的电压时,所述第二预设时间后,所述控制器控制所述第一开关管闭合,第四预设时间后,所述控制器控制所述第三开关管闭合;或
    当所述控制器判断所述第一电池的电压小于所述第二电池的电压时,所述第二预设时间后,所述控制器控制所述第三开关管闭合,所述第四预设时间后,所述控制器再控制所述第一开关管闭合;或
    当所述控制器判断所述第一电池的电压等于所述第二电池的电压时,所述控制器第二预设时间后,所述控制器控制所述第一开关管和第三开关管闭合。
  16. 一种芯片,其特征在于,包括:旁路电路和降压电路;
    所述降压电路的输入端连接电池组的输出端,所述降压电路的输出端连接终端设备的耗电元件;
    所述旁路电路的一端连接在所述降压电路的输入端,所述旁路电路的另一端连接所述降压电路的输出端;
    所述旁路电路和所述降压电路均与所述终端设备的控制器连接,当所述电池组内的电池需要切换为串联模式时,响应于所述控制器的控制信号,所述降压电路工作,所述旁路电路停止工作;当所述电池组内的所述电池为并联模式时,响应于所述控制器的控制信号,所述旁路电路工作,所述降压电路停止工作。
  17. 一种终端设备的供电方法,其特征在于,应用于终端设备的供电系统,所述供电系统包括:电池组、旁路电路、降压电路和控制器;所述电池组包括至少两块电池;所述电池组的输出端连接所述降压电路的输入端,所述降压电路的输出端连接所述终端设备的耗电元件;所述旁路电路的一端连接在所述降压电路的输入端,所述旁路电路的另一端连接所述降压电压的输出端;
    当所述电池组内的所述电池为串联模式时,控制所述降压电路工作,控制所述旁路电路停止工作;
    当所述电池组内的所述电池为并联模式时,控制所述旁路电路工作,控制所述降压电路停止工作。
  18. 根据权利要求17所述的供电方法,其特征在于,还包括:根据所述电池组的输出电压和所述电池组的温度确定所述电池组内的所述电池需要切换为串联模式。
  19. 根据权利要求18所述的供电方法,其特征在于,根据所述电池组的输出电压和所述电池组的温度确定所述电池组内的所述电池需要切换为串联模式,包括:
    根据所述电池组的输出电压和所述电池组的温度通过查表,确定所述电池组内的所述电池需要切换为串联模式。
  20. 根据权利要求19所述的供电方法,其特征在于,还包括:根据负载电流选择与所述负载电流对应的表,所述负载电流大于预设电流时对应大负载表,所述负载电流小于或等于所述预设电流时对应小负载表。
  21. 一种终端设备,其特征在于,包括权利要求1-15任一项所述的供电系统,还包括:耗电元件;
    所述供电系统,用于给所述耗电元件供电。
PCT/CN2020/102266 2019-07-18 2020-07-16 一种终端设备的供电系统、方法、芯片及终端设备 WO2021008572A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20839807.3A EP3993217B1 (en) 2019-07-18 2020-07-16 Power supply system and method for a terminal device
US17/627,483 US20220263324A1 (en) 2019-07-18 2020-07-16 Power Supply System and Method for Terminal Device, Chip, and Terminal Device
CN202080051959.1A CN114128078A (zh) 2019-07-18 2020-07-16 一种终端设备的供电系统、方法、芯片及终端设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910651651.XA CN110429673B (zh) 2019-07-18 2019-07-18 一种终端设备的供电系统、方法、芯片及终端设备
CN201910651651.X 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021008572A1 true WO2021008572A1 (zh) 2021-01-21

Family

ID=68411122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102266 WO2021008572A1 (zh) 2019-07-18 2020-07-16 一种终端设备的供电系统、方法、芯片及终端设备

Country Status (4)

Country Link
US (1) US20220263324A1 (zh)
EP (1) EP3993217B1 (zh)
CN (2) CN110429673B (zh)
WO (1) WO2021008572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123385A (zh) * 2021-10-30 2022-03-01 荣耀终端有限公司 一种充电和放电电路、充电的方法以及电子设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904896A (zh) * 2017-12-11 2019-06-18 苏州宝时得电动工具有限公司 电动工具
CN110429673B (zh) * 2019-07-18 2021-10-01 华为技术有限公司 一种终端设备的供电系统、方法、芯片及终端设备
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
CN111049229A (zh) * 2019-12-31 2020-04-21 联想(北京)有限公司 一种电子设备、充电控制方法、装置及电源管理芯片
CN114094647B (zh) * 2020-12-29 2022-11-11 荣耀终端有限公司 一种电芯的连接状态切换方法、电源系统和电子设备
CN114465294B (zh) * 2021-07-22 2023-02-03 荣耀终端有限公司 电源管理模块和电子设备
CN113763879B (zh) * 2021-09-15 2022-11-18 维沃移动通信有限公司 供电电路、显示屏、电子设备及供电控制方法
US20230208163A1 (en) * 2021-12-24 2023-06-29 Motorola Solutions, Inc. Device, battery and system to control battery power
CN114285136B (zh) * 2021-12-29 2024-02-06 英华达(上海)科技有限公司 双电池电源管理系统及其电池控制器和控制方法
CN115037011A (zh) * 2022-04-19 2022-09-09 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器
EP4297262A1 (en) * 2022-06-21 2023-12-27 Airbus S.A.S. Multi-functional solid state switching circuit
CN115117987B (zh) * 2022-07-15 2022-11-04 东方博沃(北京)科技有限公司 超级电容充电电路、装置及控制方法
CN118174393A (zh) * 2022-12-09 2024-06-11 Oppo广东移动通信有限公司 电池组的均衡控制电路、方法和终端设备
CN116317714A (zh) * 2023-01-12 2023-06-23 无锡星驱动力科技有限公司 电机控制器及其控制方法及电动汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624065A (zh) * 2012-04-27 2012-08-01 广西大学 一种车用动力电池组充放电控制电路
US20150194835A1 (en) * 2013-11-26 2015-07-09 James P. Wiebe Power control of batteries
CN106026249A (zh) * 2016-06-22 2016-10-12 深圳众思科技有限公司 电池低压工作电路及其控制方法
CN110021973A (zh) * 2019-02-03 2019-07-16 华为技术有限公司 终端设备和控制转换电路的方法
CN110429673A (zh) * 2019-07-18 2019-11-08 华为技术有限公司 一种终端设备的供电系统、方法、芯片及终端设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959657B2 (ja) * 1993-05-13 1999-10-06 キヤノン株式会社 電子機器
US9910811B2 (en) * 2015-04-27 2018-03-06 Cisco Technology, Inc. Hot swap circuit
US10243383B2 (en) * 2015-12-25 2019-03-26 Seiko Epson Corporation Power source and electronic device
KR20210064736A (ko) * 2019-11-26 2021-06-03 삼성전자주식회사 전자 장치 및 이의 충전 방법
KR20220058280A (ko) * 2020-10-30 2022-05-09 삼성전자주식회사 배터리 장치를 충전하는 충전 집적 회로 및 이를 포함하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624065A (zh) * 2012-04-27 2012-08-01 广西大学 一种车用动力电池组充放电控制电路
US20150194835A1 (en) * 2013-11-26 2015-07-09 James P. Wiebe Power control of batteries
CN106026249A (zh) * 2016-06-22 2016-10-12 深圳众思科技有限公司 电池低压工作电路及其控制方法
CN110021973A (zh) * 2019-02-03 2019-07-16 华为技术有限公司 终端设备和控制转换电路的方法
CN110429673A (zh) * 2019-07-18 2019-11-08 华为技术有限公司 一种终端设备的供电系统、方法、芯片及终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123385A (zh) * 2021-10-30 2022-03-01 荣耀终端有限公司 一种充电和放电电路、充电的方法以及电子设备

Also Published As

Publication number Publication date
EP3993217B1 (en) 2023-10-04
EP3993217A4 (en) 2022-08-24
US20220263324A1 (en) 2022-08-18
EP3993217A1 (en) 2022-05-04
CN114128078A (zh) 2022-03-01
CN110429673A (zh) 2019-11-08
CN110429673B (zh) 2021-10-01
EP3993217C0 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2021008572A1 (zh) 一种终端设备的供电系统、方法、芯片及终端设备
JP6797291B2 (ja) 充電回路、端末、及び充電システム
US11303137B2 (en) Systems and methods for controlling battery current
Lin et al. A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging
EP4145669A1 (en) Charging/discharging circuit and electronic device
US9059596B2 (en) Battery charging circuit
RU2629917C2 (ru) Источник питания, схема зарядки источника питания, способ зарядки источника питания и терминальное устройство
WO2020156267A1 (zh) 终端设备和控制转换电路的方法
WO2022194106A1 (zh) 双电池充放电电路及控制方法、电子设备
US20150357836A1 (en) Fast charging terminal
US11114881B2 (en) Load switch circuit and method of controlling battery power using the same
CN105762892A (zh) 一种锂电池降压输出及充放电保护系统
EP2893608B1 (en) Method and system for voltage collapse protection
WO2019029069A1 (zh) 电池保护芯片、供电装置及电子烟
US20220255435A1 (en) Bidirectional switching converter and operating method thereof
WO2021018272A1 (zh) 一种充放电保护电路、终端设备及电池放电控制方法
CN115021379A (zh) 一种充电电路和电子设备
WO2022206646A1 (zh) 电源芯片检测电路、电源芯片检测方法、装置和电子设备
CN216356513U (zh) 离线式开关电源电路及其反馈控制芯片
CN112688383B (zh) 供电控制电路、供电控制方法、装置及电子设备
JP2010279177A (ja) バッテリ充電回路
CN210927452U (zh) 一种缓启动电路
US10044075B2 (en) Portable electronic device with accessible-charge indicator
CN116667473B (zh) 一种控制电路、电路控制方法和电子设备
WO2020224467A1 (zh) 一种充电控制电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020839807

Country of ref document: EP

Effective date: 20220127