WO2022194106A1 - 双电池充放电电路及控制方法、电子设备 - Google Patents

双电池充放电电路及控制方法、电子设备 Download PDF

Info

Publication number
WO2022194106A1
WO2022194106A1 PCT/CN2022/080731 CN2022080731W WO2022194106A1 WO 2022194106 A1 WO2022194106 A1 WO 2022194106A1 CN 2022080731 W CN2022080731 W CN 2022080731W WO 2022194106 A1 WO2022194106 A1 WO 2022194106A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switching element
isolation
circuit
control signal
Prior art date
Application number
PCT/CN2022/080731
Other languages
English (en)
French (fr)
Inventor
邱钰鹏
周海滨
何忠勇
李鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2022194106A1 publication Critical patent/WO2022194106A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular, to a dual-battery charging and discharging circuit and control method, and electronic equipment.
  • the dual-battery charging and discharging circuit can be divided into series charging and discharging (that is, two batteries are charged and discharged in series), series charging and discharging (that is, two batteries are charged and discharged in parallel), and parallel charging and discharging (that is, two batteries are charged and discharged in parallel).
  • the batteries are charged in parallel and discharged in parallel) in several different situations.
  • the series charge and series discharge loss is large.
  • Serial charging and discharging need to change the form of the dual batteries, and the control is complicated.
  • the control of parallel charging and discharging is simple and does not need to change the shape of the dual battery.
  • Embodiments of the present application provide a dual-battery charging and discharging circuit, a control method, and an electronic device, which can solve the problem of large current mutual charging during the charging and discharging process of the dual-battery due to a large voltage difference between the two batteries. Improve the safety and reliability of the dual battery charging and discharging circuit.
  • the embodiments of the present application provide a dual battery charging and discharging circuit.
  • the dual battery charging and discharging circuit is applied to electronic equipment.
  • the dual-battery charging and discharging circuit includes: a first battery, a second battery, a charging chip, a voltage detection control module and an isolation and equalization circuit. Wherein, the first battery and the second battery are connected in parallel, the first battery is coupled with the charging chip, and the second battery is coupled with the charging chip through an isolation equalization circuit.
  • the charging chip is also used for coupling with the working circuit of the electronic device to supply power to the working circuit.
  • the voltage detection control module is used for acquiring the voltage of the first battery and the second battery, and outputting a control signal according to the voltage difference between the first battery and the second battery.
  • the isolation equalization circuit is used to receive the control signal, and under the control of the control signal, it is in the ON state, the equalization state or the OFF state.
  • the first battery is coupled to the charging chip, and the second battery is coupled through an isolation equalization circuit, which is equivalent to isolation between the first battery and the second battery through an isolation equalization circuit.
  • the isolation and balancing circuit can be controlled to be in the on state, the balance state or the off state, so as to avoid the phenomenon of high current mutual charging between the first battery and the second battery , thereby improving the safety and reliability of the dual-battery charge-discharge circuit.
  • both the first battery and the second battery supply power to the working circuit, or the charging chip charges the first battery and the second battery.
  • the isolation equalization circuit When the isolation equalization circuit is in an equalized state, the first battery and the second battery perform voltage equalization through the isolation equalization circuit.
  • the isolation and equalization circuit When the isolation and equalization circuit is in an off state, the first battery supplies power to the working circuit or the charging chip charges the first battery.
  • the isolation and equalization circuit can be controlled by the control signal to be in a balanced state, and the voltage between the first battery and the second battery is adjusted through the isolation and equalization circuit. Balance, thereby reducing the voltage difference between the first battery and the second battery, avoiding the phenomenon of high current mutual charging between the first battery and the second battery, thereby improving the safety and reliability of the dual battery charging and discharging circuit.
  • the control signal when the voltage difference between the first battery and the second battery is greater than the first threshold, the control signal is used to control the isolation equalization circuit to be in an equalized state, so as to equalize the voltages of the first battery and the second battery .
  • the control signal when the voltage difference between the first battery and the second battery is less than or equal to the first threshold, the control signal is used to control the isolation equalization circuit to be in a conducting state, so that the first battery and the second battery are in a conducting state. Both supply power to the working circuit, or make the charging chip charge the first battery and the second battery.
  • the first threshold may be set according to a safe range of a voltage difference between the first battery and the second battery.
  • the control signal may be determined according to whether the voltage difference between the first battery and the second battery is greater than a first threshold.
  • the isolation equalization circuit includes a first switching element.
  • the first terminal (eg, the drain) of the first switching element is coupled to the charging chip, and the second terminal (eg, the source) of the first switching element is coupled to the second battery.
  • the control terminal (eg gate) of the first switching element is used for receiving the control signal output by the voltage detection control module.
  • the control signal is used to control the first switching element not to be fully turned on.
  • the control signal is used to control the first switching element to be fully turned on.
  • the first switching element can be controlled by the control signal to be in a conducting state or an incompletely conducting state, so that the control signal controls the isolation equalization circuit to be in a conducting state or an equalizing state, that is, between the voltage of the first battery and the voltage of the second battery
  • the isolation equalization circuit can be controlled by the control signal to be in an equalized state, and the voltage equalization between the first battery and the second battery is performed through the isolation equalization circuit, thereby reducing the voltage between the first battery and the second battery.
  • the voltage difference can avoid the phenomenon of high current mutual charging between the first battery and the second battery, thereby improving the safety and reliability of the dual battery charging and discharging circuit.
  • the isolation equalization circuit includes a first switching element and a second switching element.
  • the first terminal (eg source) of the first switching element is coupled with the charging chip
  • the second terminal (eg drain) of the first switching element is coupled with the second terminal (eg drain) of the second switching element, so the second A first end (eg, source) of the switching element is coupled to the second battery.
  • the control terminal (eg gate) of the first switching element and the control terminal (eg gate) of the second switching element are both used for receiving the control signal output by the voltage detection control module.
  • the control signal is used to control the first switching element and the second switching element to not be fully turned on.
  • the control signal is used to control the first switching element and the second switching element to be completely turned on.
  • a high-power MOS tube when used in the isolation and equalization circuit, using only one MOS tube may cause the first battery and the second battery to conduct through the parasitic diode on the high-power MOS tube.
  • the two batteries are turned on through parasitic diodes, and two high-power MOS transistors (ie, the first switching element and the second switching element) can be used to realize the above isolation and equalization circuit, and the sources of the two NMOS transistors are coupled to each other, or the drains of the two NMOS transistors are coupled to each other. coupling.
  • the isolation and equalization circuit includes a first switching element (eg, a PMOS transistor), a second switching element (eg, a PMOS transistor), and a third switching element (eg, an NMOS transistor).
  • the terminal (eg drain) is coupled to the charging chip
  • the second terminal (eg source) of the first switching element is coupled to the first terminal (eg source) of the second switching element
  • the second terminal (eg source) of the second switching element drain) is coupled to the second battery.
  • the control terminal (eg gate) of the first switching element and the control terminal (eg gate) of the second switching element are both coupled with the first terminal (eg drain) of the third switching element, and the second terminal of the third switching element (eg source) to ground.
  • the control terminal (eg gate) of the third switching element is used for receiving the control signal output by the voltage detection control module.
  • the control signal controls the third switching element to be not completely turned on, so that the first switching element and the second switching element are not completely turned on.
  • the control signal controls the third switching element to be turned on, so that the first switching element and the second switching element are turned on.
  • the isolation and equalization circuit is implemented by using an NMOS transistor (ie, the above-mentioned first switching element or second switching element), if the NMOS transistor needs to be fully turned on, it is necessary to detect the voltage of the control signal (PWM) output by the output end of the power supply control module. higher than the voltage of the first battery and the second battery. Therefore, it may be necessary to set a power supply with a larger voltage in the power detection control module, thereby increasing the power consumption of the electronic device.
  • a combination of NMOS transistors and PMOS transistors is used, which can avoid using a power supply with a relatively large voltage, so as to reduce the power consumption of the electronic device.
  • an equalization resistor is further coupled between the first battery and the second battery, for performing voltage equalization on the first battery and the second battery when the electronic device is in a shutdown state.
  • an embodiment of the present application provides an electronic device.
  • the electronic device includes a working circuit, and a dual-battery charging and discharging circuit in any possible implementation manner of the first aspect above.
  • the working circuit is coupled with the charging chip in the dual-battery charging and discharging circuit.
  • inventions of the present application provide a method for controlling a dual-battery charge-discharge circuit.
  • the control method is applicable to the dual-battery charging and discharging circuit in any of the possible implementation manners of the first aspect above.
  • the method includes: a voltage detection control module acquires the voltages of the first battery and the second battery, and outputs a control signal according to the voltage difference between the first battery and the second battery.
  • the voltage detection control module sends a control signal to the isolation and equalization circuit, so as to control the isolation and equalization circuit to be in an on state, an equalization state or an off state through the control signal.
  • both the first battery and the second battery supply power to the working circuit, or the charging chip charges the first battery and the second battery.
  • the isolation equalization circuit When the isolation equalization circuit is in an equalized state, the first battery and the second battery perform voltage equalization through the isolation equalization circuit.
  • the isolation and equalization circuit When the isolation and equalization circuit is in an off state, the first battery supplies power to the working circuit or the charging chip charges the first battery.
  • the voltage detection control module sends a control signal to the isolation equalization circuit, so as to control the isolation equalization circuit to be in an on state, an equalization state or an off state through the control signal, including: when the first battery is connected to the second battery When the voltage difference of the batteries is greater than the first threshold, the control signal controls the isolation and equalization circuit to be in an equalized state, so as to equalize the voltages of the first and second batteries.
  • the voltage detection control module sends a control signal to the isolation equalization circuit, so as to control the isolation equalization circuit to be in an on state, an equalization state or an off state through the control signal, including: when the first battery is connected to the second battery When the voltage difference between the batteries is less than or equal to the first threshold, the control signal controls the isolation and equalization circuit to be in a conducting state, so that both the first battery and the second battery can supply power to the working circuit, or the charging chip can supply power to the first battery and the second battery. Charge.
  • any control method, electronic device, etc. of the dual-battery charging and discharging circuit provided above can be realized by the corresponding dual-battery charging and discharging circuit provided above, or the corresponding dual-battery charging and discharging circuit provided above.
  • the dual-battery charge-discharge circuit is associated, therefore, the beneficial effects that can be achieved can be referred to the beneficial effects of the dual-battery charge-discharge circuit provided above, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of an electronic device with dual-battery charging and discharging
  • FIG. 2 is a schematic structural diagram 1 of a dual-battery charge-discharge circuit according to an embodiment of the present application
  • FIG. 3 is a second structural schematic diagram of a dual-battery charge-discharge circuit provided by an embodiment of the present application
  • 3A is a waveform diagram 1 of a control signal (PWM) provided by an embodiment of the present application;
  • 3B is an equivalent circuit diagram of the circuit diagram shown in FIG. 3 using the waveform diagram of FIG. 3A ;
  • 3C is a second waveform diagram of a control signal (PWM) provided by an embodiment of the application.
  • PWM control signal
  • FIG. 3D is an equivalent circuit diagram of the circuit diagram shown in FIG. 3 using the waveform diagram of FIG. 3C ;
  • FIG. 3E is a third waveform diagram of a control signal (PWM) provided by an embodiment of the application.
  • PWM control signal
  • FIG. 3F is an equivalent circuit diagram of the circuit diagram shown in FIG. 3 using the waveform diagram of FIG. 3E ;
  • FIG. 4 is a third structural schematic diagram of a dual-battery charge-discharge circuit provided by an embodiment of the present application.
  • FIG. 5 is a fourth schematic structural diagram of a dual-battery charge-discharge circuit according to an embodiment of the present application.
  • FIG. 6 is a fifth structural schematic diagram of a dual-battery charge-discharge circuit provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a control method of a dual-battery charge-discharge circuit provided by an embodiment of the present application.
  • FIG. 8 is a specific example diagram of a dual-battery charge-discharge circuit provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another method for controlling a dual-battery charge-discharge circuit provided by an embodiment of the present application.
  • orientations may include, but are not limited to, the orientations relative to the schematic placement of the components in the drawings. It should be understood that these orientations The terminology can be a relative concept, and they are used for relative description and clarification, which can change correspondingly according to the change of the orientation in which the components are placed in the drawings.
  • connection should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integrated body; it may be directly connected, or Can be indirectly connected through an intermediary.
  • coupled may be means of electrical connections that enable signal transmission.
  • An embodiment of the present application provides an electronic device, which can be a mobile phone (mobile phone), a tablet computer (pad), a personal digital assistant (personal digital assistant, PDA), a TV, a smart wearable product (for example, a smart watch, a smart wristband), virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, etc.
  • the specific form of the electronic device is not particularly limited in the embodiments of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device with dual batteries charged and discharged simultaneously.
  • the electronic device includes a charging chip, a working circuit, a first battery and a second battery.
  • the first battery and the second battery can be coupled with the power adapter through the charging chip, and the first battery and the second battery can also be coupled with the working circuit through the charging chip.
  • the power adapter converts the 220-volt commercial power into direct current through the AC-DC converter, and charges the first battery and the second battery.
  • the working circuit may include a processor, a memory, a communication interface, etc., and the working circuit may also be a power management integrated circuit (power management IC, PMIC), or a system on a chip (system on a chip, SoC).
  • power management IC power management integrated circuit
  • SoC system on a chip
  • the power adapter simultaneously charges the first battery and the second battery through a charging chip, or simultaneously discharges the first battery or the second battery to the working circuit. Because the capacities of the two batteries may be different, there may be a large voltage difference between the two batteries, and a large current mutual charging phenomenon occurs, which leads to a battery safety problem and reduces the reliability of the battery.
  • the embodiment of the present application provides a dual battery charging and discharging circuit.
  • the dual-battery charging and discharging circuit includes a first battery, a second battery, a charging chip, a voltage detection control module and an isolation equalization circuit.
  • the first battery and the second battery are connected in parallel, and the first battery is coupled with the charging chip, and the second battery is coupled with the charging chip through the isolation equalization circuit.
  • the above-mentioned charging chip is also used for coupling with the working circuit, so that the first battery and the second battery can supply power to the working circuit of the electronic device.
  • the above-mentioned charging chip is also used for coupling with the power adapter to obtain the DC power output by the power adapter (the Vbus voltage in FIG. 1 ), and the above-mentioned charging chip at least includes a voltage converter, which can convert the power supply adapter
  • the output DC power Vbus is converted into a DC power (Vsys voltage shown in FIG. 1 ) suitable for the working circuit of the above-mentioned electronic equipment.
  • the voltage converter may be a DC-DC conversion circuit (eg, a buck circuit) or a DC-DC conversion chip (eg, a buck chip) and other circuits that perform DC voltage conversion, which are not specifically limited in this application.
  • the above voltage detection control module is used to obtain the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, and output a control signal according to the voltage difference between the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery.
  • the first detector may be coupled on the path where the first battery is located
  • the first detector may be coupled on the path where the second battery is located.
  • a second detector is coupled. The first detector can detect the voltage Vbat1 of the first battery and the current through the first battery
  • the second detector can detect the voltage Vbat2 of the second battery and the current through the second battery.
  • the voltage detection control module may be coupled with the first detector and the second detector to obtain detection data of the first detector and the second detector, the detection data may include the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery , the current of the first battery and the current of the second battery, etc.
  • the voltage detection control module After the voltage detection control module obtains the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, it can compare the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, and the voltage detection control module can The voltage difference between the voltage Vbat1 and the voltage Vbat2 of the second battery outputs a control signal to control the working state of the isolation equalization circuit.
  • the working states of the isolation equalization circuit can be divided into three types, namely, an on state, an equalization state, and an off state.
  • the isolation equalization circuit When the isolation equalization circuit is in the off state, the path from the second battery to the charging chip is closed, the charging chip cannot charge the second battery, and the second battery cannot supply power to the working circuit.
  • the charging chip In the above-mentioned dual-battery charging and discharging system, the charging chip only charges the first battery, or only the first battery supplies power to the working circuit.
  • the isolation equalization circuit When the isolation equalization circuit is in a conducting state, the path from the second battery to the charging chip is conducted. At this time, the charging chip can charge the first battery, and can also charge the second battery. Both the first battery and the second battery may supply power to the operating circuit.
  • a variable-resistance resistor (with a larger resistance value) is formed on the path from the second battery to the charging chip, and voltage equalization can be achieved between the first battery and the second battery to reduce the The voltage difference between a battery and a second battery. In this way, the phenomenon of high current mutual charging between the first battery and the second battery can be avoided, thereby improving the safety and reliability of the battery.
  • the above-mentioned voltage detection control module can control the working state of the isolation equalization circuit according to the following rules:
  • the above-mentioned isolation equalization circuit is in the off state by default.
  • the above-mentioned isolation and equalization circuit is in an off state, and the first battery supplies power to the working circuit of the electronic device, so that the electronic device can be powered on smoothly.
  • the control signal output by the voltage detection control module can control the isolation equalization circuit to be in an equalized state.
  • the control signal output by the voltage detection control module can control the above isolation equalization circuit to be in a conducting state.
  • the above isolation and equalization circuit may include a first switching element Q1.
  • the first end of the first switching element Q1 can be coupled with the above-mentioned charging chip, and the second end of the first switching element Q1 can be coupled with the second battery (ie, the positive electrode of the second battery).
  • the control of the first switching element Q1 The terminal can be coupled with the output terminal of the power detection control module, and is used for receiving the control signal output by the power detection control module and controlling the turn-on or turn-off of the first switching element Q1.
  • the first switching element Q1 may be a switching device such as a metal-oxide-semiconductor field-effect transistor (MOSFET).
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the above-mentioned first switching element Q1 is an NMOS transistor.
  • the drain (drain, D) of the first switching element Q1 is coupled to the above charging chip
  • the source (source, S) of the first switching element Q1 is coupled to the positive electrode of the second battery
  • the gate of the first switching element Q1 The gate (Gate, G) is coupled to the output end of the power detection control module, and is used for receiving the control signal output by the power detection control module and controlling the first switching element Q1 to be turned on or off.
  • the first switching element Q1 can work in the cut-off region, the linear region and the complete conduction region.
  • the isolation and equalization circuit is in an off state; when the first switching element Q1 works in the linear region, the isolation and equalization circuit is in a balanced state; when the first switching element Q1 works in the complete state In the conduction region, the above isolation and equalization circuit is in the conduction state.
  • the control signal output by the voltage detection control module can control the first switching element Q1 to work in the cut-off region, the linear region and the fully-on region, respectively.
  • the MOS tube by controlling the gate voltage of the MOS tube, the MOS tube can be controlled to work in the cut-off region, the linear region and the complete conduction region, respectively.
  • the first switching element Q1 shown in FIG. 3 the first switching element Q1 can be controlled to work in the cut-off region, the linear region and fully conduction region.
  • the duty ratio refers to the time proportion of the high-level pulse in the entire pulse period in one pulse period. For example, the duty ratio of a control signal of a high-level pulse for 1 second and a low-level pulse for 1 second is 50%.
  • the first switching element Q1 works in the fully conducting region, and when the duty cycle of the control signal is less than a certain value (such as 35% ), the first switching element Q1 works in the cut-off region, and when the duty ratio of the control signal is greater than a certain value (eg, 35%) and less than 100%, the first switching element Q1 works in the linear region.
  • a certain value such as 35%
  • control signal may be a pulse width modulation (pulse width modulation, PWM) signal output by a pulse power supply. Therefore, the above-mentioned voltage detection control module is provided with a pulse power supply.
  • PWM pulse width modulation
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to be less than a certain value (for example, 35%), as shown in FIG. 3A . shown.
  • the control signal (PWM) output by the voltage detection control module can control the first switching element Q1 to work in the cut-off region, and make the above-mentioned FIG. 3 form an equivalent circuit diagram as shown in FIG. 3B, from the first battery to the electronic device
  • the working circuit supplies power, so that the electronic equipment can be turned on smoothly.
  • the voltage detection control module in the dual-battery charge-discharge circuit will obtain the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, and compare the voltage Vbat1 of the first battery with the voltage Vbat2 of the second battery , according to the voltage difference between the first battery and the second battery, the duty cycle of the output control signal (PWM) is adjusted to control the isolation equalization circuit to be in a balanced state or a conducting state.
  • PWM pulse width
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to be greater than a certain value (eg 35%) and less than 100% (eg 37% to 41% duty cycle) as shown in Figure 3C.
  • the control signal (PWM) output by the voltage detection control module can control the first switching element Q1 to work in the linear region, so that the above-mentioned isolation equalization circuit is in an equalized state.
  • the above-mentioned FIG. 3 can form an equivalent circuit diagram as shown in FIG.
  • the first switching element Q1 is equivalent to the variable resistance resistor R10, which can gradually balance the voltages of the first battery and the second battery, And by adjusting the duty ratio of the output control signal (PWM), it can ensure that the balance current between the first battery and the second battery (that is, the current through the first switching element Q1) is not too large, thereby avoiding the first battery and the second battery.
  • the balancing current between the two batteries is too large to burn the device (eg, the first switching element Q1 ), thereby ensuring the reliability of the isolation balancing circuit.
  • the first battery and the second battery have basically achieved voltage balance.
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to 100%, that is, the control signal (PWM) is a continuous high-level signal, as shown in FIG. 3E, the first switching element Q1 is made to work In the complete conduction region, the isolation and equalization circuit is turned on, and the path from the second battery to the charging chip is turned on.
  • FIG. 3 can form an equivalent circuit diagram as shown in FIG. 3F , that is, the charging chip can charge the first battery and can also charge the second battery. Both the first battery and the second battery can supply power to the working circuit to achieve dual battery power supply.
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to be 100%, as shown in FIG. 3E, that is, the control signal (PWM) is a continuous high-level signal, so that the above-mentioned FIG. 3 forms the equivalent circuit diagram shown in FIG. 3F, that is, the first switching element Q1 works in the complete conduction region. , so that the isolation equalization circuit is in a conducting state, and the path from the second battery to the charging chip is conducted to realize dual battery power supply.
  • the first threshold eg 100mV
  • the voltage detection control module outputs the control signal (PWM)
  • the current passing through the first battery can be detected by the first detector
  • the current passing through the second battery can be detected by the second detector. Since the first switching element Q1 is on the path from the second battery to the charging chip, the detected current passing through the second battery can determine whether the first switching element Q1 operates in the linear region or the fully conducting region.
  • the voltage detection module may first output a control signal (PWM) with a duty cycle of 0% to 100%, for example, a duty cycle of 30% control signal (PWM).
  • PWM control signal
  • the second detector can detect whether there is current passing through the path from the second battery to the charging chip, and then can increase the duty cycle of the control signal (PWM) to adjust the current on the path from the second battery to the charging chip ( It can also be considered as the equalization current between the first battery and the second battery), so that the first battery and the second battery can be quickly equalized, and the second detector has an effect on the equalization current between the first battery and the second battery.
  • the monitoring can effectively prevent the equalizing current between the first battery and the second battery from being too large to burn the device (eg, the first switching element Q1 ), thereby ensuring the reliability of the dual-battery charge-discharge circuit.
  • the above isolation and equalization circuit may include two switching elements, such as a first switching element Q1 and a second switching element Q2.
  • the first switching element Q1 and the second switching element Q2 are both NMOS transistors with parasitic diodes.
  • the source of the first switching element Q1 is coupled with the charging chip
  • the drain of the first switching element Q1 is coupled with the drain of the second switching element Q2
  • the source of the second switching element Q2 is coupled with the anode of the second battery coupling.
  • the gate of the first switching element Q1 and the gate of the second switching element Q2 are both coupled to the output end of the power detection control module for receiving the control signal (PWM) output by the power detection control module, and to control the first switching element Q1 and the output terminal of the power detection control module.
  • the second switching element Q2 is turned on or off. In this way, conduction of the first battery and the second battery is prevented through the parasitic diode.
  • first switching element Q1 and the second switching element Q2 are not limited to the connection method shown in FIG. 4 , but can also be connected as follows: the drain of the first switching element Q1 is coupled to the charging chip, and the drain of the first switching element Q1 The source is coupled to the source of the second switching element Q2, and the drain of the second switching element Q2 is coupled to the anode of the second battery.
  • the gate of the first switching element Q1 and the gate of the second switching element Q2 are both coupled to the output end of the power detection control module. Therefore, the specific connection manner of the first switching element Q1 and the second switching element Q2 is not specifically limited in this embodiment of the present application.
  • the isolation and equalization circuit is implemented by NMOS transistors. If the NMOS transistors are required to be fully turned on, the control signal (PWM ) is higher than the voltage of the first battery and the second battery. Therefore, it may be necessary to set a power supply with a larger voltage in the power detection control module. Due to the setting of the larger voltage power supply, the power consumption of the electronic device increases.
  • the above-mentioned isolation and equalization circuit in the embodiments of the present application may be implemented by a combination of NMOS transistors and PMOS transistors.
  • the isolation equalization circuit in the dual-battery charge-discharge circuit includes a first switching element Q1 and a third switching element Q3.
  • the difference from the isolation equalization circuit shown in FIG. 3 is that the first switching element Q1 in the isolation equalization circuit is implemented by a PMOS transistor, and a third switching element (implemented by an NMOS transistor) is added to control the conduction of the first switching element Q1. on or off.
  • the third switching element does not need a larger power supply voltage to trigger it to be turned on, so that the use of a larger voltage power supply can be avoided, thereby reducing the power consumption of the electronic device.
  • the drain of the first switching element Q1 may be coupled with the above-mentioned charging chip, the source of the first switching element Q1 may be coupled with the second battery (ie, the positive electrode of the second battery), and the first switching element Q1
  • the gate can be coupled with the drain of the third switching element, and the source of the third switching element is grounded; the control terminal of the third switching element can be coupled with the output terminal of the power detection control module for receiving the control output of the power detection control module
  • the signal (PWM) controls the turn-on or turn-off of the third switch element Q3, thereby controlling the turn-on or turn-off of the first switch element Q1.
  • the first switching element Q1 is used as a PMOS transistor.
  • the first switching element Q1 can operate in a cutoff region, a linear region and a complete conduction region.
  • the isolation and equalization circuit is in an off state;
  • the isolation and equalization circuit is in a balanced state;
  • the first switching element Q1 works in the complete state In the conduction region, the above isolation and equalization circuit is in the conduction state.
  • the control signal (PWM) output by the voltage detection control module can control the third switching element Q3 to work in the cut-off region, the linear region and the fully-on region, respectively.
  • the third switching element Q3 works in the cut-off region
  • the first switching element Q1 also works in the cut-off region.
  • the third switching element Q3 works in the linear region
  • the first switching element Q1 also works in the linear region.
  • the third switching element Q3 can be controlled to work in the cut-off region, the linear region and the The first switching element Q1 is controlled by the third switching element Q3 to work in the cut-off region, the linear region and the fully conducting region, respectively.
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to be less than a certain value (for example, 35%), as shown in FIG. 3A . shown.
  • the control signal (PWM) output by the voltage detection control module can control the third switching element Q3 to work in the cut-off region, and then the first switching element Q1 also works in the cut-off region.
  • an equivalent circuit diagram as shown in FIG. 3B can be formed in the above-mentioned FIG. 3 , and the first battery supplies power to the working circuit of the electronic device, so that the electronic device can be powered on smoothly.
  • the voltage detection control module in the dual-battery charge-discharge circuit will obtain the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, and compare the voltage Vbat1 of the first battery with the voltage Vbat2 of the second battery , according to the voltage difference between the first battery and the second battery, the duty cycle of the output control signal (PWM) is adjusted to control the isolation equalization circuit to be in a balanced state or a conducting state.
  • PWM pulse width
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to be greater than a certain value (eg 35%) and less than 100% (eg 37% to 41% duty cycle) as shown in Figure 3C.
  • the control signal (PWM) output by the voltage detection control module can control the third switching element Q3 to work in the linear region.
  • the third switching element Q3 operates in the linear region, the third switching element Q3 is in an incomplete conduction state.
  • the drain voltage of the third switching element Q3 can control the first switching element Q1 to be turned on or off.
  • FIG. 3 can form an equivalent circuit diagram as shown in FIG.
  • the first switching element Q1 is equivalent to a variable resistance resistor R10, which can gradually balance the voltages of the first battery and the second battery , so that the voltage difference between the first battery and the second battery is gradually reduced, and by adjusting the duty cycle of the output control signal (PWM), the balanced current between the first battery and the second battery can be guaranteed (that is, through The current of the first switching element Q1) is not too large, so as to prevent the equalizing current between the first battery and the second battery from being too large and burning the device (eg, the first switching element Q1), thereby ensuring the reliability of the isolation and equalization circuit.
  • the voltage difference between the first battery and the second battery is less than or equal to the first threshold (eg, 100 mV)
  • the voltages of the first battery and the second battery have basically achieved voltage balance.
  • the duty ratio of the control signal (PWM) output by the voltage detection control module is adjusted to 100%, that is, the control signal (PWM) is a continuous high-level signal, as shown in FIG. 3E, the third switching element Q3 is operated in the fully conductive region.
  • the drain voltage of the third switching element is a continuous low level signal, which can control the first switching element Q1 to work in the fully conductive region, so that the isolation and equalization circuit is in In the on state, the path from the second battery to the charging chip is turned on.
  • the above-mentioned FIG. 3 can form an equivalent circuit diagram as shown in FIG. 3F , that is, the charging chip can charge the first battery and can also charge the second battery. Both the first battery and the second battery can supply power to the working circuit to achieve dual battery power supply.
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to be 100%, as shown in FIG. 3E, that is, the control signal (PWM) is a continuous high-level signal, so that the above-mentioned FIG. 3 forms the equivalent circuit diagram shown in FIG. 3F, that is, the third switching element Q3 works in the complete conduction region.
  • the first switching element Q1 works in the fully conducting region, thereby making the isolation and equalization circuit in a conducting state, and the path from the second battery to the charging chip is conducted, thereby realizing dual-battery power supply.
  • the first switching element Q1 in the isolation and equalization circuit also adopts a high-power PMOS tube, that is, a PMOS tube with a parasitic diode, in order to prevent the first switching element Q1
  • the battery and the second battery are conducted through a parasitic diode, which can be implemented by using two PMOS transistors with parasitic diodes.
  • the isolation equalization circuit in the dual-battery charge-discharge circuit includes a first switching element Q1 , a second switching element Q2 and a third switching element Q3 .
  • the difference from the isolated equalization circuit shown in FIG. 4 is that the first switching element Q1 and the second switching element Q2 in the isolated equalizing circuit are implemented by PMOS transistors, and a third switching element (implemented by NMOS transistors) is added to control the first switching element Q1 and the second switching element Q2.
  • a switching element Q1 and a second switching element Q2 are turned on or off to prevent the first battery and the second battery from being turned on through the parasitic diode.
  • the drain of the first switching element Q1 is coupled with the charging chip
  • the source of the first switching element Q1 is coupled with the source of the second switching element Q2
  • the drain of the second switching element Q2 is coupled with the second battery.
  • the gate of the first switching element Q1 and the gate of the second switching element Q2 can be coupled with the drain of the third switching element Q3, the source of the third switching element Q3 is grounded; the gate of the third switching element Q3 can be connected to the power supply.
  • the output end of the detection control module is coupled to receive the control signal (PWM) output by the power detection control module, to control the turn-on or turn-off of the third switching element Q3, thereby controlling the switching of the first switching element Q1 and the second switching element Q2. on or off.
  • PWM control signal
  • a pull-up resistor R3 is coupled between the drain of the third switching element Q3 and the source of the first switching element Q1. The drain voltage of the third switching element Q3 is stabilized.
  • the source voltage Vbatt of the first switching element Q1 (that is, the source of the second switching element Q2 can be measured by an analog-to-digital converter (ADC) Voltage).
  • ADC analog-to-digital converter
  • the source voltage Vbatt of the first switching element Q1 (that is, the source voltage of the second switching element Q2) is measured by the ADC.
  • the voltage Vbat1 of the first battery is substantially equal to the source voltage Vbatt of the first switching element Q1
  • the voltage of the second battery is The voltage Vbat2 is substantially equal to the drain voltage Vbatt of the second switching element Q2, so the source voltage Vbatt of the first switching element Q1 (that is, the source voltage of the second switching element Q2) can be compared with the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery to determine whether the first switching element Q1 and the second switching element Q2 are abnormal, so as to report or control the abnormality.
  • the above-mentioned isolation and equalization circuit may further include an equalizing resistor R4 coupled between the first battery and the second battery to balance the The resistor R4 can perform low-current hardware equalization on the first battery and the second battery when the electronic device is in a shutdown state.
  • the PWM signal output by the pulse power supply can be coupled with the gate of the third MOS transistor Q3 after passing through a filter.
  • the above filter can be composed of a resistor R1 and a capacitor C1, wherein the two ends of the resistor R1 are respectively coupled to the pulse power supply and the gate of the third MOS transistor Q3, one end of the capacitor C1 is grounded, and the other end is connected to the gate of the third MOS transistor Q3. coupling.
  • a resistor R2 is also coupled between the gate of the third MOS transistor Q3 and the ground.
  • the embodiment of the present application also provides a method for controlling a dual battery charging and discharging circuit, and the dual battery charging and discharging circuit may be the dual battery charging and discharging circuit shown in FIG. 3 , FIG. 4 , FIG. 5 , or FIG. 6 .
  • the charging and discharging circuit includes S701-S702.
  • the voltage detection control module acquires the voltages of the first battery and the second battery, and outputs a control signal according to the voltage difference between the first battery and the second battery.
  • the first detector can continuously detect the voltage Vbat1 of the first battery (that is, the voltage between the positive electrode and the negative electrode of the first battery).
  • the second detector can continuously detect the voltage Vbat2 of the second battery.
  • the first detector and the second detector can be coupled with the voltage detection control module, and when the first detector detects the voltage Vbat1 of the first battery, the voltage Vbat1 of the first battery can be sent to the voltage detection control module; When the detector detects the voltage Vbat2 of the second battery, the voltage Vbat2 of the second battery can be sent to the voltage detection control module.
  • the voltage detection control module obtains the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, can compare the voltage Vbat1 of the first battery and the voltage Vbat2 of the second battery, and calculate the voltage difference between the first battery and the second battery.
  • a first threshold eg, 100mV is preset in the voltage detection control module as a voltage difference protection point between the first battery and the second battery.
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is greater than a certain value (eg 35%) and less than 100% (eg Empty ratio is 37% to 41%). If the voltage difference between the first battery and the second battery is less than or equal to the first threshold, the voltage detection control module adjusts the output control signal (PWM) to have a duty cycle of 100%.
  • the voltage detection control module sends a control signal to the isolation and equalization circuit, so as to control the isolation and equalization circuit to be in an on state, an equalization state or an off state through the control signal.
  • the control signal (PWM) can control the third switching element Q3 to work in the linear region.
  • the third switching element Q3 operates in the linear region
  • the first switching element Q1 and the second switching element Q2 also operate in the linear region.
  • the first switching element Q1 and the second switching element Q2 are equivalent to variable resistance
  • the resistance can make the first battery and the second battery charge each other, so that the voltages of the first battery and the second battery are gradually balanced, and the voltage difference between the first battery and the second battery is gradually reduced.
  • the control signal (PWM) can control the third switching element Q3 to work in the fully conducting region.
  • the third switching element Q3 works in the fully conductive region
  • the first switching element Q1 and the second switching element Q2 also work in the fully conductive region, so that the isolation and equalization circuit is in a conductive state, and the connection between the second battery and the charging chip Path is turned on.
  • the charging chip can charge the first battery and can also charge the second battery. Both the first battery and the second battery can supply power to the working circuit to achieve dual battery power supply.
  • the following takes the dual-battery charging and discharging circuit shown in FIG. 6 as an example to illustrate the circuit.
  • the dual-battery charge-discharge circuit includes a first battery, a second battery, a pulse power supply, and an isolation equalization circuit.
  • the isolation and equalization circuit includes a first MOS transistor Q1, a second MOS transistor Q2 and a third MOS transistor Q3.
  • the source of the first MOS transistor Q1 is coupled with the positive electrode of the first battery, and the positive electrode of the first battery is also used for coupling with the charging chip (the charging chip is not shown in the figure).
  • the drain of the first MOS transistor Q1 is coupled to the drain of the second MOS transistor Q2, and the source of the second MOS transistor Q2 is coupled to the positive electrode of the second battery.
  • the gate of the first MOS transistor Q1 and the gate of the second MOS transistor Q2 are both coupled to the drain of the third MOS transistor Q3, the source of the third MOS transistor Q3 is grounded, and the gate of the third MOS transistor Q3 is coupled to the pulse power supply .
  • the PWM signal output by the pulse power supply can be coupled with the gate of the third MOS transistor Q3 after passing through a filter.
  • the above filter can be composed of a resistor R1 with a resistance value of 10,000 ohms ( ⁇ ) and a capacitor C1 with a resistance of 1 microfarad ( ⁇ F). One end of C1 is grounded, and the other end is coupled to the gate of the third MOS transistor Q3.
  • a resistor R2 of 100 kiloohms (K ⁇ ) is also coupled between the gate of the third MOS transistor Q3 and the ground.
  • the voltage Vbat1 of the first battery is 4V
  • the voltage Vbat2 of the second battery is 3V. Since the voltage of the first battery and the voltage of the second battery are different, a first resistor R4 of 200 ohms ( ⁇ ) is set between the first battery and the second battery to perform hardware balancing of small currents.
  • the voltage difference protection point Vth of the first battery and the second battery can be set to be 100mV, that is, the above-mentioned first threshold value is 100mV.
  • the duty ratio of the control signal (PWM) can be set to be 37% to 41%.
  • control flow of the dual-battery charging and discharging circuit includes:
  • the voltage detection control module in the above-mentioned dual-battery charge-discharge circuit can obtain the voltages of the first battery and the second battery, and execute S904 to determine whether the voltage difference between the first battery and the second battery is greater than the first battery and the second battery. a threshold.
  • the voltage detection control module adjusts the duty cycle of the output control signal (PWM) (for example, the duty cycle is 37% to 41%), and controls the third MOS transistor Q3 to work in the linear region through the output control signal, so that the The first MOS transistor Q1 and the second MOS transistor Q2 also work in the linear region, so that the above isolation equalization circuit is in an equalized state.
  • PWM pulse width control signal
  • the first MOS transistor Q1 is equivalent to a resistor with a larger resistance value, which can gradually balance the voltages of the first battery and the second battery, and by adjusting the duty cycle of the output control signal (PWM), it can ensure the first The equalizing current between the first battery and the second battery (that is, the current passing through the first MOS transistor Q1 or the second MOS transistor Q2) is not too large, so as to prevent the device from burning due to the excessive equalizing current between the first battery and the second battery (such as the first MOS transistor Q1 and the second MOS transistor Q2), thereby ensuring the reliability of the isolation equalization circuit.
  • the duty cycle of the control signal (PWM) output by the voltage detection control module is adjusted to 100%, that is, the control signal (PWM) is
  • the continuous high-level signal makes the third switching element Q3 work in the complete conduction region, so that the first switching element Q1 and the second switching element Q2 also work in the complete conduction region, thereby making the isolation and equalization circuit in the conduction state , the path from the second battery to the charging chip is turned on.
  • the charging chip can charge the first battery and can also charge the second battery. Both the first battery and the second battery can supply power to the working circuit to achieve dual battery power supply.
  • the electronic device After the electronic device is powered on, if the voltage difference between the first battery and the second battery is less than or equal to the first threshold (eg 100mV), execute S906 to supply power to the working circuit through the dual batteries (ie the first battery and the second battery).
  • the duty ratio of the control signal (PWM) output by the voltage detection control module is adjusted to 100%, that is, the control signal (PWM) is a continuous high-level signal, so that the third switching element Q3 works in the fully conducting region, Therefore, the first switching element Q1 and the second switching element Q2 also work in the fully conducting region, so that the isolation and equalization circuit is in a conducting state, and the path from the second battery to the charging chip is conducted to realize dual-battery power supply.
  • the dual-battery charge-discharge circuit provided by the embodiment of the present application is applied to an electronic device, in the process of generating the electronic device, the voltage of the first battery and the first battery can be directly assembled without considering the voltage of the first battery, thereby improving the production efficiency , reducing production costs.
  • an isolation equalization circuit is used in the dual-battery charging and discharging circuit, which can realize rapid equalization of the voltages of the first battery and the second battery when the voltage difference between the first battery and the second battery is large, thereby improving the charging and discharging of the battery. Discharge performance, thereby improving the safety and reliability of batteries for electronic devices.
  • Each functional unit in each of the embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Abstract

提供了一种双电池充放电电路及控制方法、电子设备,能够解决由于两个电池存在较大的电压差,在双电池充放电的过程中发生大电流互充现象的问题,以提高双电池充放电电路的安全性和可靠性。该双电池充放电电路包括:第一电池、第二电池、充电芯片、电压检测控制模块和隔离均衡电路。第一电池与充电芯片耦合,第二电池通过隔离均衡电路与充电芯片耦合。电压检测控制模块,用于获取第一电池和第二电池的电压,并根据第一电池和第二电池的电压差输出控制信号。隔离均衡电路,用于接收控制信号,并在控制信号控制下处于导通状态、均衡状态或关断状态。

Description

双电池充放电电路及控制方法、电子设备
本申请要求于2021年3月15日提交国家知识产权局、申请号为202110278470.4、申请名称为“一种双电池的电压均衡方法及电路”的中国专利申请的优先权,以及要求于2021年7月30日提交国家知识产权局、申请号为202110884559.5、申请名称为“双电池充放电电路及控制方法、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及双电池充放电电路及控制方法、电子设备。
背景技术
目前,为实现电子设备的快速充电,电子设备一般采用双电池为电子设备供电。双电池充放电电路可以分为串充串放(即两个电池采用串行充电串行放电)、串充并放(即两个电池采用串行充电并行放电)和并充并放(即两个电池采用并行充电并行放电)等几种不同的情况。其中,串充串放放电损失大。串充并放需要改变双电池的形态,并且控制复杂。并充并放控制简单且不需要改变双电池的形态。
然而,目前在使用并充并放双电池充放电电路的电子设备中,由于两个电池的容量可能存在差异,使得两个电池可能存在较大的电压差,而发生大电流互充现象,从而导致电池安全问题,使得电池的可靠性降低。
发明内容
本申请实施例提供一种双电池充放电电路及控制方法、电子设备,能够解决由于两个电池存在较大的电压差,在双电池充放电的过程中发生大电流互充现象的问题,以提高双电池充放电电路的安全性和可靠性。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种双电池充放电电路。该双电池充放电电路应用于电子设备。该双电池充放电电路包括:第一电池、第二电池、充电芯片、电压检测控制模块和隔离均衡电路。其中,第一电池和第二电池并联,第一电池与充电芯片耦合,第二电池通过隔离均衡电路与充电芯片耦合。充电芯片还用于与电子设备的工作电路耦合,以向工作电路供电。电压检测控制模块,用于获取第一电池和第二电池的电压,并根据第一电池和第二电池的电压差输出控制信号。隔离均衡电路,用于接收控制信号,并在控制信号控制下处于导通状态、均衡状态或关断状态。
基于上述双电池充放电电路,将第一电池与充电芯片耦合,将第二电池通过隔离均衡电路耦合,相当于第一电池和第二电池之间通过隔离均衡电路进行隔离。如此,可以根据第一电池和第二电池之间的电压差,控制隔离均衡电路处于导通状态、均衡状态或关断状态,以避免第一电池和第二电池之间发生大电流互充现象,进而提高双电池充放电电路的安全性和可靠性。
在一种可能的实现方式中,当隔离均衡电路处于导通状态时,第一电池和第二电池均向工作电路供电,或者充电芯片向第一电池和第二电池充电。当隔离均衡电路处于均衡状态时,第一电池和第二电池通过隔离均衡电路进行电压均衡。当隔离均衡电路处于关断状态时,第一电池向工作电路供电或者充电芯片向第一电池充电。如此,在第一电池的电压与第二电池的电压的压差较大的情况下,可以通过控制信号控制隔离均衡电路处于均衡状态,第一电池和第二电池之间通过隔离均衡电路进行电压均衡,从而降低第一电池和第二电池之间的电压差,避免第一电池和第二电池之间发生大电流互充现象,进而提高双电池充放电电路的安全性和可靠性。
在一种可能的实现方式中,当第一电池与第二电池的电压差大于第一阈值时,控制信号用于控制隔离均衡电路处于均衡状态,以使第一电池和第二电池的电压均衡。
在一种可能的实现方式中,当第一电池与第二电池的电压差小于或等于第一阈值时,控制信号用于控制隔离均衡电路处于导通状态,以使第一电池和第二电池均向工作电路供电,或者使充电芯片向第一电池和第二电池充电。
应理解,第一阈值可以根据第一电池与第二电池之间存在压差的安全范围进行设置。控制信号可根据第一电池与第二电池的电压差是否大于第一阈值来确定。
在一种可能的实现方式中,隔离均衡电路包括第一开关元件。第一开关元件的第一端(如漏极)与充电芯片耦合,第一开关元件的第二端(如源极)与第二电池耦合。第一开关元件的控制端(如栅极)用于接收电压检测控制模块输出的控制信号。在第一电池与第二电池的电压差大于第一阈值的情况下,控制信号用于控制第一开关元件不完全导通。在第一电池与第二电池的电压差小于或等于第一阈值的情况下,控制信号用于控制第一开关元件完全导通。如此,可以通过控制信号控制第一开关元件处于导通、不完全导通状态,以使控制信号控制隔离均衡电路处于导通状态或均衡状态,即在第一电池的电压与第二电池的电压的压差较大的情况下,可以通过控制信号控制隔离均衡电路处于均衡状态,第一电池和第二电池之间通过隔离均衡电路进行电压均衡,从而降低第一电池和第二电池之间的电压差,避免第一电池和第二电池之间发生大电流互充现象,进而提高双电池充放电电路的安全性和可靠性。
在一种可能的实现方式中,隔离均衡电路包括第一开关元件和第二开关元件。第一开关元件的第一端(如源极)与充电芯片耦合,第一开关元件的第二端(如漏极)与第二开关元件的第二端(如漏极)耦合,所第二开关元件的第一端(如源极)与第二电池耦合。第一开关元件的控制端(如栅极)和第二开关元件的控制端(如栅极)均用于接收电压检测控制模块输出的控制信号。在第一电池与第二电池的电压差大于第一阈值的情况下,控制信号用于控制第一开关元件和第二开关元件不完全导通。在第一电池与第二电池的电压差小于或等于第一阈值的情况下,控制信号用于控制第一开关元件和第二开关元件完全导通。
应理解,当隔离均衡电路采用大功率的MOS管时,仅使用一个MOS管可能会造成第一电池和第二电池通过大功率的MOS管上的寄生二极管导通,为防止第一电池和第二电池通过寄生二极管导通,可以采用两个大功率的MOS管(即第一开 关元件和第二开关元件)实现上述隔离均衡电路,并且两个NMOS管的源极相耦合,或者漏极相耦合。
在一种可能的实现方式中,隔离均衡电路包括第一开关元件(如PMOS管)、第二开关元件(如PMOS管)和第三开关元件(如NMOS管),第一开关元件的第一端(如漏极)与充电芯片耦合,第一开关元件的第二端(如源极)与第二开关元件的第一端(如源极)耦合,第二开关元件的第二端(如漏极)与第二电池耦合。第一开关元件的控制端(如栅极)和第二开关元件的控制端(如栅极)均与第三开关元件的第一端(如漏极)耦合,第三开关元件的第二端(如源极)接地。第三开关元件的控制端(如栅极)用于接收电压检测控制模块输出的控制信号。在第一电池与第二电池的电压差大于第一阈值的情况下,控制信号控制第三开关元件不完全导通,使得第一开关元件和第二开关元件不完全导通。在第一电池与第二电池的电压从小于或等于第一阈值的情况下,控制信号控制第三开关元件导通,使得第一开关元件和第二开关元件导通。
应理解,若隔离均衡电路采用了NMOS管(即上述第一开关元件或第二开关元件)实现,若需要NMOS管完全导通,需要电源检测控制模块输出端输出的控制信号(PWM)的电压高于第一电池和第二电池的电压。因此电源检测控制模块中可能需要设置一个具有较大电压的电源,从而导致电子设备的功耗增加。在该实现方式中采用NMOS管和PMOS管相结合的方式实现,可以避免使用较大电压的电源,以降低电子设备的功耗。
在一种可能的实现方式中,第一电池和第二电池之间还耦合有均衡电阻,用于在电子设备处于关机状态时,对第一电池和第二电池进行电压均衡。
第二方面,本申请实施例提供一种电子设备。该电子设备包括工作电路,以及如上第一方面中任一种可能的实现方式中的双电池充放电电路。其中,工作电路与双电池充放电电路中的充电芯片耦合。
第三方面,本申请实施例提供一种双电池充放电电路的控制方法。该控制方法适用于如上第一方面中任一种可能的实现方式中的双电池充放电电路。该方法包括:电压检测控制模块获取第一电池和第二电池的电压,并根据第一电池和第二电池的电压差输出控制信号。电压检测控制模块向隔离均衡电路发送控制信号,以通过控制信号控制隔离均衡电路处于导通状态、均衡状态或关断状态。当隔离均衡电路处于导通状态时,第一电池和第二电池均向工作电路供电,或者充电芯片向第一电池和第二电池充电。当隔离均衡电路处于均衡状态时,第一电池和第二电池通过隔离均衡电路进行电压均衡。当隔离均衡电路处于关断状态时,第一电池向工作电路供电或者充电芯片向第一电池充电。
在一种可能的实现方式中,电压检测控制模块向隔离均衡电路发送控制信号,以通过控制信号控制隔离均衡电路处于导通状态、均衡状态或关断状态,包括:当第一电池与第二电池的电压差大于第一阈值时,控制信号控制隔离均衡电路处于均衡状态,以使第一电池和第二电池的电压均衡。
在一种可能的实现方式中,电压检测控制模块向隔离均衡电路发送控制信号,以通过控制信号控制隔离均衡电路处于导通状态、均衡状态或关断状态,包括:当 第一电池与第二电池的电压差小于或等于第一阈值时,控制信号控制隔离均衡电路处于导通状态,以使第一电池和第二电池均向工作电路供电,或者使充电芯片向第一电池和第二电池充电。
可以理解地,上述提供的任一种双电池充放电电路的控制方法、电子设备等,均可以由上文所提供的对应的双电池充放电电路来实现,或与上文所提供的对应的双电池充放电电路相关联,因此,其所能达到的有益效果可参考上文所提供的双电池充放电电路中的有益效果,此处不再赘述。
附图说明
图1为一种双电池并充并放的电子设备的结构示意图;
图2为本申请实施例提供的一种双电池充放电电路的结构示意图一;
图3为本申请实施例提供的一种双电池充放电电路的结构示意图二;
图3A为本申请实施例提供的控制信号(PWM)的波形图一;
图3B为图3所示的电路图采用图3A的波形图形成的等效电路图;
图3C为本申请实施例提供的控制信号(PWM)的波形图二;
图3D为图3所示的电路图采用图3C的波形图形成的等效电路图;
图3E为本申请实施例提供的控制信号(PWM)的波形图三;
图3F为图3所示的电路图采用图3E的波形图形成的等效电路图;
图4为本申请实施例提供的一种双电池充放电电路的结构示意图三;
图5为本申请实施例提供的一种双电池充放电电路的结构示意图四;
图6为本申请实施例提供的一种双电池充放电电路的结构示意图五;
图7为本申请实施例提供的一种双电池充放电电路的控制方法流程图;
图8为本申请实施例提供的一种双电池充放电电路的具体示例图;
图9为本申请实施例提供的另一种双电池充放电电路的控制方法流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”、“左”、“右”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“耦接”、“耦合”或“耦合连接”可以是实现信号传输的电性连接的方式。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述, 显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请实施例提供一种电子设备,该电子设备可以为手机(mobile phone)、平板电脑(pad)、个人数字助理(personal digital assistant,PDA)、电视、智能穿戴产品(例如,智能手表、智能手环)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备等。本申请实施例对电子设备的具体形式不作特殊限制。
图1为一种双电池并充并放的电子设备的结构示意图。该电子设备包括充电芯片、工作电路、第一电池和第二电池。其中,第一电池和第二电池可以通过充电芯片与电源适配器耦合,并且该第一电池和第二电池也可以通过充电芯片与工作电路耦合。
在双电池并联充电时,电源适配器将220伏市电通过交流直流转换器转换为直流电,向第一电池和第二电池充电。在双电池并联放电时,第一电池和第二电池向工作电路供电。其中,工作电路可以包括处理器、存储器、通信接口等,工作电路也可以是电源管理集成电路(power management IC,PMIC),也可以是系统级芯片(system on a chip,SoC),本申请实施例不做特殊限定。
需要说明的是,图1所示的电子设备中,电源适配器通过一个充电芯片同时向第一电池和第二电池充电,或者第一电池或第二电池同时向工作电路放电。由于两个电池的容量可能存在差异,使得两个电池可能存在较大的电压差,而发生大电流互充现象,从而导致电池安全问题,使得电池的可靠性降低。
为解决上述问题,本申请实施例提供了一种双电池充放电电路。如图2所示,该双电池充放电电路包括第一电池、第二电池、充电芯片、电压检测控制模块和隔离均衡电路。其中,第一电池和第二电池并联,并且第一电池与充电芯片耦合,第二电池通过上述隔离均衡电路与充电芯片耦合。此外,上述充电芯片还用于与工作电路耦合,以便使第一电池和第二电池为电子设备的工作电路供电。
应理解,上述充电芯片还用于与电源适配器耦合,用于获取电源适配器输出的直流电(如图1中Vbus电压),上述充电芯片中至少包括电压转换器,该电压转换器可以将从电源适配器输出的直流电Vbus转换为上述电子设备的工作电路适用的直流电(如图1所示的Vsys电压)。该电压转换器可以是直流-直流变换电路(例如BUCK电路)或直流-直流变换芯片(例如BUCK芯片)等进行直流电压变换的电路,本申请不作特殊限定。
上述电压检测控制模块,用于获取第一电池的电压Vbat1和第二电池的电压Vbat2,并根据第一电池的电压Vbat1和第二电池的电压Vbat2的电压差输出控制信号。为获取第一电池的电压Vbat1和第二电池的电压Vbat2,在本申请实施例中,可以在第一电池所在的通路上耦合第一探测器(sensor1),可以在第二电池所在的通路上耦合第二探测器(sensor2)。该第一探测器可以检测第一电池的电压Vbat1以及通过第一电池的电流,第二探测器可以检测第二电池的电压Vbat2以及通过第二电池的电流。电压检测控制模块可以与第一探测器和第二探测器耦合,以获取第一探测器和第二探测器的检测数据,该检测数据可以包括第一电池的电压Vbat1、第二电池的电压Vbat2、第一电池的电流以及第二电池的电流等。
当电压检测控制模块获取到第一电池的电压Vbat1和第二电池的电压Vbat2后,可以对第一电池的电压Vbat1和第二电池的电压Vbat2做比较,电压检测控制模块可以根据第一电池的电压Vbat1和第二电池的电压Vbat2的电压差输出控制信号,以控制隔离均衡电路的工作状态。在本申请实施例中,隔离均衡电路的工作状态可以分为三种,分别是导通状态、均衡状态和关断状态。
在隔离均衡电路处于关断状态时,第二电池到充电芯片的通路关断,充电芯片不能向第二电池充电,第二电池也不能向工作电路供电。在上述双电池充放电系统中,充电芯片仅向第一电池充电,或者仅由第一电池向工作电路供电。
在隔离均衡电路处于导通状态时,第二电池到充电芯片的通路导通。此时,充电芯片可以向第一电池充电,也可以向第二电池充电。第一电池和第二电池均可以向工作电路供电。
在隔离均衡电路处于均衡状态时,第二电池到充电芯片的通路上形成了阻值可变的电阻(电阻值较大),第一电池和第二电池之间可以实现电压均衡,以降低第一电池和第二电池之间的电压差值。如此,可以避免第一电池和第二电池之间发生大电流互充现象,从而提高电池的安全性和可靠性。
示例性地,上述电压检测控制模块可以按照如下规则控制隔离均衡电路的工作状态:
上述隔离均衡电路默认处于关断状态。例如,在电子设备开机时,上述隔离均衡电路处于关断状态,由第一电池向电子设备的工作电路供电,使电子设备顺利开机。
电子设备开机后,在第一电池的电压Vbat1与第二电池的电压Vbat2之间的电压差较大的情况下,例如第一电池和第二电池的电压差大于第一阈值(记作Vth)时,即|Vbat1-Vbat2|>Vth时,电压检测控制模块输出的控制信号,可以控制上述隔离均衡电路处于均衡状态。
电子设备开机后,在第一电池的电压Vbat1与第二电池的电压Vbat2之间的电压差较小的情况下,例如第一电池和第二电池的电压差小于或等于第一阈值时,即|Vbat1-Vbat2|≤Vth时,电压检测控制模块输出的控制信号,可以控制上述隔离均衡电路处于导通状态。
在一种实施方式中,如图3所示,上述隔离均衡电路可以包括第一开关元件Q1。该第一开关元件Q1的第一端可以与上述充电芯片耦合,该第一开关元件Q1的第二端可以与第二电池(即第二电池的正极)耦合,该第一开关元件Q1的控制端可以与电源检测控制模块的输出端耦合,用于接收电源检测控制模块输出的控制信号,控制第一开关元件Q1的导通或关断。
上述第一开关元件Q1可以为金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)等开关器件。示例性地,如图3所示,上述第一开关元件Q1为NMOS管。具体地,第一开关元件Q1的漏极(drain,D)与上述充电芯片耦合,第一开元元件Q1的源极(source,S)与第二电池的正极耦合,第一开关元件Q1的栅极(gate,G)与电源检测控制模块的输出端耦合,用于接收电源检测控制模块输出的控制信号,并控制第一开关元件 Q1导通或关断。
以第一开关元件Q1为NMOS管为例,该第一开关元件Q1可以工作在截止区、线性区和完全导通区。当第一开关元件Q1工作在截止区时,上述隔离均衡电路处于关断状态;当第一开关元件Q1工作在线性区时,上述隔离均衡电路处于均衡状态;当第一开关元件Q1工作在完全导通区时,上述隔离均衡电路处于导通状态。
在此情况下,上述电压检测控制模块输出的控制信号可以控制第一开关元件Q1分别工作在截止区、线性区和完全导通区。对于MOS管来说,通过控制MOS管的栅极电压可以控制MOS管分别工作在截止区、线性区和完全导通区。例如,对于图3所示的第一开关元件Q1来说,可以通过控制第一开关元件Q1的栅极接收的控制信号的占空比,来控制第一开关元件Q1分别工作在截止区、线性区和完全导通区。其中,占空比是指一个脉冲周期内高电平脉冲在整个脉冲周期内所占的时间比例,例如1秒高电平脉冲1秒低电平脉冲的控制信号的占空比为50%。当控制信号的占空比为100%时,即控制信号为持续的高电平信号时,第一开关元件Q1工作在完全导通区,当控制信号的占空比小于一定值(如35%)时,第一开关元件Q1工作在截止区,当控制信号的占空比大于一定值(如35%)且小于100%时,第一开关元件Q1工作在线性区。
应理解,上述控制信号可以是由脉冲电源输出脉冲宽度调制(pulse width modulation,PWM)信号。因此,上述电压检测控制模块中设置有脉冲电源。
示例性地,在默认情况下,也即在电子设备处于关机状态下以及开机时,电压检测控制模块调节输出的控制信号(PWM)的占空比小于一定值(如35%),如图3A所示。此时,电压检测控制模块输出的控制信号(PWM)可以控制第一开关元件Q1工作在截止区,并使上述图3形成如图3B所示的等效电路图,由第一电池向电子设备的工作电路供电,使电子设备顺利开机。
在电子设备开机后,上述双电池充放电电路中的电压检测控制模块,会获取第一电池的电压Vbat1和第二电池的电压Vbat2,并比较第一电池的电压Vbat1和第二电池的电压Vbat2,根据第一电池和第二电池的电压差,调节输出的控制信号(PWM)的占空比,控制隔离均衡电路处于均衡状态或导通状态。
具体而言:当第一电池和第二电池的电压差大于第一阈值(如100mV)时,电压检测控制模块调节输出的控制信号(PWM)的占空比大于一定值(如35%)且小于100%(例如占空比为37%至41%),如图3C所示。此时,电压检测控制模块输出的控制信号(PWM),可以控制第一开关元件Q1工作在线性区,从而使得上述隔离均衡电路处于均衡状态。在此情况下,上述图3可形成如图3D所示的等效电路图,即第一开关元件Q1相当于阻值可变的电阻R10,可以使第一电池和第二电池的电压逐渐均衡,并且通过调节输出的控制信号(PWM)的占空比,可以保证第一电池和第二电池之间的均衡电流(即通过第一开关元件Q1的电流)不过大,从而避免第一电池和第二电池之间的均衡电流过大而烧毁器件(如第一开关元件Q1),从而保证隔离均衡电路的可靠性。
当第一电池和第二电池的电压差小于或等于第一阈值(如100mV)时,则第一电池和第二电池已基本实现了电压均衡。此时,电压检测控制模块调节输出的控制 信号(PWM)的占空比为100%,即控制信号(PWM)为连续的高电平信号,如图3E所示,使第一开关元件Q1工作在完全导通区,从而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通。在此情况下,上述图3可形成如图3F所示的等效电路图,即充电芯片可以向第一电池充电,也可以向第二电池充电。第一电池和第二电池均可以向工作电路供电,实现双电池供电。
当然,假设在电子设备开机后,若第一电池和第二电池的电压差已经小于或等于第一阈值(如100mV),则电压检测控制模块调节输出的控制信号(PWM)的占空比为100%,如图3E所示,即控制信号(PWM)为连续的高电平信号,使上述图3形成如图3F所示的等效电路图,即第一开关元件Q1工作在完全导通区,从而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通,实现双电池供电。
需要说明的是,上述电压检测控制模块输出控制信号(PWM)后,可以通过上述第一探测器检测通过第一电池的电流,通过第二探测器检测通过第二电池的电流。由于第一开关元件Q1在第二电池到充电芯片的通路上,因此检测得到的通过第二电池的电流可以确定第一开关元件Q1是否工作在线性区或完全导通区。
具体地,当第一电池和第二电池的电压差大于第一阈值时,电压检测模块可以先输出一个占空比在0%到100%的控制信号(PWM),例如占空比为30%的控制信号(PWM)。此时,第二探测器可以检测第二电池到充电芯片的通路上是否有电流通过,然后可以增加控制信号(PWM)的占空比,以调节第二电池到充电芯片的通路上的电流(也可以认为时第一电池与第二电池之间的均衡电流),以使第一电池和第二电池能够快速均衡,并且第二探测器对第一电池与第二电池之间的均衡电流的监测,可以有效避免第一电池和第二电池之间的均衡电流过大而烧毁器件(如第一开关元件Q1),从而双电池充放电电路的可靠性。
在另一种实施方式中,假设在上述图3所示的双电池充放电电路中,隔离均衡电路中的第一开关元件Q1采用大功率的NMOS管,即带有寄生二极管的NMOS管时,为防止第一电池和第二电池通过寄生二极管导通,可以采用两个大功率的NMOS管实现上述隔离均衡电路,并且两个NMOS管的源极相耦合,或者漏极相耦合。
具体地,如图4所示,上述隔离均衡电路可以包括两个开关元件,如第一开关元件Q1和第二开关元件Q2。该第一开关元件Q1和第二开关元件Q2均为带有寄生二极管的NMOS管。在此情况下,第一开关元件Q1的源极与充电芯片耦合,第一开关元件Q1的漏极与第二开关元件Q2漏极耦合,第二开关元件Q2的源极与第二电池的正极耦合。第一开关元件Q1的栅极与第二开关元件Q2的栅极均与电源检测控制模块的输出端耦合,用于接收电源检测控制模块输出的控制信号(PWM),控制第一开关元件Q1和第二开关元件Q2的导通或关断。如此一来,防止第一电池和第二电池通过寄生二极管导通。
当然,第一开关元件Q1和第二开关元件Q2并不限于图4所示的连接方式,也可以按照如下方式连接,第一开关元件Q1的漏极与充电芯片耦合,第一开关元件Q1的源极与第二开关元件Q2源极耦合,第二开关元件Q2的漏极与第二电池的正 极耦合。第一开关元件Q1的栅极与第二开关元件Q2的栅极均与电源检测控制模块的输出端耦合。因此,本申请实施例对第一开关元件Q1和第二开关元件Q2的具体连接方式不做特殊限定。
在图4所示的双电池充放电电路中,控制信号(PWM)如何控制第一开关元件Q1和第二开关元件Q2的导通或关断,可以参考图3所示的电池充放电电路中,关于控制信号(PWM)如何控制第一开关元件Q1的导通或关断的相关描述,此处不再赘述。
需要说明的是,上述图3和图4所示的电池充放电电路中,隔离均衡电路采用了NMOS管实现,若需要NMOS管完全导通,需要电源检测控制模块输出端输出的控制信号(PWM)的电压高于第一电池和第二电池的电压。因此电源检测控制模块中可能需要设置一个具有较大电压的电源。由于该较大电压的电源的设置,会使得该电子设备的功耗增加。
为避免使用较大电压的电源,以降低电子设备的功耗,本申请实施例中的上述隔离均衡电路可以采用NMOS管和PMOS管相结合的方式实现。
示例性地,如图5所示,该双电池充放电电路中的隔离均衡电路包括第一开关元件Q1和第三开关元件Q3。与图3所示的隔离均衡电路不同的是,该隔离均衡电路中的第一开关元件Q1采用PMOS管实现,并增加第三开关元件(采用NMOS管实现)来控制第一开关元件Q1的导通或关断。如此一来,第三开关元件不需要较大的电源电压触发其导通,从而可以避免使用较大电压的电源,进而降低电子设备的功耗。示例性地,第一开关元件Q1的漏极可以与上述充电芯片耦合,该第一开关元件Q1的源极可以与第二电池(即第二电池的正极)耦合,该第一开关元件Q1的栅极可以与第三开关元件的漏极耦合,第三开关元件的源极接地;第三开关元件的控制端可以与电源检测控制模块的输出端耦合,用于接收电源检测控制模块输出的控制信号(PWM),控制第三开关元件Q3的导通或关断,从而控制第一开关元件Q1的导通或关断。
以第一开关元件Q1为PMOS管。该第一开关元件Q1可以工作在截止区、线性区和完全导通区。当第一开关元件Q1工作在截止区时,上述隔离均衡电路处于关断状态;当第一开关元件Q1工作在线性区时,上述隔离均衡电路处于均衡状态;当第一开关元件Q1工作在完全导通区时,上述隔离均衡电路处于导通状态。
在此情况下,上述电压检测控制模块输出的控制信号(PWM)可以控制第三开关元件Q3分别工作在截止区、线性区和完全导通区。当第三开关元件Q3工作在截止区时,第一开关元件Q1也工作在截止区,当第三开关元件Q3工作在线性区时,第一开关元件Q1也工作在线性区,当第三开关元件Q3工作在完全导通区时,第一开关元件Q1也工作在完全导通区。与上述图3所示的双电池充放电电路类似,可以通过控制第三开关元件Q3接收的控制信号(PWM)的占空比,来控制第三开关元件Q3分别工作在截止区、线性区和完全导通区,从而通过第三开关元件Q3控制第一开关元件Q1分别工作在截止区、线性区和完全导通区。
示例性地,在默认情况下,也即在电子设备处于关机状态下以及开机时,电压检测控制模块调节输出的控制信号(PWM)的占空比小于一定值(如35%),如图 3A所示。此时,电压检测控制模块输出的控制信号(PWM)可以控制第三开关元件Q3工作在截止区,则第一开关元件Q1也工作在截止区。此时,可以形成上述图3形成如图3B所示的等效电路图,由第一电池向电子设备的工作电路供电,使电子设备顺利开机。
在电子设备开机后,上述双电池充放电电路中的电压检测控制模块,会获取第一电池的电压Vbat1和第二电池的电压Vbat2,并比较第一电池的电压Vbat1和第二电池的电压Vbat2,根据第一电池和第二电池的电压差,调节输出的控制信号(PWM)的占空比,控制隔离均衡电路处于均衡状态或导通状态。
具体而言:当第一电池和第二电池的电压差大于第一阈值(如100mV)时,电压检测控制模块调节输出的控制信号(PWM)的占空比大于一定值(如35%)且小于100%(例如占空比为37%至41%),如图3C所示。此时,电压检测控制模块输出的控制信号(PWM),可以控制第三开关元件Q3工作在线性区。当第三开关元件Q3工作在线性区时,第三开关元件Q3处于不完全导通状态。第三开关元件Q3的漏极电压可以控制第一开关元件Q1导通或关断。当第三开关元件Q3处于不完全导通状态时,第三开关元件Q3的漏极电压并未达到持续的低电平,第一开关元件Q1工作在线性区,从而上述隔离均衡电路处于均衡状态。在此情况下,上述图3可形成如图3D所示的等效电路图,即第一开关元件Q1相当于一个阻值可变的电阻R10,可以使第一电池和第二电池的电压逐渐均衡,从而使第一电池和第二电池之间的电压差逐渐降低,并且通过调节输出的控制信号(PWM)的占空比,可以保证第一电池和第二电池之间的均衡电流(即通过第一开关元件Q1的电流)不过大,从而避免第一电池和第二电池之间的均衡电流过大而烧毁器件(如第一开关元件Q1),从而保证隔离均衡电路的可靠性。
当第一电池和第二电池的电压差小于或等于第一阈值(如100mV)时,则第一电池和第二电池的电压已基本实现了电压均衡。此时,电压检测控制模块调节输出的控制信号(PWM)的占空比为100%,即控制信号(PWM)为连续的高电平信号,如图3E所示,使第三开关元件Q3工作在完全导通区。当第三开关元件Q3工作在完全导通区时,第三开关元件的漏极电压为持续的低电平信号,可以控制第一开关元件Q1工作在完全导通区,从而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通。在此情况下,上述图3可形成如图3F所示的等效电路图,即充电芯片可以向第一电池充电,也可以向第二电池充电。第一电池和第二电池均可以向工作电路供电,实现双电池供电。
当然,假设在电子设备开机后,若第一电池和第二电池的电压差已经小于或等于第一阈值(如100mV),则电压检测控制模块调节输出的控制信号(PWM)的占空比为100%,如图3E所示,即控制信号(PWM)为连续的高电平信号,使上述图3形成如图3F所示的等效电路图,即第三开关元件Q3工作在完全导通区,从而使得第一开关元件Q1工作在完全导通区,进而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通,实现双电池供电。
示例性地,假设上述图5所示的双电池充放电电路中,隔离均衡电路中的第一开关元件Q1也采用大功率的PMOS管,即带有寄生二极管的PMOS管时,为防止 第一电池和第二电池通过寄生二极管导通,可以采用两个带有寄生二极管的PMOS管实现。
具体地,如图6所示,该双电池充放电电路中的隔离均衡电路包括第一开关元件Q1、第二开关元件Q2和第三开关元件Q3。与图4所示的隔离均衡电路不同的是,该隔离均衡电路中的第一开关元件Q1和第二开关元件Q2采用PMOS管实现,并增加第三开关元件(采用NMOS管实现)来控制第一开关元件Q1和第二开关元件Q2的导通或关断,以防止第一电池和第二电池通过寄生二极管导通。示例性地,第一开关元件Q1的漏极与充电芯片耦合,第一开关元件Q1的源极与第二开关元件Q2的源极耦合,第二开关元件Q2的漏极与第二电池耦合。第一开关元件Q1的栅极与第二开关元件Q2的栅极可以与第三开关元件Q3的漏极耦合,第三开关元件Q3的源极接地;第三开关元件Q3的栅极可以与电源检测控制模块的输出端耦合,用于接收电源检测控制模块输出的控制信号(PWM),控制第三开关元件Q3的导通或关断,从而控制第一开关元件Q1和第二开关元件Q2的导通或关断。
在图6所示的双电池充放电电路中,控制信号(PWM)如何控制第一开关元件Q1和第二开关元件Q2的导通或关断可以参考图5所示的电池充放电电路中,关于控制信号(PWM)如何控制第一开关元件Q1的导通或关断的相关描述,此处不再赘述。
在图5和图6所示的双电池充放电电路中,在第三开关元件Q3的漏极与第一开关元件Q1的源极之间还耦合有上拉电阻R3,通过上拉电阻R3可以使第三开关元件Q3的漏极电压稳定。
并且,在图6所示的双电池充放电电路中,可以通过模数转换器(analog to digital,ADC)测量第一开关元件Q1的源极电压Vbatt(也即第二开关元件Q2的源极电压)。通过ADC对第一开关元件Q1的源极电压Vbatt(也即第二开关元件Q2的源极电压)的测量。应理解,在第一开关元件Q1和第二开关元件Q2器件正常且处于完全导通的情况下,第一电池的电压Vbat1与第一开关元件Q1的源极电压Vbatt基本相等,第二电池的电压Vbat2与第二开关元件Q2的漏极电压Vbatt基本相等,因此可以通过对比第一开关元件Q1的源极电压Vbatt(也即第二开关元件Q2的源极电压)与第一电池的电压Vbat1和第二电池的电压Vbat2,以判断第一开关元件Q1和第二开关元件Q2是否存在异常,以便进行异常上报或控制。
此外,在上述图3、图4、图5和图6所示的双电池充放电电路中,上述隔离均衡电路中还可以包括耦合在第一电池和第二电池之间的均衡电阻R4,均衡电阻R4可以在电子设备处于关机状态时,对第一电池和第二电池进行小电流硬件均衡。
为保证信号的质量,脉冲电源输出的PWM信号可以经过滤波器后与第三MOS管Q3的栅极耦合。上述滤波器可以由电阻R1和电容C1组成,其中电阻R1的两端分别与脉冲电源和第三MOS管Q3的栅极耦合,电容C1的一端接地,另一端与第三MOS管Q3的栅极耦合。
为保证电路的稳定,在第三MOS管Q3的栅极与地之间还耦合有电阻R2。
本申请实施例还提供了一种双电池充放电电路的控制方法,该双电池充放电电路可以为图3、图4、图5或图6所示的双电池充放电电路。如图7所示,该充放 电电路包括S701-S702。
S701,电压检测控制模块获取第一电池和第二电池的电压,并根据第一电池和第二电池的电压差输出控制信号。
示例性地,以图6所示的双电池充放电电路为例,在电子设备开机之后,第一探测器可以持续探测第一电池的电压Vbat1(即第一电池的正极和负极之间的电压),第二探测器可以持续探测第二电池的电压Vbat2。第一探测器和第二探测器可以与电压检测控制模块耦合,当第一探测器探测到第一电池的电压Vbat1时,可以将第一电池的电压Vbat1发送到电压检测控制模块;当第二探测器探测到第二电池的电压Vbat2时,可以将第二电池的电压Vbat2发送到电压检测控制模块。
电压检测控制模块获取到第一电池的电压Vbat1和第二电池的电压Vbat2,可以比较第一电池的电压Vbat1和第二电池的电压Vbat2,并计算第一电池和第二电池的电压差。在电压检测控制模块中会预先设置有第一阈值(如100mV),作为第一电池和第二电池的电压差保护点。
具体地,若第一电池和第二电池的电压差大于第一阈值,则电压检测控制模块输出的控制信号(PWM)的占空比大于一定值(如35%)且小于100%(例如占空比为37%至41%)。若第一电池和第二电池的电压差小于或等于第一阈值,电压检测控制模块调节输出的控制信号(PWM)的占空比为100%。
S702,电压检测控制模块向隔离均衡电路发送控制信号,以通过控制信号控制隔离均衡电路处于导通状态、均衡状态或关断状态。
示例性地,以图6所示的双电池充放电电路为例,若电压检测控制模块输出的控制信号(PWM)的占空比大于一定值(如35%)且小于100%,则控制信号(PWM)可以控制第三开关元件Q3工作在线性区。当第三开关元件Q3工作在线性区时,第一开关元件Q1和第二开关元件Q2也工作在线性区,此时,第一开关元件Q1和第二开关元件Q2相当于阻值可变的电阻,可以使第一电池和第二电池进行互充,从而使第一电池和第二电池的电压逐渐均衡,第一电池和第二电池之间的电压差逐渐降低。
若电压检测控制模块输出的控制信号(PWM)的占空比为100%,则控制信号(PWM)可以控制第三开关元件Q3工作在完全导通区。当第三开关元件Q3工作在完全导通区时,第一开关元件Q1和第二开关元件Q2也工作在完全导通区,从而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通。充电芯片可以向第一电池充电,也可以向第二电池充电。第一电池和第二电池均可以向工作电路供电,实现双电池供电。
应理解上述图7所示的双电池充放电电路的控制方法的技术效果,可以参考上述图3、图4、图5或图6所示的双电池充放电电路的技术效果,此处不再赘述。
下面以图6所示的双电池充放电电路为例进行电路举例说明。
示例性地,如图8所示,该双电池充放电电路包括第一电池、第二电池、脉冲电源以及隔离均衡电路。其中,隔离均衡电路包括第一MOS管Q1、第二MOS管Q2和第三MOS管Q3。第一MOS管Q1的源极与第一电池的正极耦合,第一电池的正极还用于与充电芯片耦接(图中未示出充电芯片)。第一MOS管Q1的漏极与 第二MOS管Q2的漏极耦合,第二MOS管Q2的源极与第二电池的正极耦合。第一MOS管Q1的栅极和第二MOS管Q2的栅极均与第三MOS管Q3的漏极耦合,第三MOS管Q3的源极接地,第三MOS管Q3的栅极耦合脉冲电源。
为保证信号的质量,脉冲电源输出的PWM信号可以经过滤波器后与第三MOS管Q3的栅极耦合。上述滤波器可以由阻值为10000欧姆(Ω)的电阻R1和1微法(μF)的电容C1组成,其中电阻R1的两端分别与脉冲电源和第三MOS管Q3的栅极耦合,电容C1的一端接地,另一端与第三MOS管Q3的栅极耦合。
为保证电路的稳定,在第三MOS管Q3的栅极与地之间还耦合有100千欧(KΩ)的电阻R2。
在图8中,第一电池的电压Vbat1为4V,第二电池的电压Vbat2为3V。由于第一电池的电压和第二电池的电压不同,因此第一电池和第二电池之间设置200欧姆(Ω)的第一电阻R4,进行小电流硬件均衡。在如图8所示的电路中,可以设置第一电池和第二电池的电压差保护点Vth为100mV,即上述第一阈值为100mV。为使第一开关元件Q1、第二开关元件Q2和第三开关元件Q3工作在线性区,可以设置控制信号(PWM)的占空比为37%至41%。
如图9所示,该双电池充放电电路的控制流程,包括:
在电子设备处于关机状态或电子设备开机时,执行S901通过第一电池向电子设备的工作电路供电,并且执行S902通过均衡电阻R4进行mA级小电流硬件均衡。
在电子设备执行S903系统开机后,上述双电池充放电电路中的电压检测控制模块可以获取第一电池和第二电池的电压,并执行S904判断第一电池和第二电池的电压差是否大于第一阈值。
当第一电池和第二电池的电压差大于第一阈值(如100mV)时,则执行S905通过控制信号使第一电池和第二电池的电压均衡。此时,电压检测控制模块调节输出的控制信号(PWM)的占空比(例如占空比为37%至41%),通过输出的控制信号控制第第三MOS管Q3工作在线性区,使得第一MOS管Q1和第二MOS管Q2也工作在线性区,从而上述隔离均衡电路处于均衡状态。此时,第一MOS管Q1相当于一个阻值较大的电阻,可以使第一电池和第二电池的电压逐渐均衡,并且通过调节输出的控制信号(PWM)的占空比,可以保证第一电池和第二电池之间的均衡电流(即通过第一MOS管Q1或第二MOS管Q2的电流)不过大,从而避免第一电池和第二电池之间的均衡电流过大而烧毁器件(如第一MOS管Q1、第二MOS管Q2),从而保证隔离均衡电路的可靠性。
当第一电池和第二电池的电压差小于或等于第一阈值(如100mV)时,电压检测控制模块调节输出的控制信号(PWM)的占空比为100%,即控制信号(PWM)为连续的高电平信号,使第三开关元件Q3工作在完全导通区,从而使第一开关元件Q1和第二开关元件Q2也工作在完全导通区,进而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通。充电芯片可以向第一电池充电,也可以向第二电池充电。第一电池和第二电池均可以向工作电路供电,实现双电池供电。
在电子设备开机后,若第一电池和第二电池的电压差小于或等于第一阈值(如100mV)时,则执行S906通过双电池(即第一电池和第二电池)向工作电路供电。 此时,电压检测控制模块调节输出的控制信号(PWM)的占空比为100%,即控制信号(PWM)为连续的高电平信号,使第三开关元件Q3工作在完全导通区,从而使第一开关元件Q1和第二开关元件Q2也工作在完全导通区,进而使得隔离均衡电路处于导通状态,第二电池到充电芯片的通路导通,实现双电池供电。
应理解,上述图8所示的双电池充放电电路和图9所示的双电池充放电电路的控制方法的技术效果,可以参考上述图6所示的双电池充放电电路的技术效果,此处不再赘述。
综上所述,本申请实施例提供的双电池充放电电路应用到电子设备后,在电子设备的生成过程中,可以不用考虑第一电池和第一电池的电压,直接组装,从而提高生产效率,减少生成成本。并且,该双电池充放电电路中采用隔离均衡电路,可以在第一电池和第二电池的电压差较大的情况下,实现第一电池和第二电池电压的快速均衡,从而提高电池的充放电性能,进而提高电子设备的电池的安全性和可靠性。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种双电池充放电电路,其特征在于,应用于电子设备,所述双电池充放电电路包括:第一电池、第二电池、充电芯片、电压检测控制模块和隔离均衡电路,所述第一电池和所述第二电池并联,所述第一电池与所述充电芯片耦合,所述第二电池通过所述隔离均衡电路与所述充电芯片耦合;所述充电芯片还用于与所述电子设备的工作电路耦合,以向所述工作电路供电;
    所述电压检测控制模块,用于获取所述第一电池和所述第二电池的电压,并根据所述第一电池和所述第二电池的电压差输出控制信号;
    所述隔离均衡电路,用于接收所述控制信号,并在所述控制信号控制下处于导通状态、均衡状态或关断状态。
  2. 根据权利要求1所述的双电池充放电电路,其特征在于,当所述隔离均衡电路处于导通状态时,所述第一电池和第二电池均向所述工作电路供电,或者所述充电芯片向所述第一电池和所述第二电池充电;
    当所述隔离均衡电路处于均衡状态时,所述第一电池和第二电池通过所述隔离均衡电路进行电压均衡。
  3. 根据权利要求1或2所述的双电池充放电电路,其特征在于,当所述第一电池与所述第二电池的电压差大于第一阈值时,所述控制信号用于控制所述隔离均衡电路处于均衡状态,以使所述第一电池和所述第二电池的电压均衡。
  4. 根据权利要求1至3任一项所述的双电池充放电电路,其特征在于,当所述第一电池与所述第二电池的电压差小于或等于第一阈值时,所述控制信号用于控制所述隔离均衡电路处于导通状态,以使所述第一电池和所述第二电池均向所述工作电路供电,或者使所述充电芯片向所述第一电池和所述第二电池充电。
  5. 根据权利要求1至4任一项所述的双电池充放电电路,其特征在于,所述隔离均衡电路包括第一开关元件;
    所述第一开关元件的第一端与所述充电芯片耦合,所述第一开关元件的第二端与所述第二电池耦合;
    所述第一开关元件的控制端用于接收所述电压检测控制模块输出的所述控制信号;
    在所述第一电池与所述第二电池的电压差大于第一阈值的情况下,所述控制信号用于控制所述第一开关元件不完全导通;
    在所述第一电池与所述第二电池的电压差小于或等于第一阈值的情况下,所述控制信号用于控制所述第一开关元件完全导通。
  6. 根据权利要求1至4任一项所述的双电池充放电电路,其特征在于,所述隔离均衡电路包括第一开关元件和第二开关元件;
    所述第一开关元件的第一端与所述充电芯片耦合,所述第一开关元件的第二端与所述第二开关元件的第二端耦合,所第二开关元件的第一端与所述第二电池耦合;
    所述第一开关元件的控制端和所述第二开关元件的控制端均用于接收所述电压检测控制模块输出的所述控制信号;
    在所述第一电池与所述第二电池的电压差大于第一阈值的情况下,所述控制信 号用于控制所述第一开关元件和所述第二开关元件不完全导通;
    在所述第一电池与所述第二电池的电压差小于或等于第一阈值的情况下,所述控制信号用于控制所述第一开关元件和所述第二开关元件完全导通。
  7. 根据权利要求1至4任一项所述的双电池充放电电路,其特征在于,所述隔离均衡电路包括第一开关元件、第二开关元件和第三开关元件,所述第一开关元件的第一端与所述充电芯片耦合,所述第一开关元件的第二端与所述第二开关元件的第一端耦合,所述第二开关元件的第二端与所述第二电池耦合;
    所述第一开关元件的控制端和所述第二开关元件的控制端均与所述第三开关元件的第一端耦合,所述第三开关元件的第二端接地;
    所述第三开关元件的控制端用于接收所述电压检测控制模块输出的所述控制信号;
    在所述第一电池与所述第二电池的电压差大于第一阈值的情况下,所述控制信号控制所述第三开关元件不完全导通,使得所述第一开关元件和所述第二开关元件不完全导通;
    在所述第一电池与所述第二电池的电压从小于或等于第一阈值的情况下,所述控制信号控制所述第三开关元件导通,使得所述第一开关元件和所述第二开关元件导通。
  8. 根据权利要求1至7任一项所述的双电池充放电电路,其特征在于,所述第一电池和所述第二电池之间还耦合有均衡电阻,用于在所述电子设备处于关机状态时,对所述第一电池和所述第二电池进行电压均衡。
  9. 一种电子设备,其特征在于,包括工作电路,以及如权利要求1至8任一项所述的双电池充放电电路,所述工作电路与所述充电芯片耦合。
  10. 一种双电池充放电电路的控制方法,其特征在于,适用于如权利要求1至8任一项所述的双电池充放电电路;
    所述方法包括:
    所述电压检测控制模块获取所述第一电池和所述第二电池的电压,并根据所述第一电池和所述第二电池的电压差输出控制信号;
    所述电压检测控制模块向所述隔离均衡电路发送所述控制信号,以通过所述控制信号控制所述隔离均衡电路处于导通状态、均衡状态或关断状态;
    当所述隔离均衡电路处于导通状态时,所述第一电池和第二电池均向所述工作电路供电,或者所述充电芯片向所述第一电池和所述第二电池充电;
    当所述隔离均衡电路处于均衡状态时,所述第一电池和第二电池通过所述隔离均衡电路进行电压均衡;
    当所述隔离均衡电路处于关断状态时,所述第一电池向所述工作电路供电或者所述充电芯片向所述第一电池充电。
  11. 根据权利要求10所述的方法,其特征在于,所述电压检测控制模块向所述隔离均衡电路发送所述控制信号,以通过所述控制信号控制所述隔离均衡电路处于导通状态、均衡状态或关断状态,包括:
    当所述第一电池与所述第二电池的电压差大于第一阈值时,所述控制信号控制 所述隔离均衡电路处于均衡状态,以使所述第一电池和所述第二电池的电压均衡。
  12. 根据权利要求10或11所述的方法,其特征在于,所述电压检测控制模块向所述隔离均衡电路发送所述控制信号,以通过所述控制信号控制所述隔离均衡电路处于导通状态、均衡状态或关断状态,包括:
    当所述第一电池与所述第二电池的电压差小于或等于第一阈值时,所述控制信号控制所述隔离均衡电路处于导通状态,以使所述第一电池和所述第二电池均向所述工作电路供电,或者使所述充电芯片向所述第一电池和所述第二电池充电。
PCT/CN2022/080731 2021-03-15 2022-03-14 双电池充放电电路及控制方法、电子设备 WO2022194106A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110278470.4 2021-03-15
CN202110278470 2021-03-15
CN202110884559.5 2021-07-30
CN202110884559.5A CN115085302A (zh) 2021-03-15 2021-07-30 双电池充放电电路及控制方法、电子设备

Publications (1)

Publication Number Publication Date
WO2022194106A1 true WO2022194106A1 (zh) 2022-09-22

Family

ID=83246077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080731 WO2022194106A1 (zh) 2021-03-15 2022-03-14 双电池充放电电路及控制方法、电子设备

Country Status (2)

Country Link
CN (1) CN115085302A (zh)
WO (1) WO2022194106A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117134440A (zh) * 2023-01-16 2023-11-28 荣耀终端有限公司 电池保护电路、电池保护板及电子设备
CN116995781B (zh) * 2023-09-22 2024-03-22 荣耀终端有限公司 供电电路及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203780A1 (en) * 2013-01-24 2014-07-24 Texas Instruments Incorporated System and method for active charge and discharge current balancing in multiple parallel-connected battery packs
CN106972618A (zh) * 2017-04-17 2017-07-21 中国矿业大学 一种远控式隔爆兼本安型不间断供电电源
CN107196388A (zh) * 2017-07-27 2017-09-22 重庆日拓能源科技有限公司 并联电池组电压均衡管理系统、并联电池组及其控制方法
US20190214837A1 (en) * 2018-01-10 2019-07-11 Microsoft Technology Licensing, Llc Parallel charging and discharging of batteries with disparate characteristics
CN110198058A (zh) * 2018-02-27 2019-09-03 加百裕工业股份有限公司 并联电池系统及方法
WO2020059952A1 (ko) * 2018-09-21 2020-03-26 주식회사 다음코리아 배터리의 밸런싱 장치 및 방법
CN112467811A (zh) * 2019-09-06 2021-03-09 华为技术有限公司 双电池电压均衡方法和双电池电压均衡电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203780A1 (en) * 2013-01-24 2014-07-24 Texas Instruments Incorporated System and method for active charge and discharge current balancing in multiple parallel-connected battery packs
CN106972618A (zh) * 2017-04-17 2017-07-21 中国矿业大学 一种远控式隔爆兼本安型不间断供电电源
CN107196388A (zh) * 2017-07-27 2017-09-22 重庆日拓能源科技有限公司 并联电池组电压均衡管理系统、并联电池组及其控制方法
US20190214837A1 (en) * 2018-01-10 2019-07-11 Microsoft Technology Licensing, Llc Parallel charging and discharging of batteries with disparate characteristics
CN110198058A (zh) * 2018-02-27 2019-09-03 加百裕工业股份有限公司 并联电池系统及方法
WO2020059952A1 (ko) * 2018-09-21 2020-03-26 주식회사 다음코리아 배터리의 밸런싱 장치 및 방법
CN112467811A (zh) * 2019-09-06 2021-03-09 华为技术有限公司 双电池电压均衡方法和双电池电压均衡电路

Also Published As

Publication number Publication date
CN115085302A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US10804738B2 (en) Multipath charger and charging method thereof
US20200241619A1 (en) Power supply apparatus and power receiving apparatus
US10236701B2 (en) System, mobile device, and charging device
US9502917B2 (en) Charging method of electronic cigarettes and electronic cigarette box
WO2022194106A1 (zh) 双电池充放电电路及控制方法、电子设备
US6967469B2 (en) Battery charging method, battery charging circuit, and portable electronic device having a battery
WO2021008572A1 (zh) 一种终端设备的供电系统、方法、芯片及终端设备
US10574073B2 (en) Electronic device and method for controlling power supply
US9509160B2 (en) Fast charging terminal
EP3007306A1 (en) Electronic cigarette charging method and electronic cigarette case
CN108347089B (zh) 电能传输控制器、电能传输系统和电能传输方法
US10250059B2 (en) Charging circuit for battery-powered device
WO2023000732A1 (zh) 一种充放电电路和电子设备
WO2022213767A1 (zh) 充电装置、电子设备及充电方法
CN102280670A (zh) 一种实现自动功率控制的充电方法
WO2022199211A1 (zh) 充电电路、充电芯片及电子设备
WO2019029069A1 (zh) 电池保护芯片、供电装置及电子烟
US9906053B2 (en) Energy storage device and control method thereof
US9608476B2 (en) Charging system and charging method thereof
JP5767302B2 (ja) バッテリー管理装置のバッテリー管理回路
CN103633719B (zh) 一种充电系统及其充电控制方法
CN101436783B (zh) 一种充电电路及装置
TWI527339B (zh) 充電裝置
WO2021035404A1 (zh) 充电系统和方法
CN110912239A (zh) 一种多口充电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770461

Country of ref document: EP

Kind code of ref document: A1