WO2021118127A1 - Ceramic waveguide filter and manufacturing method therefor - Google Patents

Ceramic waveguide filter and manufacturing method therefor Download PDF

Info

Publication number
WO2021118127A1
WO2021118127A1 PCT/KR2020/017073 KR2020017073W WO2021118127A1 WO 2021118127 A1 WO2021118127 A1 WO 2021118127A1 KR 2020017073 W KR2020017073 W KR 2020017073W WO 2021118127 A1 WO2021118127 A1 WO 2021118127A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
waveguide filter
coupling hole
slot
center
Prior art date
Application number
PCT/KR2020/017073
Other languages
French (fr)
Korean (ko)
Inventor
천동완
유영진
오태산
Original Assignee
주식회사 에이스테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이스테크놀로지 filed Critical 주식회사 에이스테크놀로지
Priority to CN202080082007.6A priority Critical patent/CN114762183A/en
Publication of WO2021118127A1 publication Critical patent/WO2021118127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices

Definitions

  • the present invention relates to a ceramic waveguide filter, and more particularly, to a low-loss, high-suppression ceramic waveguide filter.
  • the system bandwidth must also be increased, and it is necessary to improve the reception sensitivity and minimize the interference caused by the carrier of other communication systems.
  • a coaxial resonant cavity manufactured using a metal material has advantages in terms of loss, size, and price compared to other resonant cavities such as dielectric resonant cavities, so it is mainly used to implement filters in mobile communication systems.
  • the ceramic waveguide filter is a filter that fills the cavity with a ceramic material having low loss and high dielectric constant. Compared to the conventional coaxial resonant cavity filter, the ceramic waveguide filter can significantly reduce the size and provide excellent loss characteristics.
  • a conventional conventional ceramic waveguide filter requires a process of independently manufacturing each ceramic cavity, forming a barrier rib, and then combining each cavity.
  • the cavities are joined through soldering or the like.
  • an integrated ceramic waveguide including a plurality of resonant cavities defined by a plurality of through partition walls formed to penetrate between one surface and the other surface of a single ceramic block and to divide the partitions of the ceramic block according to a predetermined pattern A filter was proposed.
  • the plurality of through barrier ribs function as a cavity wall separating the plurality of resonant cavities, and the space between the plurality of through barrier ribs formed to be spaced apart from each other among the plurality of through barrier ribs forms a coupling surface between the plurality of resonant cavities. It can function as a coupling window.
  • a resonance groove may be formed on one surface or the other surface of the ceramic block in each of the plurality of resonance cavities.
  • Each of the plurality of resonant grooves is formed in the center where the electric field is concentrated in the corresponding resonant cavity region to increase the capacitive component of each of the plurality of resonant cavities, thereby causing the effect of lowering the resonant frequency. Therefore, it is possible to reduce the size of each resonant cavity so that the ceramic waveguide filter can be miniaturized.
  • an inductive coupling in which a magnetic field (H-field) predominantly acts may be performed between the resonant cavities formed adjacent to each other.
  • an electric field (E-field) transverses on a coupling window surface between a plurality of through partition walls formed to be spaced apart, capacitive coupling is not easily achieved.
  • a coupling groove formed deeper than the resonance groove is formed on one or the other surface of the ceramic block so that capacitive coupling in which an E-field predominantly acts is made between the resonant cavities formed adjacent to each other. more can be formed.
  • the coupling groove causing the capacitive coupling is formed deeper than the resonant groove, the thickness of the region where the coupling groove is formed in the ceramic block is very thin, which may cause damage to the region during firing or handling. there is a risk that
  • a spurious mode due to resonance of the coupling groove is formed in a frequency band lower than the pass band, there is a limit in that it is difficult to satisfy a rejection level in the low band to a required standard.
  • An object of the present invention is to provide a ceramic waveguide filter having a low risk of damage to a ceramic block by inducing a capacitive coupling by forming a coupling hole, and a method for manufacturing the same.
  • Another object of the present invention is to provide a ceramic waveguide filter capable of implementing capacitive coupling capable of suppressing a low-band spurious mode, and a method for manufacturing the same.
  • a ceramic waveguide filter according to an embodiment of the present invention for achieving the above object is defined by a plurality of through barrier ribs formed through the ceramic block to distinguish the partitions of the ceramic block according to a predetermined pattern in a single ceramic block a plurality of resonant cavities; and at least one slot formed through the ceramic block between at least two mutually adjacent resonant cavities among the plurality of resonant cavities, and having a metal layer formed on the inner surface but not formed with a metal layer in a predetermined area. of the coupling hole.
  • Each of the at least one coupling hole may be formed in a conical shape with a diameter gradually increasing in a direction from one surface of the ceramic block to the other.
  • Each of the at least one coupling hole may be formed as an upper and a lower structure in which diameters gradually increase from a center to one and the other surface directions of the ceramic block.
  • Each of the at least one coupling hole is formed in a cylindrical shape having a uniform hole diameter in the center, and has a uniform hole diameter larger than the center in at least one direction of one surface or the other surface of the ceramic block and is formed in a cylindrical shape. It may have an upper or lower structure.
  • the at least one slot may be formed at the center or on each of the upper and lower structures or on an interface between the center and the upper and lower structures.
  • the thickness of the at least one slot is determined according to the coupling level of the capacitive coupling required between the resonant cavities adjacent to each other, and the thickness of the at least one slot is determined within the coupling hole according to the spurious mode frequency band required for the ceramic waveguide filter. can be formed.
  • the ceramic waveguide filter may include: a plurality of resonance grooves formed in a section of the plurality of resonance cavities separated by the through partition wall; and input/output interfaces formed in two resonant cavities for inputting and outputting signals among the plurality of resonant cavities, wherein the metal layer includes an outer portion of the ceramic block, an inner surface of each of the plurality of through-walls, and the plurality of resonances It may also be formed on the inner surface of each of the grooves.
  • a method of manufacturing a ceramic waveguide filter according to another embodiment of the present invention includes a plurality of through partition walls dividing partitions according to a predetermined pattern to define a plurality of resonant cavities and the plurality of resonant cavities. manufacturing a ceramic block in which at least one coupling hole penetrates between at least two mutually adjacent resonant cavities; and forming at least one slot by forming a metal layer on an inner surface of each of the at least one coupling hole except for a predetermined area.
  • a coupling hole, not a coupling groove, between a plurality of through-walls formed in a single ceramic block and a plurality of resonance cavities defined by a plurality of resonance grooves , and a slot is formed in the metal layer formed inside the coupling hole to perform capacitive coupling. Therefore, the risk of damage to the ceramic block is small, and the low-band spurious mode can be suppressed to realize a free capacitive coupling value.
  • FIG. 1 is a perspective view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention.
  • FIG. 2 shows an enlarged view of the coupling hole of FIG. 1 .
  • FIG. 3 is a cross-sectional view of the ceramic waveguide filter of FIG. 1 .
  • FIG. 4 is a cross-sectional view of a ceramic waveguide filter according to another embodiment of the present invention.
  • 5 to 9 are cross-sectional views of a ceramic waveguide filter according to another embodiment of the present invention.
  • FIG. 10 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of the coupling hole of FIG. 1
  • FIG. 3 is a cross-sectional view of the ceramic waveguide filter of FIG. .
  • a plurality of resonant cavities defined by a plurality of through partition walls formed in a predetermined pattern penetrating between one surface and the other surface of the single ceramic block 100 . It is implemented as an integral part including.
  • a resonance groove may be formed at a predetermined position of a corresponding resonance cavity among a plurality of resonance cavities on one surface or the other surface of the single ceramic block 100 .
  • FIG. 1 illustrates a case in which six resonance cavities 111 to 116 are formed by two through partition walls 121 and 122 and six resonance grooves 131 to 136 formed in a single ceramic block 100 as an example.
  • the two through partition walls 121 and 122 are formed to pass through between one surface and the other surface of the ceramic block 100 according to a predetermined pattern to divide the ceramic block 100 into a plurality of resonant cavities 111 to 116.
  • define. 1 illustrates a case in which two through partition walls 121 and 122 are formed as an example.
  • the first through barrier rib 121 of the two through barrier ribs 121 and 122 is formed in a T-shaped pattern to partition the first and sixth resonant cavities 111 and 116 and the second and fifth resonant walls in the ceramic block 100 .
  • the cavities 112 and 115 are separated from each other, and the first and sixth resonant cavities 111 and 116 are separated from each other.
  • the second through barrier rib 122 is formed in a straight pattern to separate the second and fifth resonant cavities 112 and 115 and the third and fourth resonant cavities 113 and 114 in the ceramic block 100 . .
  • the two through partition walls 121 and 122 are formed in a T-shaped pattern and a straight line pattern, respectively, but the present embodiment is not limited thereto.
  • the plurality of through barrier ribs in the present embodiment may be formed in various shapes that can easily divide the partitions of the plurality of resonant cavities.
  • the through barrier ribs may be formed in a Y-shape or a branch pattern such as a +-shape, or may be formed in a plurality of straight lines spaced apart from each other.
  • the first through barrier rib 121 may be formed in a +-shaped pattern instead of a T-shaped pattern, and the T-shaped or +-shaped pattern may be formed by dividing two or three straight line patterns spaced apart from each other.
  • the second through partition wall 122 may also be formed by being divided into two straight line patterns spaced apart from each other, or may be formed in a T-shaped pattern further extending in the direction of the coupling hole 140 .
  • at least one of the plurality of through partition walls 121 and 122 may be formed up to the side boundary of the ceramic block 100 .
  • the through barrier ribs are formed to be spaced apart from each other or the through barrier ribs are not formed up to the lateral boundary of the ceramic block 100 , coupling may be made between resonant cavities adjacent to each other that are not completely separated by the through barrier ribs.
  • the coupling between the third resonant cavity 113 and the fourth resonant cavity 113 and 114 and the cross coupling between the second resonant cavity 112 and the fifth resonant cavity 115 are easily performed.
  • the through barrier ribs may be formed.
  • resonance grooves 131 to corresponding to the respective regions of the plurality of resonance cavities 111 to 116 on one surface or the other surface of the ceramic block 100 . 136) is formed.
  • the resonance grooves 131 to 136 are illustrated as being formed as circular grooves, but the shape of the resonance grooves 131 to 136 is not limited.
  • a metal layer is also formed on the inner surface of the resonance grooves 131 to 136 .
  • the resonance grooves 131 to 136 are formed in the center where the electric field E-field is concentrated in each region of the plurality of resonance cavities 111 to 116, and the capacitive component of each of the plurality of resonance cavities 111 to 116 to increase
  • the increase in the capacitive component causes an effect of lowering the resonance frequencies of the plurality of resonant cavities 111 to 116, thereby reducing the size of the ceramic waveguide filter compared to the case in which the resonance grooves 131 to 136 are not formed. can do.
  • input/output interfaces 151 and 152 are formed in the two resonance cavities 111 and 116 of the initial stage and the last stage according to a specified coupling order among the plurality of resonance cavities 111 to 116 of the ceramic waveguide filter.
  • input/output interface ports for inputting and outputting signals to and from the ceramic waveguide filter may be inserted into the formed input/output interfaces 151 and 152 .
  • the input/output interfaces 151 and 152 may be formed in a groove shape as shown in FIG. 1 , and here, as an example, the input/output interfaces 151 and 152 are two resonant cavities formed on one surface of the ceramic block 100, respectively. 111 and 116 are shown to be formed in the resonance grooves 131 to 136 on the other surface of the position corresponding to the position. In this case, the resonance grooves 131 to 136 may be easily coupled to the input/output interface ports inserted into the input/output interfaces 151 and 152 .
  • the input/output interfaces 151 and 152 may be formed in the form of holes passing through one surface and the other surface of the ceramic block 100 at positions separate from the resonance grooves 131 to 136 .
  • the input/output interfaces 151 and 152 are illustrated as being formed in the first resonant cavity 111 and the sixth resonant cavity 116, and the first resonant cavity 111 is inserted into the input/output interface 151.
  • a signal is received from the input interface port, and coupling is made between the first resonant cavity 111 and the second resonant cavity 112 .
  • coupling is performed in the order of the third to sixth resonant cavities 113 to 116 , and the sixth resonant cavity 116 outputs a signal to an output interface port inserted into the input/output interface 152 .
  • Each of the plurality of resonant cavities 111 to 116 may resonate in a specified frequency band according to the size and shape defined by the plurality of through partition walls 121 and 122 and the resonance grooves 131 to 136 . Therefore, in the ceramic waveguide filter of FIG. 1, a plurality of resonant cavities 111 to 116 defined by a plurality of through partition walls 121 and 122 multi-stage filters the signal transmitted through the input interface port and output to the output interface port.
  • the first resonant cavity 111 is adjacent to the second resonant cavity 112 and the sixth resonant cavity 213 , and the first through partition 121 is formed by the first resonant cavity 111 .
  • the first resonant cavity 111 is coupled to the second resonant cavity 112 , and with this, the sixth resonant cavity (116) and cross-coupling is made.
  • the second resonant cavity 112 is formed between the third resonant cavity 113 and the third resonant cavity 113 .
  • cross-coupling is made with the fifth resonant cavity 115 .
  • coupling is performed in the third resonant cavity 113 and the fourth resonant cavity 114 .
  • a coupling hole 140 penetrating from one surface of the ceramic block 100 to the other surface is formed between the third resonant cavity 113 and the fourth resonant cavity 114 .
  • the coupling hole 140 is formed between the third resonant cavity 113 and the fourth resonant cavity 114 such that a capacitive coupling in which an E-field predominantly acts is performed.
  • a coupling groove that is deeper than the resonance grooves 131 to 136 is formed in the prior art to allow capacitive coupling between the resonance cavities.
  • the coupling groove is formed, the ceramic waveguide filter may be damaged. There was a problem with this rising. Accordingly, in the present embodiment, instead of the coupling groove, a coupling hole 140 passing through the other surface is formed from one surface of the ceramic block 100 to prevent the risk of damage to the ceramic waveguide filter.
  • capacitive coupling is not performed only by forming a hole passing through the ceramic block 100 . Accordingly, as shown in FIG. 3 , the metal layer 160 is formed on the inner surface of the coupling hole 140 , but the metal layer 160 formed on the inner surface of the coupling hole 140 is formed on the inner surface of the coupling hole 140 , except for a predetermined slot area. By being formed, a capacitive coupling is achieved.
  • a metal layer 160 is formed on the outer surface of the ceramic block 100 and on the inner surface of each of the plurality of through partition walls 121 and 122 and the plurality of resonance grooves 131 to 136 .
  • the metal layer 160 may be formed by applying a metallization process such as plating, deposition, or sputtering.
  • a metallization process such as plating, deposition, or sputtering.
  • silver (Ag) which has excellent electrical conductivity among conductive materials, is used, but conductive materials other than silver may be used to improve properties such as corrosion resistance.
  • the tuning may be performed by adjusting the thickness of the metal layer 160 formed on the inner surface of the plurality of through partition walls 121 and 122 by grinding or the like.
  • a metal layer is also formed on the inner surface of the coupling hole 140 .
  • a metal layer is not formed in a portion of the inner surface of the coupling hole 140 corresponding to a predetermined ring-shaped slot 143 .
  • the slot 143 in which the metal layer is not formed allows capacitive coupling between the third and fourth resonant cavities in which an E-field predominantly acts.
  • the coupling hole 140 may be formed to pass through the ceramic block 100 with a uniform width.
  • the coupling hole 140 may be formed as a cone-shaped hole having a diameter gradually decreasing (or increasing) in the direction from one surface to the other surface of the ceramic block 100 to facilitate the formation of the slot 143 .
  • the coupling hole 140 is formed in a cone shape with a diameter gradually decreasing in the first region 141 from one surface of the ceramic block 100 to a predetermined depth in the direction of the other surface, and then In the second region 142 up to the other surface, it may be formed in a cylindrical shape having a uniform diameter, or may be formed in a cone shape having a diameter gradually decreasing from one surface to the other surface of the ceramic block 100 .
  • the slot 143 may be formed such that an area corresponding to the slot 143 is excluded. However, in terms of the manufacturing process, it is more efficient to first form the metal layer 160 on the entire inner surface of the coupling hole 140 , and then remove the metal layer formed in the region corresponding to the ring-shaped slot 143 .
  • the coupling hole 140 is formed to have a uniform width, it is difficult to remove the metal layer formed in the region corresponding to the slot 143 . Accordingly, in the present embodiment, by forming the coupling hole 140 in a conical shape, it is possible to easily remove the metal layer in a direction with a large diameter.
  • the position of the slot 143 formed in the coupling hole 140 may be adjusted to adjust the spurious mode.
  • the slot 143 is formed on the inner surface of the coupling hole 140 as described above, from the position where the slot 143 is formed, that is, the width of the slot 143 and one or the other surface of the ceramic block 100 . It is possible to adjust the spurious mode according to the height at which the slot 143 is formed. Accordingly, by adjusting the position of the slot 143, the spurious mode can be moved to a lower band than the conventional coupling groove structure, and the attenuation amount of the BPF is increased to further suppress the low-band spurious mode. Therefore, the level is reduced compared to the conventional spurious mode due to the resonance of the coupling groove, so that it is possible to improve the low-band stopband characteristics.
  • the coupling value may be adjusted by adjusting the thickness of the slot 143 . That is, the coupling level of the capacitive coupling formed between the third and fourth resonant cavities 113 and 114 may be adjusted.
  • the position at which the slot 143 is formed and the thickness of the slot 143 can be easily adjusted.
  • the slot 143 may be formed by removing only a portion of the metal layer 160 formed on the inner surface of the coupling hole 140 , as shown in FIG. 3A .
  • FIG. 3B shows the result of easily forming the slot 143 by cutting the inner surface of the coupling hole 140 in a cylindrical shape using equipment such as an end-mil. That is, not only the metal layer 160 formed on the inner surface of the coupling hole 140 , but also a part of the ceramic block 100 can be cut together to form the slot 143 at a required thickness and position very easily.
  • the coupling hole 140 is formed between the third and fourth resonant cavities 113 and 114 in the above description, but the coupling hole 140 may be formed between other resonant cavities.
  • the coupling hole 140 is formed between the second and fifth resonant cavities 112 and 115 so that capacitive cross coupling is performed in the second and fifth resonant cavities 112 and 115 . You may.
  • inductive cross-coupling generates transmission zero at frequencies higher than the passband of the ceramic waveguide filter
  • capacitive cross-coupling It is possible to improve the attenuation characteristics of the ceramic waveguide filter by generating the transmission zero at a frequency lower than the passband.
  • the coupling hole 140 is formed in a conical shape
  • the shape of the coupling hole 140 is not limited to the conical shape and may be formed in various ways.
  • FIG. 4 is a cross-sectional view of a ceramic waveguide filter according to another embodiment of the present invention.
  • FIG. 4 shows a case in which only the metal layer 260 formed on the inner surface of the coupling hole 240 is removed to form the slot 243
  • (b) is for the convenience of processing.
  • a slot 243 is formed by cutting a portion of the metal layer 260 and the ceramic block 200 in a cylindrical shape using equipment such as an end mill is illustrated.
  • the coupling hole 240 has a lower portion 241 and an upper portion 242 with respect to the center of the ceramic block 200, and the diameter is gradually increased in both directions of one surface and the other surface of the ceramic block 200, A case in which the attachments of two cones are formed to face each other is illustrated. That is, the coupling hole 240 is formed in a structure in which the diameter of the hole is gradually increased while proceeding from the center toward the upper portion 242 and the lower portion 241 .
  • the coupling hole 240 when the coupling hole 240 is formed in a shape in which attachments of two cones face each other, two slots 243 in the upper part 242 and the lower part 241 of the coupling hole 240 . ) can be formed. Since the two slots 243 are formed on the inner surface of the coupling hole 240 , the frequency band in which the spurious mode is formed and the capacitive coupling level can be more precisely adjusted.
  • 5 to 9 are cross-sectional views of a ceramic waveguide filter according to another embodiment of the present invention.
  • the coupling hole 340 may be formed to have a diameter gradually increasing from the center toward the outside.
  • slots 343 are formed in the upper 342 and lower 341 of the coupling hole 340 , respectively, whereas in FIG. 5 , one slot 343 is formed in the center of the coupling hole 340 . do.
  • the coupling hole 340 has a relatively small diameter at the center and gradually increases in diameter toward the outside, and one slot 343 is formed in the center of the coupling hole 340 .
  • the slot 343 can be easily formed by one-time machining of cutting through the center of the coupling hole 340 . And the thickness of the slot can be easily adjusted according to the cutting diameter.
  • the coupling hole 440 is formed in a cylindrical shape having a larger diameter than the center in the direction of one surface and the other surface of the ceramic block 400 , that is, the outside of the coupling hole 440 , similarly to FIG. 5 .
  • a case in which one slot 443 is formed in the center of the ring hole 440 is illustrated. That is, the center of the coupling hole 440 formed in a cylindrical shape having a uniform diameter may be formed in a protruding shape.
  • the coupling hole 440 Since the outer side of the coupling hole 440 is formed in a cylindrical shape, the coupling hole 440 can be easily formed. In addition, as in FIG. 5 , the slot 443 can be easily formed by cutting through the center of the coupling hole 440 in one operation.
  • the outer side of the coupling hole 540 is formed in a cylindrical shape having a larger diameter than the center as in FIG. 6 , but similarly to FIG. 4 , the center and upper 542 and lower 541 of the coupling hole 540 . ), a slot 543 is formed at each boundary. That is, two slots 543 are formed in the coupling hole 540 . That is, the slot 543 may be formed on the inner surface of the upper part 542 and the lower part 541 in the coupling hole 540 , but may be formed at the boundary between the center and the upper part 542 and the lower part 541 as shown in FIG. 7 . have.
  • the outer side of the coupling hole 640 is formed in a cylindrical shape having a larger diameter than the center, and two slots 643 and 644 have a center and an upper portion 642 and a lower portion ( 641), but in FIG. 7, two slots 543 are formed inside between the center and the interface of upper 542 and lower 541, whereas in FIG. 8(a), two slots ( 643 and 644 are formed in a region adjacent to the center at the interface between the center and the upper portion 642 and the lower portion 641 . This is because, as shown in FIG. 7 , when the two slots 543 are to be formed on the inside between the center and the interface between the upper part 542 and the lower part 541 , processing may not be easy.
  • slots 643 and 644 are to be formed in the corners adjacent to the center at the interface between the center and the upper 642 and lower 641 as shown in (a) of FIG. 8, in the center as shown in (b) of FIG.
  • the slots 643 can be easily formed by cutting adjacent edges together.
  • the two slots 643 and 644 may be formed to have different thicknesses as shown in FIG. 8A .
  • the coupling hole 740 may be formed in a structure having a large diameter of only one of the upper 742 and the lower 741 , and even in this case, the slot 743 is cut with edges at the boundary where the diameter is increased. It can be easily formed in this way.
  • FIG. 10 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
  • the ceramic block 100 is manufactured according to a predetermined filtering frequency band and filtering characteristics ( S10 ).
  • the ceramic block 100 may be manufactured by determining the size and shape according to the determined frequency band.
  • a plurality of through partition walls 121 and 122 penetrating one surface and the other surface of the ceramic block are formed in a predetermined pattern according to the frequency band to be filtered and whether a resonance groove is formed, thereby dividing the ceramic block 100 into a plurality of partitions.
  • a plurality of resonant cavities 111 to 116 are implemented (S20).
  • the through partition walls 121 and 122 it is important to consider whether or not the resonance grooves 131 to 136 are formed.
  • the resonance grooves are formed, the plurality of resonance cavities 111 to 116 are implemented to be smaller in size. This is because the through partition walls 121 and 122 must be formed.
  • the resonance grooves 131 to 136 can be formed in each region of the plurality of resonance cavities 111 to 116. (S30).
  • the resonance grooves 131 to 136 may be formed at a central position of each of the plurality of resonance cavities 111 to 116 .
  • the resonance grooves 131 to 136 may not be formed.
  • the coupling hole 140 is formed such that a capacitive coupling is performed between predetermined resonant cavities adjacent to each other among the plurality of resonant cavities 111 to 116 ( S40 ).
  • the coupling hole 140 may be formed in a cylindrical shape having a uniform diameter and penetrating the other surface from one surface of the ceramic block, but has a conical shape that gradually increases in diameter from one surface of the ceramic block to the other surface, or one surface direction of the ceramic block. Compared to that, it may be formed in a shape in which a diameter in the direction of the other surface is rapidly increased.
  • the coupling hole 140 may be formed in a form in which the diameter gradually increases in the outward direction or in a form in which the outer diameter increases rapidly compared to the center.
  • a plurality of through partition walls 121 and 122 , resonance grooves 131 to 136 , and at least one coupling hole 140 are formed in the manufactured ceramic block 100 .
  • the ceramic waveguide filter is manufactured by applying the cutting method to the ceramic block.
  • a plurality of through partition walls 121 and 122, resonance grooves 131 to 136 and at least one coupling hole ( 140) are formed together and may be integrally manufactured at the same time.
  • a metal layer 160 is formed thereon (S50).
  • At least one slot 143 is formed by removing the metal layer 160 formed in a ring shape with a predetermined position and thickness on the inner surface of the coupling hole 140 ( S60 ).
  • the frequency band in which the spurious mode is formed varies according to the position where the slot 143 is formed, and the capacitor formed between the resonant cavities adjacent to each other on both sides of the coupling hole 140 according to the thickness in which the slot 143 is formed. You can adjust the coupling level of the negative coupling.
  • the input/output interfaces 151 and 152 are formed in two resonant cavities among the plurality of resonant cavities (S70).
  • the input/output interfaces 151 and 152 are coupled so that a plurality of resonant cavities of the ceramic waveguide filter receive a signal from the input interface port and are sequentially coupled to output the filtered signal to the output interface port. It may be formed in the resonant cavities of both ends in the ringing sequence.
  • the method of manufacturing a ceramic waveguide filter according to the present invention adjusts the resonance frequencies of the plurality of resonant cavities in a manner such as grinding the metal layers formed in the plurality of resonant grooves, thereby controlling the characteristics of the ceramic waveguide filter It may further include the step of tuning.
  • the method according to the present invention may be implemented as a computer program stored in a medium for execution by a computer.
  • the computer-readable medium may be any available medium that can be accessed by a computer, and may include all computer storage media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data, and read dedicated memory), RAM (Random Access Memory), CD (Compact Disk)-ROM, DVD (Digital Video Disk)-ROM, magnetic tape, floppy disk, optical data storage, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention provides a ceramic waveguide filter and a manufacturing method therefor, the ceramic waveguide filter comprising: a plurality of resonance cavities that are defined by a plurality of pass-through partitions that pass through a ceramic block so as to divide the ceramic block into sections according to a predetermined pattern in a single ceramic block; and at least one coupling hole that passes through the ceramic block between at least two adjacent resonance cavities among the plurality of resonance cavities, and has at least one slot in which a metal layer is formed on the inner surface but is not formed in a predetermined region, wherein by controlling the position and thickness of the at least one slot, a spurious mode can be suppressed and the coupling level of a capacitive coupling can be adjusted.

Description

세라믹 웨이브가이드 필터 및 이의 제조 방법Ceramic waveguide filter and manufacturing method thereof
본 발명은 세라믹 웨이브가이드 필터에 관한 것으로서, 더욱 상세하게는 저손실, 고억압 세라믹 웨이브가이드 필터에 관한 것이다.The present invention relates to a ceramic waveguide filter, and more particularly, to a low-loss, high-suppression ceramic waveguide filter.
통신서비스가 진화함에 따라 데이터 전송속도가 늘어나게 되고 이를 위해서는 시스템 대역폭 또한 늘어나야 하고 수신감도 향상 및 타 통신시스템의 캐리어(Carrier)에 의한 장애(Interference)를 최소화할 필요가 있다. As the communication service evolves, the data transmission rate increases. For this, the system bandwidth must also be increased, and it is necessary to improve the reception sensitivity and minimize the interference caused by the carrier of other communication systems.
이를 위해서 저손실(Low insertion loss), 고억압(High rejection), 필터에 대한 요구가 나날이 늘어가고 있는 상황에 직면해 있다. 금속 재질을 이용하여 제작하는 동축(Coaxial) 공진 캐비티는 유전체 공진 캐비티와 같은 타 공진 캐비티 대비 손실, 사이즈, 가격 측면에서 장점이 있으므로 이동통신 시스템의 필터 구현을 위해 주로 사용된다. To this end, we are facing a situation in which demands for low insertion loss, high rejection, and filters are increasing day by day. A coaxial resonant cavity manufactured using a metal material has advantages in terms of loss, size, and price compared to other resonant cavities such as dielectric resonant cavities, so it is mainly used to implement filters in mobile communication systems.
그러나 매시브(Massive) MIMO 안테나와 같은 기지국 시스템의 저출력, 소형화로 인해 기존 동축 공진 캐비티를 사용하여도 사이즈 측면에서 제약이 있으며, 초소형 필터 구현에 대한 필요성이 대두되고 있다.However, due to the low power and miniaturization of a base station system such as a massive MIMO antenna, there is a size restriction even using an existing coaxial resonant cavity, and the need for implementing a micro-filter is emerging.
기존의 동축 공진 캐비티를 이용한 필터를 대체하기 위한 필터로 세라믹 웨이브가이드 필터에 대한 연구가 활발히 이루어지고 있다. 세라믹 웨이브가이드 필터는 저손실 및 고유전율을 가지는 세라믹 재질로 캐비티를 채우는 필터로서 기존의 동축 공진 캐비티 필터에 비해 사이즈를 현저하게 줄일 수 있으며 우수한 손실 특성 역시 제공할 수 있다. As a filter to replace the filter using the existing coaxial resonant cavity, research on the ceramic waveguide filter is being actively conducted. The ceramic waveguide filter is a filter that fills the cavity with a ceramic material having low loss and high dielectric constant. Compared to the conventional coaxial resonant cavity filter, the ceramic waveguide filter can significantly reduce the size and provide excellent loss characteristics.
종래의 일반적인 세라믹 웨이브가이드 필터는 각각의 세라믹 캐비티를 독립적으로 제작하고 격벽을 형성한 후, 각각의 캐비티를 결합하는 공정을 필요로 한다. 캐비티의 결합은 솔더링 등을 통해 이루어진다.A conventional conventional ceramic waveguide filter requires a process of independently manufacturing each ceramic cavity, forming a barrier rib, and then combining each cavity. The cavities are joined through soldering or the like.
그러나 캐비티 결합 공정은 결합 과정에서 비정렬 공차가 빈번하게 발생하고, 이로 인해 특성 변화가 발생하여 제품의 수율이 현저히 낮아지는 문제점이 있다. 또한 가공 오차로 인해 특성이 변화될 경우, 세라믹의 일면을 그라인딩하여 튜닝하는 과정을 필요로 하지만, 세라믹은 매우 단단한 재질이기에 고도의 기술을 요구하고 미세한 튜닝이 어려운 문제점이 있다. 뿐만 아니라 세라믹 웨이브가이드 필터의 감쇄(attenuation) 특성을 향상시키기 위한 전송 영점(Transmission-Zero)을 제공하고자 하는 경우, 주로 크로스 커플링(cross coupling)을 이용하지만, 서로 인접하지 않은 캐비티 사이의 크로스 커플링을 구현하기 위해서는 별도의 부가적 작업이 요구되는 문제가 있었다.However, in the cavity bonding process, misalignment tolerance frequently occurs during the bonding process, which causes a change in characteristics, and thus there is a problem in that the yield of the product is significantly lowered. In addition, when the characteristics are changed due to a processing error, a process of grinding and tuning one surface of the ceramic is required. However, since ceramic is a very hard material, it requires a high level of technology and has a problem in that fine tuning is difficult. In addition, in the case of providing a transmission-zero point to improve the attenuation characteristics of the ceramic waveguide filter, cross coupling is mainly used, but cross coupling between cavities that are not adjacent to each other There was a problem that a separate additional work was required to implement the ring.
이러한 문제를 해결하기 위해, 단일 세라믹 블록의 일면과 타면 사이를 관통하고 미리 지정된 패턴에 따라 세라믹 블록의 구획을 구분하도록 형성된 다수의 관통 격벽에 의해 정의되는 다수의 공진 캐비티를 포함하는 일체형 세라믹 웨이브가이드 필터가 제안되었다. 여기서 다수의 관통 격벽은 다수의 공진 캐비티를 구분하는 캐비티 월(Cavity wall)로 기능하며, 다수의 관통 격벽 중 서로 이격되어 형성된 다수의 관통 격벽의 사이 공간은 다수의 공진 캐비티 간의 결합면을 형성하는 커플링 윈도우(coupling window)로 기능할 수 있다.In order to solve this problem, an integrated ceramic waveguide including a plurality of resonant cavities defined by a plurality of through partition walls formed to penetrate between one surface and the other surface of a single ceramic block and to divide the partitions of the ceramic block according to a predetermined pattern A filter was proposed. Here, the plurality of through barrier ribs function as a cavity wall separating the plurality of resonant cavities, and the space between the plurality of through barrier ribs formed to be spaced apart from each other among the plurality of through barrier ribs forms a coupling surface between the plurality of resonant cavities. It can function as a coupling window.
그리고 다수의 공진 캐비티 각각에는 세라믹 블록의 일면 또는 타면에 공진 홈이 형성될 수 있다. 다수의 공진 홈 각각은 대응하는 공진 캐비티 영역에서 전계가 집중되는 중앙에 형성되어 다수의 공진 캐비티 각각의 캐패시티브 성분을 증가시켜 공진 주파수를 하향시키는 효과를 유발한다. 따라서 공진 캐비티 각각의 크기를 줄일 수 있도록 하여 세라믹 웨이브가이드 필터를 소형화할 수 있도록 한다.In addition, a resonance groove may be formed on one surface or the other surface of the ceramic block in each of the plurality of resonance cavities. Each of the plurality of resonant grooves is formed in the center where the electric field is concentrated in the corresponding resonant cavity region to increase the capacitive component of each of the plurality of resonant cavities, thereby causing the effect of lowering the resonant frequency. Therefore, it is possible to reduce the size of each resonant cavity so that the ceramic waveguide filter can be miniaturized.
이때 서로 인접하여 형성된 공진 캐비티 사이에는 자계(H-field)가 우세하게 작용하는 인덕티브 커플링(inductive coupling)이 이루어질 수 있다. 그에 반해 전계(E-field)는 이격되어 형성된 다수의 관통 격벽의 사이의 커플링 윈도우 면에서 횡단(transverse)하기 때문에 캐패시티브 커플링(capacitive coupling)은 용이하게 이루어지지 않는다.In this case, an inductive coupling in which a magnetic field (H-field) predominantly acts may be performed between the resonant cavities formed adjacent to each other. On the other hand, since an electric field (E-field) transverses on a coupling window surface between a plurality of through partition walls formed to be spaced apart, capacitive coupling is not easily achieved.
이에 서로 인접하여 형성된 공진 캐비티 사이에 전계(E-field)가 우세하게 작용하는 캐패시티브 커플링(capacitive coupling)이 이루어 지도록 세라믹 블록의 일면 또는 타면에 공진 홈보다 더 깊게 형성되는 커플링 홈이 더 형성될 수 있다.Accordingly, a coupling groove formed deeper than the resonance groove is formed on one or the other surface of the ceramic block so that capacitive coupling in which an E-field predominantly acts is made between the resonant cavities formed adjacent to each other. more can be formed.
그러나 캐패시티브 커플링을 유발하는 커플링 홈은 공진 홈보다 깊게 형성되므로, 세라믹 블록에서 커플링 홈이 형성되는 영역의 두께는 매우 얇게 형성되고 이로 인해, 소성 시 또는 취급시에 해당 영역이 파손될 수 있는 위험이 있다. 또한 커플링 홈의 공진에 의한 스퓨리어스 모드(spurious mode)가 통과 대역보다 낮은 주파수 대역에 형성되어, 저대역에서의 억압 레벨(rejection level)을 요구되는 규격에 만족시키기 어렵다는 한계가 있다.However, since the coupling groove causing the capacitive coupling is formed deeper than the resonant groove, the thickness of the region where the coupling groove is formed in the ceramic block is very thin, which may cause damage to the region during firing or handling. there is a risk that In addition, since a spurious mode due to resonance of the coupling groove is formed in a frequency band lower than the pass band, there is a limit in that it is difficult to satisfy a rejection level in the low band to a required standard.
본 발명의 목적은 커플링 홀을 형성하여 캐패시티브 커플링을 유도함으로써 세라믹 블록의 파손 위험이 적은 세라믹 웨이브가이드 필터 및 이의 제조 방법을 제공하는데 있다.An object of the present invention is to provide a ceramic waveguide filter having a low risk of damage to a ceramic block by inducing a capacitive coupling by forming a coupling hole, and a method for manufacturing the same.
본 발명의 다른 목적은 저대역 스퓨리어스 모드를 억압 가능한 캐패시티브 커플링을 구현할 수 있는 세라믹 웨이브가이드 필터 및 이의 제조 방법을 제공하는데 있다.Another object of the present invention is to provide a ceramic waveguide filter capable of implementing capacitive coupling capable of suppressing a low-band spurious mode, and a method for manufacturing the same.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터는 단일 세라믹 블록에서 미리 지정된 패턴에 따라 상기 세라믹 블록의 구획을 구분하도록 상기 세라믹 블록을 관통하여 형성된 다수의 관통 격벽에 의해 정의되는 다수의 공진 캐비티; 및 상기 다수의 공진 캐비티 중 적어도 2개의 서로 인접한 공진 캐비티 사이에서 상기 세라믹 블록을 관통하여 형성되고, 내측면에 금속층이 형성되되 기지정된 영역에는 금속층이 형성되지 않은 적어도 하나의 슬롯이 형성되는 적어도 하나의 커플링 홀을 포함한다.A ceramic waveguide filter according to an embodiment of the present invention for achieving the above object is defined by a plurality of through barrier ribs formed through the ceramic block to distinguish the partitions of the ceramic block according to a predetermined pattern in a single ceramic block a plurality of resonant cavities; and at least one slot formed through the ceramic block between at least two mutually adjacent resonant cavities among the plurality of resonant cavities, and having a metal layer formed on the inner surface but not formed with a metal layer in a predetermined area. of the coupling hole.
상기 적어도 하나의 커플링 홀 각각은 상기 세라믹 블록의 일면에서 타면 방향으로 직경이 점차로 증가하는 원뿔 형태로 형성될 수 있다.Each of the at least one coupling hole may be formed in a conical shape with a diameter gradually increasing in a direction from one surface of the ceramic block to the other.
상기 적어도 하나의 커플링 홀 각각은 중심으로부터 상기 세라믹 블록의 일면 및 타면 방향 각각으로 직경이 점차로 증가하는 상부 및 하부 구조로 형성될 수 있다.Each of the at least one coupling hole may be formed as an upper and a lower structure in which diameters gradually increase from a center to one and the other surface directions of the ceramic block.
상기 적어도 하나의 커플링 홀 각각은 중심에서 균일한 홀 직경을 갖는 원통형태로 형성되고, 상기 세라믹 블록의 일면 또는 타면 방향 중 적어도 하나의 방향에서 중심보다 큰 균일한 홀 직경을 갖고 원통 형태로 형성되는 상부 또는 하부 구조를 가질 수 있다.Each of the at least one coupling hole is formed in a cylindrical shape having a uniform hole diameter in the center, and has a uniform hole diameter larger than the center in at least one direction of one surface or the other surface of the ceramic block and is formed in a cylindrical shape. It may have an upper or lower structure.
상기 적어도 하나의 슬롯은 상기 중심에 형성되거나, 상기 상부 및 하부 구조 각각 또는 상기 중심과 상기 상부 및 상기 하부 구조의 경계면 상에 형성될 수 있다.The at least one slot may be formed at the center or on each of the upper and lower structures or on an interface between the center and the upper and lower structures.
상기 적어도 하나의 슬롯은 서로 인접한 공진 캐비티 사이에 요구되는 캐패시티브 커플링의 커플링 레벨에 따라 두께가 결정되고, 상기 세라믹 웨이브가이드 필터에 요구되는 스퓨리어스 모드 주파수 대역에 따라 상기 커플링 홀 내에서 형성될 수 있다.The thickness of the at least one slot is determined according to the coupling level of the capacitive coupling required between the resonant cavities adjacent to each other, and the thickness of the at least one slot is determined within the coupling hole according to the spurious mode frequency band required for the ceramic waveguide filter. can be formed.
상기 세라믹 웨이브가이드 필터는 상기 관통 격벽에 의해 구분된 상기 다수의 공진 캐비티의 구획 내에 형성되는 다수의 공진 홈; 및 상기 다수의 공진 캐비티 중 신호를 입력 및 출력하는 2개의 공진 캐비티에 형성되는 입출력 인터페이스를 더 포함하고, 상기 금속층은 상기 세라믹 블록의 외곽, 상기 다수의 관통 격벽 각각의 내측면 및 상기 다수의 공진 홈 각각의 내측면에도 형성될 수 있다.The ceramic waveguide filter may include: a plurality of resonance grooves formed in a section of the plurality of resonance cavities separated by the through partition wall; and input/output interfaces formed in two resonant cavities for inputting and outputting signals among the plurality of resonant cavities, wherein the metal layer includes an outer portion of the ceramic block, an inner surface of each of the plurality of through-walls, and the plurality of resonances It may also be formed on the inner surface of each of the grooves.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 세라믹 웨이브가이드 필터의 제조 방법은 다수의 공진 캐비티를 정의하기 위해 미리 지정된 패턴에 따라 구획을 구분하도는 다수의 관통 격벽과 상기 다수의 공진 캐비티 중 적어도 2개의 서로 인접한 공진 캐비티 사이에서 적어도 하나의 커플링 홀이 관통하여 형성되는 세라믹 블록을 제조하는 단계; 및 상기 적어도 하나의 커플링 홀 각각의 내측면에 기지정된 영역을 제외하여 금속층이 형성하여 적어도 하나의 슬롯을 형성하는 단계를 포함한다.In order to achieve the above object, a method of manufacturing a ceramic waveguide filter according to another embodiment of the present invention includes a plurality of through partition walls dividing partitions according to a predetermined pattern to define a plurality of resonant cavities and the plurality of resonant cavities. manufacturing a ceramic block in which at least one coupling hole penetrates between at least two mutually adjacent resonant cavities; and forming at least one slot by forming a metal layer on an inner surface of each of the at least one coupling hole except for a predetermined area.
따라서, 본 발명의 실시예에 따른 세라믹 웨이브가이드 필터 및 이의 제조 방법은 단일 세라믹 블록에 형성된 다수의 관통 격벽과 다수의 공진 홈에 의해 정의되는 다수의 공진 캐비티 사이에 커플링 홈이 아닌 커플링 홀을 형성하고, 커플링 홀의 내측에 형성되는 금속층에 슬롯을 형성하여, 캐패시티브 커플링이 수행되도록 한다. 그러므로 세라믹 블록의 파손 위험이 적으며, 저대역 스퓨리어스 모드가 억압 가능하여 자유로운 캐피시티브 커플링 값을 구현할 수 있다.Accordingly, in the ceramic waveguide filter and the method for manufacturing the same according to an embodiment of the present invention, a coupling hole, not a coupling groove, between a plurality of through-walls formed in a single ceramic block and a plurality of resonance cavities defined by a plurality of resonance grooves , and a slot is formed in the metal layer formed inside the coupling hole to perform capacitive coupling. Therefore, the risk of damage to the ceramic block is small, and the low-band spurious mode can be suppressed to realize a free capacitive coupling value.
도 1은 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터의 구조를 나타내는 사시도이다.1 is a perspective view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention.
도 2는 도 1의 커플링 홀의 확대도를 나타낸다.FIG. 2 shows an enlarged view of the coupling hole of FIG. 1 .
도 3은 도 1의 세라믹 웨이브가이드 필터의 단면도를 나타낸다.FIG. 3 is a cross-sectional view of the ceramic waveguide filter of FIG. 1 .
도 4는 본 발명의 다른 실시예에 따른 세라믹 웨이브가이드 필터의 단면도를 나타낸다.4 is a cross-sectional view of a ceramic waveguide filter according to another embodiment of the present invention.
도 5 내지 도 9는 본 발명의 또 다른 실시예에 따른 세라믹 웨이브가이드 필터의 단면도를 나타낸다.5 to 9 are cross-sectional views of a ceramic waveguide filter according to another embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터의 제조 방법을 나타낸다.10 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시예에 한정되는 것이 아니다. 그리고, 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 부재임을 나타낸다. Hereinafter, the present invention will be described in detail by describing preferred embodiments of the present invention with reference to the accompanying drawings. However, the present invention may be embodied in various different forms, and is not limited to the described embodiments. In addition, in order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals in the drawings indicate the same members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈", "블록" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components unless otherwise stated. In addition, terms such as "... unit", "... group", "module", and "block" described in the specification mean a unit that processes at least one function or operation, which is hardware, software, or hardware. and a combination of software.
도 1은 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터의 구조를 나타내는 사시도이고, 도 2는 도 1의 커플링 홀의 확대도를 나타내며, 도 3은 도 1의 세라믹 웨이브가이드 필터의 단면도를 나타낸다.1 is a perspective view showing the structure of a ceramic waveguide filter according to an embodiment of the present invention, FIG. 2 is an enlarged view of the coupling hole of FIG. 1, and FIG. 3 is a cross-sectional view of the ceramic waveguide filter of FIG. .
도 1 내지 도 3을 참조하면, 본 실시예에 따른 세라믹 웨이브가이드 필터는 단일 세라믹 블록(100)의 일면과 타면 사이를 관통하여 기지정된 패턴으로 형성된 다수의 관통 격벽에 의해 정의되는 다수의 공진 캐비티를 포함하는 일체형으로 구현된다. 또한 본 실시예에 따른 세라믹 웨이브가이드 필터는 단일 세라믹 블록(100)의 일면 또는 타면에서 다수의 공진 캐비티 중 대응하는 공진 캐비티의 기지정된 위치에 공진 홈이 형성될 수 있다.1 to 3 , in the ceramic waveguide filter according to the present embodiment, a plurality of resonant cavities defined by a plurality of through partition walls formed in a predetermined pattern penetrating between one surface and the other surface of the single ceramic block 100 . It is implemented as an integral part including. In addition, in the ceramic waveguide filter according to the present embodiment, a resonance groove may be formed at a predetermined position of a corresponding resonance cavity among a plurality of resonance cavities on one surface or the other surface of the single ceramic block 100 .
도 1에서는 일예로 단일 세라믹 블록(100)에 형성된 2개의 관통 격벽(121, 122)과 6개의 공진 홈(131 ~ 136)에 의해 6개의 공진 캐비티(111 ~ 116)가 형성된 경우를 도시하였다.1 illustrates a case in which six resonance cavities 111 to 116 are formed by two through partition walls 121 and 122 and six resonance grooves 131 to 136 formed in a single ceramic block 100 as an example.
2개의 관통 격벽(121, 122)은 미리 지정된 패턴에 따라 세라믹 블록(100)의 일면과 타면 사이를 관통하도록 형성되어 세라믹 블록(100)의 구획을 구분함으로써 다수개의 공진 캐비티(111 ~ 116)를 정의한다. 도 1에서는 일예로 2개의 관통 격벽(121, 122)이 형성된 경우를 도시하였다. 2개의 관통 격벽(121, 122) 중 제1 관통 격벽(121)은 T자 패턴으로 형성되어 세라믹 블록(100)에서 제1 및 제 6 공진 캐비티(111, 116) 구획과 제2 및 제5 공진 캐비티(112, 115) 구획을 구분할 뿐만 아니라, 제1 및 제 6 공진 캐비티(111, 116) 구획을 서로 구분한다.The two through partition walls 121 and 122 are formed to pass through between one surface and the other surface of the ceramic block 100 according to a predetermined pattern to divide the ceramic block 100 into a plurality of resonant cavities 111 to 116. define. 1 illustrates a case in which two through partition walls 121 and 122 are formed as an example. The first through barrier rib 121 of the two through barrier ribs 121 and 122 is formed in a T-shaped pattern to partition the first and sixth resonant cavities 111 and 116 and the second and fifth resonant walls in the ceramic block 100 . The cavities 112 and 115 are separated from each other, and the first and sixth resonant cavities 111 and 116 are separated from each other.
그리고 제2 관통 격벽(122)은 직선 패턴으로 형성되어 세라믹 블록(100)에서 제2 및 제5 공진 캐비티(112, 115) 구획과 제3 및 제4 공진 캐비티(113, 114) 구획을 구분한다.In addition, the second through barrier rib 122 is formed in a straight pattern to separate the second and fifth resonant cavities 112 and 115 and the third and fourth resonant cavities 113 and 114 in the ceramic block 100 . .
여기서는 일예로 2개의 관통 격벽(121, 122)이 각각 T자 패턴과 직선 패턴으로 형성되는 것으로 도시하였으나, 본 실시예는 이에 한정되지 않는다. 본 실시예에서 다수의 관통 격벽은 세라믹 블록(100)에 형성되어야 하는 다수의 공진 캐비티의 개수와 배치 구조에 따라, 다수의 공진 캐비티의 구획을 용이하게 구분할 수 있는 다양한 형태로 형성될 수 있다. 관통 격벽은 Y자 형태 또는 +자 같은 분기 패턴 형태로 형성될 수 있으며, 다수의 서로 이격된 직선 형태로 형성될 수도 있다. 도 1에서 제1 관통 격벽(121)은 T자 패턴이 아닌 +자 패턴으로 형성될 수도 있으며, T자 패턴 또는 + 자 패턴은 2개 또는 3개의 서로 이격된 직선 패턴으로 구분하여 형성될 수도 있다. 그리고 제2 관통 격벽(122) 또한 서로 이격된 2개의 직선 패턴으로 구분되어 형성되거나 커플링 홀(140) 방향으로 추가 연장되는 T자 패턴으로 형성될 수도 있다. 추가적으로 다수의 관통 격벽(121, 122) 중 적어도 하나는 세라믹 블록(100)의 측면 경계까지 형성될 수도 있다.Here, as an example, it is illustrated that the two through partition walls 121 and 122 are formed in a T-shaped pattern and a straight line pattern, respectively, but the present embodiment is not limited thereto. According to the number and arrangement structure of the plurality of resonant cavities to be formed in the ceramic block 100 , the plurality of through barrier ribs in the present embodiment may be formed in various shapes that can easily divide the partitions of the plurality of resonant cavities. The through barrier ribs may be formed in a Y-shape or a branch pattern such as a +-shape, or may be formed in a plurality of straight lines spaced apart from each other. In FIG. 1 , the first through barrier rib 121 may be formed in a +-shaped pattern instead of a T-shaped pattern, and the T-shaped or +-shaped pattern may be formed by dividing two or three straight line patterns spaced apart from each other. . In addition, the second through partition wall 122 may also be formed by being divided into two straight line patterns spaced apart from each other, or may be formed in a T-shaped pattern further extending in the direction of the coupling hole 140 . Additionally, at least one of the plurality of through partition walls 121 and 122 may be formed up to the side boundary of the ceramic block 100 .
여기서 관통 격벽이 서로 이격되어 형성되거나 관통 격벽이 세라믹 블록(100)의 측면 경계까지 형성되지 않아, 관통 격벽에 의해 완전하게 구분되지 않은 서로 인접한 공진 캐비티 사이에는 커플링이 이루어질 수 있다.Here, since the through barrier ribs are formed to be spaced apart from each other or the through barrier ribs are not formed up to the lateral boundary of the ceramic block 100 , coupling may be made between resonant cavities adjacent to each other that are not completely separated by the through barrier ribs.
도 1에서는 제3 공진 캐비티(113)와 제4 공진 캐비티(113, 114) 사이의 커플링 및 제2 공진 캐비티(112)와 제5 공진 캐비티(115) 사이의 크로스 커플링 이 용이하게 이루어 지도록 관통 격벽이 형성되지 않은 경우를 도시하였으나, 관통 격벽이 형성될 수도 있다.In FIG. 1 , the coupling between the third resonant cavity 113 and the fourth resonant cavity 113 and 114 and the cross coupling between the second resonant cavity 112 and the fifth resonant cavity 115 are easily performed. Although the case where the through barrier ribs are not formed is illustrated, the through barrier ribs may be formed.
한편, 본 실시예에 따른 세라믹 웨이브 가이드 필터는 도 1에 도시된 바와 같이, 세라믹 블록(100)의 일면 또는 타면의 다수의 공진 캐비티(111 ~ 116) 각각의 영역에 대응하는 공진 홈(131 ~ 136)이 형성된다. 도 1에서는 일예로 공진 홈(131 ~ 136)이 원형의 홈으로 형성되는 것으로 도시하였으나, 공진 홈(131 ~ 136)의 형태는 한정되지 않는다. 그리고 공진 홈(131 ~ 136)의 내측면에도 금속층이 형성된다.Meanwhile, in the ceramic wave guide filter according to the present embodiment, as shown in FIG. 1 , resonance grooves 131 to corresponding to the respective regions of the plurality of resonance cavities 111 to 116 on one surface or the other surface of the ceramic block 100 . 136) is formed. In FIG. 1 , as an example, the resonance grooves 131 to 136 are illustrated as being formed as circular grooves, but the shape of the resonance grooves 131 to 136 is not limited. A metal layer is also formed on the inner surface of the resonance grooves 131 to 136 .
공진 홈(131 ~ 136)은 다수의 공진 캐비티(111 ~ 116) 각각의 영역에서 전계(E-field)가 집중되는 중앙에 형성되어, 다수의 공진 캐비티(111 ~ 116) 각각의 캐패시티브 성분을 증가시킨다. 캐패시티브 성분의 증가는 다수의 공진 캐비티(111 ~ 116)의 공진 주파수를 하향시키는 효과를 유발하여, 공진 홈(131 ~ 136)이 형성되지 않는 경우에 비해, 세라믹 웨이브 가이드 필터의 크기를 소형화 할 수 있다.The resonance grooves 131 to 136 are formed in the center where the electric field E-field is concentrated in each region of the plurality of resonance cavities 111 to 116, and the capacitive component of each of the plurality of resonance cavities 111 to 116 to increase The increase in the capacitive component causes an effect of lowering the resonance frequencies of the plurality of resonant cavities 111 to 116, thereby reducing the size of the ceramic waveguide filter compared to the case in which the resonance grooves 131 to 136 are not formed. can do.
한편, 세라믹 웨이브가이드 필터의 다수의 공진 캐비티(111 ~ 116) 중 지정된 커플링 순서에 따라 초기단 및 최후단의 2개의 공진 캐비티(111, 116)에는 입출력 인터페이스(151, 152)가 형성된다. 그리고 형성된 입출력 인터페이스(151, 152)에 세라믹 웨이브가이드 필터로 신호를 입력 및 출력하기 위한 입출력 인터페이스 포트가 삽입될 수 있다.On the other hand, input/ output interfaces 151 and 152 are formed in the two resonance cavities 111 and 116 of the initial stage and the last stage according to a specified coupling order among the plurality of resonance cavities 111 to 116 of the ceramic waveguide filter. In addition, input/output interface ports for inputting and outputting signals to and from the ceramic waveguide filter may be inserted into the formed input/ output interfaces 151 and 152 .
입출력 인터페이스(151, 152)는 도 1에 도시된 바와 같이, 홈 형상으로 형성될 수 있으며, 여기서는 일예로 입출력 인터페이스(151, 152)가 각각 세라믹 블록(100)의 일면에 형성된 2개의 공진 캐비티(111, 116)에 대응하는 위치의 타면에 공진 홈(131 ~ 136)에 형성되는 것으로 도시하였다. 이 경우 공진 홈(131 ~ 136)은 입출력 인터페이스(151, 152)에 삽입되는 입출력 인터페이스 포트와 용이하게 커플링이 이루어질 수 있다.The input/ output interfaces 151 and 152 may be formed in a groove shape as shown in FIG. 1 , and here, as an example, the input/ output interfaces 151 and 152 are two resonant cavities formed on one surface of the ceramic block 100, respectively. 111 and 116 are shown to be formed in the resonance grooves 131 to 136 on the other surface of the position corresponding to the position. In this case, the resonance grooves 131 to 136 may be easily coupled to the input/output interface ports inserted into the input/ output interfaces 151 and 152 .
그러나 입출력 인터페이스(151, 152)는 공진 홈(131 ~ 136)과 별도의 위치에서 세라믹 블록(100)의 일면과 타면을 관통하는 홀 형태로 형성될 수도 있다.However, the input/ output interfaces 151 and 152 may be formed in the form of holes passing through one surface and the other surface of the ceramic block 100 at positions separate from the resonance grooves 131 to 136 .
도1 에서는 일예로 입출력 인터페이스(151, 152)가 제1 공진 캐비티(111) 및 제6 공진 캐비티(116)에 형성된 것으로 도시하였으며, 이에 제1 공진 캐비티(111)는 입출력 인터페이스(151)에 삽입된 입력 인터페이스 포트로부터 신호를 인가받고, 제1 공진 캐비티(111)와 제2 공진 캐비티(112) 사이에 커플링이 이루어진다. 그리고 제3 내지 제6 공진 캐비티(113 ~ 116)의 순서로 커플링이 이루어지며, 제6 공진 캐비티(116)는 입출력 인터페이스(152)에 삽입된 출력 인터페이스 포트로 신호를 출력한다.In FIG. 1, as an example, the input/ output interfaces 151 and 152 are illustrated as being formed in the first resonant cavity 111 and the sixth resonant cavity 116, and the first resonant cavity 111 is inserted into the input/output interface 151. A signal is received from the input interface port, and coupling is made between the first resonant cavity 111 and the second resonant cavity 112 . In addition, coupling is performed in the order of the third to sixth resonant cavities 113 to 116 , and the sixth resonant cavity 116 outputs a signal to an output interface port inserted into the input/output interface 152 .
다수의 공진 캐비티(111 ~ 116) 각각은 다수의 관통 격벽(121, 122)에 의해 정의된 크기 및 형태 및 공진 홈(131 ~ 136)에 따라 지정된 주파수 대역에서 공진될 수 있다. 따라서 도 1의 세라믹 웨이브가이드 필터는 다수의 관통 격벽(121, 122)에 의해 정의된 다수의 공진 캐비티(111 ~ 116)가 입력 인터페이스 포트를 통해 전송된 신호를 다단 필터링하여 출력 인터페이스 포트로 출력할 수 있다. Each of the plurality of resonant cavities 111 to 116 may resonate in a specified frequency band according to the size and shape defined by the plurality of through partition walls 121 and 122 and the resonance grooves 131 to 136 . Therefore, in the ceramic waveguide filter of FIG. 1, a plurality of resonant cavities 111 to 116 defined by a plurality of through partition walls 121 and 122 multi-stage filters the signal transmitted through the input interface port and output to the output interface port. can
이때 도 1의 세라믹 웨이브가이드 필터에서는 제1 공진 캐비티(111)가 제2 공진 캐비티(112) 및 제6 공진 캐비티(213)와 인접하고 제1 관통 격벽(121)이 제1 공진 캐비티(111), 제2 공진 캐비티(112) 및 제6 공진 캐비티(213)를 완전히 구분하지 않으므로, 제1 공진 캐비티(111)는 제2 공진 캐비티(112)와 커플링이 이루어지고, 이와 함께 제6 공진 캐비티(116)와 크로스 커플링이 이루어진다.In this case, in the ceramic waveguide filter of FIG. 1 , the first resonant cavity 111 is adjacent to the second resonant cavity 112 and the sixth resonant cavity 213 , and the first through partition 121 is formed by the first resonant cavity 111 . , since the second resonant cavity 112 and the sixth resonant cavity 213 are not completely separated, the first resonant cavity 111 is coupled to the second resonant cavity 112 , and with this, the sixth resonant cavity (116) and cross-coupling is made.
또한 제1 및 제2 관통 격벽(121, 122)이 제2 공진 캐비티(112)와 제5 공진 캐비티(115)를 구분하지 않으므로, 제2 공진 캐비티(112)는 제3 공진 캐비티(113)와 커플링이 이루어지면서, 제5 공진 캐비티(115)와 크로스 커플링이 이루어진다. 그리고 제3 공진 캐비티(113)와 제4 공진 캐비티(114)에서도 커플링이 이루어진다.In addition, since the first and second through partition walls 121 and 122 do not separate the second resonant cavity 112 and the fifth resonant cavity 115 , the second resonant cavity 112 is formed between the third resonant cavity 113 and the third resonant cavity 113 . As the coupling is made, cross-coupling is made with the fifth resonant cavity 115 . In addition, coupling is performed in the third resonant cavity 113 and the fourth resonant cavity 114 .
한편 도 1에서는 제3 공진 캐비티(113)와 제4 공진 캐비티(114) 사이에 세라믹 블록(100)의 일면에서 타면을 관통하는 커플링 홀(140)이 형성된다. 커플링 홀(140)은 3 공진 캐비티(113)와 제4 공진 캐비티(114) 사이에 전계(E-field)가 우세하게 작용하는 캐패시티브 커플링이 이루어지도록 형성된다. 상기한 바와 같이 기존에는 공진 캐비티 사이에 캐패시티브 커플링이 이루어지도록 하기 위해서는 공진 홈(131 ~ 136)보다 깊은 커플링 홈이 형성되었으나, 커플링 홈이 형성되면, 세라믹 웨이브가이드 필터가 파손될 위험이 높아지는 문제가 있었다. 이에 본 실시예에서는 커플링 홈 대신 세라믹 블록(100)의 일면에서 타면을 관통하는 커플링 홀(140)을 형성함에 따라 세라믹 웨이브가이드 필터의 파손 위험을 방지할 수 있도록 한다.Meanwhile, in FIG. 1 , a coupling hole 140 penetrating from one surface of the ceramic block 100 to the other surface is formed between the third resonant cavity 113 and the fourth resonant cavity 114 . The coupling hole 140 is formed between the third resonant cavity 113 and the fourth resonant cavity 114 such that a capacitive coupling in which an E-field predominantly acts is performed. As described above, a coupling groove that is deeper than the resonance grooves 131 to 136 is formed in the prior art to allow capacitive coupling between the resonance cavities. However, if the coupling groove is formed, the ceramic waveguide filter may be damaged. There was a problem with this rising. Accordingly, in the present embodiment, instead of the coupling groove, a coupling hole 140 passing through the other surface is formed from one surface of the ceramic block 100 to prevent the risk of damage to the ceramic waveguide filter.
다만 세라믹 블록(100)을 관통하는 홀을 형성하는 것만으로는 캐패시티브 커플링이 이루어지지 않는다. 이에 도 3에 도시된 바와 같이 커플링 홀(140)의 내측면에 금속층(160)이 형성되지만, 커플링 홀(140)의 내측면에 형성되는 금속층(160)은 기지정된 슬롯 영역을 제외하여 형성됨으로써, 캐패시티브 커플링이 이루어지도록 한다.However, capacitive coupling is not performed only by forming a hole passing through the ceramic block 100 . Accordingly, as shown in FIG. 3 , the metal layer 160 is formed on the inner surface of the coupling hole 140 , but the metal layer 160 formed on the inner surface of the coupling hole 140 is formed on the inner surface of the coupling hole 140 , except for a predetermined slot area. By being formed, a capacitive coupling is achieved.
도시하지 않았으나 세라믹 웨이브가이드 필터는 세라믹 블록(100)의 외부면과 그리고 다수의 관통 격벽(121, 122) 및 다수의 공진 홈(131 ~ 136) 각각의 내측면에 금속층(160)이 형성된다. 금속층(160)은 도금, 증착, 스퍼터링 등의 금속화 공정을 적용하여 형성될 수 있다. 통상적으로 필터, 웨이브가이드 같은 RF 장비에는 손실을 최소화하기 위해, 도전 소재 중에서 전기 전도도가 뛰어난 은(Ag)을 사용되지만, 내식성과 같은 특성 향상을 위해 은 이외의 도전 소재를 이용할 수도 있다.Although not shown, in the ceramic waveguide filter, a metal layer 160 is formed on the outer surface of the ceramic block 100 and on the inner surface of each of the plurality of through partition walls 121 and 122 and the plurality of resonance grooves 131 to 136 . The metal layer 160 may be formed by applying a metallization process such as plating, deposition, or sputtering. Typically, in order to minimize losses in RF equipment such as filters and waveguides, silver (Ag), which has excellent electrical conductivity among conductive materials, is used, but conductive materials other than silver may be used to improve properties such as corrosion resistance.
그리고 세라믹 웨이브가이드 필터의 튜닝 작업이 요구되는 경우, 다수의 관통 격벽(121, 122)의 내측면에 형성된 금속층(160)의 두께를 그라인딩 등의 방식으로 조절하여 튜닝을 수행할 수 있다.In addition, when a tuning operation of the ceramic waveguide filter is required, the tuning may be performed by adjusting the thickness of the metal layer 160 formed on the inner surface of the plurality of through partition walls 121 and 122 by grinding or the like.
이와 유사하게 본 실시예에서는 커플링 홀(140)의 내측면에도 금속층을 형성한다. 다만 도 3에서와 같이 커플링 홀(140)의 내측면의 기지정된 링(ring) 형태의 슬롯(143)에 대응하는 일부 영역에는 금속층이 형성되지 않는다. 여기서 금속층이 형성되지 않은 슬롯(143)은 제3 및 제4 공진 캐비티 사이에 전계(E-field)가 우세하게 작용하는 캐패시티브 커플링이 이루지도록 한다.Similarly, in the present embodiment, a metal layer is also formed on the inner surface of the coupling hole 140 . However, as shown in FIG. 3 , a metal layer is not formed in a portion of the inner surface of the coupling hole 140 corresponding to a predetermined ring-shaped slot 143 . Here, the slot 143 in which the metal layer is not formed allows capacitive coupling between the third and fourth resonant cavities in which an E-field predominantly acts.
커플링 홀(140)은 균일한 폭으로 세라믹 블록(100)을 관통하도록 형성될 수도 있다. 그러나 커플링 홀(140)은 슬롯(143)을 형성하기 용이하도록, 세라믹 블록(100)의 일면으로부터 타면 방향으로 직경이 점차로 감소(또는 증가)하는 원뿔 형태의 홀로 형성될 수 있다. 커플링 홀(140)은 도 3에 도시된 바와 같이, 세라믹 블록(100)의 일면으로부터 타면 방향으로 기지정된 깊이까지의 제1 영역(141)에서는 직경이 점차로 감소하는 원뿔 형태로 형성되고, 이후 타면까지의 제2 영역(142)에서는 균일한 직경을 갖는 원 기둥 형태로 형성될 수도 있으나, 세라믹 블록(100)의 일면으로부터 타면까지 직경이 점차로 감소하는 원뿔 형태로 형성될 수도 있다.The coupling hole 140 may be formed to pass through the ceramic block 100 with a uniform width. However, the coupling hole 140 may be formed as a cone-shaped hole having a diameter gradually decreasing (or increasing) in the direction from one surface to the other surface of the ceramic block 100 to facilitate the formation of the slot 143 . As shown in FIG. 3 , the coupling hole 140 is formed in a cone shape with a diameter gradually decreasing in the first region 141 from one surface of the ceramic block 100 to a predetermined depth in the direction of the other surface, and then In the second region 142 up to the other surface, it may be formed in a cylindrical shape having a uniform diameter, or may be formed in a cone shape having a diameter gradually decreasing from one surface to the other surface of the ceramic block 100 .
슬롯(143)은 커플링 홀(140)의 내측면에 금속층(160)이 형성할 때, 슬롯(143)에 해당하는 영역이 제외되도록 하여 형성될 수도 있다. 그러나 제조 공정의 측면에서는 커플링 홀(140)의 내측면 전체에 금속층(160)을 우선 형성하고, 이후 링 형태의 슬롯(143)에 해당하는 영역에 형성된 금속층을 제거하는 것이 더욱 효율적이다.When the metal layer 160 is formed on the inner surface of the coupling hole 140 , the slot 143 may be formed such that an area corresponding to the slot 143 is excluded. However, in terms of the manufacturing process, it is more efficient to first form the metal layer 160 on the entire inner surface of the coupling hole 140 , and then remove the metal layer formed in the region corresponding to the ring-shaped slot 143 .
그러나 커플링 홀(140)이 균일한 폭으로 형성되면, 슬롯(143)에 대응하는 영역에 형성된 금속층을 제거하기 어렵다. 이에 본 실시예에서는 커플링 홀(140)을 원뿔 형태로 형성함으로써, 직경이 큰 방향에서 용이하게 금속층을 제거하는 가공을 수행할 수 있도록 한다.However, when the coupling hole 140 is formed to have a uniform width, it is difficult to remove the metal layer formed in the region corresponding to the slot 143 . Accordingly, in the present embodiment, by forming the coupling hole 140 in a conical shape, it is possible to easily remove the metal layer in a direction with a large diameter.
또한 커플링 홀(140)에서 형성되는 슬롯(143)의 위치는 스퓨리어스 모드를 조절하기 위해 조절될 수 있다. 상기한 바와 같이 커플링 홀(140)의 내측면에 슬롯(143)이 형성되는 경우, 슬롯(143)이 형성되는 위치, 즉 슬롯(143)의 폭과 세라믹 블록(100)의 일면 또는 타면으로부터 슬롯(143)이 형성되는 높이에 따라 스퓨리어스 모드를 조절할 수 있게 된다. 따라서 슬롯(143)의 위치를 조절하여 스퓨리어스 모드를 기존 커플링 홈 구조보다 더 저대역으로 이동시킬 수 있고, BPF 의 감쇄량이 증가되어 저대역 스퓨리어스 모드를 더 억압시키는 것이 가능하다. 그러므로 기존에 커플링 홈의 공진에 의한 스퓨리어스 모드 보다 레벨이 감소되어, 저대역 저지대역 특성 개선이 가능하다.In addition, the position of the slot 143 formed in the coupling hole 140 may be adjusted to adjust the spurious mode. When the slot 143 is formed on the inner surface of the coupling hole 140 as described above, from the position where the slot 143 is formed, that is, the width of the slot 143 and one or the other surface of the ceramic block 100 . It is possible to adjust the spurious mode according to the height at which the slot 143 is formed. Accordingly, by adjusting the position of the slot 143, the spurious mode can be moved to a lower band than the conventional coupling groove structure, and the attenuation amount of the BPF is increased to further suppress the low-band spurious mode. Therefore, the level is reduced compared to the conventional spurious mode due to the resonance of the coupling groove, so that it is possible to improve the low-band stopband characteristics.
뿐만 아니라 슬롯(143)의 두께를 조절하여 커플링 값을 조절할 수 있다. 즉 제3 및 제4 공진 캐비티(113, 114) 사이에 이루어지는 캐패시티브 커플링의 커플링 레벨을 조절할 수 있다.In addition, the coupling value may be adjusted by adjusting the thickness of the slot 143 . That is, the coupling level of the capacitive coupling formed between the third and fourth resonant cavities 113 and 114 may be adjusted.
상기한 바와 같이 커플링 홀(140)의 형상이 원뿔 형태로 형성되는 경우, 슬롯(143)이 형성되는 위치와 슬롯(143)의 두께를 용이하게 조절할 수 있다.As described above, when the shape of the coupling hole 140 is formed in a conical shape, the position at which the slot 143 is formed and the thickness of the slot 143 can be easily adjusted.
슬롯(143)은 도 3의 (a)에 도시된 바와 같이, 커플링 홀(140)의 내측면에 형성된 금속층(160)의 일부만 제거하여 형성될 수 있다. 그러나 비록 슬롯(143)을 형성하기 용이하도록 커플링 홀(140)이 원뿔 형태로 형성될지라도, 커플링 홀(140)에서 금속층(160)만을 제거하는 가공을 수행하는 것은 정밀한 가공을 필요로 한다. 이에 도 3의 (b)에서는 엔드밀(End-mil) 등의 장비를 이용하여 원통형으로 커플링 홀(140)의 내측면을 절삭함으로써, 슬롯(143)을 용이하게 형성한 결과를 나타낸다. 즉 커플링 홀(140)의 내측면에 형성된 금속층(160) 뿐만 아니라 세라믹 블록(100)의 일부까지 함께 절삭하여 요구되는 두께와 위치에 슬롯(143)을 매우 용이하게 형성할 수 있다.The slot 143 may be formed by removing only a portion of the metal layer 160 formed on the inner surface of the coupling hole 140 , as shown in FIG. 3A . However, even though the coupling hole 140 is formed in a conical shape to facilitate the formation of the slot 143 , performing processing to remove only the metal layer 160 from the coupling hole 140 requires precise processing. . Accordingly, FIG. 3B shows the result of easily forming the slot 143 by cutting the inner surface of the coupling hole 140 in a cylindrical shape using equipment such as an end-mil. That is, not only the metal layer 160 formed on the inner surface of the coupling hole 140 , but also a part of the ceramic block 100 can be cut together to form the slot 143 at a required thickness and position very easily.
상기에서는 일예로 커플링 홀(140)이 제3 및 제4 공진 캐비티(113, 114) 사이에 형성되는 경우를 도시하였으나, 커플링 홀(140)은 다른 공진 캐비티 사이에 형성될 수 있다. 다른 예로 커플링 홀(140)은 제2 및 제5 공진 캐비티(112, 115) 사이에 형성되어 제2 공진 캐비티(112)와 제5 공진 캐비티(115)에서 캐패시티브 크로스 커플링이 이루어지도록 할 수도 있다.In the above description, as an example, a case in which the coupling hole 140 is formed between the third and fourth resonant cavities 113 and 114 is illustrated, but the coupling hole 140 may be formed between other resonant cavities. As another example, the coupling hole 140 is formed between the second and fifth resonant cavities 112 and 115 so that capacitive cross coupling is performed in the second and fifth resonant cavities 112 and 115 . You may.
만일 전송 영점(Transmission-Zero)을 제공하기 위해 크로스 커플링을 이용하는 경우, 인덕티브 크로스 커플링은 세라믹 웨이브가이드 필터의 통과 대역보다 높은 주파수에서 전송 영점을 발생시키는 반면, 캐패시티브 크로스 커플링은 통과 대역보다 낮은 주파수에서 전송 영점을 발생시켜 세라믹 웨이브가이드 필터의 감쇄 특성을 향상시킬 수 있다.If cross-coupling is used to provide transmission-zero, inductive cross-coupling generates transmission zero at frequencies higher than the passband of the ceramic waveguide filter, whereas capacitive cross-coupling It is possible to improve the attenuation characteristics of the ceramic waveguide filter by generating the transmission zero at a frequency lower than the passband.
또한 상기에서는 커플링 홀(140)이 원뿔 형태로 형성되는 것으로 설명하였으나, 커플링 홀(140)의 형상은 원뿔 형태에 한정되지 않고 다양하게 형성될 수 있다.Also, although it has been described in the above that the coupling hole 140 is formed in a conical shape, the shape of the coupling hole 140 is not limited to the conical shape and may be formed in various ways.
도 4는 본 발명의 다른 실시예에 따른 세라믹 웨이브가이드 필터의 단면도를 나타낸다.4 is a cross-sectional view of a ceramic waveguide filter according to another embodiment of the present invention.
도 4에서도 도 3에서와 마찬가지로 (a)는 커플링 홀(240)의 내측면에 형성된 금속층(260)만을 제거하여 슬롯(243)을 형성한 경우를 도시하였으며, (b)는 가공의 편의를 위해, 엔드밀 등의 장비를 이용하여 원 기둥형태로 금속층(260)과 세라믹 블록(200)의 일부 영역을 절삭하여 슬롯(243)을 형성한 경우를 도시하였다.In Fig. 4, as in Fig. 3, (a) shows a case in which only the metal layer 260 formed on the inner surface of the coupling hole 240 is removed to form the slot 243, (b) is for the convenience of processing. For this purpose, a case in which a slot 243 is formed by cutting a portion of the metal layer 260 and the ceramic block 200 in a cylindrical shape using equipment such as an end mill is illustrated.
도 4에서는 커플링 홀(240)이 세라믹 블록(200)의 중심을 기준으로 하부(241)와 상부(242)가 세라믹 블록(200)의 일면 및 타면 양면 방향으로 점차 직경이 증가되는 형태로서, 2개의 원뿔의 첨부가 서로 마주하는 형태로 형성된 경우를 도시하였다. 즉 커플링 홀(240)이 중심에서 상부(242) 및 하부(241) 방향으로 진행하면서 홀의 직경이 점차로 증가되는 구조로 형성되었다.In FIG. 4, the coupling hole 240 has a lower portion 241 and an upper portion 242 with respect to the center of the ceramic block 200, and the diameter is gradually increased in both directions of one surface and the other surface of the ceramic block 200, A case in which the attachments of two cones are formed to face each other is illustrated. That is, the coupling hole 240 is formed in a structure in which the diameter of the hole is gradually increased while proceeding from the center toward the upper portion 242 and the lower portion 241 .
도 4에서와 같이, 커플링 홀(240)이 2개의 원뿔의 첨부가 서로 마주하는 형태로 형성되는 경우, 커플링 홀(240)의 상부(242)와 하부(241)에 2개의 슬롯(243)이 형성될 수 있다. 커플링 홀(240)의 내측면에 2개의 슬롯(243)이 형성되므로, 스퓨리어스 모드가 형성되는 주파수 대역과 캐패시티브 커플링 레벨을 더욱 정밀하게 조절할 수 있다.As shown in FIG. 4 , when the coupling hole 240 is formed in a shape in which attachments of two cones face each other, two slots 243 in the upper part 242 and the lower part 241 of the coupling hole 240 . ) can be formed. Since the two slots 243 are formed on the inner surface of the coupling hole 240 , the frequency band in which the spurious mode is formed and the capacitive coupling level can be more precisely adjusted.
도 5 내지 도 9는 본 발명의 또 다른 실시예에 따른 세라믹 웨이브가이드 필터의 단면도를 나타낸다.5 to 9 are cross-sectional views of a ceramic waveguide filter according to another embodiment of the present invention.
도 5는 도 4에서와 마찬가지로 커플링 홀(340)이 중심에서 외측 방향으로 갈수록 직경이 점차로 증가되는 형태로 형성될 수 있다. 다만 도 4에서는 커플링 홀(340)의 상부(342) 및 하부(341)에 각각 슬롯(343)이 형성된 반면, 도 5에서는 커플링 홀(340)의 중심에 하나의 슬롯(343)이 형성된다. 커플링 홀(340)이 도 5에서와 같이 중심에서 상대적으로 작은 직경을 갖고 외측 방향으로 갈수록 직경이 점차 증가되는 형태로 형성되며, 커플링 홀(340)의 중심에 하나의 슬롯(343)을 형성하고자 하는 경우, 커플링 홀(340)의 중심을 관통하여 절삭하는 한번의 가공으로 용이하게 슬롯(343)을 형성할 수 있다. 그리고 절삭하는 직경에 따라 슬롯의 두께가 용이하게 조절될 수 있다.In FIG. 5 , as in FIG. 4 , the coupling hole 340 may be formed to have a diameter gradually increasing from the center toward the outside. However, in FIG. 4 , slots 343 are formed in the upper 342 and lower 341 of the coupling hole 340 , respectively, whereas in FIG. 5 , one slot 343 is formed in the center of the coupling hole 340 . do. As shown in FIG. 5 , the coupling hole 340 has a relatively small diameter at the center and gradually increases in diameter toward the outside, and one slot 343 is formed in the center of the coupling hole 340 . When forming, the slot 343 can be easily formed by one-time machining of cutting through the center of the coupling hole 340 . And the thickness of the slot can be easily adjusted according to the cutting diameter.
도 6에서는 커플링 홀(440)이 세라믹 블록(400)의 일면 및 타면 방향, 즉 커플링 홀(440)의 외측이 중심에서보다 큰 직경을 갖는 원통형으로 형성되고, 도 5에서와 유사하게 커플링 홀(440)의 중심에 하나의 슬롯(443)이 형성되는 경우를 도시하였다. 즉 균일 직경의 원통형으로 형성된 커플링 홀(440)의 중심이 돌출된 형태로 형성될 수 있다.In FIG. 6 , the coupling hole 440 is formed in a cylindrical shape having a larger diameter than the center in the direction of one surface and the other surface of the ceramic block 400 , that is, the outside of the coupling hole 440 , similarly to FIG. 5 . A case in which one slot 443 is formed in the center of the ring hole 440 is illustrated. That is, the center of the coupling hole 440 formed in a cylindrical shape having a uniform diameter may be formed in a protruding shape.
커플링 홀(440)의 외측이 원통형으로 형성되므로, 커플링 홀(440)을 용이하게 형성할 수 있다. 그리고 도 5에서와 마찬가지로 커플링 홀(440)의 중심을 관통하여 절삭하는 한번의 가공으로 용이하게 슬롯(443)을 형성할 수 있다.Since the outer side of the coupling hole 440 is formed in a cylindrical shape, the coupling hole 440 can be easily formed. In addition, as in FIG. 5 , the slot 443 can be easily formed by cutting through the center of the coupling hole 440 in one operation.
도 7은 도 6과 동일하게 커플링 홀(540)의 외측이 중심보다 큰 직경을 갖는 원통형으로 형성되지만, 도 4와 유사하게 커플링 홀(540)의 중심과 상부(542) 및 하부(541)의 경계 각각에 슬롯(543)이 형성된다. 즉 커플링 홀(540)에는 2개의 슬롯(543)이 형성된다. 즉 슬롯(543)은 커플링 홀(540)에서 상부(542) 및 하부(541) 내측면에 형성될 수도 있으나 도 7과 같이 중심과 상부(542) 및 하부(541)의 경계에 형성될 수도 있다.In FIG. 7 , the outer side of the coupling hole 540 is formed in a cylindrical shape having a larger diameter than the center as in FIG. 6 , but similarly to FIG. 4 , the center and upper 542 and lower 541 of the coupling hole 540 . ), a slot 543 is formed at each boundary. That is, two slots 543 are formed in the coupling hole 540 . That is, the slot 543 may be formed on the inner surface of the upper part 542 and the lower part 541 in the coupling hole 540 , but may be formed at the boundary between the center and the upper part 542 and the lower part 541 as shown in FIG. 7 . have.
도 8의 (a)에서도 도 7에서와 마찬가지로 커플링 홀(640)의 외측이 중심보다 큰 직경을 갖는 원통형으로 형성되고, 2개의 슬롯(643, 644)이 중심과 상부(642) 및 하부(641)의 경계에 형성되지만, 도 7에서는 2개의 슬롯(543)이 중심과 상부(542) 및 하부(541)의 경계면의 사이 내측에 형성되는 반면, 도 8의 (a)에서는 2개의 슬롯(643, 644)이 중심과 상부(642) 및 하부(641)의 경계면에서 중심에 인접한 영역에 형성된다. 이는 도 7과 같이 2개의 슬롯(543)이 중심과 상부(542) 및 하부(541)의 경계면의 사이 내측에 형성되어야 하는 경우, 가공이 용이하지 않을 수 있기 때문이다.In (a) of FIG. 8, as in FIG. 7, the outer side of the coupling hole 640 is formed in a cylindrical shape having a larger diameter than the center, and two slots 643 and 644 have a center and an upper portion 642 and a lower portion ( 641), but in FIG. 7, two slots 543 are formed inside between the center and the interface of upper 542 and lower 541, whereas in FIG. 8(a), two slots ( 643 and 644 are formed in a region adjacent to the center at the interface between the center and the upper portion 642 and the lower portion 641 . This is because, as shown in FIG. 7 , when the two slots 543 are to be formed on the inside between the center and the interface between the upper part 542 and the lower part 541 , processing may not be easy.
그러나 도 8의 (a)와 같이 슬롯(643, 644)이 중심과 상부(642) 및 하부(641)의 경계면에서 중심에 인접한 모서리에 형성되어야 하는 경우, 도 8의 (b)와 같이 중심에 인접한 모서리를 함께 절삭 가공하는 방식으로 용이하게 슬롯(643)을 형성할 수 있다. 그리고 2개의 슬롯(643, 644)은 도 8의 (a)에 도시된 바와 같이 서로 다른 두께로 형성될 수 있다.However, when the slots 643 and 644 are to be formed in the corners adjacent to the center at the interface between the center and the upper 642 and lower 641 as shown in (a) of FIG. 8, in the center as shown in (b) of FIG. The slots 643 can be easily formed by cutting adjacent edges together. In addition, the two slots 643 and 644 may be formed to have different thicknesses as shown in FIG. 8A .
도 9는 커플링 홀(740)에서 상부(742)와 중심은 균일한 직경을 갖는 반면, 하부(741)는 중심보다 큰 직경을 갖는 원통형으로 형성되는 경우를 도시하였다. 이와 같이 커플링 홀(740)은 상부(742) 또는 하부(741) 중 하나만 큰 직경을 갖는 구조로 형성될 수 있으며, 이 경우에도 슬롯(743)은 직경이 증가되는 경계에서 모서리를 함께 절삭 가공하는 방식으로 용이하게 형성될 수 있다.9 illustrates a case in which the upper portion 742 and the center of the coupling hole 740 have a uniform diameter, while the lower portion 741 is formed in a cylindrical shape having a larger diameter than the center. In this way, the coupling hole 740 may be formed in a structure having a large diameter of only one of the upper 742 and the lower 741 , and even in this case, the slot 743 is cut with edges at the boundary where the diameter is increased. It can be easily formed in this way.
도 10은 본 발명의 일 실시예에 따른 세라믹 웨이브가이드 필터의 제조 방법을 나타낸다.10 shows a method of manufacturing a ceramic waveguide filter according to an embodiment of the present invention.
도 1 내지 도 9를 참조하여, 도 10의 세라믹 웨이브가이드 필터의 제조 방법을 설명하면, 우선 미리 지정된 필터링해야 하는 주파수 대역과 필터링 특성에 따라 세라믹 블록(100)을 제조한다(S10). 여기서 세라믹 블록(100)은 결정된 주파수 대역에 따라 크기 및 형태가 결정되어 제조될 수 있다.A method of manufacturing the ceramic waveguide filter of FIG. 10 will be described with reference to FIGS. 1 to 9 . First, the ceramic block 100 is manufactured according to a predetermined filtering frequency band and filtering characteristics ( S10 ). Here, the ceramic block 100 may be manufactured by determining the size and shape according to the determined frequency band.
그리고 필터링해야 하는 주파수 대역과 공진 홈의 형성 여부에 따라 미리 지정된 패턴으로 세라믹 블록의 일면과 타면을 관통하는 다수의 관통 격벽(121, 122)을 형성하여 세라믹 블록(100)의 구획을 다수개로 구분함으로써 다수의 공진 캐비티(111 ~ 116)를 구현한다(S20). 여기서 관통 격벽(121, 122)을 형성할 때 공진 홈(131 ~ 136)의 형성 여부를 함께 고려하는 것은 공진 홈이 형성되는 경우, 공진 캐비티(111 ~ 116)의 크기가 더 작게 구현되도록 다수의 관통 격벽(121, 122)이 형성되어야 하기 때문이다.In addition, a plurality of through partition walls 121 and 122 penetrating one surface and the other surface of the ceramic block are formed in a predetermined pattern according to the frequency band to be filtered and whether a resonance groove is formed, thereby dividing the ceramic block 100 into a plurality of partitions. By doing so, a plurality of resonant cavities 111 to 116 are implemented (S20). Here, when the through partition walls 121 and 122 are formed, it is important to consider whether or not the resonance grooves 131 to 136 are formed. When the resonance grooves are formed, the plurality of resonance cavities 111 to 116 are implemented to be smaller in size. This is because the through partition walls 121 and 122 must be formed.
다수의 관통 격벽(121, 122)이 형성되어 다수의 공진 캐비티(111 ~ 116)가 구현되면, 다수의 공진 캐비티(111 ~ 116) 각각의 영역 내에 공진 홈(131 ~ 136)을 형성할 수 있다(S30). 여기서 공진 홈(131 ~ 136)은 다수의 공진 캐비티(111 ~ 116) 각각 영역의 중앙 위치에 형성될 수 있다. 그러나 경우에 따라서 공진 홈(131 ~ 136)은 형성되지 않을 수도 있다.When the plurality of through partition walls 121 and 122 are formed to implement the plurality of resonance cavities 111 to 116, the resonance grooves 131 to 136 can be formed in each region of the plurality of resonance cavities 111 to 116. (S30). Here, the resonance grooves 131 to 136 may be formed at a central position of each of the plurality of resonance cavities 111 to 116 . However, in some cases, the resonance grooves 131 to 136 may not be formed.
이후, 다수의 공진 캐비티(111 ~ 116) 중 기지정된 서로 인접한 공진 캐비티 사이에 캐패시티브 커플링이 이루어지도록 커플링 홀(140)을 형성한다(S40). 여기서 커플링 홀(140)은 세라믹 블록의 일면에서 타면을 균일한 직경을 갖고 관통하는 원통형으로 형성될 수 있으나, 세라믹 블록의 일면으로부터 타면 방향으로 점차 직경이 증가하는 원뿔 형태 또는 세라믹 블록의 일면 방향 비해 타면 방향에서의 직경이 급격하게 증가하는 형태로 형성될 수 있다. 또한 커플링 홀(140)의 중심에서 외측 방향으로 점차로 직경이 증가하는 형태 또는 중심에 비해 외측 직경이 급격하게 증가하는 형태로 형성될 수도 있다.Thereafter, a coupling hole 140 is formed such that a capacitive coupling is performed between predetermined resonant cavities adjacent to each other among the plurality of resonant cavities 111 to 116 ( S40 ). Here, the coupling hole 140 may be formed in a cylindrical shape having a uniform diameter and penetrating the other surface from one surface of the ceramic block, but has a conical shape that gradually increases in diameter from one surface of the ceramic block to the other surface, or one surface direction of the ceramic block. Compared to that, it may be formed in a shape in which a diameter in the direction of the other surface is rapidly increased. In addition, the coupling hole 140 may be formed in a form in which the diameter gradually increases in the outward direction or in a form in which the outer diameter increases rapidly compared to the center.
상기에서는 세라믹 블록(100)이 우선 제조된 이후, 제조된 세라믹 블록(100)에 다수의 관통 격벽(121, 122)과 공진 홈(131 ~ 136) 및 적어도 하나의 커플링 홀(140)이 형성되는 것으로 설명하였으나, 이는 이해의 편의를 위해 세라믹 블록에 대한 절삭 가공 방식을 적용하여 세라믹 웨이브가이드 필터를 제조하는 경우를 가정한 경우를 나타낸 것이다. 그러나 금형을 이용하여 세라믹 웨이브가이드 필터를 제조하는 경우에는 세라믹 블록(100)을 제조하기 위한 금형에 다수의 관통 격벽(121, 122)과 공진 홈(131 ~ 136) 및 적어도 하나의 커플링 홀(140)이 함께 형성되어 일체로 동시에 제조될 수도 있다.In the above, after the ceramic block 100 is first manufactured, a plurality of through partition walls 121 and 122 , resonance grooves 131 to 136 , and at least one coupling hole 140 are formed in the manufactured ceramic block 100 . However, for convenience of understanding, it is assumed that the ceramic waveguide filter is manufactured by applying the cutting method to the ceramic block. However, in the case of manufacturing a ceramic waveguide filter using a mold, a plurality of through partition walls 121 and 122, resonance grooves 131 to 136 and at least one coupling hole ( 140) are formed together and may be integrally manufactured at the same time.
한편 커플링 홀(140)이 형성되면, 세라믹 블록(100)의 외부면과 그리고 다수의 관통 격벽(121, 122)과 다수의 공진 홈(131 ~ 136) 및 커플링 홀(140)의 내측면에 금속층(160)을 형성한다(S50).Meanwhile, when the coupling hole 140 is formed, the outer surface of the ceramic block 100 and the plurality of through partition walls 121 and 122 , the plurality of resonance grooves 131 to 136 , and the inner surface of the coupling hole 140 . A metal layer 160 is formed thereon (S50).
그리고 커플링 홀(140)의 내측면에 기지정된 위치 및 두께의 링 형태로 형성된 금속층(160)을 제거하여 적어도 하나의 슬롯(143)을 형성한다(S60). 여기서 슬롯(143)이 형성되는 위치에 따라 스퓨리어스 모드가 형성되는 주파수 대역이 가변되며, 슬롯(143)이 형성되는 두께에 따라 커플링 홀(140)의 양측의 서로 인접한 공진 캐비티 사이에 이루어지는 캐패시티브 커플링의 커플링 레벨을 조절할 수 있다.Then, at least one slot 143 is formed by removing the metal layer 160 formed in a ring shape with a predetermined position and thickness on the inner surface of the coupling hole 140 ( S60 ). Here, the frequency band in which the spurious mode is formed varies according to the position where the slot 143 is formed, and the capacitor formed between the resonant cavities adjacent to each other on both sides of the coupling hole 140 according to the thickness in which the slot 143 is formed. You can adjust the coupling level of the negative coupling.
슬롯(143)이 형성되면, 다수의 공진 캐비티 중 2개의 공진 캐비티에 입출력 인터페이스(151, 152)를 형성한다(S70). 여기서 입출력 인터페이스(151, 152)는 세라믹 웨이브가이드 필터의 다수의 공진 캐비티가 입력 인터페이스 포트로부터 신호를 입력받고 순차적 커플링되어, 필터링된 신호를 출력 인터페이스 포트로 출력할 수 있도록 다수의 공진 캐비티가 커플링되는 순차에서 양단의 공진 캐비티에 형성될 수 있다.When the slot 143 is formed, the input/ output interfaces 151 and 152 are formed in two resonant cavities among the plurality of resonant cavities (S70). Here, the input/ output interfaces 151 and 152 are coupled so that a plurality of resonant cavities of the ceramic waveguide filter receive a signal from the input interface port and are sequentially coupled to output the filtered signal to the output interface port. It may be formed in the resonant cavities of both ends in the ringing sequence.
도시하지 않았으나, 본 발명에 따른 세라믹 웨이브가이드 필터의 제조 방법은 다수의 공진 홈 내의 형성된 금속층을 그라인딩과 같은 두께를 조절하는 방식으로 다수의 공진 캐비티의 공진 주파수를 조절함으로써, 세라믹 웨이브가이드 필터의 특성을 튜닝하는 단계를 더 포함할 수 있다.Although not shown, the method of manufacturing a ceramic waveguide filter according to the present invention adjusts the resonance frequencies of the plurality of resonant cavities in a manner such as grinding the metal layers formed in the plurality of resonant grooves, thereby controlling the characteristics of the ceramic waveguide filter It may further include the step of tuning.
본 발명에 따른 방법은 컴퓨터에서 실행시키기 위한 매체에 저장된 컴퓨터 프로그램으로 구현될 수 있다. 여기서 컴퓨터 판독가능 매체는 컴퓨터에 의해 액세스 될 수 있는 임의의 가용 매체일 수 있고, 또한 컴퓨터 저장 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함하며, ROM(판독 전용 메모리), RAM(랜덤 액세스 메모리), CD(컴팩트 디스크)-ROM, DVD(디지털 비디오 디스크)-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등을 포함할 수 있다.The method according to the present invention may be implemented as a computer program stored in a medium for execution by a computer. Here, the computer-readable medium may be any available medium that can be accessed by a computer, and may include all computer storage media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data, and read dedicated memory), RAM (Random Access Memory), CD (Compact Disk)-ROM, DVD (Digital Video Disk)-ROM, magnetic tape, floppy disk, optical data storage, and the like.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiment shown in the drawings, which is merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom.
따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.Accordingly, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims.

Claims (20)

  1. 단일 세라믹 블록에서 미리 지정된 패턴에 따라 상기 세라믹 블록의 구획을 구분하도록 상기 세라믹 블록을 관통하여 형성된 다수의 관통 격벽에 의해 정의되는 다수의 공진 캐비티; 및 a plurality of resonant cavities defined by a plurality of through barrier ribs formed through the ceramic block to divide the partitions of the ceramic block according to a predetermined pattern in the single ceramic block; and
    상기 다수의 공진 캐비티 중 적어도 2개의 서로 인접한 공진 캐비티 사이에서 상기 세라믹 블록을 관통하여 형성되고, 내측면에 금속층이 형성되되 기지정된 영역에는 금속층이 형성되지 않은 적어도 하나의 슬롯이 형성되는 적어도 하나의 커플링 홀을 포함하는 세라믹 웨이브가이드 필터.At least one slot is formed through the ceramic block between at least two adjacent resonant cavities among the plurality of resonant cavities, and at least one slot in which a metal layer is formed on an inner surface but no metal layer is formed in a predetermined area. Ceramic waveguide filter with coupling hole.
  2. 제1 항에 있어서, 상기 적어도 하나의 커플링 홀 각각은 According to claim 1, wherein each of the at least one coupling hole is
    상기 세라믹 블록의 일면에서 타면 방향으로 직경이 점차로 증가하는 원뿔 형태로 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed in the form of a cone whose diameter gradually increases from one surface of the ceramic block to the other.
  3. 제1 항에 있어서, 상기 적어도 하나의 커플링 홀 각각은 According to claim 1, wherein each of the at least one coupling hole is
    중심으로부터 상기 세라믹 블록의 일면 및 타면 방향 각각으로 직경이 점차로 증가하는 상부 및 하부 구조로 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed of upper and lower structures whose diameters gradually increase in each of the directions of one and the other surface of the ceramic block from the center.
  4. 제3 항에 있어서, 상기 적어도 하나의 슬롯은 4. The method of claim 3, wherein the at least one slot comprises:
    상기 상부 및 하부 구조가 마주하는 중심에 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed in the center where the upper and lower structures face each other.
  5. 제3 항에 있어서, 상기 적어도 하나의 슬롯은 4. The method of claim 3, wherein the at least one slot comprises:
    상기 상부 및 하부 구조 각각에 적어도 하나씩 형성되는 세라믹 웨이브가이드 필터.At least one ceramic waveguide filter formed in each of the upper and lower structures.
  6. 제1 항에 있어서, 상기 적어도 하나의 커플링 홀 각각은 According to claim 1, wherein each of the at least one coupling hole is
    중심에서 균일한 홀 직경을 갖는 원통형태로 형성되고, 상기 세라믹 블록의 일면 또는 타면 방향 중 적어도 하나의 방향에서 중심보다 큰 균일한 홀 직경을 갖고 원통 형태로 형성되는 상부 또는 하부 구조를 갖는 세라믹 웨이브가이드 필터.A ceramic wave having an upper or lower structure formed in a cylindrical shape having a uniform hole diameter in the center, having a uniform hole diameter larger than the center in at least one direction of one surface or the other surface of the ceramic block, and formed in a cylindrical shape guide filter.
  7. 제6 항에 있어서, 상기 적어도 하나의 슬롯은 7. The method of claim 6, wherein the at least one slot comprises:
    상기 중심에 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed in the center.
  8. 제6 항에 있어서, 상기 적어도 하나의 슬롯은 7. The method of claim 6, wherein the at least one slot comprises:
    상기 중심과 상기 상부 및 상기 하부 구조의 경계면 상에 각각 형성되는 세라믹 웨이브가이드 필터.Ceramic waveguide filters respectively formed on the interface between the center and the upper and lower structures.
  9. 제8 항에 있어서, 상기 적어도 하나의 슬롯은 9. The method of claim 8, wherein the at least one slot comprises:
    상기 중심과 상기 상부 및 상기 하부 구조의 경계면 상에서 상기 중심에 인접한 모서리에 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed at an edge adjacent to the center on a boundary surface between the center and the upper and lower structures.
  10. 제1 항에 있어서, 상기 적어도 하나의 슬롯은 The method of claim 1 , wherein the at least one slot comprises:
    서로 인접한 공진 캐비티 사이에 요구되는 캐패시티브 커플링의 커플링 레벨에 따라 두께가 결정되고, 상기 세라믹 웨이브가이드 필터에 요구되는 스퓨리어스 모드 주파수 대역에 따라 상기 커플링 홀 내에서 형성되는 위치가 결정되는 세라믹 웨이브가이드 필터.The thickness is determined according to the coupling level of the capacitive coupling required between the resonant cavities adjacent to each other, and the position formed in the coupling hole is determined according to the spurious mode frequency band required for the ceramic waveguide filter. Ceramic waveguide filter.
  11. 제1 항에 있어서, 상기 세라믹 웨이브가이드 필터는 The method of claim 1, wherein the ceramic waveguide filter
    상기 관통 격벽에 의해 구분된 상기 다수의 공진 캐비티의 구획 내에 형성되는 다수의 공진 홈; 및 a plurality of resonance grooves formed in a section of the plurality of resonance cavities separated by the through partition wall; and
    상기 다수의 공진 캐비티 중 신호를 입력 및 출력하는 2개의 공진 캐비티에 형성되는 입출력 인터페이스를 더 포함하고, Further comprising an input/output interface formed in two resonant cavities for inputting and outputting signals among the plurality of resonant cavities,
    상기 금속층은 The metal layer is
    상기 세라믹 블록의 외곽, 상기 다수의 관통 격벽 각각의 내측면 및 상기 다수의 공진 홈 각각의 내측면에도 형성되는 세라믹 웨이브가이드 필터.A ceramic waveguide filter formed on the outer side of the ceramic block, an inner surface of each of the plurality of through-walls, and an inner surface of each of the plurality of resonance grooves.
  12. 다수의 공진 캐비티를 정의하기 위해 미리 지정된 패턴에 따라 구획을 구분하도는 다수의 관통 격벽과 상기 다수의 공진 캐비티 중 적어도 2개의 서로 인접한 공진 캐비티 사이에서 적어도 하나의 커플링 홀이 관통하여 형성되는 세라믹 블록을 제조하는 단계; 및 A ceramic formed by passing through a plurality of through partition walls dividing partitions according to a predetermined pattern to define a plurality of resonant cavities and at least one coupling hole between at least two adjacent resonant cavities among the plurality of resonant cavities making a block; and
    상기 적어도 하나의 커플링 홀 각각의 내측면에 기지정된 영역을 제외하여 금속층이 형성하여 적어도 하나의 슬롯을 형성하는 단계를 포함하는 세라믹 웨이브가이드 필터의 제조 방법.and forming at least one slot by forming a metal layer on an inner surface of each of the at least one coupling hole except for a predetermined area.
  13. 제12 항에 있어서, 상기 세라믹 블록을 제조하는 단계는 The method of claim 12, wherein the manufacturing of the ceramic block comprises:
    상기 적어도 하나의 커플링 홀을 상기 세라믹 블록의 일면에서 타면 방향으로 직경이 점차로 증가하는 원뿔 형태로 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter, wherein the at least one coupling hole is formed in a cone shape with a diameter gradually increasing in a direction from one surface to the other surface of the ceramic block.
  14. 제12 항에 있어서, 상기 세라믹 블록을 제조하는 단계는 The method of claim 12, wherein the manufacturing of the ceramic block comprises:
    상기 적어도 하나의 커플링 홀을 중심으로부터 상기 세라믹 블록의 일면 및 타면 방향 각각으로 직경이 점차로 증가하는 상부 및 하부 구조로 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter in which the at least one coupling hole is formed into upper and lower structures in which diameters gradually increase in each of the first and second surfaces of the ceramic block from the center.
  15. 제14 항에 있어서, 상기 적어도 하나의 슬롯을 형성하는 단계는 15. The method of claim 14, wherein forming the at least one slot comprises:
    상기 상부 및 하부 구조가 마주하는 중심에 상기 적어도 하나의 슬롯을 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter in which the at least one slot is formed at a center where the upper and lower structures face each other.
  16. 제14 항에 있어서, 상기 적어도 하나의 슬롯을 형성하는 단계는 15. The method of claim 14, wherein forming the at least one slot comprises:
    상기 상부 및 하부 구조 각각에 적어도 하나의 슬롯을 각각 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter, each of which forms at least one slot in each of the upper and lower structures.
  17. 제12 항에 있어서, 상기 세라믹 블록을 제조하는 단계는 The method of claim 12, wherein the manufacturing of the ceramic block comprises:
    상기 적어도 하나의 커플링 홀 각각의 중심에서 균일한 홀 직경의 원통형태로 형성하고, 상기 세라믹 블록의 일면 또는 타면 방향 중 적어도 하나의 방향에서 중심보다 큰 균일한 홀 직경을 갖는 원통 형태로 상부 또는 하부 구조를 형성하는 갖는 세라믹 웨이브가이드 필터의 제조 방법.Formed in a cylindrical shape with a uniform hole diameter at the center of each of the at least one coupling hole, and having a uniform hole diameter larger than the center in at least one direction of one surface or the other surface of the ceramic block, upper or A method of manufacturing a ceramic waveguide filter having a lower structure.
  18. 제17 항에 있어서, 상기 적어도 하나의 슬롯을 형성하는 단계는 18. The method of claim 17, wherein forming the at least one slot comprises:
    상기 적어도 하나의 커플링 홀의 중심에 적어도 하나의 슬롯을 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter for forming at least one slot in the center of the at least one coupling hole.
  19. 제17 항에 있어서, 상기 적어도 하나의 슬롯을 형성하는 단계는 18. The method of claim 17, wherein forming the at least one slot comprises:
    상기 적어도 하나의 커플링 홀의 중심과 상기 상부 및 상기 하부 구조의 경계면 상에 적어도 하나의 슬롯을 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter, wherein at least one slot is formed on a center of the at least one coupling hole and an interface between the upper and lower structures.
  20. 제19 항에 있어서, 상기 적어도 하나의 슬롯을 형성하는 단계는 20. The method of claim 19, wherein forming the at least one slot comprises:
    상기 적어도 하나의 커플링 홀의 중심과 상기 상부 및 상기 하부 구조의 경계면 상에서 상기 중심에 인접한 모서리에 적어도 하나의 슬롯을 형성하는 세라믹 웨이브가이드 필터의 제조 방법.A method of manufacturing a ceramic waveguide filter, wherein at least one slot is formed at a center of the at least one coupling hole and an edge adjacent to the center on an interface between the upper and lower structures.
PCT/KR2020/017073 2019-12-11 2020-11-27 Ceramic waveguide filter and manufacturing method therefor WO2021118127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080082007.6A CN114762183A (en) 2019-12-11 2020-11-27 Ceramic waveguide filter and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0164682 2019-12-11
KR1020190164682A KR102344664B1 (en) 2019-12-11 2019-12-11 Ceramic Waveguide Filter and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
WO2021118127A1 true WO2021118127A1 (en) 2021-06-17

Family

ID=76330101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017073 WO2021118127A1 (en) 2019-12-11 2020-11-27 Ceramic waveguide filter and manufacturing method therefor

Country Status (3)

Country Link
KR (1) KR102344664B1 (en)
CN (1) CN114762183A (en)
WO (1) WO2021118127A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102614723B1 (en) * 2021-09-08 2023-12-15 주식회사 에이스테크놀로지 Compact Ceramic Waveguide Filter
KR20230132272A (en) 2022-03-08 2023-09-15 주식회사 에이스테크놀로지 Method and Apparatus for Manufacturing Ceramic Waveguide Filter
KR102464571B1 (en) 2022-08-01 2022-11-09 (주)효진오토테크 Waveguoide manufacturing method improvement system
KR20240034324A (en) 2022-09-07 2024-03-14 주식회사 에이스테크놀로지 Compact Ceramic Waveguide Filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041221A1 (en) * 2000-07-17 2002-04-11 Jawad Abdulnour Tunable bandpass filter
KR101605863B1 (en) * 2014-04-01 2016-04-01 주식회사 에이스테크놀로지 Dieletric Resonator Filter
KR20170043826A (en) * 2015-10-14 2017-04-24 주식회사 에이스테크놀로지 Compact rf filter using a dielectric resonator
KR20170108370A (en) * 2016-03-17 2017-09-27 주식회사 에이스테크놀로지 Ceramic Resonator Filter including Coupling Member
KR20180010192A (en) * 2015-05-22 2018-01-30 시티에스 코포레이션 Dielectric waveguide filter with direct coupling and alternating cross coupling

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098303A (en) * 1996-09-25 1998-04-14 Murata Mfg Co Ltd Dielectric filter
US5926079A (en) * 1996-12-05 1999-07-20 Motorola Inc. Ceramic waveguide filter with extracted pole
KR101754278B1 (en) 2016-01-15 2017-07-06 여선구 Tem mode dielectric waveguide resonator and dielectric waveguide filter using the same
KR102259051B1 (en) * 2017-02-16 2021-05-31 후아웨이 테크놀러지 컴퍼니 리미티드 Dielectric filter, transceiver, and base station
CN109461995A (en) * 2018-12-27 2019-03-12 苏州艾福电子通讯有限公司 A kind of waveguide filter using ceramic dielectric
CN109687072B (en) * 2019-01-11 2020-04-21 苏州艾福电子通讯股份有限公司 Filter with a filter element having a plurality of filter elements
CN109546270B (en) * 2019-01-11 2020-07-28 华为技术有限公司 Filter
CN209434356U (en) * 2019-03-21 2019-09-24 中兴通讯股份有限公司 A kind of dielectric filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041221A1 (en) * 2000-07-17 2002-04-11 Jawad Abdulnour Tunable bandpass filter
KR101605863B1 (en) * 2014-04-01 2016-04-01 주식회사 에이스테크놀로지 Dieletric Resonator Filter
KR20180010192A (en) * 2015-05-22 2018-01-30 시티에스 코포레이션 Dielectric waveguide filter with direct coupling and alternating cross coupling
KR20170043826A (en) * 2015-10-14 2017-04-24 주식회사 에이스테크놀로지 Compact rf filter using a dielectric resonator
KR20170108370A (en) * 2016-03-17 2017-09-27 주식회사 에이스테크놀로지 Ceramic Resonator Filter including Coupling Member

Also Published As

Publication number Publication date
CN114762183A (en) 2022-07-15
KR102344664B1 (en) 2021-12-30
KR20210073902A (en) 2021-06-21

Similar Documents

Publication Publication Date Title
WO2021118127A1 (en) Ceramic waveguide filter and manufacturing method therefor
US5926079A (en) Ceramic waveguide filter with extracted pole
CN110265755B (en) Dielectric waveguide filter
KR102241217B1 (en) Ceramic Waveguide Filter and Manufacturing Method Thereof
KR20200062006A (en) Ceramic Waveguide Filter and Manufacturing Method Thereof
WO2009157672A2 (en) Resonator manufacturing method for rf filter and rf filter with the resonator
WO2021060633A1 (en) Dielectric filter
WO2010016745A2 (en) Tunable filter for expanding the tuning range
WO2021034177A1 (en) Low pass filter having transmission zero
WO2023038265A1 (en) Small ceramic waveguide filter
WO2013118938A1 (en) Multi-band pass filter
WO2020054964A1 (en) Ceramic waveguide filter
CN110429364B (en) Filter and filtering loop structure thereof
JPH07235804A (en) Dielectric filter
WO2021056415A1 (en) Ceramic dielectric filter
WO2020111396A1 (en) Ceramic waveguide filter and method for producing same
WO2020111397A1 (en) Ceramic waveguide filter and method for manufacturing same
WO2022092792A1 (en) Ceramic waveguide filter for antenna
CN214411479U (en) Dual-mode dielectric waveguide resonator and combiner based on same
WO2021066365A1 (en) Waveguide integrated substrate and fabricating method thereof
KR20220057445A (en) Ceramic waveguide filter for antenna
CN113258231A (en) Dielectric filter
WO2021040212A1 (en) Waveguide filter
KR102664089B1 (en) Ceramic Waveguide Duplexer
WO2023075296A1 (en) Dielectric waveguide resonator and multi-mode dielectric waveguide resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900577

Country of ref document: EP

Kind code of ref document: A1