WO2020111397A1 - Ceramic waveguide filter and method for manufacturing same - Google Patents

Ceramic waveguide filter and method for manufacturing same Download PDF

Info

Publication number
WO2020111397A1
WO2020111397A1 PCT/KR2019/002984 KR2019002984W WO2020111397A1 WO 2020111397 A1 WO2020111397 A1 WO 2020111397A1 KR 2019002984 W KR2019002984 W KR 2019002984W WO 2020111397 A1 WO2020111397 A1 WO 2020111397A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
waveguide filter
resonant
coupling
cavities
Prior art date
Application number
PCT/KR2019/002984
Other languages
French (fr)
Korean (ko)
Inventor
천동완
Original Assignee
주식회사 에이스테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190026078A external-priority patent/KR102193435B1/en
Application filed by 주식회사 에이스테크놀로지 filed Critical 주식회사 에이스테크놀로지
Publication of WO2020111397A1 publication Critical patent/WO2020111397A1/en
Priority to US17/329,821 priority Critical patent/US11901600B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/163Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion specifically adapted for selection or promotion of the TE01 circular-electric mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/13Hollow waveguides specially adapted for transmission of the TE01 circular-electric mode

Definitions

  • the present invention relates to a ceramic waveguide filter, and more particularly, to a ceramic waveguide filter used in a mobile communication system.
  • the data transmission rate increases, and for this, the system bandwidth must also increase, and it is necessary to improve reception sensitivity and minimize interference caused by carriers of other communication systems.
  • Coaxial resonant cavities manufactured using metal materials have advantages in terms of loss, size, and cost compared to other resonant cavities such as dielectric resonant cavities, and are mainly used to implement filters in mobile communication systems.
  • the ceramic waveguide filter is a filter that fills a cavity with a ceramic material having low loss and high dielectric constant, which can significantly reduce the size compared to a conventional coaxial resonant cavity filter and also provide excellent loss characteristics.
  • 1 is a view showing the structure of a conventional ceramic waveguide filter.
  • the existing ceramic waveguide filter is a plurality of ceramic cavities (111, 112, 113, 114), a plurality of partition walls (121, 122, 123) located between each cavity, the input interface port 140 And an output interface port 150.
  • each cavity 111, 112, 113, and 114 is independently made of individual ceramic blocks, and partition walls 121, 122, and 123 are formed on one surface of each cavity.
  • the partition walls 121, 122, and 123 may be formed through metallization of one surface of the cavity.
  • Slots 131, 132, and 133 are formed in each partition for inter-cavity coupling.
  • the signal of the first cavity 111 can be coupled to the second cavity 112 through the first slot 131 formed in the first partition 121.
  • Such a conventional ceramic waveguide filter requires a process of manufacturing each ceramic cavity (111, 112, 113, 114) independently, forming a partition wall, and then combining each cavity.
  • the cavities are generally joined through soldering or the like.
  • the conventional ceramic waveguide filter shown in FIG. 1 is compact and exhibits excellent performance with low loss, but uses a square wave guide cavity resonant mode, so a higher order spurious mode is applied to the passband of the filter. Exist in close proximity.
  • a low-pass filter in order to suppress the high-order spurious mode, a low-pass filter must be additionally applied, and there is a problem in that loss is increased.
  • the present invention proposes a small size ceramic waveguide filter.
  • the present invention proposes a ceramic waveguide filter capable of improving spurious characteristics.
  • the present invention proposes a ceramic waveguide filter that is less affected by mechanical tolerances during manufacturing.
  • the ceramic waveguide filter according to an embodiment of the present invention is defined by a plurality of through partition walls formed to separate the sections of the ceramic block according to a predetermined pattern in a single ceramic block Resonant cavity; A plurality of resonant grooves formed in the partitions of the plurality of resonant cavities divided by the through partition walls; A metal layer formed on an inner surface of each of the plurality of through partition walls; And an input/output interface formed on two resonant cavities for inputting and outputting signals among the plurality of resonant cavities. It includes.
  • the plurality of resonant grooves may be formed at each center of a corresponding resonant cavity region among the plurality of resonant cavities on one surface or the other surface of the ceramic block.
  • the input/output interface may be formed in the form of a through hole penetrating the ceramic block.
  • the plurality of through partition walls penetrates the ceramic block so as to define the plurality of resonant cavities corresponding to the resonant groove and a predetermined frequency band, and divides the section of the ceramic block, and the plurality of resonant cavities connect the input/output interface.
  • the coupling window between the plurality of through barrier ribs are sequentially coupled with adjacent resonance cavities while being spaced apart from each other to filter the frequency band, and at least one of the plurality of resonance cavities
  • a plurality of resonant cavities may be disposed adjacent to each other to form a pattern to cause cross coupling.
  • the ceramic waveguide filter includes a coupling groove spaced from a through partition wall on one surface of the ceramic block between resonant cavities where the cross coupling is generated on one surface of the ceramic block; This is further formed, the metal layer may be further formed on the inner surface of the coupling groove.
  • the ceramic waveguide filter may include a coupling hole spaced apart from a through partition wall between the resonant cavities where the cross coupling occurs, and penetrates the ceramic block; This is further formed, the metal layer may be further formed on the inner surface of the coupling hole.
  • the metal layer may be formed in an area other than the slot area defined on the inner surface of the coupling hole.
  • the coupling hole may be formed in a stepped structure on the inside, and the metal layer may be formed in an area of the stepped structure except for a predetermined slot area facing the one surface of the ceramic block.
  • the ceramic waveguide filter may include a conductive sticker attached to an area where the coupling hole is formed on one surface of the ceramic block; It may further include.
  • the thickness of the metal layer may be adjusted according to a predetermined frequency band.
  • a method of manufacturing a ceramic waveguide filter according to another embodiment of the present invention divides a section of the ceramic block according to a predetermined pattern in order to define a plurality of resonant cavities in a single ceramic block Forming a plurality of through partition walls; Forming a plurality of resonant grooves in a section of the plurality of resonant cavities divided by the through partition wall; Forming a metal layer on each inner surface of each of the plurality of through partition walls; And forming an input/output interface for inputting and outputting signals to two of the plurality of resonant cavities; It includes.
  • 1 is a view showing the structure of a conventional ceramic waveguide filter.
  • FIG. 2 is a view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention.
  • FIG. 3 shows a result of simulating filter characteristics of the ceramic waveguide filter of FIG. 2.
  • FIGS. 4 and 5 show a result of simulating filter characteristics of the ceramic waveguide filters of FIGS. 4 and 5.
  • FIG. 11 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
  • FIG. 2 is a view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention (a) is a top view, (b) is a perspective projection view.
  • the ceramic waveguide filter according to the present embodiment includes a plurality of resonant cavities defined by a plurality of through partition walls 221, 222, and 223 penetrating between one surface and the other surface of a single ceramic block 200 ( 211, 212, 213).
  • the plurality of through partition walls 221, 222, and 223 are formed to penetrate the ceramic block 200 according to a predetermined pattern to define a plurality of resonant cavities 211, 212, and 213 by dividing the sections of the ceramic block 200. do.
  • a plurality of through partition walls 221, 222, and 223 are illustrated as being formed in a pattern extending in a straight line in the lateral direction from the ceramic block 200, but this embodiment is not limited thereto.
  • the plurality of through partition walls 221, 222, and 223 may be formed in various forms capable of easily distinguishing the sections of the ceramic block 200, and in some cases, such as T-shape or Y-shape. It may also be formed in the form of a branch pattern.
  • the plurality of through partition walls 221, 222, and 223 are formed spaced apart from each other. At this time, at least one of the plurality of through partition walls 221, 222, and 223 may be formed up to the side boundary of the ceramic block 200. Since a plurality of through partition walls 221, 222, and 223 are formed to be spaced apart from each other, even if all through partition walls 221, 222, and 223 are formed to extend to a side boundary of the ceramic block 200, the ceramic block 200 is It can maintain the shape of a single structure without being cut.
  • the inner surfaces of the plurality of through partition walls 221, 222, and 223 are formed with metal layers 231, 232, and 233.
  • the metal layers 231, 232, and 233 may be formed by applying a metallization process such as plating, vapor deposition, and sputtering.
  • a metallization process such as plating, vapor deposition, and sputtering.
  • silver (Ag) having excellent electrical conductivity is used among conductive materials to minimize loss, but conductive materials other than silver may be used to improve properties such as corrosion resistance.
  • the plurality of resonant cavities 211, 212, and 213 divided by the plurality of through partition walls 221, 222, and 223 may include a plurality of ceramic cavities 111, in the conventional ceramic wave guide filter shown in FIG. 112, 113, 114).
  • the plurality of through partition walls 221, 222, and 2223 function as a cavity wall
  • the space between the plurality of through partition walls 221, 222, and 223 may be viewed as a coupling window forming a coupling surface between the plurality of resonant cavities 211, 212, and 213.
  • the resonant cavities adjacent to each other among the plurality of resonant cavities 211, 212, and 213 are formed in the ceramic block 200 through the through partition walls 221, 222, 223 ) May be coupled through an unformed region.
  • the ceramic wave guide filter according to the present embodiment as shown in FIG. 2, a region divided by a plurality of through partition walls 221, 222, 223 on one surface or the other surface of the ceramic block 200, that is, multiple Resonant grooves 241, 242, and 243 are formed in respective regions of the resonant cavities 211, 212, and 213.
  • the shape of the resonant grooves 241, 242, and 243 is not limited.
  • a metal layer is formed on the inner surface of each of the plurality of resonant grooves 241, 242, and 243, similarly to the plurality of through partitions 221, 222, and 223.
  • the resonant grooves 241, 242, and 243 are formed in the center where the electric field (E-field) is concentrated in each region of the plurality of resonant cavities 211, 212, 213, and the plurality of resonant cavities 211, 212, 213
  • E-field electric field
  • Each capacitive component is increased. Increasing the capacitive component causes an effect of lowering the resonant frequencies of the plurality of resonant cavities 211, 212, and 213.
  • the plurality of resonant cavities 211, 212, 213 can maintain the same resonant frequency as before the resonant grooves 241, 242, 243 are formed. . That is, when the resonant frequency is previously specified and the resonant grooves 241, 242, and 243 are formed in the plurality of resonant cavities 211, 212, and 213, the size of the plurality of resonant cavities 211, 212, and 213 must be reduced. . Therefore, the size of the ceramic wave guide filter can be reduced compared to the case where the resonance grooves 241, 242, and 243 are not formed.
  • the pattern of the plurality of through partition walls 221, 222, and 223 is easily coupled between the plurality of resonant cavities 211, 212, and 213, and a plurality of resonances in which resonant grooves 241, 242, and 243 are formed
  • the pattern may be adjusted such that the size of the resonant cavity in which the cavities 211, 212, and 213 are resonated in a designated frequency band is determined.
  • the pattern of the plurality of through partition walls 221, 222, and 223 is formed when the plurality of resonant cavities 211, 212, and 213 are resonated in the TE101 mode.
  • the high-order spurious mode is generated in the TE201 mode, the TE301 mode, and the electric field in the TE201 mode, for example, when the resonance cavity is divided into four equal parts in the first direction (for example, the y direction), the position of 1/4 and 1/3 It is most strongly distributed in location. Therefore, even if the resonant grooves 241, 242, and 243 are formed in the center of a plurality of resonant cavities 211, 212, and 213, the resonant frequency of the TE201 mode hardly changes.
  • the resonance frequency of the TE201 mode is increased. That is, while the resonant frequencies of the plurality of resonant cavities 211, 212, and 213 maintain a predetermined resonant frequency, the frequency of the higher-order spurious mode is increased so that the resonant frequencies of the resonant cavities 211, 212, and 213 are separated from each other. do.
  • the frequency difference between the resonant frequency and the frequency of the higher-order spurious mode is used as a measure for determining the spurious characteristics of the filter, and is called a spurious free window.
  • spurious free window As the size of the spurious free window increases, spurious characteristics improve.
  • the ceramic waveguide filter additionally applies a low pass filter to suppress the higher order spurious mode, thereby increasing loss.
  • the passband loss of the low pass filter depends on the cut-off frequency representing the stopband, and as the cut-off frequency moves away from the passband of the ceramic waveguide filter, that is, the resonance frequency band, the loss It has a decreasing characteristic.
  • the resonant grooves 241, 242, and 243 in the ceramic waveguide filter including a plurality of resonant cavities 211, 212, and 213 in which the resonant grooves 241, 242, and 243 are miniaturized, the resonant grooves 241, 242, and 243 ), the higher order spurious mode frequency can be spaced farther away from the pass band, and thus, even if a low pass filter is additionally applied, losses generated can be minimized. That is, spurious characteristics are improved.
  • input/output interfaces 251 and 252 are provided to the two resonant cavities 211 and 213 of the initial stage and the last stage according to a designated coupling order among the plurality of resonant cavities 211, 212, and 213 of the ceramic waveguide filter. Is formed.
  • input/output interface ports for inputting and outputting signals through a ceramic waveguide filter may be inserted into the formed input/output interfaces 251 and 252.
  • the input/output interfaces 251 and 252 are like the ceramic waveguide filter illustrated in FIG. 1, the input/output interface ports of the probe type do not penetrate the resonance cavities 211 and 213, and the ceramic block 200
  • the input/output interfaces 251 and 252 are implemented to be inserted from one surface or the other surface to a predetermined predetermined depth, a capacitive coupling in which electric fields dominate between the input/output interface ports and the resonant cavities 211 and 213 is performed to input and output signals.
  • the resonant grooves 241, 242, and 243 are formed in the plurality of resonant cavities 211, 212, and 213, the resonant grooves 211, 242, and 243 are formed in the resonant cavities 211, 212, and 213
  • the electric field is concentrated in the corresponding area. Accordingly, when the resonant grooves 241, 242, and 243 are formed in the resonant cavities 211, 212, and 213, the ceramic waveguide filter is weak because the strength of the electric field coupled between the input/output interface port and the resonant cavities 211, 213 is weak. Is unable to exhibit broadband characteristics.
  • the input/output interfaces 251 and 252 are formed as through holes penetrating between one surface and the other surface of the ceramic block 200, coupling of the magnetic field (H-field) is made stronger than that of the electric field. Since the signal is input and output, the ceramic waveguide filter can exhibit broadband characteristics.
  • the input/output interface ports 251 and 252 are formed as through holes, the input/output interface ports are insensitive to mechanical tolerances compared to the conventional ceramic waveguide filter, which must be inserted only to a predetermined depth from one surface or the other surface of the ceramic block 200. It has the advantage of being.
  • the input/output interfaces 251 and 252 are illustrated as being formed in the first resonant cavity 211 and the third resonant cavity 213.
  • the input interface port penetrates the input/output interface 251 formed in the first resonant cavity 211.
  • the first resonant cavity 211 receives a signal from an input interface penetrating the input/output interface 251, and adjacent first resonant cavity 211 through a coupling window that is a space between the first through partition walls 221.
  • the second resonant cavity 212 is illustrated as being formed in the first resonant cavity 211 and the third resonant cavity 213.
  • the input interface port penetrates the input/output interface 251 formed in the first resonant cavity 211.
  • the first resonant cavity 211 receives a signal from an input interface penetrating the input/output interface 251, and adjacent first resonant cavity 211 through a coupling window that is a space between the first through partition walls 221.
  • coupling is made between the adjacent second resonant cavity 212 and the third resonant cavity 213 through a coupling window that is a space between the second through partition walls 222, and the third resonant cavity 213 is input/output.
  • the signal is output to the output interface port passing through the interface 252.
  • each of the plurality of resonant cavities 211, 212, and 213 may be resonated in a frequency band designated according to the size and shape and the resonant grooves 241, 242, and 243 defined by the plurality of through partition walls 221, 222, and 223.
  • a plurality of resonant cavities 211, 212, and 213 defined by a plurality of through partition walls 221, 222, and 223 filter the signal transmitted through the input interface port in multiple stages. You can output through the output interface port. That is, in the ceramic waveguide filter according to the present embodiment, the first to third resonant cavities 211, 212, and 213 sequentially filter signals input from the input interface, similar to the conventional ceramic waveguide filter of FIG. It can be output through the output interface.
  • the plurality of through partitions 221, 222, and 223 are lateral to the ceramic block 200. It may be formed in a pattern extending parallel to each other. However, in this case, cross coupling between the plurality of resonant cavities 211, 212, and 213 is difficult to implement.
  • the plurality of through partition walls 221 so that the first resonant cavity 211 is also adjacent to the second resonant cavity 212 and the third resonant cavity 213, 222 and 223 are formed in a pattern extending in different directions from the center of the ceramic block 200 to the side. This is to facilitate cross-coupling in the ceramic waveguide filter according to this embodiment.
  • the first resonant cavity 211 and the second resonant cavity 211 are arranged according to a specified order.
  • a coupling is made between the two resonant cavities 212.
  • cross coupling may be performed between the first resonant cavity 211 and the third resonant cavity 213. That is, as the plurality of through partition walls 221, 222, and 223 are formed so that the first resonant cavity 211 is disposed adjacent to the third resonant cavity 213 as well as the second resonant cavity 212, the first resonant cavity is formed.
  • Cross coupling between the 211 and the third resonant cavity 213 may be easily performed.
  • an inductive cross coupling in which a magnetic field (H-field) predominates may be formed between the plurality of resonant cavities 211, 212, and 213.
  • the cross-coupling between the first resonant cavity 211 and the third resonant cavity 213 generates a transmission-zero, thereby improving the attenuation characteristics of the ceramic waveguide filter. That is, the ceramic waveguide filter according to the present embodiment easily implements cross-coupling without additional work according to the formation pattern of the plurality of through partition walls 221, 222, and 223, thereby easily generating transmission-zero. I can do it.
  • the inductive cross coupling between the first resonant cavity 211 and the third resonant cavity 213 may generate a transmission zero point at a frequency where the ceramic waveguide filter is higher than the passband.
  • the third through partition wall 223 is formed to extend to the side surface of the ceramic block 200 You may.
  • a ceramic waveguide filter made of a ceramic material is sensitive to mechanical tolerances. Therefore, tuning is essential to ensure that the ceramic waveguide filter performs accurate filtering.
  • the ceramic waveguide filter according to the present embodiment is provided with a metal layer formed on the inner surface of the plurality of through partition walls 221, 222, and 223 and an inner surface of the plurality of resonant grooves 241, 242, and 243 when tuning is required.
  • Tuning may be performed by adjusting the thickness of at least one of the formed metal layers in a manner such as grinding. That is, the tuning operation for adjusting the characteristics of the ceramic waveguide filter can be easily performed.
  • the ceramic block 200 is shown as an example of a rectangular parallelepiped in FIG. 2, it is not limited thereto and may be implemented in various forms to improve the performance of the ceramic waveguide filter.
  • the size of the ceramic block 200 may also be variously changed according to the frequency band of the signal to be filtered.
  • the ceramic waveguide filter according to the present exemplary embodiment is a resonance cavity (here, arranged differently from a specified order among a plurality of resonance cavities 211, 212, 213) on one surface or the other surface of the ceramic block 200
  • at least one coupling groove may be further formed at a position corresponding to the through partition wall 223 between the first and third resonant cavities 211 and 213.
  • capacitive cross coupling can generate transmission zero at frequencies lower than the pass band.
  • the ceramic waveguide filter according to the present embodiment can adjust the frequency at which the transmission zero point occurs depending on whether a coupling groove is additionally formed between two resonant cavities in which cross coupling is performed.
  • the coupling groove cannot be formed by overlapping the through partition walls 221, 222, and 223. Therefore, when the coupling groove is formed, the lengths of the through partitions 221, 222, and 223 of the corresponding position may be adjusted so as not to overlap with the position of the coupling groove.
  • the inner surface of the coupling groove may also be formed with a metal layer as in the resonance grooves 241, 242, and 243.
  • the metal layer may be formed to cover the outer surface of the ceramic block 200.
  • FIG. 2 shows a ceramic waveguide filter having three resonant cavities 211, 212, and 213 formed by three through partition walls 221, 222, and 223 on a ceramic block 200 as a simple example for convenience of explanation.
  • the present invention is not limited to this.
  • FIG. 3 shows a result of simulating the loss characteristics of the ceramic waveguide filter of FIG. 2.
  • FIG. 3 shows a comparison result obtained by simulating loss characteristics of a ceramic waveguide filter having a center frequency of 3.6 GHz and a bandwidth of 100 MHz.
  • a and b indicate return loss and insertion loss of the ceramic waveguide filter in which the resonant grooves 241 to 243 are formed according to the present embodiment, and c and d return reflection and insertion of the conventional ceramic waveguide filter. Indicates loss.
  • the ceramic waveguide filter formed with the resonant grooves 241 to 243 according to the present exemplary embodiment can be confirmed that the spurious free window has been increased by 1.6 GHz or more compared to the conventional ceramic waveguide filter to improve the spurious characteristics. have.
  • the ceramic waveguide filter according to the present embodiment in which the resonant grooves 241, 242, and 243 are formed can be reduced in size by 26% or more compared to when the resonant grooves 241, 242, and 243 are not formed. It was confirmed that it can.
  • a plurality of resonant cavities may be defined by a plurality of through partition walls formed through the ceramic block 400 according to a predetermined pattern. Accordingly, in FIGS. 4 and 5, six through partition walls 421 to 426 penetrating between one surface and the other surface of the ceramic block 400 are formed according to a predetermined pattern to divide the ceramic block 400 into six sections, Six resonant cavities 411 to 416 are defined.
  • the six through partition walls 421 to 426 are formed in a pattern for dividing the ceramic block 400 into six sections, and the shapes of the six through partition walls 421 to 426 may be formed differently. Also, as shown in FIGS. 4 and 5, the six through partition walls 421 to 426 may be formed in different patterns from each other, and some may be formed in the form of branch patterns such as T-shape or Y-shape. have.
  • resonant grooves 441 to 446 are formed at a central position of each region of the plurality of resonant cavities 411 to 416 on one surface or the other surface of the ceramic block 400.
  • the ceramic waveguide filter can be more compact than when the resonant grooves 441 to 446 are not formed, and spurious characteristics are improved. Can be.
  • metal layers 431 to 436 are formed on the inner surfaces of each of the six through partition walls 421 to 426, and metal layers (not shown) are also formed on the inner surfaces of the resonant grooves 441 to 446.
  • the first resonant cavity 411 receives a signal from an input interface port inserted in the input/output interface 451, is sequentially coupled in the second to sixth resonant cavities 412 to 416, and the sixth resonant cavity 416 outputs a signal to the output interface port inserted in the input/output interface 452.
  • the first to sixth resonant cavities 411 to 416 may be sequentially coupled through a coupling window between six through partition walls 421 to 426 formed spaced apart. That is, coupling is made between the first resonant cavity 411 and the second resonant cavity 412 through a coupling window corresponding to the first and second through partition walls 421 and 422, and the second and third through holes are formed. Coupling is performed between the second resonant cavity 412 and the third resonant cavity 413 through a coupling window corresponding to the partition walls 422 and 423, and the third and fourth through partition walls 423 and 424 Coupling may be performed between the third resonant cavity 413 and the fourth resonant cavity 414 through a corresponding coupling window.
  • the ceramic waveguide filter illustrated in FIGS. 4 and 5 functions as a multi-stage filter performing 6-stage filtering.
  • cross coupling between the first resonant cavity 411 and the third resonant cavity 413 through a coupling window corresponding to the second through partition wall 422.
  • cross-coupling may be performed between the second resonant cavity 412 and the fourth resonant cavity 414, and cross-coupling may also be performed between the third resonant cavity 413 and the fifth resonant cavity 415.
  • cross coupling may be performed between the fourth resonant cavity 414 and the sixth resonant cavity 416. That is, in the ceramic waveguide filter illustrated in FIGS. 4 and 5, cross coupling may occur between a plurality of resonant cavities.
  • At least one through partition wall of the six through partition walls 421 to 426 may be formed to extend to a side boundary of the ceramic block 400 so that cross coupling between the resonant cavities is suppressed.
  • cross coupling between the second resonant cavity 412 and the fourth resonant cavity 414, the fourth resonant cavity 644 and the sixth resonant cavity 416 in the ceramic waveguide filters of FIGS. 4 and 5 may be formed to extend to a side boundary of the ceramic block 400.
  • the first and third resonant cavities are further formed by forming a capacitive coupling structure 460 together with the second through partitions 422 between the first and third resonant cavities 411 and 413.
  • a capacitive cross coupling can be made between (411, 413).
  • the pattern of the second through partition wall 422 may be adjusted so as not to overlap with the region where the capacitive coupling structure 460 is formed.
  • a metal layer may be formed on the inner surface of the capacitive coupling structure 460.
  • the ceramic waveguide filter according to the present exemplary embodiment can easily implement a plurality of resonant cavities 411 to 416 by forming a plurality of through partitions 421 to 426 in a single ceramic block.
  • the ceramic waveguide filter can be miniaturized and spurious characteristics can be improved.
  • the input/output interfaces 451 and 452 are formed as through holes, so that the ceramic waveguide filter has broadband characteristics and can be robust against mechanical tolerances.
  • FIG. 6 as shown in FIGS. 4 and 5, one surface of the ceramic block 500 such that a capacitive cross coupling in which an electric field predominates between the plurality of resonant cavities 411 and 413 in the ceramic waveguide filter is achieved.
  • the coupling groove 561 may be formed so as not to overlap the second through partition wall 422 between the first resonant cavity 411 and the third resonant cavity 413 on one surface of the ceramic block 500.
  • a metal layer 562 is formed on the inner surface of the coupling groove 561 like the plurality of through partition walls 421 to 426.
  • the depth of the coupling groove 561 may be adjusted according to the frequency at which the capacitive cross coupling is performed. Therefore, depending on the frequency at which the capacitive cross coupling should be performed, the depth of the coupling groove 561 may be deep, and the thickness of the ceramic block 500 may be very thin at the position where the coupling groove 561 is formed. In this case, damage may occur in a region where the coupling groove 561 is formed during manufacture and handling of the ceramic waveguide filter.
  • FIG. 7 shows a case where the capacitive coupling structure 660 is implemented as a coupling hole 661 penetrating one surface and the other surface of the ceramic block 600.
  • a metal layer 662 is formed on the inner surface of the coupling hole 661.
  • the metal layer 662 may be removed from a portion of the inner surface of the coupling hole 661 to further form a slot (not shown).
  • the capacitive coupling structure 760 is implemented as a coupling hole 761 penetrating one surface and the other surface of the ceramic block 700 as in FIG. 7, but the coupling hole 761 is shown in FIG. 7. Unlike the coupling hole 661 of the, it is formed in a stepped structure. And the metal layer 762 is formed on the inner surface of the coupling hole 761. In this case, in FIG. 8, the metal layer 762 may be removed from a portion of the inner surface of the stepped structure coupling hole 761 to further form a slot 763. The slot 763 may be formed in a portion of a surface parallel to one surface of the ceramic block 700 on the inner surface of the coupling hole 761.
  • the size of the slot 763 may be adjusted by a grinder or the like to perform tuning for a frequency at which the capacitive cross coupling is performed, so that the coupling groove 561 or the coupling hole ( The thickness of the metal layers 562 and 662 or slots (not shown) formed on the inner surface of 661 is adjusted by a method such as grinding so that tuning can be performed more easily.
  • the capacitive coupling structure 860 may have a stepped structure coupling hole 861, a metal layer 862, and a slot 863 similar to FIG. 8.
  • a conductive sticker 865 for preventing signal leakage by the slot 863 is further attached to one surface of the ceramic block 800.
  • the conductive sticker 865 may be attached to the entire surface of the ceramic block 800, but may be attached only to an area corresponding to the coupling hole 861.
  • a conductive sticker may be attached to regions corresponding to the coupling holes 661 and 761 of FIGS. 6 and 7.
  • the capacitive coupling structures 660, 760, and 860 of FIGS. 7 to 9 prevent damage caused by the coupling groove 561 shown in FIG. 6 during manufacture and handling of the ceramic waveguide filter. It is a structure for.
  • FIGS. 4 and 5 show a result of simulating filter characteristics of the ceramic waveguide filters of FIGS. 4 and 5.
  • capacitive coupling structures 460 are formed between the first and third resonant cavities 411 and 413 in the ceramic waveguide filters of FIGS. 4 and 5, and the third and fifth through partition walls 423 , 425 extends to the lateral boundary of the ceramic block 400 to cross couple between the second resonant cavity 412 and the fourth resonant cavity 414 and the fourth resonant cavity 414 and the sixth resonant cavity 416. It is assumed that the ring is suppressed.
  • the capacitive coupling structure 460 is formed between the first and third resonant cavities 411 and 413
  • the capacitive cross coupling is formed between the first and third resonant cavities 411 and 413.
  • an inductive cross coupling is performed between the third resonant cavity 413 and the fifth resonant cavity 415.
  • inductive cross coupling generates a transmission zero at frequencies higher than the pass band
  • capacitive cross coupling generates a transmission zero at frequencies lower than the pass band
  • the ceramic waveguide filters of FIGS. 4 and 5 in which both inductive cross-coupling and capacitive cross-coupling are generated, as shown in FIG. 10, can be confirmed that transmission zeros are generated at both ends of the passband frequency. . And these results indicate that the ceramic waveguide filter according to this embodiment can function as a band pass filter with very good performance.
  • FIG. 11 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
  • a method of manufacturing the ceramic waveguide filter of FIG. 11 will be described with reference to FIGS. 2 to 10.
  • the frequency band and filtering characteristics that the ceramic waveguide filter should filter are predetermined. Then, a ceramic block is manufactured according to the determined frequency band (S10).
  • the ceramic block may be manufactured by determining the size and shape according to the determined frequency band.
  • a plurality of through partitions penetrating one surface and the other surface of the ceramic block are formed in a predetermined pattern according to a frequency band to be filtered and whether a resonance groove is formed, thereby dividing the sections of the ceramic block into a plurality to realize a plurality of resonance cavities.
  • S20 a plurality of through partitions penetrating one surface and the other surface of the ceramic block are formed in a predetermined pattern according to a frequency band to be filtered and whether a resonance groove is formed, thereby dividing the sections of the ceramic block into a plurality to realize a plurality of resonance cavities.
  • S20 when forming a through partition wall, whether to form a resonance groove together is because when the resonance groove is formed, a plurality of through partition walls must be formed so that the size of the resonance cavity is smaller. And a plurality of through partition walls are formed spaced apart from each other. Since the plurality of through partition walls are formed spaced apart from each other, the plurality of resonant cavities can be coupled through a
  • a resonance groove is formed in each region of the plurality of resonance cavities (S30).
  • the resonant groove may be formed at a central position of each region of the plurality of resonant cavities.
  • the sieve coupling structure is further formed (S40).
  • the capacitive coupling structure may be formed so as not to overlap with a through partition wall corresponding between two resonant cavities of the plurality of resonant cavities.
  • the capacitive coupling structure may be formed in the form of coupling grooves 561 or coupling holes 661, 761, and 861, as shown in FIGS.
  • the coupling hole may be formed in a step shape.
  • the step of forming the capacitive coupling structure may be omitted when capacitive cross coupling is not required.
  • a metal layer is formed by applying a metallization process such as plating, vapor deposition, sputtering, etc. to a conductive material such as silver on the inner surface of each of the plurality of through partition walls and the inner surface of the resonance groove (S50).
  • the metal layer is formed not only on the inner surface of each of the plurality of through partition walls and the resonant grooves, but also on the inner surface of the capacitive coupling structure. And it can also be formed on the outer surface of the ceramic block.
  • the capacitive coupling structure is formed of stepped coupling holes 761 and 861, a metal layer may not be formed to allow slots 763 and 863 to be formed on a portion of the coupling hole.
  • the metal layer is formed irrespective of the slots 763 and 863, and may be adjusted in a tuning step (S70) described later with a metal layer formed on the inner surface of the through partition wall in a manner such as grinding.
  • an input/output interface is formed in two resonant cavities of the plurality of resonant cavities (S60).
  • the input/output interface is both ends in a sequence in which a plurality of resonant cavities of a ceramic waveguide filter are sequentially coupled to receive a signal from an input interface port and output a filtered signal to an output interface port. It can be formed in the resonance cavity.
  • the input/output interface may be formed in the form of a through hole penetrating one surface and the other surface of the ceramic block so that the ceramic waveguide filter has broadband characteristics and is insensitive to mechanical tolerances.
  • the thickness of the inner surface of the capacitive coupling structure can be adjusted together.
  • the frequency formed by the capacitive cross coupling by grinding the metal layers formed on the inner surfaces of the coupling holes 761 and 861 to form the slots 763 and 863 or by adjusting the size of the formed slots 763 and 863 I can tune it.
  • forming a resonant groove (S30) and forming a capacitive coupling structure (S40), forming a metal layer (S50), and forming an input/output interface ( S60) may be adjusted in order to improve process efficiency.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention provides a ceramic waveguide filter and a method for manufacturing same, the ceramic waveguide filter comprising: multiple resonant cavities defined by multiple through-partition walls in a single ceramic block, the through-partition walls being formed to divide the ceramic block into sections according to a predetermined pattern; multiple resonant grooves formed in the sections of the multiple resonant cavities, divided by the through-partition walls; a metal layer formed on the inner surface of each of the multiple through-partition walls; and input/output interfaces formed in two resonant cavities for input and output of signals among the multiple resonant cavities. By forming the resonant grooves in the sections of the resonant cavities, a small-sized ceramic waveguide filter with improved spurious characteristics can be manufactured.

Description

세라믹 웨이브가이드 필터 및 이의 제조 방법Ceramic waveguide filter and manufacturing method thereof
본 발명은 세라믹 웨이브가이드 필터에 관한 것으로서, 더욱 상세하게는 이동통신 시스템에 사용되는 세라믹 웨이브가이드 필터에 관한 것이다.The present invention relates to a ceramic waveguide filter, and more particularly, to a ceramic waveguide filter used in a mobile communication system.
통신서비스가 진화함에 따라 데이터 전송속도가 늘어나게 되고 이를 위해서는 시스템 대역폭 또한 늘어나야 하고 수신감도향상 및 타 통신시스템 Carrier 에 의한 장애(Interference)를 최소화할 필요가 있다. As the communication service evolves, the data transmission rate increases, and for this, the system bandwidth must also increase, and it is necessary to improve reception sensitivity and minimize interference caused by carriers of other communication systems.
이를 위해서 저손실 (Low insertion loss), 고억압 (High rejection), 필터에 대한 요구가 나날이 늘어가고 있는 상황에 직면해 있다. 금속 재질을 이용하여 제작하는 동축 공진 캐비티는 유전체 공진 캐비티와 같은 타 공진 캐비티 대비 손실, 사이즈, 가격 측면에서 장점이 있으므로 이동통신 시스템의 필터 구현을 위해 주로 사용된다. To this end, demands for low insertion loss, high rejection, and filters are increasing day by day. Coaxial resonant cavities manufactured using metal materials have advantages in terms of loss, size, and cost compared to other resonant cavities such as dielectric resonant cavities, and are mainly used to implement filters in mobile communication systems.
그러나 매시브(Massive) MIMO 안테나와 같은 기지국 시스템의 저출력, 소형화로 인해 기존 동축 공진 캐비티를 사용하여도 사이즈 측면에서 제약이 있으며, 초소형 필터 구현에 대한 필요성이 대두되고 있다.However, due to the low power and miniaturization of a base station system such as a massive MIMO antenna, there is a limitation in terms of size even when using an existing coaxial resonant cavity, and there is a need for implementation of an ultra-small filter.
기존의 동축 공진 캐비티를 이용한 필터를 대체하기 위한 필터로 세라믹 웨이브가이드 필터에 대한 연구가 활발히 이루어지고 있다. 세라믹 웨이브가이드 필터는 저손실 및 고유전율을 가지는 세라믹 재질로 캐비티를 채우는 필터로서 기존의 동축 공진 캐비티 필터에 비해 사이즈를 현저하게 줄일 수 있으며 우수한 손실 특성 역시 제공할 수 있다. As a filter to replace a filter using a conventional coaxial resonant cavity, research on ceramic waveguide filters has been actively conducted. The ceramic waveguide filter is a filter that fills a cavity with a ceramic material having low loss and high dielectric constant, which can significantly reduce the size compared to a conventional coaxial resonant cavity filter and also provide excellent loss characteristics.
도 1은 기존의 세라믹 웨이브가이드 필터의 구조를 도시한 도면이다. 1 is a view showing the structure of a conventional ceramic waveguide filter.
도 1을 참조하면, 기존의 세라믹 웨이브가이드 필터는 다수의 세라믹 캐비티(111, 112, 113, 114), 각 캐비티 사이에 위치하는 다수의 격벽(121, 122, 123), 입력 인터페이스 포트(140) 및 출력 인터페이스 포트(150)를 포함한다. Referring to Figure 1, the existing ceramic waveguide filter is a plurality of ceramic cavities (111, 112, 113, 114), a plurality of partition walls (121, 122, 123) located between each cavity, the input interface port 140 And an output interface port 150.
도 1과 같은 기존의 세라믹 웨이브가이드 필터는 각각의 캐비티(111, 112, 113, 114)가 개별 세라믹 블록으로 독립적으로 제작되며, 각각의 캐비티 일면에 격벽(121, 122, 123)이 형성한다. 격벽(121, 122, 123)은 캐비티의 일면에 대한 금속화를 통해 형성될 수 있다. In the conventional ceramic waveguide filter as shown in FIG. 1, each cavity 111, 112, 113, and 114 is independently made of individual ceramic blocks, and partition walls 121, 122, and 123 are formed on one surface of each cavity. The partition walls 121, 122, and 123 may be formed through metallization of one surface of the cavity.
각각의 격벽에는 캐비티간 커플링을 위해 슬롯(131, 132, 133)이 형성된다. 제1 격벽(121)에 형성되는 제1 슬롯(131)을 통해 제1 캐비티(111)의 신호가 제2 캐비티(112)로 커플링 가능하게 된다. Slots 131, 132, and 133 are formed in each partition for inter-cavity coupling. The signal of the first cavity 111 can be coupled to the second cavity 112 through the first slot 131 formed in the first partition 121.
이러한 종래의 세라믹 웨이브가이드 필터는 각각의 세라믹 캐비티(111, 112, 113, 114)를 독립적으로 제작하고 격벽을 형성한 후, 각각의 캐비티를 결합하는 공정을 필요로 한다. 여기서 캐비티의 결합은 일반적으로 솔더링 등을 통해 이루어진다.Such a conventional ceramic waveguide filter requires a process of manufacturing each ceramic cavity (111, 112, 113, 114) independently, forming a partition wall, and then combining each cavity. Here, the cavities are generally joined through soldering or the like.
도 1과 같은 기존의 세라믹 웨이브가이드 필터는 소형으로 저손실의 우수한 성능을 나타내지만 사각 웨이브 가이드 캐비티(rectangular waveguide cavity) 공진 모드를 이용하므로, 고차 스퓨리어스 모드(higher order spurious mode)가 필터의 통과 대역에 근접하여 존재한다. 그리고 고차 스퓨리어스 모드를 억제하기 위해서는 로우 패스 필터를 추가로 적용되어야 하며, 이로 인해 손실이 증가되는 문제가 있다.The conventional ceramic waveguide filter shown in FIG. 1 is compact and exhibits excellent performance with low loss, but uses a square wave guide cavity resonant mode, so a higher order spurious mode is applied to the passband of the filter. Exist in close proximity. In addition, in order to suppress the high-order spurious mode, a low-pass filter must be additionally applied, and there is a problem in that loss is increased.
본 발명은 소형으로 제조 가능한 세라믹 웨이브가이드 필터를 제안한다. The present invention proposes a small size ceramic waveguide filter.
또한, 본 발명은 스퓨리어스 특성을 개선할 수 있는 세라믹 웨이브가이드 필터를 제안한다.In addition, the present invention proposes a ceramic waveguide filter capable of improving spurious characteristics.
뿐만 아니라 본 발명은 제조 시의 기구적 공차에 의한 영향을 적게 받는 세라믹 웨이브가이드 필터를 제안한다.In addition, the present invention proposes a ceramic waveguide filter that is less affected by mechanical tolerances during manufacturing.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터는 단일 세라믹 블록에서 미리 지정된 패턴에 따라 상기 세라믹 블록의 구획을 구분하도록 형성된 다수의 관통 격벽에 의해 정의되는 다수의 공진 캐비티; 상기 관통 격벽에 의해 구분된 상기 다수의 공진 캐비티의 구획 내에 형성되는 다수의 공진 홈; 상기 다수의 관통 격벽 각각의 내측면에 형성되는 금속층; 및 상기 다수의 공진 캐비티 중 신호를 입력 및 출력하는 2개의 공진 캐비티에 형성되는 입출력 인터페이스; 를 포함한다.In order to achieve the above object, the ceramic waveguide filter according to an embodiment of the present invention is defined by a plurality of through partition walls formed to separate the sections of the ceramic block according to a predetermined pattern in a single ceramic block Resonant cavity; A plurality of resonant grooves formed in the partitions of the plurality of resonant cavities divided by the through partition walls; A metal layer formed on an inner surface of each of the plurality of through partition walls; And an input/output interface formed on two resonant cavities for inputting and outputting signals among the plurality of resonant cavities. It includes.
상기 다수의 공진 홈은 상기 세라믹 블록의 일면 또는 타면에서 상기 다수의 공진 캐비티 중 대응하는 공진 캐비티 영역의 중앙 각각에 형성될 수 있다.The plurality of resonant grooves may be formed at each center of a corresponding resonant cavity region among the plurality of resonant cavities on one surface or the other surface of the ceramic block.
상기 입출력 인터페이스는 상기 세라믹 블록을 관통하는 관통 홀의 형태로 형성될 수 있다.The input/output interface may be formed in the form of a through hole penetrating the ceramic block.
상기 다수의 관통 격벽은 상기 공진 홈과 기지정된 주파수 대역에 대응하여 상기 다수의 공진 캐비티가 정의되도록 상기 세라믹 블록을 관통하여 상기 세라믹 블록의 구획을 구분하고, 상기 다수의 공진 캐비티가 상기 입출력 인터페이스를 통해 입력된 신호에 응답하여 상기 다수의 관통 격벽 사이의 커플링 윈도우를 통해 인접한 공진 캐비티와 순차적으로 커플링되면서 상기 주파수 대역을 필터링하도록 서로 이격되며, 상기 다수의 공진 캐비티 중 적어도 하나의 공진 캐비티가 다수의 공진 캐비티와 인접하여 배치되어 크로스 커플링이 발생되도록 하는 패턴으로 형성될 수 있다.The plurality of through partition walls penetrates the ceramic block so as to define the plurality of resonant cavities corresponding to the resonant groove and a predetermined frequency band, and divides the section of the ceramic block, and the plurality of resonant cavities connect the input/output interface. In response to a signal inputted through the coupling window between the plurality of through barrier ribs are sequentially coupled with adjacent resonance cavities while being spaced apart from each other to filter the frequency band, and at least one of the plurality of resonance cavities A plurality of resonant cavities may be disposed adjacent to each other to form a pattern to cause cross coupling.
상기 세라믹 웨이브가이드 필터는 상기 세라믹 블록의 일면에 상기 크로스 커플링이 발생되는 공진 캐비티 사이의 상기 세라믹 블록의 일면에서 관통 격벽과 이격된 커플링 홈; 이 더 형성되고, 상기 금속층은 상기 커플링 홈의 내부면에도 더 형성될 수 있다.The ceramic waveguide filter includes a coupling groove spaced from a through partition wall on one surface of the ceramic block between resonant cavities where the cross coupling is generated on one surface of the ceramic block; This is further formed, the metal layer may be further formed on the inner surface of the coupling groove.
상기 세라믹 웨이브가이드 필터는 상기 크로스 커플링이 발생되는 공진 캐비티 사이에서 관통 격벽과 이격되어 상기 세라믹 블록을 관통하는 커플링 홀; 이 더 형성되고, 상기 금속층은 상기 커플링 홀의 내부면에도 더 형성될 수 있다.The ceramic waveguide filter may include a coupling hole spaced apart from a through partition wall between the resonant cavities where the cross coupling occurs, and penetrates the ceramic block; This is further formed, the metal layer may be further formed on the inner surface of the coupling hole.
상기 금속층은 상기 커플링 홀의 내부면에서 기지정된 슬롯 영역을 제외한 영역에 형성될 수 있다.The metal layer may be formed in an area other than the slot area defined on the inner surface of the coupling hole.
상기 커플링 홀은 내측이 계단형 구조로 형성되고, 상기 금속층은 계단형 구조의 상기 커플링 홀의 내부면에서 상기 세라믹 블록의 일면에 대향하는 기지정된 슬롯 영역을 제외한 영역에 형성될 수 있다.The coupling hole may be formed in a stepped structure on the inside, and the metal layer may be formed in an area of the stepped structure except for a predetermined slot area facing the one surface of the ceramic block.
상기 세라믹 웨이브가이드 필터는 상기 세라믹 블록의 일면에서 상기 커플링 홀이 형성된 영역에 부착되는 전도성 스티커; 를 더 포함할 수 있다.The ceramic waveguide filter may include a conductive sticker attached to an area where the coupling hole is formed on one surface of the ceramic block; It may further include.
상기 금속층은 기지정된 주파수 대역에 따라 두께가 조절될 수 있다.The thickness of the metal layer may be adjusted according to a predetermined frequency band.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 실시예에 따른 세라믹 웨이브가이드 필터의 제조 방법은 단일 세라믹 블록에서 다수의 공진 캐비티를 정의하기 위해 미리 지정된 패턴에 따라 상기 세라믹 블록의 구획을 구분하는 다수의 관통 격벽을 형성하는 단계; 상기 관통 격벽에 의해 구분된 상기 다수의 공진 캐비티의 구획 내에 다수의 공진 홈을 형성하는 단계; 상기 다수의 관통 격벽 각각의 내측면에 금속층을 형성하는 단계; 및 상기 다수의 공진 캐비티 중 2개의 공진 캐비티에 신호를 입력 및 출력하기 위한 입출력 인터페이스를 형성하는 단계; 를 포함한다.In order to achieve the above object, a method of manufacturing a ceramic waveguide filter according to another embodiment of the present invention divides a section of the ceramic block according to a predetermined pattern in order to define a plurality of resonant cavities in a single ceramic block Forming a plurality of through partition walls; Forming a plurality of resonant grooves in a section of the plurality of resonant cavities divided by the through partition wall; Forming a metal layer on each inner surface of each of the plurality of through partition walls; And forming an input/output interface for inputting and outputting signals to two of the plurality of resonant cavities; It includes.
본 발명의 일 실시예에 따르면, 공진 캐비티의 캐패시턴스 성분을 증가시켜, 소형으로 제조가 가능하다. 또한, 스퓨리어스 특성을 개선할 수 있으며, 제조 시의 기구적 공차에도 안정적인 특성을 나타낼 수 있다.According to one embodiment of the present invention, it is possible to manufacture in a compact size by increasing the capacitance component of the resonance cavity. In addition, spurious characteristics can be improved, and stable characteristics can be exhibited even in mechanical tolerances during manufacturing.
도 1은 기존의 세라믹 웨이브가이드 필터의 구조를 도시한 도면이다.1 is a view showing the structure of a conventional ceramic waveguide filter.
도 2는 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터의 구조를 도시한 도면이다.2 is a view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention.
도 3은 도 2의 세라믹 웨이브가이드 필터의 필터 특성을 시뮬레이션한 결과를 나타낸다.3 shows a result of simulating filter characteristics of the ceramic waveguide filter of FIG. 2.
도 4 및 도 5는 각각 본 발명의 또 다른 실시예에 따른 세라믹 웨이브가이드 필터의 상면도 및 투영 사시도를 나타낸다.4 and 5 respectively show a top view and a perspective projection view of a ceramic waveguide filter according to another embodiment of the present invention.
도 6 내지 도 9는 캐피시티브 커플링 구조의 다양한 예를 나타낸다.6 to 9 show various examples of the capacitive coupling structure.
도 10은 도 4 및 도 5의 세라믹 웨이브가이드 필터의 필터 특성을 시뮬레이션한 결과를 나타낸다.10 shows a result of simulating filter characteristics of the ceramic waveguide filters of FIGS. 4 and 5.
도 11은 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터 제조 방법을 나타낸다.11 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be implemented in various different forms, and thus is not limited to the embodiments described herein.
그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.In addition, in order to clearly describe the present invention in the drawings, parts irrelevant to the description are omitted, and like reference numerals are assigned to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "indirectly connected" with another member in between. .
또한 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 구비할 수 있다는 것을 의미한다.Also, when a part “includes” a certain component, this means that other components may be further provided, not excluding other components, unless otherwise specified.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터의 구조를 도시한 도면으로 (a)는 상면도를 나타내고, (b)는 투영 사시도를 나타낸다.2 is a view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention (a) is a top view, (b) is a perspective projection view.
도 2를 참조하면, 본 실시예에 따른 세라믹 웨이브가이드 필터는 단일 세라믹 블록(200)의 일면과 타면 사이를 관통하는 다수의 관통 격벽(221, 222, 223)에 의해 정의되는 다수의 공진 캐비티(211, 212, 213)를 포함하는 일체형으로 구현된다.Referring to FIG. 2, the ceramic waveguide filter according to the present embodiment includes a plurality of resonant cavities defined by a plurality of through partition walls 221, 222, and 223 penetrating between one surface and the other surface of a single ceramic block 200 ( 211, 212, 213).
다수의 관통 격벽(221, 222, 223)은 미리 지정된 패턴에 따라 세라믹 블록(200)의 관통하도록 형성되어 세라믹 블록(200)의 구획을 구분함으로써 다수개의 공진 캐비티(211, 212, 213)를 정의한다. 도2에서는 일예로 다수의 관통 격벽(221, 222, 223)이 세라믹 블록(200)에서 측면 방향으로 직선으로 연장되는 패턴으로 형성되는 것으로 도시하였으나, 본 실시예는 이에 한정되지 않는다. 본 실시예에서 다수의 관통 격벽(221, 222, 223)은 세라믹 블록(200)의 구획을 용이하게 구분할 수 있는 다양한 형태로 형성될 수 있으며, 경우에 따라서는 T자 형태나 Y자 형태와 같은 분기 패턴 형태로도 형성될 수도 있다.The plurality of through partition walls 221, 222, and 223 are formed to penetrate the ceramic block 200 according to a predetermined pattern to define a plurality of resonant cavities 211, 212, and 213 by dividing the sections of the ceramic block 200. do. In FIG. 2, as an example, a plurality of through partition walls 221, 222, and 223 are illustrated as being formed in a pattern extending in a straight line in the lateral direction from the ceramic block 200, but this embodiment is not limited thereto. In this embodiment, the plurality of through partition walls 221, 222, and 223 may be formed in various forms capable of easily distinguishing the sections of the ceramic block 200, and in some cases, such as T-shape or Y-shape. It may also be formed in the form of a branch pattern.
다만 본 실시예에서 다수의 관통 격벽(221, 222, 223)은 서로 이격되어 형성된다. 이때 다수의 관통 격벽(221, 222, 223) 중 적어도 하나는 세라믹 블록(200)의 측면 경계까지 형성될 수도 있다. 다수의 관통 격벽(221, 222, 223)이 서로 이격되어 형성되므로, 만일 모든 관통 격벽(221, 222, 223)이 세라믹 블록(200)의 측면 경계까지 연장되어 형성될지라도 세라믹 블록(200)은 절단되지 않고 단일 구조물의 형태를 유지할 수 있다.However, in this embodiment, the plurality of through partition walls 221, 222, and 223 are formed spaced apart from each other. At this time, at least one of the plurality of through partition walls 221, 222, and 223 may be formed up to the side boundary of the ceramic block 200. Since a plurality of through partition walls 221, 222, and 223 are formed to be spaced apart from each other, even if all through partition walls 221, 222, and 223 are formed to extend to a side boundary of the ceramic block 200, the ceramic block 200 is It can maintain the shape of a single structure without being cut.
그리고 다수의 관통 격벽(221, 222, 223)의 내측면은 금속층(231, 232, 233)이 형성된다. 금속층(231, 232, 233)은 도금, 증착, 스퍼터링 등의 금속화 공정을 적용하여 형성될 수 있다. 통상적으로 필터, 웨이브가이드 같은 RF 장비에는 손실을 최소화하기 위해, 도전 소재 중에서 전기 전도도가 뛰어난 은(Ag)을 사용되지만, 내식성과 같은 특성 향상을 위해 은 이외의 도전 소재를 이용할 수도 있다.In addition, the inner surfaces of the plurality of through partition walls 221, 222, and 223 are formed with metal layers 231, 232, and 233. The metal layers 231, 232, and 233 may be formed by applying a metallization process such as plating, vapor deposition, and sputtering. Typically, in RF equipment such as filters and waveguides, silver (Ag) having excellent electrical conductivity is used among conductive materials to minimize loss, but conductive materials other than silver may be used to improve properties such as corrosion resistance.
본 실시예에서 다수의 관통 격벽(221, 222, 223)에 의해 구분된 다수의 공진 캐비티(211, 212, 213)는 도1 에 도시된 기존의 세라믹 웨이브 가이드 필터에서 다수의 세라믹 캐비티(111, 112, 113, 114)에 대응할 수 있다.In this embodiment, the plurality of resonant cavities 211, 212, and 213 divided by the plurality of through partition walls 221, 222, and 223 may include a plurality of ceramic cavities 111, in the conventional ceramic wave guide filter shown in FIG. 112, 113, 114).
다수의 공진 캐비티(211, 212, 213)가 다수의 관통 격벽(221, 222, 223)에 의해 구분되어 정의되므로, 다수의 관통 격벽(221, 222, 223)은 캐비티 월(Cavity wall)로 기능하며, 다수의 관통 격벽(221, 222, 223) 사이의 공간은 다수의 공진 캐비티(211, 212, 213) 간의 결합면을 형성하는 커플링 윈도우(coupling window)로 볼 수 있다.Since the plurality of resonant cavities 211, 212, and 213 are defined separately by the plurality of through partition walls 221, 222, and 223, the plurality of through partition walls 221, 222, and 223 function as a cavity wall In addition, the space between the plurality of through partition walls 221, 222, and 223 may be viewed as a coupling window forming a coupling surface between the plurality of resonant cavities 211, 212, and 213.
다수의 관통 격벽(221, 222, 223)이 서로 이격되어 형성됨에 따라, 다수의 공진 캐비티(211, 212, 213) 중 서로 인접한 공진 캐비티는 세라믹 블록(200)에서 관통 격벽(221, 222, 223)이 형성되지 않은 영역을 통해 커플링이 이루어질 수 있다.As the plurality of through partition walls 221, 222, and 223 are formed to be spaced apart from each other, the resonant cavities adjacent to each other among the plurality of resonant cavities 211, 212, and 213 are formed in the ceramic block 200 through the through partition walls 221, 222, 223 ) May be coupled through an unformed region.
한편, 본 실시예에 따른 세라믹 웨이브 가이드 필터는 도 2에 도시된 바와 같이, 세라믹 블록(200)의 일면 또는 타면에 다수의 관통 격벽(221, 222, 223)에 의해 구분된 구역, 즉 다수의 공진 캐비티(211, 212, 213) 각각의 영역에 공진 홈(241, 242, 243)이 형성된다. 여기서 공진 홈(241, 242, 243)의 형태는 제약되지 않는다. 그리고 도시되지 않았으나, 다수의 공진 홈(241, 242, 243) 각각의 내부면에는 다수의 관통 격벽(221, 222, 223)과 마찬가지로 금속층이 형성된다.On the other hand, the ceramic wave guide filter according to the present embodiment, as shown in FIG. 2, a region divided by a plurality of through partition walls 221, 222, 223 on one surface or the other surface of the ceramic block 200, that is, multiple Resonant grooves 241, 242, and 243 are formed in respective regions of the resonant cavities 211, 212, and 213. Here, the shape of the resonant grooves 241, 242, and 243 is not limited. And, although not shown, a metal layer is formed on the inner surface of each of the plurality of resonant grooves 241, 242, and 243, similarly to the plurality of through partitions 221, 222, and 223.
공진 홈(241, 242, 243)은 다수의 공진 캐비티(211, 212, 213) 각각의 영역에서 전계(E-field)가 집중되는 중앙에 형성되어, 다수의 공진 캐비티(211, 212, 213) 각각의 캐패시티브 성분을 증가시킨다. 캐패시티브 성분의 증가는 다수의 공진 캐비티(211, 212, 213)의 공진 주파수를 하향 시키는 효과를 유발한다.The resonant grooves 241, 242, and 243 are formed in the center where the electric field (E-field) is concentrated in each region of the plurality of resonant cavities 211, 212, 213, and the plurality of resonant cavities 211, 212, 213 Each capacitive component is increased. Increasing the capacitive component causes an effect of lowering the resonant frequencies of the plurality of resonant cavities 211, 212, and 213.
그리고 다수의 공진 캐비티(211, 212, 213)의 크기를 줄이면, 다수의 공진 캐비티(211, 212, 213)가 공진 홈(241, 242, 243)이 형성되기 이전과 동일한 공진 주파수를 유지할 수 있다. 즉 공진 주파수가 미리 지정되고 다수의 공진 캐비티(211, 212, 213)에 공진 홈(241, 242, 243)을 형성하는 경우, 다수의 공진 캐비티(211, 212, 213)의 크기가 축소되어야 한다. 따라서 공진 홈(241, 242, 243)이 형성되지 않는 경우에 비해, 세라믹 웨이브 가이드 필터의 크기를 소형화 할 수 있다.And if the size of the plurality of resonant cavities 211, 212, 213 is reduced, the plurality of resonant cavities 211, 212, 213 can maintain the same resonant frequency as before the resonant grooves 241, 242, 243 are formed. . That is, when the resonant frequency is previously specified and the resonant grooves 241, 242, and 243 are formed in the plurality of resonant cavities 211, 212, and 213, the size of the plurality of resonant cavities 211, 212, and 213 must be reduced. . Therefore, the size of the ceramic wave guide filter can be reduced compared to the case where the resonance grooves 241, 242, and 243 are not formed.
이에 다수의 관통 격벽(221, 222, 223)의 패턴은 다수의 공진 캐비티(211, 212, 213) 사이에 용이하게 커플링이 이루어지고, 공진 홈(241, 242, 243)이 형성된 다수의 공진 캐비티(211, 212, 213)가 지정된 주파수 대역에서 공진되는 공진 캐비티의 크기가 결정되도록 패턴이 조절될 수 있다. 도2 에서는 일예로 다수의 관통 격벽(221, 222, 223)의 패턴이 다수의 공진 캐비티(211, 212, 213)가 TE101 모드로 공진하도록 형성된 경우를 도시하였다.Accordingly, the pattern of the plurality of through partition walls 221, 222, and 223 is easily coupled between the plurality of resonant cavities 211, 212, and 213, and a plurality of resonances in which resonant grooves 241, 242, and 243 are formed The pattern may be adjusted such that the size of the resonant cavity in which the cavities 211, 212, and 213 are resonated in a designated frequency band is determined. In FIG. 2, for example, the pattern of the plurality of through partition walls 221, 222, and 223 is formed when the plurality of resonant cavities 211, 212, and 213 are resonated in the TE101 mode.
한편 고차 스퓨리어스 모드는 TE201 모드, TE301 모드 등으로 발생되며, 일예로 TE201 모드의 전계는 공진 캐비티를 제1 방향(일예로 y방향)으로 4등분하였을 때, 1/4의 위치 및 1/3의 위치에서 가장 강하게 분포된다. 따라서 공진 홈(241, 242, 243)이 다수의 공진 캐비티(211, 212, 213) 영역의 중앙에 형성되더라도, TE201 모드의 공진 주파수는 거의 변화하지 않는다.Meanwhile, the high-order spurious mode is generated in the TE201 mode, the TE301 mode, and the electric field in the TE201 mode, for example, when the resonance cavity is divided into four equal parts in the first direction (for example, the y direction), the position of 1/4 and 1/3 It is most strongly distributed in location. Therefore, even if the resonant grooves 241, 242, and 243 are formed in the center of a plurality of resonant cavities 211, 212, and 213, the resonant frequency of the TE201 mode hardly changes.
다만, 공진 캐비티(211, 212, 213)의 크기를 줄이는 경우에, TE201 모드의 공진 주파수는 상향된다. 즉 다수의 공진 캐비티(211, 212, 213)의 공진 주파수는 미리 지정된 공진 주파수를 유지하는 반면, 고차 스퓨리어스 모드의 주파수는 상향되어 공진 캐비티(211, 212, 213)의 공진 주파수와 간격이 멀어지게 된다.However, when the size of the resonance cavities 211, 212, and 213 is reduced, the resonance frequency of the TE201 mode is increased. That is, while the resonant frequencies of the plurality of resonant cavities 211, 212, and 213 maintain a predetermined resonant frequency, the frequency of the higher-order spurious mode is increased so that the resonant frequencies of the resonant cavities 211, 212, and 213 are separated from each other. do.
공진 주파수와 고차 스퓨리어스 모드의 주파수 간의 주파수 차이는 필터의 스퓨리어스 특성을 판단하는 척도로 이용되며, 스퓨리어스 프리 윈도우(spurious free window)라 한다. 그리고 스퓨리어스 프리 윈도우의 크기가 증가될수록 스퓨리어스 특성이 개선된다.The frequency difference between the resonant frequency and the frequency of the higher-order spurious mode is used as a measure for determining the spurious characteristics of the filter, and is called a spurious free window. In addition, as the size of the spurious free window increases, spurious characteristics improve.
상기한 바와 같이, 세라믹 웨이브가이드 필터는 고차 스퓨리어스 모드를 억제하기 위해 로우 패스 필터를 추가로 적용하며, 이로 인해 손실이 증가한다. 로우 패스 필터의 통과대역 손실은 저지대역을 표현하는 컷-오프 주파수(cut-off frequency)에 의존하며, 컷-오프 주파수가 세라믹 웨이브가이드 필터의 통과 대역, 즉 공진 주파수 대역으로부터 멀어질수록 손실은 감소하는 특성을 가진다.As described above, the ceramic waveguide filter additionally applies a low pass filter to suppress the higher order spurious mode, thereby increasing loss. The passband loss of the low pass filter depends on the cut-off frequency representing the stopband, and as the cut-off frequency moves away from the passband of the ceramic waveguide filter, that is, the resonance frequency band, the loss It has a decreasing characteristic.
따라서 도 2에 도시된 바와 같이, 공진 홈(241, 242, 243)이 형성되어 소형화되는 다수의 공진 캐비티(211, 212, 213)를 포함하는 세라믹 웨이브가이드 필터에서는 공진 홈(241, 242, 243)이 형성되지 않은 경우보다 고차 스퓨리어스 모드의 주파수를 통과 대역으로부터 멀리 이격시킬 수 있으며, 이로 인해 로우 패스 필터를 추가로 적용하더라도 발생되는 손실을 최소화할 수 있다. 즉 스퓨리어스 특성이 향상된다.Accordingly, as shown in FIG. 2, in the ceramic waveguide filter including a plurality of resonant cavities 211, 212, and 213 in which the resonant grooves 241, 242, and 243 are miniaturized, the resonant grooves 241, 242, and 243 ), the higher order spurious mode frequency can be spaced farther away from the pass band, and thus, even if a low pass filter is additionally applied, losses generated can be minimized. That is, spurious characteristics are improved.
본 실시예에서 세라믹 웨이브가이드 필터의 다수의 공진 캐비티(211, 212, 213) 중 지정된 커플링 순서에 따라 초기단 및 최후단의 2개의 공진 캐비티(211, 213)에는 입출력 인터페이스(251, 252)가 형성된다. 그리고 형성된 입출력 인터페이스(251, 252)에 세라믹 웨이브가이드 필터로 신호를 입력 및 출력하기 위한 입출력 인터페이스 포트가 삽입될 수 있다.In the present exemplary embodiment, input/ output interfaces 251 and 252 are provided to the two resonant cavities 211 and 213 of the initial stage and the last stage according to a designated coupling order among the plurality of resonant cavities 211, 212, and 213 of the ceramic waveguide filter. Is formed. In addition, input/output interface ports for inputting and outputting signals through a ceramic waveguide filter may be inserted into the formed input/ output interfaces 251 and 252.
만일 입출력 인터페이스(251, 252)가 도 1에 도시된 세라믹 웨이브가이드 필터와 같이, 프로브 타입(Probe type)의 입출력 인터페이스 포트가 공진 캐비티(211, 213)를 관통하지 않고, 세라믹 블록(200)의 일면 또는 타면으로부터 기지정된 일정 깊이까지 삽입되도록 입출력 인터페이스(251, 252)가 구현되면, 입출력 인터페이스 포트와 공진 캐비티(211, 213) 사이에 전계가 우세한 캐패시티브 커플링이 이루어져 신호가 입출력된다.If the input/ output interfaces 251 and 252 are like the ceramic waveguide filter illustrated in FIG. 1, the input/output interface ports of the probe type do not penetrate the resonance cavities 211 and 213, and the ceramic block 200 When the input/ output interfaces 251 and 252 are implemented to be inserted from one surface or the other surface to a predetermined predetermined depth, a capacitive coupling in which electric fields dominate between the input/output interface ports and the resonant cavities 211 and 213 is performed to input and output signals.
이때, 다수의 공진 캐비티(211, 212, 213)에 공진 홈(241, 242, 243)이 형성되면, 공진 캐비티(211, 212, 213)에서 공진 홈(241, 242, 243)이 형성된 위치에 대응하는 영역에 전계가 집중된다. 따라서 공진 캐비티(211, 212, 213)에 공진 홈(241, 242, 243)이 형성된 경우에는 입출력 인터페이스 포트와 공진 캐비티(211, 213) 사이에 커플링이 이루어지는 전계의 세기가 약해 세라믹 웨이브가이드 필터가 광대역 특성을 나타낼 수 없게 된다.At this time, when the resonant grooves 241, 242, and 243 are formed in the plurality of resonant cavities 211, 212, and 213, the resonant grooves 211, 242, and 243 are formed in the resonant cavities 211, 212, and 213 The electric field is concentrated in the corresponding area. Accordingly, when the resonant grooves 241, 242, and 243 are formed in the resonant cavities 211, 212, and 213, the ceramic waveguide filter is weak because the strength of the electric field coupled between the input/output interface port and the resonant cavities 211, 213 is weak. Is unable to exhibit broadband characteristics.
그에 비해 입출력 인터페이스(251, 252)가 도 2에 도시된 바와 같이, 세라믹 블록(200)의 일면과 타면 사이를 관통하는 관통 홀로 형성되면, 전계 보다 자계(H-field)의한 커플링이 강하게 이루어져 신호가 입출력되므로, 세라믹 웨이브가이드 필터가 광대역 특성을 나타낼 수 있다.On the other hand, when the input/ output interfaces 251 and 252 are formed as through holes penetrating between one surface and the other surface of the ceramic block 200, coupling of the magnetic field (H-field) is made stronger than that of the electric field. Since the signal is input and output, the ceramic waveguide filter can exhibit broadband characteristics.
또한 입출력 인터페이스(251, 252)가 관통 홀로 형성되는 경우에는 입출력 인터페이스 포트가 세라믹 블록(200)의 일면 또는 타면으로부터 기지정된 일정 깊이까지만 삽입되어야 하는 기존의 세라믹 웨이브가이드 필터에 비해 기구적 공차에 둔감하다는 장점이 있다.In addition, when the input/ output interfaces 251 and 252 are formed as through holes, the input/output interface ports are insensitive to mechanical tolerances compared to the conventional ceramic waveguide filter, which must be inserted only to a predetermined depth from one surface or the other surface of the ceramic block 200. It has the advantage of being.
도2 에서는 일예로 입출력 인터페이스(251, 252)가 제1 공진 캐비티(211) 및 제3 공진 캐비티(213)에 형성된 것으로 도시하였다. 그리고 여기서는 제1 공진 캐비티(211)에 형성된 입출력 인터페이스(251)를 입력 인터페이스 포트가 관통하는 것으로 가정한다. 이 경우, 제1 공진 캐비티(211)는 입출력 인터페이스(251)를 관통하는 입력 인터페이스로부터 신호를 인가받고, 제1 관통 격벽(221) 사이의 공간인 커플링 윈도우를 통해 인접한 제1 공진 캐비티(211)와 제2 공진 캐비티(212) 사이에 커플링이 이루어진다. 그리고 제2 관통 격벽(222) 사이의 공간인 커플링 윈도우를 통해 인접한 제2 공진 캐비티(212)와 제3 공진 캐비티(213) 사이에 커플링이 이루어지며, 제3 공진 캐비티(213)는 입출력 인터페이스(252)를 관통하는 출력 인터페이스 포트로 신호를 출력한다.In FIG. 2, for example, the input/ output interfaces 251 and 252 are illustrated as being formed in the first resonant cavity 211 and the third resonant cavity 213. In addition, it is assumed here that the input interface port penetrates the input/output interface 251 formed in the first resonant cavity 211. In this case, the first resonant cavity 211 receives a signal from an input interface penetrating the input/output interface 251, and adjacent first resonant cavity 211 through a coupling window that is a space between the first through partition walls 221. ) And the second resonant cavity 212. In addition, coupling is made between the adjacent second resonant cavity 212 and the third resonant cavity 213 through a coupling window that is a space between the second through partition walls 222, and the third resonant cavity 213 is input/output. The signal is output to the output interface port passing through the interface 252.
이때 다수의 공진 캐비티(211, 212, 213) 각각은 다수의 관통 격벽(221, 222, 223)에 의해 정의된 크기 및 형태 및 공진 홈(241, 242, 243)에 따라 지정된 주파수 대역에서 공진될 수 있다. 따라서 본 실시예에 따른 세라믹 웨이브가이드 필터는 다수의 관통 격벽(221, 222, 223)에 의해 정의된 다수의 공진 캐비티(211, 212, 213)가 입력 인터페이스 포트를 통해 전송된 신호를 다단 필터링하여 출력 인터페이스 포트로 출력할 수 있다. 즉 본 실시예에 따른 세라믹 웨이브가이드 필터는 도 1의 기존의 세라믹 웨이브가이드 필터와 유사하게, 입력 인터페이스로부터 입력된 신호를 제1 내지 제3 공진 캐비티(211, 212, 213)가 순차적으로 필터링하여 출력 인터페이스로 출력할 수 있다.In this case, each of the plurality of resonant cavities 211, 212, and 213 may be resonated in a frequency band designated according to the size and shape and the resonant grooves 241, 242, and 243 defined by the plurality of through partition walls 221, 222, and 223. Can be. Therefore, in the ceramic waveguide filter according to the present embodiment, a plurality of resonant cavities 211, 212, and 213 defined by a plurality of through partition walls 221, 222, and 223 filter the signal transmitted through the input interface port in multiple stages. You can output through the output interface port. That is, in the ceramic waveguide filter according to the present embodiment, the first to third resonant cavities 211, 212, and 213 sequentially filter signals input from the input interface, similar to the conventional ceramic waveguide filter of FIG. It can be output through the output interface.
한편 다수의 공진 캐비티(211, 212, 213)가 도 1의 세라믹 웨이브가이드 필터와 마찬가지로 순차적으로 커플링이 이루어지는 경우, 다수의 관통 격벽(221, 222, 223)은 세라믹 블록(200)에서 측면으로 서로 평행하게 연장되는 패턴으로 형성될 수도 있다. 그러나 이 경우, 다수의 공진 캐비티(211, 212, 213) 사이에서 크로스 커플링이 구현되기 어렵다.On the other hand, when a plurality of resonant cavities 211, 212, and 213 are sequentially coupled as in the ceramic waveguide filter of FIG. 1, the plurality of through partitions 221, 222, and 223 are lateral to the ceramic block 200. It may be formed in a pattern extending parallel to each other. However, in this case, cross coupling between the plurality of resonant cavities 211, 212, and 213 is difficult to implement.
반면, 도 2에 도시된 본 실시예에 따른 세라믹 웨이브가이드 필터에서는 제1 공진 캐비티(211)가 제2 공진 캐비티(212) 및 제3 공진 캐비티(213)와도 인접하도록 다수의 관통 격벽(221, 222, 223)이 세라믹 블록(200)의 중심에서 측면으로 서로 다른 방향으로 연장되는 패턴으로 형성되었다. 이는 본 실시예에 따른 세라믹 웨이브가이드 필터에서 크로스 커플링이 용이하게 이루어 질 수 있도록 하기 위함이다.On the other hand, in the ceramic waveguide filter according to the present embodiment shown in FIG. 2, the plurality of through partition walls 221 so that the first resonant cavity 211 is also adjacent to the second resonant cavity 212 and the third resonant cavity 213, 222 and 223 are formed in a pattern extending in different directions from the center of the ceramic block 200 to the side. This is to facilitate cross-coupling in the ceramic waveguide filter according to this embodiment.
상기한 바와 같이, 제1 공진 캐비티(211), 제2 공진 캐비티(212) 및 제3 공진 캐비티(213)의 순서가 커플링 경로인 경우, 지정된 순서에 따라 제1 공진 캐비티(211)와 제2 공진 캐비티(212) 사이에 커플링이 이루어진다. 뿐만 아니라 제1 공진 캐비티(211)와 제3 공진 캐비티(213) 사이에는 크로스 커플링이 이루어질 수 있다. 즉 제1 공진 캐비티(211)가 제2 공진 캐비티(212)뿐만 아니라 제3 공진 캐비티(213)와도 인접하여 배치되도록 다수의 관통 격벽(221, 222, 223)이 형성됨에 따라, 제1 공진 캐비티(211)와 제3 공진 캐비티(213)와의 사이에는 크로스 커플링이 용이하게 이루어질 수 있다. 이때 다수의 공진 캐비티(211, 212, 213) 사이에는 자계(H-field)가 우세하게 작용하는 인덕티브 크로스 커플링(inductive cross coupling)이 이루어질 수 있다.As described above, when the order of the first resonant cavity 211, the second resonant cavity 212, and the third resonant cavity 213 is a coupling path, the first resonant cavity 211 and the second resonant cavity 211 are arranged according to a specified order. A coupling is made between the two resonant cavities 212. In addition, cross coupling may be performed between the first resonant cavity 211 and the third resonant cavity 213. That is, as the plurality of through partition walls 221, 222, and 223 are formed so that the first resonant cavity 211 is disposed adjacent to the third resonant cavity 213 as well as the second resonant cavity 212, the first resonant cavity is formed. Cross coupling between the 211 and the third resonant cavity 213 may be easily performed. At this time, an inductive cross coupling in which a magnetic field (H-field) predominates may be formed between the plurality of resonant cavities 211, 212, and 213.
제1 공진 캐비티(211)와 제3 공진 캐비티(213) 사이의 크로스 커플링은 전송 영점(Transmission-Zero)을 발생시켜, 세라믹 웨이브가이드 필터의 감쇄 특성을 향상시킬 수 있다. 즉 본 실시예에 따른 세라믹 웨이브가이드 필터는 다수의 관통 격벽(221, 222, 223)의 형성 패턴에 따라 별도의 부가적인 작업없이 크로스 커플링을 구현하여 용이하게 전송 영점(Transmission-Zero)을 발생시킬 수 있다.The cross-coupling between the first resonant cavity 211 and the third resonant cavity 213 generates a transmission-zero, thereby improving the attenuation characteristics of the ceramic waveguide filter. That is, the ceramic waveguide filter according to the present embodiment easily implements cross-coupling without additional work according to the formation pattern of the plurality of through partition walls 221, 222, and 223, thereby easily generating transmission-zero. I can do it.
제1 공진 캐비티(211)와 제3 공진 캐비티(213) 사이의 인덕티브 크로스 커플링은 세라믹 웨이브가이드 필터가 통과 대역보다 높은 주파수에서 전송 영점을 발생시킬 수 있다.The inductive cross coupling between the first resonant cavity 211 and the third resonant cavity 213 may generate a transmission zero point at a frequency where the ceramic waveguide filter is higher than the passband.
경우에 따라서는 제1 공진 캐비티(211)와 제3 공진 캐비티(213) 사이의 크로스 커플링이 이루어지는 것을 억제하기 위해, 제3 관통 격벽(223)이 세라믹 블록(200)의 측면까지 연장되도록 형성할 수도 있다.In some cases, in order to suppress cross-coupling between the first resonant cavity 211 and the third resonant cavity 213, the third through partition wall 223 is formed to extend to the side surface of the ceramic block 200 You may.
한편 세라믹 재질로 제조되는 세라믹 웨이브가이드 필터는 기구적 공차에 민감하게 반응한다. 그러므로 세라믹 웨이브가이드 필터가 정확한 필터링을 수행하도록 하기 위해서는 튜닝(tuning) 작업이 필수적이다.Meanwhile, a ceramic waveguide filter made of a ceramic material is sensitive to mechanical tolerances. Therefore, tuning is essential to ensure that the ceramic waveguide filter performs accurate filtering.
본 실시예에 따른 세라믹 웨이브가이드 필터는 튜닝 작업이 요구되는 경우, 다수의 관통 격벽(221, 222, 223)의 내측면에 형성된 금속층과 다수의 공진 홈(241, 242, 243)의 내부면에 형성된 금속층 중 적어도 하나의 두께를 그라인딩 등의 방식으로 조절하여 튜닝을 수행할 수 있다. 즉 세라믹 웨이브가이드 필터의 특성을 조절하기 위한 튜닝 작업을 용이하게 수행할 수 있다.The ceramic waveguide filter according to the present embodiment is provided with a metal layer formed on the inner surface of the plurality of through partition walls 221, 222, and 223 and an inner surface of the plurality of resonant grooves 241, 242, and 243 when tuning is required. Tuning may be performed by adjusting the thickness of at least one of the formed metal layers in a manner such as grinding. That is, the tuning operation for adjusting the characteristics of the ceramic waveguide filter can be easily performed.
또한 도2에서는 일예로 세라믹 블록(200)이 직육면체로 구현되는 것으로 도시되었으나, 이에 한정되지 않으며 세라믹 웨이브가이드 필터의 성능을 향상시키기 위해 다양한 형태로 구현될 수 있다. 그리고 세라믹 블록(200)의 크기 또한 필터링하고자 하는 신호의 주파수 대역에 따라 다양하게 가변될 수 있다.In addition, although the ceramic block 200 is shown as an example of a rectangular parallelepiped in FIG. 2, it is not limited thereto and may be implemented in various forms to improve the performance of the ceramic waveguide filter. In addition, the size of the ceramic block 200 may also be variously changed according to the frequency band of the signal to be filtered.
그리고 도시하지 않았으나, 본 실시예에 따른 세라믹 웨이브가이드 필터는 세라믹 블록(200)의 일면 또는 타면에서 다수의 공진 캐비티(211, 212, 213) 중 지정된 순서와 상이하게 인접하여 배치된 공진 캐비티(여기서는 일예로 제1 과 제3 공진 캐비티(211, 213)) 사이의 관통 격벽(223)에 대응하는 위치에 적어도 하나의 커플링 홈(미도시)이 더 형성될 수 있다.In addition, although not shown, the ceramic waveguide filter according to the present exemplary embodiment is a resonance cavity (here, arranged differently from a specified order among a plurality of resonance cavities 211, 212, 213) on one surface or the other surface of the ceramic block 200 For example, at least one coupling groove (not shown) may be further formed at a position corresponding to the through partition wall 223 between the first and third resonant cavities 211 and 213.
만일 지정된 커플링 순서와 상이한 제1 공진 캐비티(211)와 제3 공진 캐비티(213) 사이에 크로스 커플링 경로에서 커플링 홈이 형성되면, 제1 공진 캐비티(211)와 제3 공진 캐비티(213) 사이에서는 전계(E-field)가 우세하게 작용하는 캐패시티브 크로스 커플링(capacitive cross coupling)이 이루어진다.If a coupling groove is formed in the cross coupling path between the first resonant cavity 211 and the third resonant cavity 213 that are different from the designated coupling order, the first resonant cavity 211 and the third resonant cavity 213 ), there is a capacitive cross coupling in which the electric field (E-field) predominates.
통과 대역보다 높은 주파수에서 전송 영점을 발생시키는 인덕티브 크로스 커플링과 반대로 캐패시티브 크로스 커플링은 통과 대역보다 낮은 주파수에서 전송 영점을 발생시킬 수 있다.In contrast to inductive cross coupling, which generates a transmission zero at frequencies higher than the pass band, capacitive cross coupling can generate transmission zero at frequencies lower than the pass band.
즉 본 실시예에 따른 세라믹 웨이브가이드 필터는 크로스 커플링이 이루어지는 2개의 공진 캐비티 사이에 커플링 홈이 추가 형성되는지 여부에 따라 전송 영점이 발생하는 주파수를 조절할 수 있다.That is, the ceramic waveguide filter according to the present embodiment can adjust the frequency at which the transmission zero point occurs depending on whether a coupling groove is additionally formed between two resonant cavities in which cross coupling is performed.
그리고 커플링 홈은 관통 격벽(221, 222, 223)과 중첩되어 형성될 수 없다. 그러므로 커플링 홈이 형성되는 경우, 대응하는 위치의 관통 격벽(221, 222, 223)은 커플링 홈의 위치와 중첩되지 않도록 길이가 조절될 수 있다. 또한 커플링 홈이 형성되는 경우, 커플링 홈의 내부면 또한 공진 홈(241, 242, 243)과 마찬가지로 금속층이 더 형성될 수 있다.In addition, the coupling groove cannot be formed by overlapping the through partition walls 221, 222, and 223. Therefore, when the coupling groove is formed, the lengths of the through partitions 221, 222, and 223 of the corresponding position may be adjusted so as not to overlap with the position of the coupling groove. In addition, when the coupling groove is formed, the inner surface of the coupling groove may also be formed with a metal layer as in the resonance grooves 241, 242, and 243.
경우에 따라서는 금속층은 세라믹 블록(200)의 외부면까지 감싸도록 형성될 수도 있다.In some cases, the metal layer may be formed to cover the outer surface of the ceramic block 200.
도 2에서는 설명의 편의를 위해 간단한 일예로 세라믹 블록(200) 상에 3개의 관통 격벽(221, 222, 223)에 의해 3개의 공진 캐비티(211, 212, 213)가 형성된 세라믹 웨이브가이드 필터를 도시하였으나 본 발명은 이에 한정되지 않는다.FIG. 2 shows a ceramic waveguide filter having three resonant cavities 211, 212, and 213 formed by three through partition walls 221, 222, and 223 on a ceramic block 200 as a simple example for convenience of explanation. However, the present invention is not limited to this.
도 3은 도 2의 세라믹 웨이브가이드 필터의 손실 특성을 시뮬레이션한 결과를 나타낸다.3 shows a result of simulating the loss characteristics of the ceramic waveguide filter of FIG. 2.
도 3은 중심주파수 3.6GHz이고, 대역폭 100MHz 인 세라믹 웨이브가이드 필터의 손실 특성을 시뮬레이션한 결과를 비교하여 도시하였다. 도 3에서 a 및 b는 각각 본 실시예에 따라 공진 홈(241 ~ 243)이 형성된 세라믹 웨이브가이드 필터의 반사 손실 및 삽입 손실을 나타내고, c 및 d는 기존의 세라믹 웨이브가이드 필터의 반사 손실 및 삽입 손실을 나타낸다.FIG. 3 shows a comparison result obtained by simulating loss characteristics of a ceramic waveguide filter having a center frequency of 3.6 GHz and a bandwidth of 100 MHz. In FIG. 3, a and b indicate return loss and insertion loss of the ceramic waveguide filter in which the resonant grooves 241 to 243 are formed according to the present embodiment, and c and d return reflection and insertion of the conventional ceramic waveguide filter. Indicates loss.
도 3을 참조하면, 본 실시예에 따른 공진 홈(241 ~ 243)이 형성된 세라믹 웨이브가이드 필터는 기존의 세라믹 웨이브가이드 필터에 비해, 스퓨리어스 프리 윈도우가 1.6GHz 이상 증가되어 스퓨리어스 특성이 개선되었음을 확인할 수 있다.Referring to FIG. 3, the ceramic waveguide filter formed with the resonant grooves 241 to 243 according to the present exemplary embodiment can be confirmed that the spurious free window has been increased by 1.6 GHz or more compared to the conventional ceramic waveguide filter to improve the spurious characteristics. have.
그리고 도시하지 않았으나, 공진 홈(241, 242, 243)이 형성된 본 실시예에 따른 세라믹 웨이브가이드 필터는 공진 홈(241, 242, 243)이 형성되지 않은 경우에 비해, 크기가 26% 이상 소형화 할 수 있는 것으로 확인되었다.In addition, although not shown, the ceramic waveguide filter according to the present embodiment in which the resonant grooves 241, 242, and 243 are formed can be reduced in size by 26% or more compared to when the resonant grooves 241, 242, and 243 are not formed. It was confirmed that it can.
도 4 및 도 5은 각각 본 발명의 또 다른 실시예에 따른 세라믹 웨이브가이드 필터의 상면도 및 투영 사시도를 나타낸다.4 and 5 respectively show a top view and a perspective projection view of a ceramic waveguide filter according to another embodiment of the present invention.
본 발명에 따른 세라믹 웨이브가이드 필터는 미리 지정된 패턴에 따라 세라믹 블록(400)을 관통하여 형성되는 다수개의 관통 격벽에 의해 다수개의 공진 캐비티가 정의될 수 있다. 이에 도 4 및 도 5에서는 미리 지정된 패턴에 따라 세라믹 블록(400)의 일면과 타면 사이를 관통하는 6개의 관통 격벽(421 ~ 426)이 형성되어 세라믹 블록(400)을 6개의 구획으로 구분함으로써, 6개의 공진 캐비티(411 ~ 416)가 정의된다.In the ceramic waveguide filter according to the present invention, a plurality of resonant cavities may be defined by a plurality of through partition walls formed through the ceramic block 400 according to a predetermined pattern. Accordingly, in FIGS. 4 and 5, six through partition walls 421 to 426 penetrating between one surface and the other surface of the ceramic block 400 are formed according to a predetermined pattern to divide the ceramic block 400 into six sections, Six resonant cavities 411 to 416 are defined.
6개의 관통 격벽(421 ~ 426)은 세라믹 블록(400)을 6개의 구획으로 구분하기 위한 패턴으로 형성되며, 6개의 관통 격벽(421 ~ 426)의 형태는 상이하게 형성 될 수 있다. 또한 도 4 및 도 5에 나타난 바와 같이, 6개의 관통 격벽(421 ~ 426)은 서로 상이한 패턴으로 형성될 수 있을 뿐만 아니라, 일부는 T자 형태나 Y자 형태와 같은 분기 패턴 형태로 형성될 수도 있다.The six through partition walls 421 to 426 are formed in a pattern for dividing the ceramic block 400 into six sections, and the shapes of the six through partition walls 421 to 426 may be formed differently. Also, as shown in FIGS. 4 and 5, the six through partition walls 421 to 426 may be formed in different patterns from each other, and some may be formed in the form of branch patterns such as T-shape or Y-shape. have.
또한 세라믹 블록(400)의 일면 또는 타면에서 다수의 공진 캐비티(411 ~ 416) 각각 영역의 중앙 위치에는 공진 홈(441 ~ 446)이 형성된다. 다수의 공진 캐비티(411 ~ 416)에 공진 홈(441 ~ 446)이 형성됨에 따라 세라믹 웨이브가이드 필터는 공진 홈(441 ~ 446)이 형성되지 않는 경우보다 소형화 될 수 있을 뿐만 아니라, 스퓨리어스 특성이 개선될 수 있다.In addition, resonant grooves 441 to 446 are formed at a central position of each region of the plurality of resonant cavities 411 to 416 on one surface or the other surface of the ceramic block 400. As the resonant grooves 441 to 446 are formed in the plurality of resonant cavities 411 to 416, the ceramic waveguide filter can be more compact than when the resonant grooves 441 to 446 are not formed, and spurious characteristics are improved. Can be.
한편 6개의 관통 격벽(421 ~ 426) 각각의 내측면에는 금속층(431 ~ 436)이 형성되며, 공진 홈(441 ~ 446)의 내부면에도 금속층(미도시)이 형성된다.Meanwhile, metal layers 431 to 436 are formed on the inner surfaces of each of the six through partition walls 421 to 426, and metal layers (not shown) are also formed on the inner surfaces of the resonant grooves 441 to 446.
그리고 6개의 공진 캐비티(411 ~ 416) 중 커플링 순서에서 양단에 위치하는 제1 공진 캐비티(411) 및 제6 공진 캐비티(416) 에는 입출력 인터페이스 포트가 삽입되는 입출력 인터페이스(451, 452)가 형성된다. 제1 공진 캐비티(411)는 입출력 인터페이스(451)에 삽입된 입력 인터페이스 포트로부터 신호를 인가받고, 제2 내지 제6 공진 캐비티(412 ~ 416)에서 순차적으로 커플링이 이루어지며, 제6 공진 캐비티(416)가 입출력 인터페이스(452)에 삽입된 출력 인터페이스 포트로 신호를 출력한다.And among the six resonant cavities 411 to 416, input and output interfaces 451 and 452 into which the input/output interface ports are inserted are formed in the first resonant cavity 411 and the sixth resonant cavity 416 located at both ends in the coupling sequence. do. The first resonant cavity 411 receives a signal from an input interface port inserted in the input/output interface 451, is sequentially coupled in the second to sixth resonant cavities 412 to 416, and the sixth resonant cavity 416 outputs a signal to the output interface port inserted in the input/output interface 452.
제1 내지 제6 공진 캐비티(411 ~ 416)는 이격되어 형성된 6개의 관통 격벽(421 ~ 426) 사이의 커플링 윈도우를 통해 순차적으로 커플링이 이루어 질 수 있다. 즉 제1 및 제2 관통 격벽(421, 422)에 대응하는 커플링 윈도우를 통해 제1 공진 캐비티(411)와 제2 공진 캐비티(412) 사이에 커플링이 이루어지고, 제2 및 제3 관통 격벽(422, 423)에 대응하는 커플링 윈도우를 통해 제2 공진 캐비티(412)와 제3 공진 캐비티(413) 사이에 커플링이 이루어 지며, 제3 및 제4 관통 격벽(423, 424)에 대응하는 커플링 윈도우를 통해 제3 공진 캐비티(413)와 제4 공진 캐비티(414) 사이에 커플링이 이루어 질 수 있다. 그리고 제4 및 제5 관통 격벽(424, 425)에 대응하는 커플링 윈도우를 통해 제4 공진 캐비티(414)와 제5 공진 캐비티(415) 사이에 커플링이 이루어지고, 제5 및 제6 관통 격벽(425, 426)에 대응하는 커플링 윈도우를 통해 제5 공진 캐비티(415)와 제6 공진 캐비티(416) 사이에 커플링이 이루어 질 수 있다.The first to sixth resonant cavities 411 to 416 may be sequentially coupled through a coupling window between six through partition walls 421 to 426 formed spaced apart. That is, coupling is made between the first resonant cavity 411 and the second resonant cavity 412 through a coupling window corresponding to the first and second through partition walls 421 and 422, and the second and third through holes are formed. Coupling is performed between the second resonant cavity 412 and the third resonant cavity 413 through a coupling window corresponding to the partition walls 422 and 423, and the third and fourth through partition walls 423 and 424 Coupling may be performed between the third resonant cavity 413 and the fourth resonant cavity 414 through a corresponding coupling window. And coupling is made between the fourth resonant cavity 414 and the fifth resonant cavity 415 through a coupling window corresponding to the fourth and fifth through partition walls 424, 425, and the fifth and sixth penetrations Coupling may be performed between the fifth resonant cavity 415 and the sixth resonant cavity 416 through a coupling window corresponding to the partition walls 425 and 426.
이때 제1 내지 제6 공진 캐비티(411 ~ 616)는 지정된 주파수 대역에서 공진되어 지정된 주파수 대역의 신호를 필터링한다. 따라서 도 4 및 도 5에 도시된 세라믹 웨이브가이드 필터는 6단 필터링을 수행하는 다단 필터로서 기능한다.At this time, the first to sixth resonant cavities 411 to 616 are resonated in the designated frequency band to filter signals in the designated frequency band. Therefore, the ceramic waveguide filter illustrated in FIGS. 4 and 5 functions as a multi-stage filter performing 6-stage filtering.
한편, 도 4 및 도 5에 도시된 세라믹 웨이브가이드 필터에서 제2 관통 격벽(422)에 대응하는 커플링 윈도우를 통해 제1 공진 캐비티(411)와 제3 공진 캐비티(413) 사이에서 크로스 커플링이 용이하게 이루어 질 수 있다. 뿐만 아니라, 제2 공진 캐비티(412)와 제4 공진 캐비티(414) 사이에 크로스 커플링이 이루어질 수 있고, 제3 공진 캐비티(413)와 제5 공진 캐비티(415) 사이에도 크로스 커플링이 이루어질 수 있으며, 제4 공진 캐비티 (414)와 제6 공진 캐비티(416) 사이에도 크로스 커플링이 이루어 질 수 있다. 즉 도 4 및 도 5에 도시된 세라믹 웨이브가이드 필터에서는 다수의 공진 캐비티 사이에서 크로스 커플링이 발생될 수 있다.Meanwhile, in the ceramic waveguide filter illustrated in FIGS. 4 and 5, cross coupling between the first resonant cavity 411 and the third resonant cavity 413 through a coupling window corresponding to the second through partition wall 422. This can be easily done. In addition, cross-coupling may be performed between the second resonant cavity 412 and the fourth resonant cavity 414, and cross-coupling may also be performed between the third resonant cavity 413 and the fifth resonant cavity 415. In addition, cross coupling may be performed between the fourth resonant cavity 414 and the sixth resonant cavity 416. That is, in the ceramic waveguide filter illustrated in FIGS. 4 and 5, cross coupling may occur between a plurality of resonant cavities.
그러나 6개의 관통 격벽(421 ~ 426) 중 적어도 하나의 관통 격벽은 공진 캐비티 사이의 크로스 커플링이 억제되도록 세라믹 블록(400)의 측면 경계까지 연장되도록 형성될 수도 있다. 일예로, 도 4 및 도 5의 세라믹 웨이브가이드 필터에서 제2 공진 캐비티 (412)와 제4 공진 캐비티(414), 제4 공진 캐비티 (644)와 제6 공진 캐비티(416) 사이의 크로스 커플링이 억제되도록 제3 관통 격벽(423)과 제5 관통 격벽(425) 각각이 세라믹 블록(400)의 측면 경계까지 연장되어 형성될 수 있다.However, at least one through partition wall of the six through partition walls 421 to 426 may be formed to extend to a side boundary of the ceramic block 400 so that cross coupling between the resonant cavities is suppressed. As an example, cross coupling between the second resonant cavity 412 and the fourth resonant cavity 414, the fourth resonant cavity 644 and the sixth resonant cavity 416 in the ceramic waveguide filters of FIGS. 4 and 5 To prevent this, each of the third through partition wall 423 and the fifth through partition wall 425 may be formed to extend to a side boundary of the ceramic block 400.
그리고 도 4 및 도 5에서는 제1 및 제3 공진 캐비티(411, 413) 사이에 제2 관통 격벽(422)과 함께 캐피시티브 커플링 구조(460)를 더 형성하여 제1 및 제3 공진 캐비티(411, 413) 사이에 캐패시티브 크로스 커플링이 이루어지도록 할 수 있다. 이때, 캐피시티브 커플링 구조(460)가 형성되는 영역과 중첩되지 않도록 제2 관통 격벽(422)의 패턴은 조절될 수 있다. 그리고 캐피시티브 커플링 구조(460)의 내부면에도 금속층이 형성될 수 있다.In FIGS. 4 and 5, the first and third resonant cavities are further formed by forming a capacitive coupling structure 460 together with the second through partitions 422 between the first and third resonant cavities 411 and 413. A capacitive cross coupling can be made between (411, 413). At this time, the pattern of the second through partition wall 422 may be adjusted so as not to overlap with the region where the capacitive coupling structure 460 is formed. In addition, a metal layer may be formed on the inner surface of the capacitive coupling structure 460.
결과적으로 도 4 및 도 5을 참조하면 본 실시예에 따른 세라믹 웨이브가이드 필터는 단일 세라믹 블록에 다수의 관통 격벽(421 ~ 426)이 형성되어 용이하게 다수의 공진 캐비티(411 ~ 416)를 구현할 수 있을 뿐만 아니라, 다수의 공진 캐비티(411 ~ 416) 각각에 공진 홈(441 ~ 446)을 형성하여, 세라믹 웨이브가이드 필터를 소형화 될 수 있을 뿐만 아니라, 스퓨리어스 특성을 개선할 수 있다.As a result, referring to FIGS. 4 and 5, the ceramic waveguide filter according to the present exemplary embodiment can easily implement a plurality of resonant cavities 411 to 416 by forming a plurality of through partitions 421 to 426 in a single ceramic block. In addition, by forming the resonant grooves 441 to 446 in each of the plurality of resonant cavities 411 to 416, the ceramic waveguide filter can be miniaturized and spurious characteristics can be improved.
또한 입출력 인터페이스(451, 452)를 관통 홀로 형성하여, 세라믹 웨이브가이드 필터가 광대역 특성을 갖도록 하며, 기구적 공차에 강인하도록 할 수 있다.In addition, the input/ output interfaces 451 and 452 are formed as through holes, so that the ceramic waveguide filter has broadband characteristics and can be robust against mechanical tolerances.
도 6 내지 도 9는 캐피시티브 커플링 구조의 다양한 예를 나타낸다.6 to 9 show various examples of the capacitive coupling structure.
도 6에서는 도 4 및 도 5에서와 같이, 세라믹 웨이브가이드 필터에서 다수의 공진 캐비티(411, 413) 사이에서 전계가 우세하게 작용하는 캐패시티브 크로스 커플링이 이루어지도록 세라믹 블록(500)의 일면으로부터 타면 방향으로 캐패시티브 커플링 구조(560)로서 커플링 홈(561)이 형성된 경우를 도시하였다.In FIG. 6, as shown in FIGS. 4 and 5, one surface of the ceramic block 500 such that a capacitive cross coupling in which an electric field predominates between the plurality of resonant cavities 411 and 413 in the ceramic waveguide filter is achieved. The case where the coupling groove 561 is formed as the capacitive coupling structure 560 in the direction from the other surface is illustrated.
커플링 홈(561)은 세라믹 블록(500)의 일면에 제1 공진 캐비티(411)와 제3 공진 캐비티(413) 사이에 제2 관통 격벽(422)과 중첩되지 않도록 형성될 수 있다. 그리고 커플링 홈(561)의 내부면에는 다수의 관통 격벽(421 ~ 426)과 마찬가지로 금속층(562)이 형성된다.The coupling groove 561 may be formed so as not to overlap the second through partition wall 422 between the first resonant cavity 411 and the third resonant cavity 413 on one surface of the ceramic block 500. In addition, a metal layer 562 is formed on the inner surface of the coupling groove 561 like the plurality of through partition walls 421 to 426.
여기서 커플링 홈(561)의 깊이는 캐피시티브 크로스 커플링이 이루어지는 주파수에 따라 조절될 수 있다. 그러므로 캐패시티브 크로스 커플링이 이루어져야 하는 주파수에 따라서는 커플링 홈(561)의 깊이가 깊어져, 커플링 홈(561)이 형성된 위치에서 세라믹 블록(500)의 두께가 매우 얇아질 수 있다. 이 경우, 세라믹 웨이브가이드 필터의 제조 및 취급 시에 커플링 홈(561)이 형성된 영역에서 파손이 발생될 수도 있다.Here, the depth of the coupling groove 561 may be adjusted according to the frequency at which the capacitive cross coupling is performed. Therefore, depending on the frequency at which the capacitive cross coupling should be performed, the depth of the coupling groove 561 may be deep, and the thickness of the ceramic block 500 may be very thin at the position where the coupling groove 561 is formed. In this case, damage may occur in a region where the coupling groove 561 is formed during manufacture and handling of the ceramic waveguide filter.
도 7은 캐피시티브 커플링 구조(660)가 세라믹 블록(600)의 일면과 타면을 관통하는 커플링 홀(661)로 구현되는 경우를 도시하였다. 그리고 커플링 홀(661)의 내측면에도 금속층(662)이 형성된다. 도 7에서는 캐피시티브 커플링 구조(660)가 세라믹 블록(600)을 관통하는 홀 형태로 형성됨에 따라, 세라믹 블록(600)에 캐피시티브 커플링 구조에 의한 파손이 발생하는 것을 방지할 수 있다.7 shows a case where the capacitive coupling structure 660 is implemented as a coupling hole 661 penetrating one surface and the other surface of the ceramic block 600. In addition, a metal layer 662 is formed on the inner surface of the coupling hole 661. In FIG. 7, as the capacitive coupling structure 660 is formed in a hole shape penetrating the ceramic block 600, damage caused by the capacitive coupling structure to the ceramic block 600 may be prevented. have.
여기서 금속층(662)는 커플링 홀(661)의 내부면 일부 영역에서 제거되어 슬롯(미도시)이 더 형성될 수도 있다Here, the metal layer 662 may be removed from a portion of the inner surface of the coupling hole 661 to further form a slot (not shown).
한편 도 8에서는 캐피시티브 커플링 구조(760)가 도 7에서와 마찬가지로 세라믹 블록(700)의 일면과 타면을 관통하는 커플링 홀(761)로 구현되지만, 커플링 홀(761)이 도 7의 커플링 홀(661)과 달리 계단형 구조로 형성된다. 그리고 금속층(762)은 커플링 홀(761)의 내부면에 형성된다. 이때 도 8에서 금속층(762)은 계단형 구조의 커플링 홀(761)의 내부면 일부 영역에서 제거되어 슬롯(763)이 더 형성될 수도 있다. 슬롯(763)은 커플링 홀(761)의 내부면에서 세라믹 블록(700)과 일면과 평행한 면의 일부 영역에 형성될 수 있다.Meanwhile, in FIG. 8, the capacitive coupling structure 760 is implemented as a coupling hole 761 penetrating one surface and the other surface of the ceramic block 700 as in FIG. 7, but the coupling hole 761 is shown in FIG. 7. Unlike the coupling hole 661 of the, it is formed in a stepped structure. And the metal layer 762 is formed on the inner surface of the coupling hole 761. In this case, in FIG. 8, the metal layer 762 may be removed from a portion of the inner surface of the stepped structure coupling hole 761 to further form a slot 763. The slot 763 may be formed in a portion of a surface parallel to one surface of the ceramic block 700 on the inner surface of the coupling hole 761.
슬롯(763)이 형성된 경우에는 슬롯(763)의 크기를 그라인더 등으로 조절하여 캐패시티브 크로스 커플링이 이루어지는 주파수에 대한 튜닝을 수행할 수 있도록 함으로써, 커플링 홈(561) 또는 커플링 홀(661)의 내측면에 형성된 금속층(562, 662) 또는 슬롯(미도시)을 그라인딩 등의 방식으로 두께를 조절하여 것보다 용이하게 튜닝을 수행할 수 있도록 한다.When the slot 763 is formed, the size of the slot 763 may be adjusted by a grinder or the like to perform tuning for a frequency at which the capacitive cross coupling is performed, so that the coupling groove 561 or the coupling hole ( The thickness of the metal layers 562 and 662 or slots (not shown) formed on the inner surface of 661 is adjusted by a method such as grinding so that tuning can be performed more easily.
도 9에서 캐피시티브 커플링 구조(860)는 도 8에서와 유사하게 계단형 구조의 커플링 홀(861)과 금속층(862) 및 슬롯(863)이 형성될 수 있다. 뿐만 아니라 도 9에서는 세라믹 블록(800)의 일면에 슬롯(863)에 의한 신호 누설 방지를 위한 전도성 스티커(865)가 더 부착된다. 전도성 스티커(865)는 세라믹 블록(800)의 일면 전체에 부착될 수도 있으나, 커플링 홀(861)에 대응하는 영역에만 부착될 수도 있다.In FIG. 9, the capacitive coupling structure 860 may have a stepped structure coupling hole 861, a metal layer 862, and a slot 863 similar to FIG. 8. In addition, in FIG. 9, a conductive sticker 865 for preventing signal leakage by the slot 863 is further attached to one surface of the ceramic block 800. The conductive sticker 865 may be attached to the entire surface of the ceramic block 800, but may be attached only to an area corresponding to the coupling hole 861.
그리고 도 6 및 도 7의 커플링 홀(661, 761)에 대응하는 영역에도 전도성 스티커가 부착될 수도 있다.In addition, a conductive sticker may be attached to regions corresponding to the coupling holes 661 and 761 of FIGS. 6 and 7.
도 7 내지 도 9의 캐피시티브 커플링 구조(660, 760, 860)는 세라믹 웨이브가이드 필터의 제조 및 취급 시에 도 6에 도시된 커플링 홈(561)에 의한 파손이 발생되는 것을 방지하기 위한 구조이다.The capacitive coupling structures 660, 760, and 860 of FIGS. 7 to 9 prevent damage caused by the coupling groove 561 shown in FIG. 6 during manufacture and handling of the ceramic waveguide filter. It is a structure for.
도 10은 도 4 및 도 5의 세라믹 웨이브가이드 필터의 필터 특성을 시뮬레이션한 결과를 나타낸다.10 shows a result of simulating filter characteristics of the ceramic waveguide filters of FIGS. 4 and 5.
도 10에서는 도 4 및 도 5의 세라믹 웨이브가이드 필터에서 제1 및 제3 공진 캐비티(411, 413) 사이에 캐피시티브 커플링 구조(460)가 형성되고, 제3 및 제5 관통 격벽(423, 425)이 세라믹 블록(400)의 측면 경계까지 연장되어 제2 공진 캐비티(412)와 제4 공진 캐비티(414) 및 제4 공진 캐비티 (414)와 제6 공진 캐비티(416) 사이의 크로스 커플링이 억제된 경우를 가정한다.In FIG. 10, capacitive coupling structures 460 are formed between the first and third resonant cavities 411 and 413 in the ceramic waveguide filters of FIGS. 4 and 5, and the third and fifth through partition walls 423 , 425 extends to the lateral boundary of the ceramic block 400 to cross couple between the second resonant cavity 412 and the fourth resonant cavity 414 and the fourth resonant cavity 414 and the sixth resonant cavity 416. It is assumed that the ring is suppressed.
제1 및 제3 공진 캐비티(411, 413) 사이에 캐피시티브 커플링 구조(460)가 형성됨에 따라 제1 공진 캐비티(411)와 제3 공진 캐비티(413) 사이에는 캐패시티브 크로스 커플링이 이루어 지는 반면, 제3 공진 캐비티(413)와 제5 공진 캐비티(415) 사이에는 인덕티브 크로스 커플링이 이루어진다.As the capacitive coupling structure 460 is formed between the first and third resonant cavities 411 and 413, the capacitive cross coupling is formed between the first and third resonant cavities 411 and 413. On the other hand, an inductive cross coupling is performed between the third resonant cavity 413 and the fifth resonant cavity 415.
상기한 바와 같이, 인덕티브 크로스 커플링은 통과 대역보다 높은 주파수에서 전송 영점을 발생시키는 반면, 캐패시티브 크로스 커플링은 통과 대역보다 낮은 주파수에서 전송 영점을 발생시킨다.As described above, inductive cross coupling generates a transmission zero at frequencies higher than the pass band, while capacitive cross coupling generates a transmission zero at frequencies lower than the pass band.
이에 인덕티브 크로스 커플링과 캐패시티브 크로스 커플링이 모두 발생되는 도 4 및 도 5의 세라믹 웨이브가이드 필터는 도 10에 도시된 바와 같이, 통과 대역 주파수의 양단에 전송 영점이 발생됨을 확인할 수 있다. 그리고 이러한 결과는 본 실시예에 따른 세라믹 웨이브가이드 필터가 매우 우수한 성능의 밴드 패스 필터로 기능할 수 있음을 나타낸다.Accordingly, the ceramic waveguide filters of FIGS. 4 and 5 in which both inductive cross-coupling and capacitive cross-coupling are generated, as shown in FIG. 10, can be confirmed that transmission zeros are generated at both ends of the passband frequency. . And these results indicate that the ceramic waveguide filter according to this embodiment can function as a band pass filter with very good performance.
도 11은 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터 제조 방법을 나타낸다.11 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
도 2 내지 도 10을 참조하여, 도 11의 세라믹 웨이브가이드 필터 제조 방법을 설명한다.A method of manufacturing the ceramic waveguide filter of FIG. 11 will be described with reference to FIGS. 2 to 10.
세라믹 웨이브가이드 필터를 제조하기에 앞서 세라믹 웨이브가이드 필터가 필터링해야 하는 주파수 대역과 필터링 특성이 미리 결정된다. 그리고 결정된 주파수 대역에 따라 세라믹 블록을 제조한다(S10). 여기서 세라믹 블록은 결정된 주파수 대역에 따라 크기 및 형태가 결정되어 제조될 수 있다.Prior to manufacturing the ceramic waveguide filter, the frequency band and filtering characteristics that the ceramic waveguide filter should filter are predetermined. Then, a ceramic block is manufactured according to the determined frequency band (S10). Here, the ceramic block may be manufactured by determining the size and shape according to the determined frequency band.
그리고 필터링해야 하는 주파수 대역과 공진 홈의 형성 여부에 따라 미리 지정된 패턴으로 세라믹 블록의 일면과 타면을 관통하는 다수의 관통 격벽을 형성하여 세라믹 블록의 구획을 다수개로 구분함으로써 다수의 공진 캐비티를 구현한다(S20). 여기서 관통 격벽을 형성할 때 공진 홈의 형성 여부를 함께 고려하는 것은 공진 홈이 형성되는 경우, 공진 캐비티의 크기가 더 작게 구현되도록 다수의 관통 격벽이 형성되어야 하기 때문이다. 그리고 다수의 관통 격벽은 서로 이격되어 형성된다. 다수의 관통 격벽이 서로 이격되어 형성되므로, 다수의 공진 캐비티는 다수의 관통 격벽 사이의 이격된 커플링 윈도우를 통해 커플링될 수 있다.Also, a plurality of through partitions penetrating one surface and the other surface of the ceramic block are formed in a predetermined pattern according to a frequency band to be filtered and whether a resonance groove is formed, thereby dividing the sections of the ceramic block into a plurality to realize a plurality of resonance cavities. (S20). Here, when forming a through partition wall, whether to form a resonance groove together is because when the resonance groove is formed, a plurality of through partition walls must be formed so that the size of the resonance cavity is smaller. And a plurality of through partition walls are formed spaced apart from each other. Since the plurality of through partition walls are formed spaced apart from each other, the plurality of resonant cavities can be coupled through a spaced apart coupling window between the plurality of through partition walls.
다수의 관통 격벽이 형성되어 다수의 공진 캐비티가 구현되면, 다수의 공진 캐비티 각각의 영역 내에 공진 홈을 형성한다(S30). 여기서 공진 홈은 다수의 공진 캐비티 각각 영역의 중앙 위치에 형성될 수 있다. 상기한 바와 같이, 다수의 공진 캐비티에 공진 홈이 형성되면, 세라믹 웨이브가이드 필터가 소형화되고, 스퓨리어스 특성이 개선될 수 있다.When a plurality of through partition walls are formed and a plurality of resonance cavities are implemented, a resonance groove is formed in each region of the plurality of resonance cavities (S30). Here, the resonant groove may be formed at a central position of each region of the plurality of resonant cavities. As described above, when resonant grooves are formed in a plurality of resonant cavities, the ceramic waveguide filter can be miniaturized and spurious characteristics can be improved.
다수의 공진 홈이 형성되면, 미리 결정된 필터링 특성에 따라 캐패시티브 크로스 커플링이 요구되는 경우, 즉 통과 대역보다 낮은 주파수에서 전송 영점을 발생시켜야 한다면, 캐패시티브 크로스 커플링을 발생시키기 위한 캐피시티브 커플링 구조를 더 형성한다(S40). 캐피시티브 커플링 구조는 다수의 공진 캐비티 중 2개의 공진 캐비티 사이에 대응하는 관통 격벽과 중첩되지 않도록 형성될 수 있다. 그리고 캐피시티브 커플링 구조는 도 6 내지 도 9에 도시된 바와 같이 커플링 홈(561) 또는 커플링 홀(661, 761, 861)의 형태로 형성될 있다. 그리고 커플링 홀은 계단형으로 형성될 수 있다.When a plurality of resonant grooves are formed, if a capacitive cross coupling is required according to a predetermined filtering characteristic, that is, if a transmission zero point needs to be generated at a frequency lower than the pass band, a cap for generating a capacitive cross coupling The sieve coupling structure is further formed (S40). The capacitive coupling structure may be formed so as not to overlap with a through partition wall corresponding between two resonant cavities of the plurality of resonant cavities. In addition, the capacitive coupling structure may be formed in the form of coupling grooves 561 or coupling holes 661, 761, and 861, as shown in FIGS. In addition, the coupling hole may be formed in a step shape.
여기서 캐피시티브 커플링 구조를 형성하는 단계는 캐패시티브 크로스 커플링이 요구되지 않는 경우에는 생략될 수 있다.Here, the step of forming the capacitive coupling structure may be omitted when capacitive cross coupling is not required.
한편, 다수의 관통 격벽 각각의 내측면과 공진 홈의 내부면에 은과 같은 도전 소재로 도금, 증착, 스퍼터링 등의 금속화 공정을 적용하여 금속층을 형성한다(S50). 이때 금속층은 다수의 관통 격벽과 공진 홈 각각의 내측면뿐만 아니라 캐피시티브 커플링 구조의 내부면에도 형성된다. 그리고 세라믹 블록의 외부면에도 형성될 수 있다. 캐피시티브 커플링 구조가 계단형의 커플링 홀(761, 861)로 형성되는 경우, 커플링 홀의 일부면에는 슬롯(763, 863)이 형성될 수 있도록 금속층이 형성되지 않을 수 있다. 또는 금속층은 슬롯(763, 863)에 무관하게 형성되고, 후술하는 튜닝 단계(S70)에서 관통 격벽의 내측면에 형성된 금속층과 함께 그라인딩 등의 방식으로 조절될 수도 있다. On the other hand, a metal layer is formed by applying a metallization process such as plating, vapor deposition, sputtering, etc. to a conductive material such as silver on the inner surface of each of the plurality of through partition walls and the inner surface of the resonance groove (S50). At this time, the metal layer is formed not only on the inner surface of each of the plurality of through partition walls and the resonant grooves, but also on the inner surface of the capacitive coupling structure. And it can also be formed on the outer surface of the ceramic block. When the capacitive coupling structure is formed of stepped coupling holes 761 and 861, a metal layer may not be formed to allow slots 763 and 863 to be formed on a portion of the coupling hole. Alternatively, the metal layer is formed irrespective of the slots 763 and 863, and may be adjusted in a tuning step (S70) described later with a metal layer formed on the inner surface of the through partition wall in a manner such as grinding.
그리고 다수의 공진 캐비티 중 2개의 공진 캐비티에 입출력 인터페이스를 형성한다(S60). 여기서 입출력 인터페이스는 세라믹 웨이브가이드 필터의 다수의 공진 캐비티가 입력 인터페이스 포트로부터 신호를 입력받고 순차적 커플링되어, 필터링된 신호를 출력 인터페이스 포트로 출력할 수 있도록 다수의 공진 캐비티가 커플링되는 순차에서 양단의 공진 캐비티에 형성될 수 있다. 여기서 입출력 인터페이스는 세라믹 웨이브가이드 필터가 광대역 특성을 갖고 기구적 공차에 둔감할 수 있도록 세라믹 블록의 일면과 타면을 관통하는 관통 홀의 형태로 형성될 수 있다.In addition, an input/output interface is formed in two resonant cavities of the plurality of resonant cavities (S60). Here, the input/output interface is both ends in a sequence in which a plurality of resonant cavities of a ceramic waveguide filter are sequentially coupled to receive a signal from an input interface port and output a filtered signal to an output interface port. It can be formed in the resonance cavity. Here, the input/output interface may be formed in the form of a through hole penetrating one surface and the other surface of the ceramic block so that the ceramic waveguide filter has broadband characteristics and is insensitive to mechanical tolerances.
이후 다수의 관통 격벽 각각의 내측면과 공진 홈의 내부면에 형성된 금속층을 그라인딩 등의 두께를 조절하는 방식으로 다수의 공진 캐비티 사이의 커플링 값을 미세 조절함으로써, 세라믹 웨이브가이드 필터의 특성을 튜닝한다(S70).Then, by fine-tuning the coupling value between the plurality of resonant cavities by adjusting the thickness, such as grinding the metal layer formed on the inner surface of each of the plurality of through partitions and the inner surface of the resonant groove, tuning the properties of the ceramic waveguide filter (S70).
이때, 캐피시티브 커플링 구조가 형성된 경우, 캐피시티브 커플링 구조의 내부면의 두께를 함께 조절할 수 있다. 그리고 커플링 홀(761, 861)의 내부면에 형성된 금속층을 그라인딩하여 슬롯(763, 863)을 형성하거나 형성된 슬롯(763, 863)의 크기를 조절하여 캐패시티브 크로스 커플링이 이루어지는 주파수를 함께 튜닝할 수 있다.At this time, when the capacitive coupling structure is formed, the thickness of the inner surface of the capacitive coupling structure can be adjusted together. And the frequency formed by the capacitive cross coupling by grinding the metal layers formed on the inner surfaces of the coupling holes 761 and 861 to form the slots 763 and 863 or by adjusting the size of the formed slots 763 and 863 I can tune it.
도 11의 세라믹 웨이브가이드 필터 제조 방법에서 공진 홈을 형성하는 단계(S30)와 캐패시티브 커플링 구조를 형성하는 단계(S40), 금속층을 형성하는 단계(S50)및 입출력 인터페이스를 형성하는 단계(S60)는 공정상의 효율성을 향상시키기 위해 순서가 조절될 수 있다.In the method of manufacturing the ceramic waveguide filter of FIG. 11, forming a resonant groove (S30) and forming a capacitive coupling structure (S40), forming a metal layer (S50), and forming an input/output interface ( S60) may be adjusted in order to improve process efficiency.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will understand that various modifications and other equivalent embodiments are possible therefrom.
따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.Therefore, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims.

Claims (19)

  1. 단일 세라믹 블록에서 미리 지정된 패턴에 따라 상기 세라믹 블록의 구획을 구분하도록 형성된 다수의 관통 격벽에 의해 정의되는 다수의 공진 캐비티; A plurality of resonant cavities defined by a plurality of through partition walls formed to separate the sections of the ceramic block according to a predetermined pattern in a single ceramic block;
    상기 관통 격벽에 의해 구분된 상기 다수의 공진 캐비티의 구획 내에 형성되는 다수의 공진 홈; A plurality of resonant grooves formed in the partitions of the plurality of resonant cavities divided by the through partition walls;
    상기 다수의 관통 격벽 각각의 내측면에 형성되는 금속층; 및 A metal layer formed on an inner surface of each of the plurality of through partition walls; And
    상기 다수의 공진 캐비티 중 신호를 입력 및 출력하는 2개의 공진 캐비티에 형성되는 입출력 인터페이스; 를 포함하는 것을 특징으로 하는 세라믹 웨이브가이드 필터.An input/output interface formed in two resonance cavities for inputting and outputting signals among the plurality of resonance cavities; Ceramic waveguide filter, characterized in that it comprises a.
  2. 제1 항에 있어서, 상기 다수의 공진 홈은 The method of claim 1, wherein the plurality of resonant grooves
    상기 세라믹 블록의 일면 또는 타면에서 상기 다수의 공진 캐비티 중 대응하는 공진 캐비티 영역의 중앙 각각에 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed at each of the centers of a corresponding resonance cavity region among the plurality of resonance cavities on one surface or the other surface of the ceramic block.
  3. 제2 항에 있어서, 상기 입출력 인터페이스는 The method of claim 2, wherein the input and output interface
    상기 세라믹 블록을 관통하는 관통 홀의 형태로 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed in the form of a through hole penetrating the ceramic block.
  4. 제1 항에 있어서, 상기 다수의 관통 격벽은 The method of claim 1, wherein the plurality of through partition walls
    상기 공진 홈과 기지정된 주파수 대역에 대응하여 상기 다수의 공진 캐비티가 정의되도록 상기 세라믹 블록을 관통하여 상기 세라믹 블록의 구획을 구분하고, The ceramic block is divided through the ceramic block so as to define the plurality of resonant cavities corresponding to the resonant groove and a predetermined frequency band.
    상기 다수의 공진 캐비티가 상기 입출력 인터페이스를 통해 입력된 신호에 응답하여 상기 다수의 관통 격벽 사이의 커플링 윈도우를 통해 인접한 공진 캐비티와 순차적으로 커플링되면서 상기 주파수 대역을 필터링하도록 서로 이격되며, The plurality of resonant cavities are spaced apart from each other to filter the frequency band while sequentially coupling with adjacent resonant cavities through a coupling window between the plurality of through partitions in response to a signal input through the input/output interface,
    상기 다수의 공진 캐비티 중 적어도 하나의 공진 캐비티가 다수의 공진 캐비티와 인접하여 배치되어 크로스 커플링이 발생되도록 하는 패턴으로 형성되는 세라믹 웨이브가이드 필터. A ceramic waveguide filter formed in a pattern such that at least one resonant cavity among the plurality of resonant cavities is disposed adjacent to the plurality of resonant cavities to cause cross coupling.
  5. 제4 항에 있어서, 상기 세라믹 웨이브가이드 필터는 The method of claim 4, wherein the ceramic waveguide filter
    상기 세라믹 블록의 일면에 상기 크로스 커플링이 발생되는 공진 캐비티 사이의 상기 세라믹 블록의 일면에서 관통 격벽과 이격된 커플링 홈; 이 더 형성되고, A coupling groove spaced from the through partition wall on one surface of the ceramic block between the resonance cavities where the cross coupling is generated on one surface of the ceramic block; Is formed more,
    상기 금속층은 The metal layer
    상기 커플링 홈의 내부면에도 더 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter further formed on the inner surface of the coupling groove.
  6. 제4 항에 있어서, 상기 세라믹 웨이브가이드 필터는 The method of claim 4, wherein the ceramic waveguide filter
    상기 크로스 커플링이 발생되는 공진 캐비티 사이에서 관통 격벽과 이격되어 상기 세라믹 블록을 관통하는 커플링 홀; 이 더 형성되고, A coupling hole spaced apart from the through partition wall between the resonant cavities where the cross coupling occurs, and penetrates the ceramic block; Is formed more,
    상기 금속층은 The metal layer
    상기 커플링 홀의 내부면에도 더 형성되는 세라믹 웨이브가이드 필터.Ceramic waveguide filter is further formed on the inner surface of the coupling hole.
  7. 제6 항에 있어서, 상기 커플링 홀은 The method of claim 6, wherein the coupling hole
    내측이 계단형 구조로 형성되고, The inside is formed in a stepped structure,
    상기 금속층은 The metal layer
    계단형 구조의 상기 커플링 홀의 내부면에서 상기 세라믹 블록의 일면에 대향하는 기지정된 슬롯 영역을 제외한 영역에 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed in an area except for a predetermined slot area facing the one surface of the ceramic block on the inner surface of the coupling hole having a stepped structure.
  8. 제6 항에 있어서, 상기 세라믹 웨이브가이드 필터는 The method of claim 6, wherein the ceramic waveguide filter
    상기 세라믹 블록의 일면에서 상기 커플링 홀이 형성된 영역에 부착되는 전도성 스티커; 를 더 포함하는 세라믹 웨이브가이드 필터.A conductive sticker attached to an area where the coupling hole is formed on one surface of the ceramic block; Ceramic waveguide filter further comprising a.
  9. 제1 항에 있어서, 상기 금속층은 The method of claim 1, wherein the metal layer
    기지정된 주파수 대역에 따라 두께가 조절되는 세라믹 웨이브가이드 필터.Ceramic waveguide filter whose thickness is adjusted according to a predetermined frequency band.
  10. 단일 세라믹 블록에서 다수의 공진 캐비티를 정의하기 위해 미리 지정된 패턴에 따라 상기 세라믹 블록의 구획을 구분하는 다수의 관통 격벽을 형성하는 단계; Forming a plurality of through partition walls separating the sections of the ceramic block according to a predetermined pattern to define a plurality of resonant cavities in a single ceramic block;
    상기 관통 격벽에 의해 구분된 상기 다수의 공진 캐비티의 구획 내에 다수의 공진 홈을 형성하는 단계; Forming a plurality of resonant grooves in a section of the plurality of resonant cavities divided by the through partition wall;
    상기 다수의 관통 격벽 각각의 내측면에 금속층을 형성하는 단계; 및 Forming a metal layer on each inner surface of each of the plurality of through partition walls; And
    상기 다수의 공진 캐비티 중 2개의 공진 캐비티에 신호를 입력 및 출력하기 위한 입출력 인터페이스를 형성하는 단계; 를 포함하는 세라믹 웨이브가이드 필터의 제조 방법.Forming an input/output interface for inputting and outputting signals to two of the plurality of resonant cavities; Method of manufacturing a ceramic waveguide filter comprising a.
  11. 제10 항에 있어서, 상기 다수의 공진 홈을 형성하는 단계는 11. The method of claim 10, The step of forming the plurality of resonant grooves
    상기 세라믹 블록의 일면 또는 타면에서 상기 다수의 공진 캐비티 중 대응하는 공진 캐비티 영역의 중앙 각각에 상기 공진 홈이 형성되는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter in which the resonant grooves are formed in each of the centers of corresponding resonant cavity regions among the plurality of resonant cavities on one or the other surface of the ceramic block.
  12. 제11 항에 있어서, 상기 입출력 인터페이스를 형성하는 단계는 The method of claim 11, wherein the step of forming the input and output interface
    상기 세라믹 블록을 관통하는 관통 홀의 형태로 상기 입출력 인터페이스가 형성되는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter in which the input/output interface is formed in the form of a through hole penetrating the ceramic block.
  13. 제10 항에 있어서, 상기 다수의 관통 격벽을 형성하는 단계는 11. The method of claim 10, The step of forming the plurality of through partition walls
    상기 공진 홈과 기지정된 주파수 대역에 대응하여 상기 다수의 공진 캐비티가 정의되도록 상기 세라믹 블록을 관통하여 상기 세라믹 블록의 구획을 구분하고, The ceramic block is divided through the ceramic block so as to define the plurality of resonant cavities corresponding to the resonant groove and a predetermined frequency band.
    상기 다수의 공진 캐비티가 상기 입출력 인터페이스를 통해 입력된 신호에 응답하여 상기 다수의 관통 격벽 사이의 커플링 윈도우를 통해 인접한 공진 캐비티와 순차적으로 커플링되면서 상기 주파수 대역을 필터링하도록 서로 이격되며, The plurality of resonant cavities are spaced apart from each other to filter the frequency band while sequentially coupling with adjacent resonant cavities through a coupling window between the plurality of through partitions in response to a signal input through the input/output interface,
    상기 다수의 공진 캐비티 중 적어도 하나의 공진 캐비티가 다수의 공진 캐비티와 인접하여 배치되어 크로스 커플링이 발생되도록 하는 패턴으로 상기 다수의 관통 격벽이 형성되는 세라믹 웨이브가이드 필터의 제조 방법. A method of manufacturing a ceramic waveguide filter in which the plurality of through partition walls are formed in a pattern such that at least one resonance cavity among the plurality of resonance cavities is disposed adjacent to the plurality of resonance cavities to generate cross coupling.
  14. 제13 항에 있어서, 상기 세라믹 웨이브가이드 필터의 제조 방법은 The method of claim 13, wherein the method of manufacturing the ceramic waveguide filter
    상기 세라믹 블록의 일면에 상기 크로스 커플링이 발생되는 공진 캐비티 사이에서 관통 격벽과 이격된 커플링 홈을 형성하는 단계; 및 Forming a coupling groove spaced from the through partition wall between the resonant cavities where the cross coupling occurs on one surface of the ceramic block; And
    상기 금속층을 상기 커플링 홈의 내부면에 형성하는 단계; 를 더 포함하는 세라믹 웨이브가이드 필터의 제조 방법.Forming the metal layer on an inner surface of the coupling groove; Method of manufacturing a ceramic waveguide filter further comprising.
  15. 제13 항에 있어서, 상기 세라믹 웨이브가이드 필터의 제조 방법은 The method of claim 13, wherein the method of manufacturing the ceramic waveguide filter
    상기 크로스 커플링이 발생되는 공진 캐비티 사이에서 관통 격벽과 이격되어 상기 세라믹 블록을 관통하는 커플링 홀을 형성하는 단계; 및 Forming a coupling hole spaced apart from the through partition wall between the resonant cavities where the cross coupling occurs, and penetrates the ceramic block; And
    상기 금속층을 상기 커플링 홀의 내부면에 형성하는 단계; 를 더 포함하는 세라믹 웨이브가이드 필터의 제조 방법.Forming the metal layer on the inner surface of the coupling hole; Method of manufacturing a ceramic waveguide filter further comprising.
  16. 제15 항에 있어서, 상기 커플링 홀을 형성하는 단계는 The method of claim 15, wherein the step of forming the coupling hole
    상기 커플링 홀의 내측을 계단형 구조로 형성하고, The inside of the coupling hole is formed in a stepped structure,
    상기 커플링 홀의 내부면에 형성하는 단계는 The step of forming on the inner surface of the coupling hole
    상기 금속층을 계단형 구조의 상기 커플링 홀의 내부면에서 상기 세라믹 블록의 일면에 대향하는 기지정된 슬롯 영역을 제외한 영역에 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter, wherein the metal layer is formed in an area except for a predetermined slot area facing the one surface of the ceramic block on the inner surface of the coupling hole having a stepped structure.
  17. 제16 항에 있어서, 상기 세라믹 웨이브가이드 필터의 제조 방법은 The method of claim 16, wherein the manufacturing method of the ceramic waveguide filter
    상기 세라믹 블록의 일면에서 상기 커플링 홀이 형성된 영역에 전도성 스티커를 부착하는 단계; 를 더 포함하는 세라믹 웨이브가이드 필터의 제조 방법.Attaching a conductive sticker to an area where the coupling hole is formed on one surface of the ceramic block; Method of manufacturing a ceramic waveguide filter further comprising.
  18. 제10 항에 있어서, 상기 세라믹 웨이브가이드 필터의 제조 방법은 The method of claim 10, wherein the method of manufacturing the ceramic waveguide filter
    기지정된 주파수 대역에 따라 상기 금속층의 두께를 조절하는 단계; 를 더 포함하는 세라믹 웨이브가이드 필터의 제조 방법.Adjusting the thickness of the metal layer according to a predetermined frequency band; Method of manufacturing a ceramic waveguide filter further comprising.
  19. 제6 항에 있어서, 상기 세라믹 웨이브가이드 필터는 The method of claim 6, wherein the ceramic waveguide filter
    상기 세라믹 블록의 일면에서 상기 커플링 홀이 형성된 영역에 부착되는 전도성 스티커; 를 더 포함하는 세라믹 웨이브가이드 필터.A conductive sticker attached to an area where the coupling hole is formed on one surface of the ceramic block; Ceramic waveguide filter further comprising a.
PCT/KR2019/002984 2018-11-26 2019-03-14 Ceramic waveguide filter and method for manufacturing same WO2020111397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/329,821 US11901600B2 (en) 2018-11-26 2021-05-25 Ceramic waveguide filter including a plurality of resonant cavities coupled by a capacitive coupling structure and a method for manufacture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0147467 2018-11-26
KR20180147467 2018-11-26
KR1020190026078A KR102193435B1 (en) 2018-11-26 2019-03-07 Ceramic Waveguide Filter and Manufacturing Method Thereof
KR10-2019-0026078 2019-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/329,821 Continuation US11901600B2 (en) 2018-11-26 2021-05-25 Ceramic waveguide filter including a plurality of resonant cavities coupled by a capacitive coupling structure and a method for manufacture

Publications (1)

Publication Number Publication Date
WO2020111397A1 true WO2020111397A1 (en) 2020-06-04

Family

ID=70852855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002984 WO2020111397A1 (en) 2018-11-26 2019-03-14 Ceramic waveguide filter and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2020111397A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137362A1 (en) * 2002-01-08 2003-07-24 Norifumi Matsui Resonator, filter, duplexer, composite filter device, transmission-reception device, and communication device
KR101555943B1 (en) * 2015-08-28 2015-09-30 주식회사 이너트론 Resonator and filter having the same
KR20170108370A (en) * 2016-03-17 2017-09-27 주식회사 에이스테크놀로지 Ceramic Resonator Filter including Coupling Member
KR101803480B1 (en) * 2016-07-07 2017-11-30 (주)웨이브텍 Duplexer Dielectric Filter Combined With Common-Coupled Resonator
KR20180010192A (en) * 2015-05-22 2018-01-30 시티에스 코포레이션 Dielectric waveguide filter with direct coupling and alternating cross coupling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137362A1 (en) * 2002-01-08 2003-07-24 Norifumi Matsui Resonator, filter, duplexer, composite filter device, transmission-reception device, and communication device
KR20180010192A (en) * 2015-05-22 2018-01-30 시티에스 코포레이션 Dielectric waveguide filter with direct coupling and alternating cross coupling
KR101555943B1 (en) * 2015-08-28 2015-09-30 주식회사 이너트론 Resonator and filter having the same
KR20170108370A (en) * 2016-03-17 2017-09-27 주식회사 에이스테크놀로지 Ceramic Resonator Filter including Coupling Member
KR101803480B1 (en) * 2016-07-07 2017-11-30 (주)웨이브텍 Duplexer Dielectric Filter Combined With Common-Coupled Resonator

Similar Documents

Publication Publication Date Title
US5926079A (en) Ceramic waveguide filter with extracted pole
WO2017095035A1 (en) Cavity type wireless frequency filter having cross-coupling notch structure
WO2019151655A1 (en) Radio frequency filter
US5812036A (en) Dielectric filter having intrinsic inter-resonator coupling
WO2021118127A1 (en) Ceramic waveguide filter and manufacturing method therefor
US11901600B2 (en) Ceramic waveguide filter including a plurality of resonant cavities coupled by a capacitive coupling structure and a method for manufacture
KR102241217B1 (en) Ceramic Waveguide Filter and Manufacturing Method Thereof
WO2013022250A2 (en) Radio frequency filter employing notch structure
US20140097913A1 (en) Multi-mode filter
US6236288B1 (en) Dielectric filter having at least one stepped resonator hole with a recessed or protruding portion, the stepped resonator hole extending from a mounting surface
WO2022103224A1 (en) Multi-mode dielectric filter and multi-mode cascade filter
WO2010016745A2 (en) Tunable filter for expanding the tuning range
KR20000047623A (en) Dielectric filter, duplexer and communication apparatus
WO2021034177A1 (en) Low pass filter having transmission zero
WO2020111397A1 (en) Ceramic waveguide filter and method for manufacturing same
WO2020111396A1 (en) Ceramic waveguide filter and method for producing same
EP0982792B1 (en) Antenna duplexer and communication apparatus
EP3718165B1 (en) High frequency selectivity filter for microwave signals
WO2020054964A1 (en) Ceramic waveguide filter
WO2021256611A1 (en) Waveguide filter
WO2021177614A1 (en) Wave guide filter
WO2023038265A1 (en) Small ceramic waveguide filter
WO2021096177A9 (en) Dielectric ceramic filter
WO2022092792A1 (en) Ceramic waveguide filter for antenna
WO2021040212A1 (en) Waveguide filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889168

Country of ref document: EP

Kind code of ref document: A1