WO2020054964A1 - Ceramic waveguide filter - Google Patents
Ceramic waveguide filter Download PDFInfo
- Publication number
- WO2020054964A1 WO2020054964A1 PCT/KR2019/009010 KR2019009010W WO2020054964A1 WO 2020054964 A1 WO2020054964 A1 WO 2020054964A1 KR 2019009010 W KR2019009010 W KR 2019009010W WO 2020054964 A1 WO2020054964 A1 WO 2020054964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- waveguide filter
- resonant cavities
- metal block
- manufacturing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/2002—Dielectric waveguide filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
- H01P3/13—Hollow waveguides specially adapted for transmission of the TE01 circular-electric mode
Definitions
- the present invention relates to a ceramic waveguide filter, and relates to a ceramic waveguide filter capable of improving the suppression level and improving productivity.
- Coaxial resonators made of metal have been mainly used due to the advantage of being able to be manufactured at a small size and low cost with a low insertion loss compared to other resonators such as dielectric resonators.
- MIMO multi-input multi-output
- the ceramic waveguide filter means a filter having excellent loss and power resistance characteristics while significantly reducing the size by filling a ceramic material having a low loss and a high dielectric constant in a waveguide cavity.
- 1 and 2 show an example of a conventional ceramic waveguide filter.
- FIG. 1 shows an example of a single mode ceramic waveguide filter
- FIG. 2 shows an example of a triple mode ceramic waveguide filter.
- the ceramic waveguide filter is generally made of a plurality of ceramic resonant cavities ((21 ⁇ 24), (61, 62)), respectively, a plurality of ceramic resonant cavities (( 21 to 24), (61, 62))
- Each surface is plated with a conductive metal such as silver (Ag).
- the surface-plated ceramic resonant cavities (21 to 24) and (61, 62) are implemented by a process such as soldering.
- a slot (41 to 43, 80) for coupling is provided in the iris (31 to 33, 70), which is the surface coupled between the ceramic resonant cavities ((21 to 24), (61, 62)). Is formed. That is, the regions corresponding to the slots 41 to 43 and 80 in the irises 31 to 33 and 70 of the ceramic resonant cavities (21 to 24) and (61 and 62) are not plated.
- a plurality of ceramic resonant cavities ((21 to 24), (61, 62)) of the ceramic waveguide filter are formed with grooves in the ceramic resonant cavities ((21, 24), (61, 62)) disposed at both ends, Input / output interfaces 11, 12, 51, and 52 for inputting and outputting signals through a ceramic waveguide filter may be inserted into the formed grooves.
- the ceramic waveguide filter performs multi-stage filtering by adjusting the size of the conductor window iris between the resonators implemented with externally plated ceramic.
- the ceramic waveguide filter which is drastically reduced in size by filling the waveguide cavity with a ceramic material, is sensitive to mechanical tolerances. Therefore, it is necessary to tune to perform accurate filtering.
- the tuning operation generally adjusts the properties of the ceramic waveguide filter by grinding the plated surfaces of the ceramic resonant cavities (21 to 24) and (61, 62).
- the tuning operation is performed in a state in which a plurality of ceramic resonant cavities ((21 to 24), (61, 62)) are combined in order to accurately adjust characteristics.
- the irises 31 to 33 and 70 in which the slots 41 to 43 and 80 are formed are combined ceramic resonant cavities ((21 to 24), 61 and 62). It is placed between and is not exposed to the outside. Therefore, there is a disadvantage that tuning is impossible. In addition, since it is necessary to grind the plated surface, it is not easy to control properties, and thus there is a problem of low productivity.
- the thickness of the iris (31 to 33, 70) in the plated ceramic resonant cavities ((21 to 24), (61, 62)) becomes the thickness of the solder layer used for bonding, and is typically less than or equal to 20 ⁇ m It is formed very thin.
- the Evanescent mode region is not sufficiently implemented, and as a purely reactive element for the coupling mode It is unable to function, resulting in parasitic components.
- This parasitic component has a problem of lowering the rejection level of the ceramic waveguide filter.
- An object of the present invention is to provide a ceramic waveguide filter capable of improving the suppression level and a method for manufacturing the same.
- Another object of the present invention is to provide a ceramic waveguide filter that can be easily tuned to improve productivity and a method for manufacturing the same.
- a ceramic waveguide filter for achieving the above object has a plurality of ceramic resonant cavities, the outer surface of which is plated except for the slot region defined in the ceramic block having a size and shape corresponding to a signal to be filtered. ; At least one metal block having a thickness equal to or greater than a predetermined reference thickness and implemented as a slot-formed conductor to be disposed and coupled between the plurality of ceramic resonant cavities; And an input / output interface inserted into at least two or more ceramic resonance cavities of the plurality of ceramic resonance cavities to input and output signals. It includes.
- the same slot region is formed on opposite surfaces of the ceramic resonant cavities disposed adjacent to each other according to a predetermined arrangement position among the plurality of ceramic resonant cavities, and each of the at least one metal block is at both ends.
- a slot may be formed in a shape corresponding to the slot region formed in the ceramic resonance cavity to be disposed.
- the at least one metal block may be embodied as a conductor having a difference between a coefficient of thermal expansion and a coefficient of thermal expansion of the ceramic resonant cavity equal to or less than a predetermined reference value.
- the at least one metal block is formed with a tuning hole penetrating from an outer surface to an inner slot, and the ceramic waveguide filter may further include at least one tuning bolt inserted into the tuning hole.
- the at least one metal block may be coupled to a plating surface of a ceramic resonant cavity disposed at both ends by a soldering technique.
- a method of manufacturing a ceramic waveguide filter according to another embodiment of the present invention for achieving the above object includes forming a plurality of ceramic blocks having a size and shape corresponding to a signal to be filtered; Manufacturing a plurality of ceramic resonant cavities by plating an outer surface of the plurality of ceramic blocks except for a predetermined slot region; Manufacturing at least one metal block having a thickness equal to or greater than a predetermined reference thickness and formed of a slot-formed conductor; And placing and combining a corresponding metal block among the at least one metal block between the plurality of ceramic resonant cavities. It includes.
- the ceramic waveguide filter according to an embodiment of the present invention and a method for manufacturing the same are inserted into at least one metal block having a slot for coupling between a plurality of ceramic resonant cavities, thereby preventing parasitic components from occurring and increasing the suppression level. Can improve. In addition, it is possible to greatly improve productivity by facilitating tuning.
- 1 and 2 show an example of a conventional ceramic waveguide filter.
- FIG 3 is a perspective view of a single mode ceramic waveguide filter according to an embodiment of the present invention.
- FIGS. 4 and 5 show perspective and exploded views of a triple mode ceramic waveguide filter according to an embodiment of the present invention.
- FIG. 6 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
- FIG. 7 shows a result of simulating characteristics of a ceramic waveguide filter according to an embodiment of the present invention.
- FIG 3 is a perspective view of a single mode ceramic waveguide filter according to an embodiment of the present invention.
- the single mode ceramic waveguide filter 100 includes a plurality of ceramic resonant cavities 121 to 124, like the single mode ceramic waveguide filter of FIG. 1.
- each of the plurality of ceramic resonant cavities 121 to 124 may be embodied in a rectangular parallelepiped shape, and the length in the x, y, and z-axis directions may vary depending on the signal to be filtered. You can.
- each of the plurality of ceramic resonance cavities 121 to 124 is plated with a conductive material such as silver (Ag) for resonance.
- a conductive material such as silver (Ag) for resonance.
- the size and shape of the slot may be variously changed according to a signal to be transmitted to an adjacent ceramic resonant cavity.
- a slot corresponding to the single mode ceramic waveguide 100 is illustrated, but in the case of the dual mode ceramic waveguide, a + type slot may be formed.
- input / output grooves are formed in the ceramic resonance cavities 121 and 124 disposed at both ends of the plurality of ceramic resonance cavities 121 to 124, and input / output interfaces 111 and 112 are inserted through the formed input / output grooves.
- the input / output interfaces 111 and 112 are configured to input a signal to the ceramic waveguide filter 100 and output the filtered signal from the ceramic waveguide filter 100 to the outside, and may be implemented as, for example, a coaxial connector.
- the central conductor of the coaxial connector is inserted inside along the grooves of the ceramic resonant cavities 121 and 124, and the outer conductor is ceramic
- the resonant cavities 121 and 124 are electrically connected to the outer plating surfaces.
- the input / output interfaces 111 and 112 may be implemented by a PCB mount interface or the like.
- the single mode ceramic waveguide filter 100 includes at least one metal block 131 to 133 manufactured separately from the plurality of ceramic resonant cavities 121 to 124. At least one metal block 131 to 133 is disposed between the plurality of ceramic resonant cavities 121 to 124, respectively. Each of the at least one metal block 131 to 133 disposed between the ceramic resonant cavities 121 to 124 is coupled to adjacent ceramic resonant cavities 121 to 124 in a manner such as soldering. That is, each of the at least one metal block 131 to 133 functions as an iris.
- slots 141 to 143 for coupling signals are formed between the ceramic resonant cavities 121 to 124 at both ends that are coupled to each of the at least one metal block 131 to 133.
- the slots 141 to 143 formed in the metal blocks 131 to 133 may be formed to have sizes and shapes corresponding to slots of the ceramic resonant cavities 121 to 124 at both ends to be joined, that is, areas that are not plated,
- the size and shape of the slots 141 to 143 formed in each metal block 131 to 133 may be different from each other.
- Each of the at least one metal block 131 to 133 is manufactured to have a thickness w of a predetermined reference thickness (eg, 2 mm) or more.
- the metal blocks 131 to 133 have a thin iris thickness between the ceramic resonant cavities 121 to 124 on which the outer surface is plated, so that the evanescent mode region is not sufficiently implemented. It is a component that is inserted separately to prevent the problem of parasitic components because it cannot function as a purely reactive element for the coupling mode. Therefore, the thickness w of the metal blocks 131 to 133 is formed to have a thickness that exceeds the thickness of the metal surface that can be formed by plating.
- the metal blocks 131 to 133 may have a thickness of 2 mm or more, for example.
- the size of the surface coupled to the ceramic resonant cavities 121 to 124 in the at least one metal block 131 to 133 may be the same or less than the size of the coupled surface of the ceramic resonant cavities 121 to 124 to be coupled. have. This is to prevent the size of the ceramic waveguide filter 100 from being increased by the metal blocks 131 to 133.
- the material of the metal blocks 131 to 133 is made of a conductor material so that coupling can be performed between adjacent ceramic resonant cavities 121 to 124.
- the coefficient of thermal expansion (CTE) between the metal block 131 to 133 constituting the ceramic waveguide filter 100 and the ceramic resonant cavities 121 to 124 combined with adjacent ceramic resonant cavities 121 to 124 ) may be separated during operation of the ceramic waveguide filter.
- the ceramic resonant cavities 121 to 124 may be damaged in some cases.
- the ceramic resonant cavities 121 to 124 are prevented from being damaged, and the ceramic resonant cavities 121 to 124 are prevented from being separated from the combination of the ceramic resonant cavities 121 to 124 and the metal blocks 131 to 133.
- the metal blocks 131 to 133 are implemented with a conductor having a difference in coefficient of thermal expansion (CTE) of less than or equal to a predetermined reference value (here, for example, 5 ⁇ m / ° C).
- tuning bolts 151 to 153 may be inserted into the metal blocks 131 to 133.
- Tuning holes may be formed in the metal blocks 131 to 133 so that the tuning bolts 151 to 153 can be inserted.
- the tuning hole may be formed to penetrate through the slots 141 to 143 inside the metal blocks 131 to 133. Accordingly, the tuning bolts 151 to 153 may reach the inner regions of the slots 141 to 143 of the metal blocks 131 to 133.
- threads may be formed to finely adjust the insertion depth.
- inserting the tuning bolts 151 to 153 into the metal blocks 131 to 133 rather than the ceramic resonant cavities 121 to 124 makes it easier to form tuning holes in the metal blocks 131 to 133 It is because.
- a tuning hole is formed in the ceramic resonance cavities 121 to 124, it is difficult to predict a change in resonance performance due to the tuning hole, and there is a problem that damage is likely to occur due to characteristics of the ceramic.
- FIG. 1 when a tuning hole is formed between the coupling surfaces of the ceramic resonant cavities 121 to 124, not only the ceramics are more easily damaged, but the coupling surfaces are separated and cannot function as a ceramic waveguide filter. You can.
- the tuning bolts 151 to 153 may break the ceramic resonance cavities 121 to 124, or , The ceramic resonant cavity (121 ⁇ 124) and the metal block (131 ⁇ 133) to ensure a stable insertion without separating the coupling surface.
- a plurality of ceramic resonant cavities 121 to 124 of the ceramic waveguide filter are arranged in a line, and a plurality of metal blocks 131 to 133 are arranged between the plurality of ceramic resonant cavities 121 to 124.
- the plurality of ceramic resonant cavities 121 to 124 may be arranged in various forms rather than in a single line arrangement depending on the case, and the plurality of metal blocks 131 to 133 may be arranged in a variety of forms. ⁇ 124).
- the input / output interfaces 111 and 112 are described as being inserted into the ceramic resonance cavities 121 and 124 disposed at both ends of the plurality of ceramic resonance cavities 121 to 124, but the input / output interfaces 111 and 112 are described.
- the inserted ceramic resonance cavity may also be variously changed according to the arrangement structure of the plurality of ceramic resonance cavities 121 to 124, and the ceramic waveguide filter may include two or more input / output interfaces 111 and 112 depending on the mode.
- FIGS. 4 and 5 show perspective and exploded views of a triple mode ceramic waveguide filter according to an embodiment of the present invention.
- TE 011 , TE 101 , TM 110 triple mode ceramic waveguide filters 200 may be implemented with a plurality of ceramic resonant cavities 121 to 124 formed in a rectangular parallelepiped shape as shown in FIG. 3, but in this case, only the slot shape is different. 3, the metal blocks 131 to 133 may be inserted.
- the triple mode ceramic waveguide filter 200 may have a plurality of ceramic resonant cavities 221 and 222 formed in a polyhedron shape, as shown in FIGS. 4 and 5.
- the structure of the triple mode ceramic waveguide filter 200 implemented with a plurality of ceramic resonant cavities 221 and 222 formed of a polyhedron is a known technique and will not be described in detail here.
- the bonding surfaces of the plurality of ceramic resonant cavities 221 and 222 formed of a polyhedron, that is, the opposing surfaces between adjacent ceramic resonant cavities 221 and 222 are shown in FIGS. As shown in 5, it must be formed in the same shape to enable bonding.
- the ceramic resonant cavities 221 and 222 are also plated with a conductor, similar to the ceramic resonant cavities 121 to 124 of FIG. 3, and adjacent ceramic resonant cavity faces are formed with slots of a predetermined size and shape for coupling. .
- input / output grooves are formed in the ceramic resonance cavities 221 and 222 disposed at both ends of the plurality of ceramic resonance cavities 221 and 222, and input / output interfaces 211 and 212 implemented by a coaxial connector or the like are formed through the formed input / output grooves. Is inserted.
- the ceramic waveguide filter 200 since the ceramic waveguide filter 200 includes two ceramic resonant cavities 221 and 222, input / output grooves are formed in each of the two ceramic resonant cavities 221 and 222, and the input / output interfaces 211 and 212 are inserted. Became.
- At least one metal block 230 is disposed between the ceramic resonant cavities 221 and 222.
- at least one metal block 230 in the present invention is a component that is manufactured and coupled separately from the ceramic resonant cavities 221, 222.
- At least one metal block 230 disposed between the ceramic resonant cavities 221 and 222 is coupled to the ceramic resonant cavities 221 and 222 at both ends in a manner such as soldering. And, at least one metal block 230 is formed with a slot 240 for coupling signals between the ceramic resonant cavities 221 and 222 coupled to both ends as in the metal blocks 131 to 133 of FIG. 3.
- the at least one metal block 230 is formed to have a thickness w capable of sufficiently implementing the Ivernecent mode region, and a reference value in which the difference between the ceramic resonance cavities 221 and 222 and the coefficient of thermal expansion (CTE) is determined. (Here, for example, 5 ⁇ m / ° C.) or less.
- the at least one metal block 230 is implemented in a shape corresponding to a surface coupled with the ceramic resonant cavities 221 and 222, and is formed to be equal to or less than the size of the coupled surface of the ceramic resonant cavities 121 to 124. You can.
- a tuning hole is formed in the metal block 230, and a tuning bolt 250 may be inserted into the tuning hole.
- the ceramic waveguide filter 200 of the present invention includes at least one metal block manufactured separately between a plurality of ceramic resonant cavities (121 to 124) and (221, 222) ( 131 ⁇ 133, 230) is arranged and coupled, has a structure in which the tuning bolts (151 ⁇ 153, 250) is inserted into at least one metal block (131 ⁇ 133, 230).
- the ceramic waveguide filters 100 and 200 do not directly combine a plurality of plated ceramic resonant cavities ((121 to 124), (221, 222)), and ceramic resonant cavities ((121 to 124), (221, 222)) by inserting and combining the separately manufactured metal blocks (131 ⁇ 133, 230), fully implements the Evanescent mode region (Evanescent mode region). Through this, it is possible to prevent parasitic components from occurring during coupling, thereby improving the rejection level of the ceramic waveguide filter. In addition, by allowing the tuning bolts 151 to 153 and 250 to be inserted into the tuning holes formed in the metal blocks 131 to 133 and 230, it is possible to perform the tuning accurately and stably without damage.
- FIG. 6 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
- a method of manufacturing a ceramic waveguide filter according to this embodiment will be described first, to manufacture a plurality of ceramic blocks having a predetermined size and shape (S11).
- the size and shape of the plurality of ceramic blocks are determined according to signals and modes to be transmitted, and as shown in FIGS. 3 and 4, may be manufactured in the form of a cuboid or polyhedron.
- a plurality of manufactured ceramic blocks are plated with a conductor to obtain a plurality of ceramic resonant cavities (121 to 124) (221, 222) (S12).
- a plurality of ceramic resonant cavities (121 to 124) and (221, 222) are implemented as ceramic waveguide filters 100 and 200
- the placement positions are predetermined, and slots that are areas that are not plated on one side or both sides have slots. Is formed.
- the size and shape of the slot may be variously varied depending on the signal to be coupled, but the same size is formed on the surfaces facing each other of the plurality of ceramic resonant cavities (121 to 124) and (221, 222) adjacent to each other. And a slot in the form.
- the manufacturing method of the ceramic waveguide filter according to the present embodiment manufactures at least one metal block (131 to 133, 230) separately from the plurality of ceramic resonant cavities ((121 to 124), (221, 222)) ( S13).
- Each of the at least one metal block (131 to 133, 230) is disposed between the plurality of ceramic resonant cavities (121 to 124) and (221, 222) in the ceramic waveguide filter (100, 200), and the placement position is preset. Is specified.
- Each of the at least one metal block (131 ⁇ 133, 230) has a shape and size corresponding to the corresponding surface of the ceramic resonant cavities (121 ⁇ 124), (221, 222) disposed adjacent to each other according to the placement position Is formed.
- slots (141 to 143, 240) of the same shape and size as the slots of the ceramic resonant cavities (121 to 124) and (221 and 222) disposed adjacent to each other, and the slots (141 to 143) , 240) is formed through the tuning hole.
- a plurality of ceramic resonant cavities ((121 to 124), (221, 222)) and at least one metal block (131 to 133, 230) are respectively manufactured, a plurality of ceramic resonant cavities (121 to 124), (221 , 222)) by arranging at least one metal block 131 to 133 and 230 corresponding thereto (S14). At this time, the plurality of ceramic resonant cavities (121 to 124), (221, 222) and the at least one metal block 131 to 133, 230 may be combined in a manner such as soldering.
- the input / output interface is inserted into the predetermined ceramic resonance cavity (S15).
- the tuning bolts 151 to 153 and 250 are inserted into the tuning holes formed in each of the at least one metal block 131 to 133 and 230 (S16). Then, by adjusting the insertion depth of the inserted tuning bolt (151 ⁇ 153, 250), fine adjustment of the coupling value between the plurality of ceramic resonant cavities (121 ⁇ 124), (221, 222) (S17) .
- FIG. 7 shows a result of simulating characteristics of a ceramic waveguide filter according to an embodiment of the present invention.
- FIG. 7 is a result of simulating the frequency response characteristics of the triple mode ceramic waveguide filters of FIGS. 2 and 4, and the ceramic waveguide filters of FIGS. 2 and 4 are band-pass filters as shown in FIG. : BPF).
- Computer readable media herein can be any available media that can be accessed by a computer, and can also include any computer storage media.
- Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data, and ROM (readable) Dedicated memory), RAM (random access memory), CD (compact disk) -ROM, DVD (digital video disk) -ROM, magnetic tape, floppy disk, optical data storage, and the like.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
The present invention provides a ceramic waveguide filter and a manufacturing method therefor, the ceramic waveguide filter comprising: a plurality of ceramic resonant cavities, each of which is obtained by providing a ceramic block corresponding in size and shape to a signal to be filtered and plating the outer surface of the ceramic block with a metal, except for a predetermined slot region; at least one metal block which has a thickness greater than or equal to a predetermined reference thickness, is implemented in the form of a conductor having a slot formed therethrough, and is disposed and coupled between each of the plurality of ceramic resonant cavities; and input-output interfaces which are inserted into at least two ceramic resonant cavities among the plurality of ceramic resonant cavities to input and output signals therethrough. Therefore, the ceramic waveguide filter and the manufacturing method therefor can prevent generation of parasitic components by inserting at least one coupling metal block having a slot formed therethrough between the plurality of ceramic resonant cavities, and thus can improve the suppression level. In addition, tuning can be easily performed and thus the productivity can be greatly improved.
Description
본 발명은 세라믹 도파관 필터에 관한 것으로, 억압 레벨을 개선하고 생산성을 향상시킬 수 있는 세라믹 도파관 필터에 관한 것이다.The present invention relates to a ceramic waveguide filter, and relates to a ceramic waveguide filter capable of improving the suppression level and improving productivity.
통신 서비스의 발전에 따라 데이터 전송 속도가 계속적으로 향상되고 있다. 그러나 데이터 전송 속도를 향상시키기 위해서는 주파수 대역폭이 증가되어야 하며, 수신 감도 향상 및 다른 통신 시스템의 캐리어(carrier)에 의한 간섭(interference)의 최소화가 필요하며, 이에 낮은 삽입손실(insertion loss) 및 높은 억압 성능을 갖는 필터에 대한 요구가 증가되고 있다.With the development of communication services, data transmission speeds are continuously improving. However, in order to improve the data transmission speed, the frequency bandwidth needs to be increased, and it is necessary to improve reception sensitivity and minimize interference caused by carriers of other communication systems, and thus, low insertion loss and high suppression. There is an increasing demand for filters with performance.
금속 재질로 제조되는 동축(coaxial) 공진기는 유전체 공진기 등의 타 공진기에 비해 낮은 삽입 손실을 갖고 소형 및 저비용으로 제조될 수 있다는 장점으로 인해 주로 사용되어 왔다. 그러나 대용량 다중 입출력(Massive MIMO(Multi Input Multi Output)) 안테나 등을 이용하는 기지국 시스템이 저출력 및 소형화되어 감에 따라 기존의 동축 공진기를 사용하는 경우, 크기 측면에서 제약이 있어 초소형 크기의 필터를 구현하는 데 한계가 있다. 따라서 필터의 크기를 더욱 축소할 수 있는 소형 공진기에 대한 필요성이 대두되고 있다.Coaxial resonators made of metal have been mainly used due to the advantage of being able to be manufactured at a small size and low cost with a low insertion loss compared to other resonators such as dielectric resonators. However, when a base station system using a large-capacity multi-input multi-output (MIMO) antenna is low-powered and miniaturized, when using an existing coaxial resonator, there is a limitation in size, so it is possible to implement a filter of ultra-small size. There is a limit. Therefore, there is a need for a small resonator capable of further reducing the size of the filter.
이에 세라믹 도파관 필터(Ceramic Waveguide Filter)에 대한 연구가 활발하게 수행되고 있다. 세라믹 도파관 필터는 도파관(Waveguide) 공동 내에 낮은 손실과 높은 유전 상수를 갖는 세라믹 재질을 채워 크기를 획기적으로 줄이면서, 우수한 손실 및 내전력 특성을 갖도록 한 필터를 의미한다.Accordingly, research on ceramic waveguide filters has been actively conducted. The ceramic waveguide filter means a filter having excellent loss and power resistance characteristics while significantly reducing the size by filling a ceramic material having a low loss and a high dielectric constant in a waveguide cavity.
도1 및 도2 는 기존의 세라믹 도파관 필터의 일예를 나타낸다.1 and 2 show an example of a conventional ceramic waveguide filter.
도1 은 싱글 모드(single mode) 세라믹 도파관 필터의 일예를 나타내고, 도2 는 트리플 모드(triple mode) 세라믹 도파관 필터의 일예를 나타낸다.1 shows an example of a single mode ceramic waveguide filter, and FIG. 2 shows an example of a triple mode ceramic waveguide filter.
도1 및 도2 을 참조하면, 세라믹 도파관 필터는 일반적으로 다수의 세라믹 공진 캐비티(Ceramic cavity)((21 ~ 24), (61, 62))를 각각 별도로 제작하고, 다수의 세라믹 공진 캐비티((21 ~ 24), (61, 62)) 각각의 표면을 은(Ag)와 같은 도전성 금속으로 도금한다. 그리고 표면이 도금된 세라믹 공진 캐비티((21 ~ 24), (61, 62))를 솔더링(soldering) 등의 공정으로 결합하여 구현한다. 이때 세라믹 공진 캐비티((21 ~ 24), (61, 62)) 사이에 결합되는 면인 아이리스(iris)(31 ~ 33, 70)에는 커플링을 위한 슬롯(slot)(41 ~ 43, 80)이 형성된다. 즉 세라믹 공진 캐비티((21 ~ 24), (61, 62))의 아이리스(31 ~ 33, 70)에서 슬롯(41 ~ 43, 80)에 대응하는 영역은 도금되지 않는다.1 and 2, the ceramic waveguide filter is generally made of a plurality of ceramic resonant cavities ((21 ~ 24), (61, 62)), respectively, a plurality of ceramic resonant cavities (( 21 to 24), (61, 62)) Each surface is plated with a conductive metal such as silver (Ag). In addition, the surface-plated ceramic resonant cavities (21 to 24) and (61, 62) are implemented by a process such as soldering. At this time, a slot (41 to 43, 80) for coupling is provided in the iris (31 to 33, 70), which is the surface coupled between the ceramic resonant cavities ((21 to 24), (61, 62)). Is formed. That is, the regions corresponding to the slots 41 to 43 and 80 in the irises 31 to 33 and 70 of the ceramic resonant cavities (21 to 24) and (61 and 62) are not plated.
한편 세라믹 도파관 필터의 다수의 세라믹 공진 캐비티((21 ~ 24), (61, 62)) 중 양단에 배치되는 세라믹 공진 캐비티((21, 24), (61, 62))에는 홈이 형성되고, 형성된 홈에 세라믹 도파관 필터로 신호를 입력 및 출력하기 위한 입출력 인터페이스(11, 12, 51, 52)가 삽입될 수 있다. 그리고 입출력 인터페이스(11, 12, 51, 52)가 삽입되는 세라믹 공진 캐비티((21, 24), (61, 62))는 입출력 인터페이스(11, 12, 51, 52)를 통해 전달되는 신호를 도파관 구조에 적합한 신호로 변환하는 변환기로도 볼 수 있다.On the other hand, a plurality of ceramic resonant cavities ((21 to 24), (61, 62)) of the ceramic waveguide filter are formed with grooves in the ceramic resonant cavities ((21, 24), (61, 62)) disposed at both ends, Input / output interfaces 11, 12, 51, and 52 for inputting and outputting signals through a ceramic waveguide filter may be inserted into the formed grooves. And the ceramic resonant cavities (21, 24, 61, 62) into which the input / output interfaces 11, 12, 51, 52 are inserted, waveguides the signal transmitted through the input / output interfaces 11, 12, 51, 52. It can also be viewed as a converter that converts signals into structures.
도1 및 도2 에 도시된 바와 같이, 세라믹 도파관 필터는 외부가 도금된 세라믹으로 구현되는 공진기 사이에 도체창인 아이리스의 크기가 조절됨으로써 다단 필터링이 수행된다.1 and 2, the ceramic waveguide filter performs multi-stage filtering by adjusting the size of the conductor window iris between the resonators implemented with externally plated ceramic.
도파관 캐비티를 세라믹 재질로 채워 크기를 획기적으로 줄인 세라믹 도파관 필터는 기구적 공차에 민감하게 반응한다. 따라서 정확한 필터링을 수행할 수 있도록 튜닝(tuning) 작업이 필수적이다. 이때, 튜닝 작업은 일반적으로 세라믹 공진 캐비티((21 ~ 24), (61, 62))의 도금된 표면을 그라인딩(grinding)함으로써 세라믹 도파관 필터의 특성을 조절한다. 그리고 튜닝 작업은 정확한 특성 조절을 위해, 다수의 세라믹 공진 캐비티((21 ~ 24), (61, 62))가 결합된 상태에서 수행된다.The ceramic waveguide filter, which is drastically reduced in size by filling the waveguide cavity with a ceramic material, is sensitive to mechanical tolerances. Therefore, it is necessary to tune to perform accurate filtering. At this time, the tuning operation generally adjusts the properties of the ceramic waveguide filter by grinding the plated surfaces of the ceramic resonant cavities (21 to 24) and (61, 62). In addition, the tuning operation is performed in a state in which a plurality of ceramic resonant cavities ((21 to 24), (61, 62)) are combined in order to accurately adjust characteristics.
그러나 도1 및 도2 에 도시된 바와 같이, 슬롯(41 ~ 43, 80)이 형성된 아이리스(31 ~ 33, 70)는 결합된 세라믹 공진 캐비티((21 ~ 24), (61, 62))들 사이에 배치되어 외부로 노출되지 않는다. 따라서 튜닝 작업이 불가능하다는 단점이 있다. 또한 도금된 표면을 그라인딩해야하므로 특성 조절이 용이하지 않아, 생산성이 낮다는 문제가 있다.However, as shown in FIGS. 1 and 2, the irises 31 to 33 and 70 in which the slots 41 to 43 and 80 are formed are combined ceramic resonant cavities ((21 to 24), 61 and 62). It is placed between and is not exposed to the outside. Therefore, there is a disadvantage that tuning is impossible. In addition, since it is necessary to grind the plated surface, it is not easy to control properties, and thus there is a problem of low productivity.
또한 도금된 세라믹 공진 캐비티((21 ~ 24), (61, 62))에서 아이리스(31 ~ 33, 70)의 두께는 접합에 사용된 솔더(solder) 층의 두께가 되고, 통상적으로 20μm 이하 수준으로 매우 얇게 형성된다. 이 경우, 신호가 아이리스(31 ~ 33, 70)를 통과할 때, 이버네센트 모드 영역(Evanescent mode region)이 충분하게 구현되지 않아, 커플링 모드에 대해 순수 리액티브 소자(purely reactive element)로서 기능할 수 없어 기생 성분이 발생한다. 이러한 기생 성분은 세라믹 도파관 필터의 억압 레벨(rejection level)을 하향시키는 문제가 있다.In addition, the thickness of the iris (31 to 33, 70) in the plated ceramic resonant cavities ((21 to 24), (61, 62)) becomes the thickness of the solder layer used for bonding, and is typically less than or equal to 20 μm It is formed very thin. In this case, when the signal passes through the irises 31 to 33 and 70, the Evanescent mode region is not sufficiently implemented, and as a purely reactive element for the coupling mode It is unable to function, resulting in parasitic components. This parasitic component has a problem of lowering the rejection level of the ceramic waveguide filter.
본 발명의 목적은 억압 레벨을 개선할 수 있는 세라믹 도파관 필터 및 이의 제조 방법을 제공하는데 있다.An object of the present invention is to provide a ceramic waveguide filter capable of improving the suppression level and a method for manufacturing the same.
본 발명의 다른 목적은 용이하게 튜닝 가능하여 생산성을 향상 시킬 수 있는 세라믹 도파관 필터 및 이의 제조 방법을 제공하는데 있다.Another object of the present invention is to provide a ceramic waveguide filter that can be easily tuned to improve productivity and a method for manufacturing the same.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 세라믹 도파관 필터는 필터링하고자 하는 신호에 대응하는 크기 및 형태를 갖는 세라믹 블록에 기지정된 슬롯 영역을 제외한 외부면이 도금 처리된 다수의 세라믹 공진 캐비티; 기지정된 기준 두께 이상의 두께를 갖고, 슬롯이 형성된 도전체로 구현되어 상기 다수의 세라믹 공진 캐비티 사이에 배치 및 결합되는 적어도 하나의 메탈 블록; 및 상기 다수의 세라믹 공진 캐비티 중 적어도 2개 이상의 세라믹 공진 캐비티에 삽입되어 신호를 입출력하는 입출력 인터페이스; 를 포함한다.A ceramic waveguide filter according to an embodiment of the present invention for achieving the above object has a plurality of ceramic resonant cavities, the outer surface of which is plated except for the slot region defined in the ceramic block having a size and shape corresponding to a signal to be filtered. ; At least one metal block having a thickness equal to or greater than a predetermined reference thickness and implemented as a slot-formed conductor to be disposed and coupled between the plurality of ceramic resonant cavities; And an input / output interface inserted into at least two or more ceramic resonance cavities of the plurality of ceramic resonance cavities to input and output signals. It includes.
상기 다수의 세라믹 공진 캐비티는 상기 다수의 세라믹 공진 캐비티 중 미리 결정된 배치 위치에 따라 서로 인접하여 배치되는 세라믹 공진 캐비티의 마주보는 면에 동일한 슬롯 영역이 형성되고, 상기 적어도 하나의 메탈 블록 각각은 양단에 배치되는 세라믹 공진 캐비티에 형성된 상기 슬롯 영역에 대응하는 형태로 슬롯이 형성될 수 있다.In the plurality of ceramic resonant cavities, the same slot region is formed on opposite surfaces of the ceramic resonant cavities disposed adjacent to each other according to a predetermined arrangement position among the plurality of ceramic resonant cavities, and each of the at least one metal block is at both ends. A slot may be formed in a shape corresponding to the slot region formed in the ceramic resonance cavity to be disposed.
상기 적어도 하나의 메탈 블록은 상기 세라믹 공진 캐비티의 열 팽창 계수와 열 팽창 계수 차가 기지정된 기준값 이하인 도전체로 구현될 수 있다.The at least one metal block may be embodied as a conductor having a difference between a coefficient of thermal expansion and a coefficient of thermal expansion of the ceramic resonant cavity equal to or less than a predetermined reference value.
상기 적어도 하나의 메탈 블록은 외부 일면으로부터 내부 슬롯까지 관통하는 튜닝 홀이 형성되고, 세라믹 도파관 필터는 상기 튜닝 홀에 삽입되는 적어도 하나의 튜닝 볼트를 더 포함할 수 있다.The at least one metal block is formed with a tuning hole penetrating from an outer surface to an inner slot, and the ceramic waveguide filter may further include at least one tuning bolt inserted into the tuning hole.
상기 적어도 하나의 메탈 블록은 양단에 배치되는 세라믹 공진 캐비티의 도금 면에 솔더링 기법으로 결합될 수 있다.The at least one metal block may be coupled to a plating surface of a ceramic resonant cavity disposed at both ends by a soldering technique.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 세라믹 도파관 필터의 제조 방법은 필터링하고자 하는 신호에 대응하는 크기 및 형태를 갖는 다수의 세라믹 블록을 형성하는 단계; 상기 다수의 세라믹 블록의 기지정된 슬롯 영역을 제외한 외부면을 도금 처리하여 다수의 세라믹 공진 캐비티를 제조하는 단계; 기지정된 기준 두께 이상의 두께를 갖고, 슬롯이 형성된 도전체로 구현되는 적어도 하나의 메탈 블록을 제조하는 단계; 및 상기 다수의 세라믹 공진 캐비티 사이에 상기 적어도 하나의 메탈 블록 중 대응하는 메탈 블록을 배치하고 결합하는 단계; 를 포함한다.A method of manufacturing a ceramic waveguide filter according to another embodiment of the present invention for achieving the above object includes forming a plurality of ceramic blocks having a size and shape corresponding to a signal to be filtered; Manufacturing a plurality of ceramic resonant cavities by plating an outer surface of the plurality of ceramic blocks except for a predetermined slot region; Manufacturing at least one metal block having a thickness equal to or greater than a predetermined reference thickness and formed of a slot-formed conductor; And placing and combining a corresponding metal block among the at least one metal block between the plurality of ceramic resonant cavities. It includes.
따라서, 본 발명의 실시예에 따른 세라믹 도파관 필터 및 이의 제조 방법은 다수의 세라믹 공진 캐비티 사이에 커플링을 위한 슬롯이 형성된 적어도 하나의 메탈 블럭을 삽입함으로써, 기생 성분이 발생하지 않도록 하여 억압 레벨을 개선할 수 있다. 또한 튜닝을 용이하여 생산성을 크게 향상 시킬 수 있다.Accordingly, the ceramic waveguide filter according to an embodiment of the present invention and a method for manufacturing the same are inserted into at least one metal block having a slot for coupling between a plurality of ceramic resonant cavities, thereby preventing parasitic components from occurring and increasing the suppression level. Can improve. In addition, it is possible to greatly improve productivity by facilitating tuning.
도1 및 도2 는 기존의 세라믹 도파관 필터의 일예를 나타낸다.1 and 2 show an example of a conventional ceramic waveguide filter.
도3 은 본 발명의 일 실시예에 따른 싱글 모드 세라믹 도파관 필터의 사시도 나타낸다.3 is a perspective view of a single mode ceramic waveguide filter according to an embodiment of the present invention.
도4 및 도5 는 본 발명의 일 실시예에 따른 트리플 모드 세라믹 도파관 필터의 사시도 및 분해도를 나타낸다.4 and 5 show perspective and exploded views of a triple mode ceramic waveguide filter according to an embodiment of the present invention.
도6 은 본 발명의 일 실시예에 따른 세라믹 도파관 필터의 제조 방법을 나타낸다.6 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
도7 은 본 발명의 실시예에 따른 세라믹 도파관 필터의 특성을 시뮬레이션한 결과를 나타낸다.7 shows a result of simulating characteristics of a ceramic waveguide filter according to an embodiment of the present invention.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings and the contents described in the accompanying drawings, which illustrate preferred embodiments of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시예에 한정되는 것이 아니다. 그리고, 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 부재임을 나타낸다. Hereinafter, the present invention will be described in detail by explaining preferred embodiments of the present invention with reference to the accompanying drawings. However, the present invention may be implemented in various different forms, and is not limited to the described embodiments. In addition, in order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals in the drawings indicate the same members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈", "블록" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. Throughout the specification, when a part “includes” a certain component, this means that other components may be further included, rather than excluding other components, unless otherwise specified. In addition, terms such as "... unit", "... group", "module", and "block" described in the specification mean a unit that processes at least one function or operation, which is hardware or software or hardware. And software.
도3 은 본 발명의 일 실시예에 따른 싱글 모드 세라믹 도파관 필터의 사시도 나타낸다.3 is a perspective view of a single mode ceramic waveguide filter according to an embodiment of the present invention.
도3 을 참조하면, 본 실시예에 따른 싱글 모드 세라믹 도파관 필터(100)는 도1 의 싱글 모드 세라믹 도파관 필터와 마찬가지로, 다수의 세라믹 공진 캐비티(121 ~ 124)를 포함한다. Referring to FIG. 3, the single mode ceramic waveguide filter 100 according to the present embodiment includes a plurality of ceramic resonant cavities 121 to 124, like the single mode ceramic waveguide filter of FIG. 1.
싱글 모드 세라믹 도파관 필터(100)에서 다수의 세라믹 공진 캐비티(121 ~ 124) 각각은 일예로 직육면체 모양으로 구현될 수 있으며, x, y, z 축 방향으로의 길이는 필터링하고자 하는 신호에 따라 가변될 수 있다. 그리고 다수의 세라믹 공진 캐비티(121 ~ 124) 각각은 공진을 위해 은(Ag) 등과 같은 도전소재로 도금된 상태이다. 이때 세라믹 공진 캐비티(121 ~ 124)에서 인접한 세라믹 공진 캐비티 방향의 면은 커플링을 위해 기설정된 크기 및 형상의 슬롯이 형성된다. 즉 슬롯에 대응하는 영역은 도금되지 않는다. 상기한 바와 같이 슬롯의 크기 및 형태는 인접한 세라믹 공진 캐비티로 전달하고자 하는 신호에 따라 다양하게 가변될 수 있다. 일예로 도1 에서는 싱글 모드 세라믹 도파관(100)에 대응하는 슬롯을 도시하였으나, 듀얼 모드 세라믹 도파관의 경우, + 형태의 슬롯이 형성될 수도 있다.In the single-mode ceramic waveguide filter 100, each of the plurality of ceramic resonant cavities 121 to 124 may be embodied in a rectangular parallelepiped shape, and the length in the x, y, and z-axis directions may vary depending on the signal to be filtered. You can. In addition, each of the plurality of ceramic resonance cavities 121 to 124 is plated with a conductive material such as silver (Ag) for resonance. At this time, in the ceramic resonant cavities 121 to 124, adjacent ceramic resonant cavity faces are formed with slots of a predetermined size and shape for coupling. That is, the area corresponding to the slot is not plated. As described above, the size and shape of the slot may be variously changed according to a signal to be transmitted to an adjacent ceramic resonant cavity. As an example, in FIG. 1, a slot corresponding to the single mode ceramic waveguide 100 is illustrated, but in the case of the dual mode ceramic waveguide, a + type slot may be formed.
한편 다수의 세라믹 공진 캐비티(121 ~ 124) 중 양단에 배치되는 세라믹 공진 캐비티(121, 124)에는 입출력 홈이 형성되고, 형성된 입출력 홈을 통해 입출력 인터페이스(111, 112)가 삽입된다. 입출력 인터페이스(111, 112)는 신호를 세라믹 도파관 필터(100)로 입력하고, 세라믹 도파관 필터(100)에서 필터링된 신호를 외부로 출력하기 위한 구성으로, 일예로 동축 커넥터로 구현될 수 있다.Meanwhile, input / output grooves are formed in the ceramic resonance cavities 121 and 124 disposed at both ends of the plurality of ceramic resonance cavities 121 to 124, and input / output interfaces 111 and 112 are inserted through the formed input / output grooves. The input / output interfaces 111 and 112 are configured to input a signal to the ceramic waveguide filter 100 and output the filtered signal from the ceramic waveguide filter 100 to the outside, and may be implemented as, for example, a coaxial connector.
입출력 인터페이스(111, 112)가 동축 커넥터로 구현되는 경우, 동축 커넥터의 중심 도체는 도3 에 도시된 바와 같이, 세라믹 공진 캐비티(121, 124)의 홈을 따라 내부로 삽입되고, 외부 도체는 세라믹 공진 캐비티(121, 124)의 외부 도금면에 전기적으로 연결된다. 입출력 인터페이스(111, 112)는 PCB 마운트 인터페이스(PCB mount interface) 등으로 구현될 수도 있다.When the input / output interfaces 111 and 112 are implemented as a coaxial connector, the central conductor of the coaxial connector is inserted inside along the grooves of the ceramic resonant cavities 121 and 124, and the outer conductor is ceramic The resonant cavities 121 and 124 are electrically connected to the outer plating surfaces. The input / output interfaces 111 and 112 may be implemented by a PCB mount interface or the like.
한편, 본 발명의 실시예에 따른 싱글 모드 세라믹 도파관 필터(100)는 다수의 세라믹 공진 캐비티(121 ~ 124)와 별도로 제조되는 적어도 하나의 메탈 블록(131 ~ 133)을 포함한다. 적어도 하나의 메탈 블록(131 ~ 133)은 각각 다수의 세라믹 공진 캐비티(121 ~ 124) 사이에 배치된다. 세라믹 공진 캐비티(121 ~ 124) 사이에 배치되는 적어도 하나의 메탈 블록(131 ~ 133) 각각은 솔더링 등의 방식으로 인접한 세라믹 공진 캐비티(121 ~ 124)와 결합된다. 즉 적어도 하나의 메탈 블록(131 ~ 133) 각각이 아이리스로 기능한다.Meanwhile, the single mode ceramic waveguide filter 100 according to an embodiment of the present invention includes at least one metal block 131 to 133 manufactured separately from the plurality of ceramic resonant cavities 121 to 124. At least one metal block 131 to 133 is disposed between the plurality of ceramic resonant cavities 121 to 124, respectively. Each of the at least one metal block 131 to 133 disposed between the ceramic resonant cavities 121 to 124 is coupled to adjacent ceramic resonant cavities 121 to 124 in a manner such as soldering. That is, each of the at least one metal block 131 to 133 functions as an iris.
이때 적어도 하나의 메탈 블록(131 ~ 133) 각각의 내부에는 결합되는 양단의 세라믹 공진 캐비티(121 ~ 124) 사이에서 신호를 커플링하기 위한 슬롯(141 ~ 143)이 형성된다. 메탈 블록(131 ~ 133)에 형성되는 슬롯(141 ~ 143)은 결합되는 양단의 세라믹 공진 캐비티(121 ~ 124)의 슬롯, 즉 도금되지 않은 영역에 대응하는 크기 및 형태를 갖도록 형성될 수 있으며, 각각의 메탈 블록(131 ~ 133)에 형성되는 슬롯(141 ~ 143)의 크기 및 형태는 서로 상이할 수 있다.At this time, slots 141 to 143 for coupling signals are formed between the ceramic resonant cavities 121 to 124 at both ends that are coupled to each of the at least one metal block 131 to 133. The slots 141 to 143 formed in the metal blocks 131 to 133 may be formed to have sizes and shapes corresponding to slots of the ceramic resonant cavities 121 to 124 at both ends to be joined, that is, areas that are not plated, The size and shape of the slots 141 to 143 formed in each metal block 131 to 133 may be different from each other.
적어도 하나의 메탈 블록(131 ~ 133) 각각은 기지정된 기준 두께(예를 들면 2mm) 이상의 두께(w)를 갖도록 제작된다. 본 실시예에서 메탈 블록(131 ~ 133)은 외부면이 도금 처리된 세라믹 공진 캐비티(121 ~ 124) 사이의 아이리스 두께가 얇아서 이버네센트 모드 영역(Evanescent mode region)이 충분하게 구현되지 않으면, 아이리스가 커플링 모드에 대해 순수 리액티브 소자(purely reactive element)로서 기능할 수 없어 기생 성분이 발생하는 문제를 방지하기 위해 별도로 삽입되는 구성이다. 따라서, 메탈 블록(131 ~ 133)의 두께(w)는 도금으로 형성 가능한 금속면의 두께를 초과하는 두께를 갖도록 형성된다. 메탈 블록(131 ~ 133)의 두께는 일예로 2mm 이상으로 형성될 수 있다.Each of the at least one metal block 131 to 133 is manufactured to have a thickness w of a predetermined reference thickness (eg, 2 mm) or more. In this embodiment, the metal blocks 131 to 133 have a thin iris thickness between the ceramic resonant cavities 121 to 124 on which the outer surface is plated, so that the evanescent mode region is not sufficiently implemented. It is a component that is inserted separately to prevent the problem of parasitic components because it cannot function as a purely reactive element for the coupling mode. Therefore, the thickness w of the metal blocks 131 to 133 is formed to have a thickness that exceeds the thickness of the metal surface that can be formed by plating. The metal blocks 131 to 133 may have a thickness of 2 mm or more, for example.
그리고 적어도 하나의 메탈 블록(131 ~ 133)에서 세라믹 공진 캐비티(121 ~ 124)와 결합되는 면의 크기는 결합되는 세라믹 공진 캐비티(121 ~ 124)의 결합면의 크기와 동일하거나 이하로 형성될 수 있다. 이는 메탈 블록(131 ~ 133)에 의해 세라믹 도파관 필터(100)의 크기가 증가되는 것을 방지하기 위해서이다.In addition, the size of the surface coupled to the ceramic resonant cavities 121 to 124 in the at least one metal block 131 to 133 may be the same or less than the size of the coupled surface of the ceramic resonant cavities 121 to 124 to be coupled. have. This is to prevent the size of the ceramic waveguide filter 100 from being increased by the metal blocks 131 to 133.
한편 메탈 블록(131 ~ 133)의 재질은 인접한 세라믹 공진 캐비티(121 ~ 124) 사이에서 커플링을 수행할 수 있도록 도전체 재질로 구현된다. 그러나 인접한 세라믹 공진 캐비티(121 ~ 124)와 결합되어 세라믹 도파관 필터(100)를 구성하는 메탈 블록(131 ~ 133)과 세라믹 공진 캐비티(121 ~ 124) 사이의 열 팽창 계수(Coefficient of Thermal Expansion: CTE)가 크게 차이가 나면, 세라믹 도파관 필터의 운용 중에 세라믹 공진 캐비티(121 ~ 124)와 메탈 블록(131 ~ 133) 사이의 결합이 분리될 수 있다. 뿐만 아니라, 경우에 따라서는 세라믹 공진 캐비티(121 ~ 124)가 파손될 우려가 있다.Meanwhile, the material of the metal blocks 131 to 133 is made of a conductor material so that coupling can be performed between adjacent ceramic resonant cavities 121 to 124. However, the coefficient of thermal expansion (CTE) between the metal block 131 to 133 constituting the ceramic waveguide filter 100 and the ceramic resonant cavities 121 to 124 combined with adjacent ceramic resonant cavities 121 to 124 ), The coupling between the ceramic resonant cavities 121 to 124 and the metal blocks 131 to 133 may be separated during operation of the ceramic waveguide filter. In addition, there is a possibility that the ceramic resonant cavities 121 to 124 may be damaged in some cases.
이에 본 실시예에서는 세라믹 공진 캐비티(121 ~ 124)의 파손을 방지하고, 세라믹 공진 캐비티(121 ~ 124)와 메탈 블록(131 ~ 133)의 결합이 분리되지 않도록 세라믹 공진 캐비티(121 ~ 124)와 열팽창계수(CTE) 차이가 기지정된 기준값(여기서는 일예로 5μm/℃) 이하인 도전체로 메탈 블록(131 ~ 133)을 구현한다.Accordingly, in this embodiment, the ceramic resonant cavities 121 to 124 are prevented from being damaged, and the ceramic resonant cavities 121 to 124 are prevented from being separated from the combination of the ceramic resonant cavities 121 to 124 and the metal blocks 131 to 133. The metal blocks 131 to 133 are implemented with a conductor having a difference in coefficient of thermal expansion (CTE) of less than or equal to a predetermined reference value (here, for example, 5 μm / ° C).
한편 메탈 블록(131 ~ 133)이 기지정된 두께(여기서는 2mm 이상)을 갖고 형성되므로, 메탈 블록(131 ~ 133)에는 튜닝 볼트(151 ~ 153)가 삽입될 수 있다. 튜닝 볼트(151 ~ 153)가 삽입될 수 있도록, 메탈 블록(131 ~ 133)에는 튜닝 홀이 형성될 수 있다. 여기서 튜닝 홀은 도3 에 도시된 바와 같이, 메탈 블록(131 ~ 133) 내부의 슬롯(141 ~ 143)까지 관통하도록 형성될 수 있다. 이에 튜닝 볼트(151 ~ 153)는 메탈 블록(131 ~ 133)의 슬롯(141 ~ 143) 내부 영역까지 도달할 수 있다. 또한 튜닝 홀 및 튜닝 볼트(151 ~ 153)에는 튜닝 볼트(151 ~ 153)를 메탈 블록(131 ~ 133)에 삽입할 때, 삽입 깊이를 미세 조절할 수 있도록 나사산이 형성될 수도 있다.Meanwhile, since the metal blocks 131 to 133 are formed with a predetermined thickness (here, 2 mm or more), tuning bolts 151 to 153 may be inserted into the metal blocks 131 to 133. Tuning holes may be formed in the metal blocks 131 to 133 so that the tuning bolts 151 to 153 can be inserted. Here, as illustrated in FIG. 3, the tuning hole may be formed to penetrate through the slots 141 to 143 inside the metal blocks 131 to 133. Accordingly, the tuning bolts 151 to 153 may reach the inner regions of the slots 141 to 143 of the metal blocks 131 to 133. In addition, when the tuning bolts 151 to 153 are inserted into the tuning holes and the tuning bolts 151 to 153 to the metal blocks 131 to 133, threads may be formed to finely adjust the insertion depth.
본 실시예에서 튜닝 볼트(151 ~ 153)를 세라믹 공진 캐비티(121 ~ 124)가 아닌 메탈 블록(131 ~ 133)에 삽입하는 것은, 메탈 블록(131 ~ 133)에 튜닝 홀을 형성하는 것이 더욱 용이하기 때문이다. 세라믹 공진 캐비티(121 ~ 124)에 튜닝 홀을 형성하는 경우, 튜닝 홀로 인한 공진 성능의 변화를 예측하기 어렵고, 세라믹의 특성상 파손이 발생하기 쉽다는 문제가 있다. 또한 도1 에서와 같이, 세라믹 공진 캐비티(121 ~ 124)의 결합면 사이에 튜닝 홀을 형성하는 경우, 세라믹이 더욱 파손되기 용이할 뿐만 아니라, 결합면이 분리되어 세라믹 도파관 필터로서 기능하지 못하게 될 수 있다. 이에 본 발명에서는 별도의 메탈 블록(131 ~ 133)을 삽입하고, 메탈 블록(131 ~ 133)에 튜닝 홀을 형성함으로써, 튜닝 볼트(151 ~ 153)가 세라믹 공진 캐비티(121 ~ 124)를 파손하거나, 세라믹 공진 캐비티(121 ~ 124)와 메탈 블록(131 ~ 133)의 결합면을 분리하지 않고 안정적으로 삽입될 수 있도록 한다.In this embodiment, inserting the tuning bolts 151 to 153 into the metal blocks 131 to 133 rather than the ceramic resonant cavities 121 to 124 makes it easier to form tuning holes in the metal blocks 131 to 133 It is because. When a tuning hole is formed in the ceramic resonance cavities 121 to 124, it is difficult to predict a change in resonance performance due to the tuning hole, and there is a problem that damage is likely to occur due to characteristics of the ceramic. In addition, as shown in FIG. 1, when a tuning hole is formed between the coupling surfaces of the ceramic resonant cavities 121 to 124, not only the ceramics are more easily damaged, but the coupling surfaces are separated and cannot function as a ceramic waveguide filter. You can. Accordingly, in the present invention, by inserting separate metal blocks 131 to 133 and forming tuning holes in the metal blocks 131 to 133, the tuning bolts 151 to 153 may break the ceramic resonance cavities 121 to 124, or , The ceramic resonant cavity (121 ~ 124) and the metal block (131 ~ 133) to ensure a stable insertion without separating the coupling surface.
도3 에서는 일예로 세라믹 도파관 필터의 다수의 세라믹 공진 캐비티(121 ~ 124)가 일렬로 배치되고, 다수의 메탈 블록(131 ~ 133)가 다수의 세라믹 공진 캐비티(121 ~ 124) 사이에 배치되는 것으로 설명하였다. 그러나, 다수의 세라믹 공진 캐비티(121 ~ 124)는 경우에 따라서 일렬 배치가 아닌 다양한 형태로 배치될 수 있으며, 다수의 메탈 블록(131 ~ 133)은 다양한 형태로 배치되는 다수의 세라믹 공진 캐비티(121 ~ 124) 사이에 배치 및 결합될 수 있다.In FIG. 3, for example, a plurality of ceramic resonant cavities 121 to 124 of the ceramic waveguide filter are arranged in a line, and a plurality of metal blocks 131 to 133 are arranged between the plurality of ceramic resonant cavities 121 to 124. Explained. However, the plurality of ceramic resonant cavities 121 to 124 may be arranged in various forms rather than in a single line arrangement depending on the case, and the plurality of metal blocks 131 to 133 may be arranged in a variety of forms. ~ 124).
또한 도3 에서는 입출력 인터페이스(111, 112)가 다수의 세라믹 공진 캐비티(121 ~ 124)에서 양단에 배치된 세라믹 공진 캐비티(121, 124)에 삽입되는 것으로 설명하였으나, 입출력 인터페이스(111, 112)가 삽입되는 세라믹 공진 캐비티 또한 다수의 세라믹 공진 캐비티(121 ~ 124)의 배치 구조에 따라 다양하게 가변될 수 있으며, 세라믹 도파관 필터는 모드에 따라 둘 이상의 입출력 인터페이스(111, 112)를 포함할 수도 있다.Also, in FIG. 3, the input / output interfaces 111 and 112 are described as being inserted into the ceramic resonance cavities 121 and 124 disposed at both ends of the plurality of ceramic resonance cavities 121 to 124, but the input / output interfaces 111 and 112 are described. The inserted ceramic resonance cavity may also be variously changed according to the arrangement structure of the plurality of ceramic resonance cavities 121 to 124, and the ceramic waveguide filter may include two or more input / output interfaces 111 and 112 depending on the mode.
도4 및 도5 는 본 발명의 일 실시예에 따른 트리플 모드 세라믹 도파관 필터의 사시도 및 분해도를 나타낸다.4 and 5 show perspective and exploded views of a triple mode ceramic waveguide filter according to an embodiment of the present invention.
도4 및 도5 는 TE
011, TE
101, TM
110 트리플 모드 세라믹 도파관 필터(200)를 나타낸다. TE
011, TE
101, TM
110 트리플 모드 세라믹 도파관 필터는 도3 에서와 같이 직육면체 형태로 형성된 다수의 세라믹 공진 캐비티(121 ~ 124)로 구현될 수도 있으나, 이 경우, 슬롯의 형태가 상이할 뿐, 도3 과 동일하게 메탈 블록(131 ~ 133)을 삽입할 수 있다.4 and 5 show TE 011 , TE 101 , TM 110 triple mode ceramic waveguide filters 200. TE 011 , TE 101 , TM 110 triple-mode ceramic waveguide filters may be implemented with a plurality of ceramic resonant cavities 121 to 124 formed in a rectangular parallelepiped shape as shown in FIG. 3, but in this case, only the slot shape is different. 3, the metal blocks 131 to 133 may be inserted.
그러나 트리플 모드 세라믹 도파관 필터(200)는 도4 및 도5 에 도시된 바와 같이, 다수의 세라믹 공진 캐비티(221, 222)가 다면체 형태로 형성될 수도 있다. 다면체로 형성되는 다수의 세라믹 공진 캐비티(221, 222)로 구현되는 트리플 모드 세라믹 도파관 필터(200)의 구조는 공지된 기술로서 여기서는 상세하게 설명하지 않는다.However, the triple mode ceramic waveguide filter 200 may have a plurality of ceramic resonant cavities 221 and 222 formed in a polyhedron shape, as shown in FIGS. 4 and 5. The structure of the triple mode ceramic waveguide filter 200 implemented with a plurality of ceramic resonant cavities 221 and 222 formed of a polyhedron is a known technique and will not be described in detail here.
다만 세라믹 도파관 필터(200)를 구현하기 위해, 다면체로 형성되는 다수의 세라믹 공진 캐비티(221, 222)의 접합면, 즉 인접한 세라믹 공진 캐비티(221, 222) 사이의 마주보는 면은 도4 및 도5 에 도시된 바와 같이, 결합이 가능하도록 동일한 형태로 형성되어야 한다.However, in order to implement the ceramic waveguide filter 200, the bonding surfaces of the plurality of ceramic resonant cavities 221 and 222 formed of a polyhedron, that is, the opposing surfaces between adjacent ceramic resonant cavities 221 and 222 are shown in FIGS. As shown in 5, it must be formed in the same shape to enable bonding.
그리고 세라믹 공진 캐비티(221, 222) 또한 도3 의 세라믹 공진 캐비티(121 ~ 124)와 마찬가지로 도전체로 도금되며, 인접한 세라믹 공진 캐비티 방향의 면은 커플링을 위해 기설정된 크기 및 형상의 슬롯이 형성된다.In addition, the ceramic resonant cavities 221 and 222 are also plated with a conductor, similar to the ceramic resonant cavities 121 to 124 of FIG. 3, and adjacent ceramic resonant cavity faces are formed with slots of a predetermined size and shape for coupling. .
또한 다수의 세라믹 공진 캐비티(221, 222) 중 양단에 배치되는 세라믹 공진 캐비티(221, 222)에는 입출력 홈이 형성되고, 형성된 입출력 홈을 통해 동축 커넥터 등으로 구현되는 입출력 인터페이스(211, 212)가 삽입된다. 도3 에서는 세라믹 도파관 필터(200)가 2개의 세라믹 공진 캐비티(221, 222)를 구비하므로, 2개의 세라믹 공진 캐비티(221, 222) 각각에 입출력 홈이 형성되어 입출력 인터페이스(211, 212)가 삽입되었다.In addition, input / output grooves are formed in the ceramic resonance cavities 221 and 222 disposed at both ends of the plurality of ceramic resonance cavities 221 and 222, and input / output interfaces 211 and 212 implemented by a coaxial connector or the like are formed through the formed input / output grooves. Is inserted. In FIG. 3, since the ceramic waveguide filter 200 includes two ceramic resonant cavities 221 and 222, input / output grooves are formed in each of the two ceramic resonant cavities 221 and 222, and the input / output interfaces 211 and 212 are inserted. Became.
한편, 적어도 하나의 메탈 블록(230)이 세라믹 공진 캐비티(221, 222) 사이에 배치된다. 도5 에 도시된 바와 같이, 본 발명에서 적어도 하나의 메탈 블록(230)은 세라믹 공진 캐비티(221, 222)와 별도로 제조되어 결합되는 구성요소이다.Meanwhile, at least one metal block 230 is disposed between the ceramic resonant cavities 221 and 222. As shown in Figure 5, at least one metal block 230 in the present invention is a component that is manufactured and coupled separately from the ceramic resonant cavities 221, 222.
세라믹 공진 캐비티(221, 222) 사이에 배치되는 적어도 하나의 메탈 블록(230)은 솔더링 등의 방식으로 양단의 세라믹 공진 캐비티(221, 222)와 결합된다. 그리고 적어도 하나의 메탈 블록(230)에는 도3 의 메탈 블록(131 ~ 133)과 마찬가지로 양단에 결합되는 세라믹 공진 캐비티(221, 222) 사이에서 신호를 커플링하기 위한 슬롯(240)이 형성된다.At least one metal block 230 disposed between the ceramic resonant cavities 221 and 222 is coupled to the ceramic resonant cavities 221 and 222 at both ends in a manner such as soldering. And, at least one metal block 230 is formed with a slot 240 for coupling signals between the ceramic resonant cavities 221 and 222 coupled to both ends as in the metal blocks 131 to 133 of FIG. 3.
또한 적어도 하나의 메탈 블록(230)은 이버네센트 모드 영역이 충분하게 구현될 수 있는 두께(w)를 갖도록 형성되며, 세라믹 공진 캐비티(221, 222)와 열팽창계수(CTE) 차이가 기지정된 기준값(여기서는 일예로 5μm/℃) 이하인 도전체로 구현될 수 있다. 또한 적어도 하나의 메탈 블록(230)은 세라믹 공진 캐비티(221, 222)와 결합되는 면과 대응하는 형태로 구현되고, 세라믹 공진 캐비티(121 ~ 124)의 결합면의 크기와 동일하거나 이하로 형성될 수 있다.In addition, the at least one metal block 230 is formed to have a thickness w capable of sufficiently implementing the Ivernecent mode region, and a reference value in which the difference between the ceramic resonance cavities 221 and 222 and the coefficient of thermal expansion (CTE) is determined. (Here, for example, 5 μm / ° C.) or less. In addition, the at least one metal block 230 is implemented in a shape corresponding to a surface coupled with the ceramic resonant cavities 221 and 222, and is formed to be equal to or less than the size of the coupled surface of the ceramic resonant cavities 121 to 124. You can.
추가적으로 메탈 블록(230)에는 튜닝 홀이 형성되고, 튜닝 홀에는 튜닝 볼트(250)가 삽입될 수 있다.In addition, a tuning hole is formed in the metal block 230, and a tuning bolt 250 may be inserted into the tuning hole.
도3 내지 도5 에 도시된 바와 같이, 본 발명의 세라믹 도파관 필터(200)는 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222)) 사이에 별도로 제조된 적어도 하나의 메탈 블록(131 ~ 133, 230)이 배치되어 결합되고, 적어도 하나의 메탈 블록(131 ~ 133, 230)에 튜닝 볼트(151 ~ 153, 250)가 삽입 되는 구조를 갖는다.As shown in FIGS. 3 to 5, the ceramic waveguide filter 200 of the present invention includes at least one metal block manufactured separately between a plurality of ceramic resonant cavities (121 to 124) and (221, 222) ( 131 ~ 133, 230) is arranged and coupled, has a structure in which the tuning bolts (151 ~ 153, 250) is inserted into at least one metal block (131 ~ 133, 230).
결과적으로 본 실시예에 따른 세라믹 도파관 필터(100, 200)는 도금 처리된 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))를 직접 결합하지 않고, 세라믹 공진 캐비티((121 ~ 124), (221, 222)) 사이에 별도로 제조된 메탈 블록(131 ~ 133, 230)을 삽입하여 결합함으로써, 이버네센트 모드 영역(Evanescent mode region)을 충분하게 구현한다. 이를 통해, 커플링 시에 기생 성분이 발생하지 않도록 하여, 세라믹 도파관 필터의 억압 레벨(rejection level)을 개선할 수 있다. 또한 튜닝 볼트(151 ~ 153, 250)가 메탈 블록(131 ~ 133, 230)에 형성된 튜닝 홀에 삽입되도록 함으로써, 파손 없이 정밀하고 안정적으로 튜닝을 수행할 수 있도록 한다.As a result, the ceramic waveguide filters 100 and 200 according to the present embodiment do not directly combine a plurality of plated ceramic resonant cavities ((121 to 124), (221, 222)), and ceramic resonant cavities ((121 to 124), (221, 222)) by inserting and combining the separately manufactured metal blocks (131 ~ 133, 230), fully implements the Evanescent mode region (Evanescent mode region). Through this, it is possible to prevent parasitic components from occurring during coupling, thereby improving the rejection level of the ceramic waveguide filter. In addition, by allowing the tuning bolts 151 to 153 and 250 to be inserted into the tuning holes formed in the metal blocks 131 to 133 and 230, it is possible to perform the tuning accurately and stably without damage.
도6 은 본 발명의 일 실시예에 따른 세라믹 도파관 필터의 제조 방법을 나타낸다.6 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
도3 내지 도5 를 참조하여, 본 실시예에 따른 세라믹 도파관 필터의 제조 방법을 설명하면, 우선 기지정된 크기 및 형태를 갖는 다수의 세라믹 블록을 제조한다(S11). 여기서 다수의 세라믹 블록은 전달하고자 하는 신호와 모드에 따라 크기 및 형태가 결정되며, 도3 및 도4 에 도시된 바와 같이, 직육면체 또는 다면체의 형태로 제조될 수 있다.Referring to FIGS. 3 to 5, a method of manufacturing a ceramic waveguide filter according to this embodiment will be described first, to manufacture a plurality of ceramic blocks having a predetermined size and shape (S11). Here, the size and shape of the plurality of ceramic blocks are determined according to signals and modes to be transmitted, and as shown in FIGS. 3 and 4, may be manufactured in the form of a cuboid or polyhedron.
그리고 제조된 다수의 세라믹 블록을 도전체로 도금하여, 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))를 획득한다(S12). 이때 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))는 세라믹 도파관 필터(100, 200)로 구현될 때 배치 위치가 미리 결정되며, 일면 또는 양면에 도금되지 않는 영역인 슬롯이 형성된다. 슬롯의 크기 및 형태는 커플링하고자 하는 신호에 따라 다양하게 가변될 수 있으나, 인접하여 배치되는 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))의 서로 마주보는 면에는 동일한 크기 및 형태의 슬롯이 형성된다.Then, a plurality of manufactured ceramic blocks are plated with a conductor to obtain a plurality of ceramic resonant cavities (121 to 124) (221, 222) (S12). At this time, when a plurality of ceramic resonant cavities (121 to 124) and (221, 222) are implemented as ceramic waveguide filters 100 and 200, the placement positions are predetermined, and slots that are areas that are not plated on one side or both sides have slots. Is formed. The size and shape of the slot may be variously varied depending on the signal to be coupled, but the same size is formed on the surfaces facing each other of the plurality of ceramic resonant cavities (121 to 124) and (221, 222) adjacent to each other. And a slot in the form.
한편, 본 실시예에 따른 세라믹 도파관 필터의 제조 방법은 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))와 별도로 적어도 하나의 메탈 블록(131 ~ 133, 230)을 제조한다(S13).On the other hand, the manufacturing method of the ceramic waveguide filter according to the present embodiment manufactures at least one metal block (131 to 133, 230) separately from the plurality of ceramic resonant cavities ((121 to 124), (221, 222)) ( S13).
적어도 하나의 메탈 블록(131 ~ 133, 230) 각각은 세라믹 도파관 필터(100, 200)에서 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222)) 사이에 배치되며, 배치 위치가 미리 지정된다. 적어도 하나의 메탈 블록(131 ~ 133, 230) 각각은 배치 위치에 따라 인접하여 배치되는 세라믹 공진 캐비티((121 ~ 124), (221, 222))의 대응하는 면에 대응하는 형태와 크기를 갖고 형성된다.Each of the at least one metal block (131 to 133, 230) is disposed between the plurality of ceramic resonant cavities (121 to 124) and (221, 222) in the ceramic waveguide filter (100, 200), and the placement position is preset. Is specified. Each of the at least one metal block (131 ~ 133, 230) has a shape and size corresponding to the corresponding surface of the ceramic resonant cavities (121 ~ 124), (221, 222) disposed adjacent to each other according to the placement position Is formed.
또한 인접하여 배치되는 세라믹 공진 캐비티((121 ~ 124), (221, 222))의 슬롯과 동일한 형태 및 크기의 슬롯(141 ~ 143, 240)을 갖도록 형성되며, 외곽 일면에 슬롯(141 ~ 143, 240)까지 관통하는 튜닝 홀이 형성된다.In addition, it is formed to have slots (141 to 143, 240) of the same shape and size as the slots of the ceramic resonant cavities (121 to 124) and (221 and 222) disposed adjacent to each other, and the slots (141 to 143) , 240) is formed through the tuning hole.
다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))와 적어도 하나의 메탈 블록(131 ~ 133, 230)이 각각 제조되면, 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222)) 사이에 대응하는 적어도 하나의 메탈 블록(131 ~ 133, 230)을 배치하여 결합한다(S14). 이때 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))와 적어도 하나의 메탈 블록(131 ~ 133, 230)은 솔더링 등의 방식으로 결합될 수 있다.If a plurality of ceramic resonant cavities ((121 to 124), (221, 222)) and at least one metal block (131 to 133, 230) are respectively manufactured, a plurality of ceramic resonant cavities (121 to 124), (221 , 222)) by arranging at least one metal block 131 to 133 and 230 corresponding thereto (S14). At this time, the plurality of ceramic resonant cavities (121 to 124), (221, 222) and the at least one metal block 131 to 133, 230 may be combined in a manner such as soldering.
다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222))와 적어도 하나의 메탈 블록(131 ~ 133, 230)이 결합되면, 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222)) 중 기지정된 세라믹 공진 캐비티에 입출력 인터페이스를 삽입한다(S15).When a plurality of ceramic resonant cavities (121 to 124), (221, 222) and at least one metal block 131 to 133, 230 are combined, a plurality of ceramic resonant cavities (121 to 124), (221, 222)), the input / output interface is inserted into the predetermined ceramic resonance cavity (S15).
그리고 적어도 하나의 메탈 블록(131 ~ 133, 230) 각각에 형성된 튜닝 홀에 튜닝 볼트(151 ~ 153, 250)를 삽입한다(S16). 이후, 삽입된 튜닝 볼트(151 ~ 153, 250)의 삽입 깊이를 조절함으로써, 다수의 세라믹 공진 캐비티((121 ~ 124), (221, 222)) 사이의 커플링 값을 미세 조절한다(S17).Then, the tuning bolts 151 to 153 and 250 are inserted into the tuning holes formed in each of the at least one metal block 131 to 133 and 230 (S16). Then, by adjusting the insertion depth of the inserted tuning bolt (151 ~ 153, 250), fine adjustment of the coupling value between the plurality of ceramic resonant cavities (121 ~ 124), (221, 222) (S17) .
도7 은 본 발명의 실시예에 따른 세라믹 도파관 필터의 특성을 시뮬레이션한 결과를 나타낸다.7 shows a result of simulating characteristics of a ceramic waveguide filter according to an embodiment of the present invention.
도7 은 도2 및 도4 의 트리플 모드 세라믹 도파관 필터의 주파수 응답 특성을 시뮬레이션한 결과로서, 도2 및 도4 의 세라믹 도파관 필터는 도7 에 도시된 바와 같이, 밴드 패스 필터(band-pass filter: BPF)로 기능한다.7 is a result of simulating the frequency response characteristics of the triple mode ceramic waveguide filters of FIGS. 2 and 4, and the ceramic waveguide filters of FIGS. 2 and 4 are band-pass filters as shown in FIG. : BPF).
도7 을 살펴보면, 통과 대역인 3.3 ~ 3.67GHz 대역에서는 도2 에 도시된 기존의 세라믹 도파관 필터와 도4 의 세라믹 도파관 필터(200) 사이의 성능차이가 크게 나타나지 않는다. 그러나, 밴드 패스 필터의 통과 대역 양측단의 주파수 대역에서 도2 의 세라믹 도파관 필터는 세라믹 공진 캐비티(221, 222) 사이의 도전체의 두께가 얇아서 기생 성분이 발생하게 되고, 이 기생 성분으로 인해, 인접한 세라믹 공진 캐비티로 전달되지 않아야 하는 신호가 전달됨으로써, 신호의 억압 효과가 나쁘게 나타난다. 반면, 도4 의 세라믹 도파관 필터(200)의 경우, 메탈 블록(230)이 이버네센트 모드 영역을 충분하게 확보함에 따라 기생 성분이 발생하지 않아, 통과 대역 이외의 신호 성분에 대한 억압 성능을 향상시킨다. 도7 에서는 도4 의 세라믹 도파관 필터(200)가 도2 의 세라믹 도파관 필터에 비해 10dB 이상 억압 레벨이 개선되었음을 확인할 수 있다.Referring to FIG. 7, in the pass band of 3.3 to 3.67 GHz, a performance difference between the conventional ceramic waveguide filter shown in FIG. 2 and the ceramic waveguide filter 200 of FIG. 4 does not appear significantly. However, in the frequency bands at both ends of the pass band of the band pass filter, the ceramic waveguide filter of FIG. 2 has a thin conductor thickness between the ceramic resonant cavities 221 and 222, so that parasitic components are generated. As a signal that should not be transmitted to the adjacent ceramic resonance cavity is transmitted, the suppression effect of the signal appears bad. On the other hand, in the case of the ceramic waveguide filter 200 of FIG. 4, parasitic components are not generated as the metal block 230 sufficiently secures the Ivernecent mode region, thereby improving suppression performance for signal components other than the pass band. Order. In FIG. 7, it can be seen that the ceramic waveguide filter 200 of FIG. 4 has improved the suppression level by 10 dB or more compared to the ceramic waveguide filter of FIG. 2.
본 발명에 따른 방법은 컴퓨터에서 실행 시키기 위한 매체에 저장된 컴퓨터 프로그램으로 구현될 수 있다. 여기서 컴퓨터 판독가능 매체는 컴퓨터에 의해 액세스 될 수 있는 임의의 가용 매체일 수 있고, 또한 컴퓨터 저장 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함하며, ROM(판독 전용 메모리), RAM(랜덤 액세스 메모리), CD(컴팩트 디스크)-ROM, DVD(디지털 비디오 디스크)-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등을 포함할 수 있다.The method according to the present invention can be implemented as a computer program stored in a medium for execution on a computer. Computer readable media herein can be any available media that can be accessed by a computer, and can also include any computer storage media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data, and ROM (readable) Dedicated memory), RAM (random access memory), CD (compact disk) -ROM, DVD (digital video disk) -ROM, magnetic tape, floppy disk, optical data storage, and the like.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, these are merely exemplary, and those skilled in the art will understand that various modifications and other equivalent embodiments are possible therefrom.
따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.Therefore, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims.
Claims (13)
- 필터링하고자 하는 신호에 대응하는 크기 및 형태를 갖는 세라믹 블록에 기지정된 슬롯 영역을 제외한 외부면이 도금 처리된 다수의 세라믹 공진 캐비티; A plurality of ceramic resonant cavities, the outer surface of which is plated, excluding slot regions defined in a ceramic block having a size and shape corresponding to a signal to be filtered;기지정된 기준 두께 이상의 두께를 갖고, 슬롯이 형성된 도전체로 구현되어 상기 다수의 세라믹 공진 캐비티 사이에 배치 및 결합되는 적어도 하나의 메탈 블록; 및 At least one metal block having a thickness equal to or greater than a predetermined reference thickness and implemented as a slot-formed conductor to be disposed and coupled between the plurality of ceramic resonant cavities; And상기 다수의 세라믹 공진 캐비티 중 적어도 2개 이상의 세라믹 공진 캐비티에 삽입되어 신호를 입출력하는 입출력 인터페이스; 를 포함하는 세라믹 도파관 필터.An input / output interface inserted into at least two or more ceramic resonance cavities of the plurality of ceramic resonance cavities to input and output signals; Ceramic waveguide filter comprising a.
- 제1 항에 있어서, 상기 다수의 세라믹 공진 캐비티는 The method of claim 1, wherein the plurality of ceramic resonant cavities상기 다수의 세라믹 공진 캐비티 중 미리 결정된 배치 위치에 따라 서로 인접하여 배치되는 세라믹 공진 캐비티의 마주보는 면에 동일한 슬롯 영역이 형성되고, Among the plurality of ceramic resonant cavities, the same slot region is formed on opposite surfaces of the ceramic resonant cavities arranged adjacent to each other according to a predetermined placement position,상기 적어도 하나의 메탈 블록 각각은 Each of the at least one metal block양단에 배치되는 세라믹 공진 캐비티에 형성된 상기 슬롯 영역에 대응하는 형태로 상기 슬롯이 형성되는 세라믹 도파관 필터.A ceramic waveguide filter in which the slot is formed in a shape corresponding to the slot region formed in the ceramic resonance cavity disposed at both ends.
- 제1 항에 있어서, 상기 적어도 하나의 메탈 블록은 The method of claim 1, wherein the at least one metal block상기 세라믹 공진 캐비티의 열 팽창 계수와 열 팽창 계수 차가 기지정된 기준값 이하인 도전체로 구현되는 세라믹 도파관 필터.A ceramic waveguide filter made of a conductor having a difference between a coefficient of thermal expansion and a coefficient of thermal expansion of the ceramic resonant cavity below a predetermined reference value.
- 제1 항에 있어서, 상기 적어도 하나의 메탈 블록은 The method of claim 1, wherein the at least one metal block외부 일면으로부터 내부 슬롯까지 관통하는 튜닝 홀이 형성되고, Tuning holes penetrating from the outer surface to the inner slot are formed,상기 튜닝 홀에 삽입되는 적어도 하나의 튜닝 볼트를 더 포함하는 세라믹 도파관 필터.A ceramic waveguide filter further comprising at least one tuning bolt inserted into the tuning hole.
- 제1 항에 있어서, 상기 적어도 하나의 메탈 블록은 The method of claim 1, wherein the at least one metal block양단에 배치되는 세라믹 공진 캐비티의 도금 면에 솔더링 기법으로 결합되는 세라믹 도파관 필터.A ceramic waveguide filter coupled to the plated surface of a ceramic resonant cavity disposed at both ends by a soldering technique.
- 제1 항에 있어서, 상기 다수의 세라믹 공진 캐비티는 The method of claim 1, wherein the plurality of ceramic resonant cavities직육면체로 구현되는 세라믹 도파관 필터.Ceramic waveguide filter realized with a cuboid.
- 제1 항에 있어서, 상기 다수의 세라믹 공진 캐비티는 The method of claim 1, wherein the plurality of ceramic resonant cavitiesTE 011, TE 101, TM 110 트리플 모드로 신호를 전달하기 위한 다면체로 구현된는 세라믹 도파관 필터.TE 011 , TE 101 , TM 110 A ceramic waveguide filter implemented in polyhedron for signal transmission in triple mode.
- 필터링하고자 하는 신호에 대응하는 크기 및 형태를 갖는 다수의 세라믹 블록을 형성하는 단계; Forming a plurality of ceramic blocks having a size and shape corresponding to a signal to be filtered;상기 다수의 세라믹 블록의 기지정된 슬롯 영역을 제외한 외부면을 도금 처리하여 다수의 세라믹 공진 캐비티를 제조하는 단계; Manufacturing a plurality of ceramic resonant cavities by plating an outer surface of the plurality of ceramic blocks except for a predetermined slot region;기지정된 기준 두께 이상의 두께를 갖고, 슬롯이 형성된 도전체로 구현되는 적어도 하나의 메탈 블록을 제조하는 단계; 및 Manufacturing at least one metal block having a thickness equal to or greater than a predetermined reference thickness and formed of a slot-formed conductor; And상기 다수의 세라믹 공진 캐비티 사이에 상기 적어도 하나의 메탈 블록 중 대응하는 메탈 블록을 배치하고 결합하는 단계; 를 포함하는 세라믹 도파관 필터의 제조 방법.Disposing and combining corresponding metal blocks among the at least one metal block between the plurality of ceramic resonant cavities; Method of manufacturing a ceramic waveguide filter comprising a.
- 제8 항에 있어서, 상기 세라믹 공진 캐비티를 제조하는 단계는 The method of claim 8, wherein the step of manufacturing the ceramic cavity is상기 다수의 세라믹 공진 캐비티 중 미리 결정된 배치 위치에 따라 서로 인접하여 배치되는 세라믹 블록의 마주보는 면에 동일한 슬롯 영역이 형성되도록 외부면을 도금하고, The outer surface is plated so that the same slot area is formed on opposite surfaces of the ceramic blocks arranged adjacent to each other according to a predetermined placement position among the plurality of ceramic resonant cavities,상기 메탈 블록을 제조하는 단계는 The step of manufacturing the metal block양단에 배치되는 세라믹 공진 캐비티에 형성된 상기 슬롯 영역에 대응하는 형태로 상기 슬롯을 형성하는 세라믹 도파관 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter that forms the slot in a shape corresponding to the slot region formed in a ceramic resonance cavity disposed at both ends.
- 제8 항에 있어서, 상기 적어도 하나의 메탈 블록은 The method of claim 8, wherein the at least one metal block상기 세라믹 공진 캐비티의 열 팽창 계수와 열 팽창 계수 차가 기지정된 기준값 이하인 도전체로 제조되는 세라믹 도파관 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter made of a conductor having a difference between a coefficient of thermal expansion and a coefficient of thermal expansion of the ceramic resonant cavity below a predetermined reference value.
- 제8 항에 있어서, 상기 세라믹 도파관 필터의 제조 방법은 The method of claim 8, wherein the method of manufacturing the ceramic waveguide filter is상기 적어도 하나의 메탈 블록 각각의 외부 일면으로부터 내부 슬롯까지 관통하는 튜닝 홀을 형성하는 단계; 및 Forming a tuning hole penetrating from the outer one surface of each of the at least one metal block to the inner slot; And상기 튜닝 홀에 각각에 튜닝 볼트를 삽입하는 단계; 더 포함하는 세라믹 도파관 필터의 제조 방법.Inserting tuning bolts into each of the tuning holes; Method of manufacturing a ceramic waveguide filter further comprising.
- 제8 항에 있어서, 상기 메탈 블록을 배치하고 결합하는 단계는 The method of claim 8, wherein the step of arranging and combining the metal blocks상기 적어도 하나의 메탈 블록을 양단에 배치되는 세라믹 공진 캐비티의 도금 면에 솔더링 기법으로 결합하는 세라믹 도파관 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter that combines the at least one metal block with a soldering technique on a plated surface of a ceramic resonant cavity disposed at both ends.
- 제8 항에 있어서, 상기 세라믹 도파관 필터의 제조 방법은 The method of claim 8, wherein the method of manufacturing the ceramic waveguide filter is상기 다수의 세라믹 공진 캐비티 중 기지정된 적어도 2개 이상의 세라믹 공진 캐비티에 신호를 입출력하는 입출력 인터페이스 삽입하는 단계; 를 더 포함하는 세라믹 도파관 필터의 제조 방법.Inserting an input / output interface for inputting and outputting signals to at least two or more ceramic resonant cavities defined among the plurality of ceramic resonant cavities; Method of manufacturing a ceramic waveguide filter further comprising.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180109167A KR102144811B1 (en) | 2018-09-12 | 2018-09-12 | Ceramic waveguide filter |
KR10-2018-0109167 | 2018-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054964A1 true WO2020054964A1 (en) | 2020-03-19 |
Family
ID=69777124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/009010 WO2020054964A1 (en) | 2018-09-12 | 2019-07-22 | Ceramic waveguide filter |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102144811B1 (en) |
WO (1) | WO2020054964A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114374069A (en) * | 2021-12-31 | 2022-04-19 | 天津大学 | Frequency hopping filter using dielectric coaxial resonator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002204103A (en) * | 2000-10-25 | 2002-07-19 | Nagano Japan Radio Co | Dielectric filter |
JP3473124B2 (en) * | 1994-09-19 | 2003-12-02 | 株式会社村田製作所 | Dielectric resonator device |
KR20110092886A (en) * | 2010-02-10 | 2011-08-18 | 서강대학교산학협력단 | Assembly of dielectric resonator with high sensitivity using triple mode |
KR20170033778A (en) * | 2015-09-17 | 2017-03-27 | 삼성전자주식회사 | Waveguide filter including coupling window for generating negative coupling |
EP3364496A1 (en) * | 2015-11-20 | 2018-08-22 | Kyocera Corporation | Dielectric filter unit and communication device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101884984B1 (en) | 2016-07-29 | 2018-08-02 | 쌍신전자통신주식회사 | Ceramic waveguide resonator filter |
-
2018
- 2018-09-12 KR KR1020180109167A patent/KR102144811B1/en active IP Right Grant
-
2019
- 2019-07-22 WO PCT/KR2019/009010 patent/WO2020054964A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3473124B2 (en) * | 1994-09-19 | 2003-12-02 | 株式会社村田製作所 | Dielectric resonator device |
JP2002204103A (en) * | 2000-10-25 | 2002-07-19 | Nagano Japan Radio Co | Dielectric filter |
KR20110092886A (en) * | 2010-02-10 | 2011-08-18 | 서강대학교산학협력단 | Assembly of dielectric resonator with high sensitivity using triple mode |
KR20170033778A (en) * | 2015-09-17 | 2017-03-27 | 삼성전자주식회사 | Waveguide filter including coupling window for generating negative coupling |
EP3364496A1 (en) * | 2015-11-20 | 2018-08-22 | Kyocera Corporation | Dielectric filter unit and communication device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114374069A (en) * | 2021-12-31 | 2022-04-19 | 天津大学 | Frequency hopping filter using dielectric coaxial resonator |
CN114374069B (en) * | 2021-12-31 | 2024-10-01 | 天津大学 | Frequency hopping filter using dielectric coaxial resonator |
Also Published As
Publication number | Publication date |
---|---|
KR20200030377A (en) | 2020-03-20 |
KR102144811B1 (en) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017095035A1 (en) | Cavity type wireless frequency filter having cross-coupling notch structure | |
US20140097913A1 (en) | Multi-mode filter | |
WO2010071304A2 (en) | Power divider using a coupling | |
WO2020054964A1 (en) | Ceramic waveguide filter | |
US4902991A (en) | Radio frequency signal combining/sorting device | |
EP1001479A1 (en) | Dielectric filter, duplexer, and communication apparatus | |
WO2021060633A1 (en) | Dielectric filter | |
WO2010016745A2 (en) | Tunable filter for expanding the tuning range | |
Rosenberg | Multiplexing and double band filtering with common-multimode cavities | |
CN1178330C (en) | Medium electric filter, compound medium electric filter, one-two-way duplexer and communication device | |
CA2012003C (en) | A te___ mode dielectric resonator circuit | |
WO2016072647A1 (en) | Duplexer | |
WO2016089015A1 (en) | Filter package | |
WO2021034177A1 (en) | Low pass filter having transmission zero | |
WO2021256611A1 (en) | Waveguide filter | |
WO2021177614A1 (en) | Wave guide filter | |
WO2023038265A1 (en) | Small ceramic waveguide filter | |
WO2020111396A1 (en) | Ceramic waveguide filter and method for producing same | |
WO2020111397A1 (en) | Ceramic waveguide filter and method for manufacturing same | |
WO2022045755A1 (en) | Rf filter assembly for antenna | |
KR100349082B1 (en) | Dielectric filter, transmission-reception sharing unit, and communication device | |
EP0707352B1 (en) | Dielectric filter | |
WO2022092792A1 (en) | Ceramic waveguide filter for antenna | |
WO2016072643A2 (en) | Filter | |
WO2022005245A1 (en) | Printed circuit board assembly with soldering structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19859737 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19859737 Country of ref document: EP Kind code of ref document: A1 |