WO2020111386A1 - Iron nitride magnetic wire and manufacturing method therefor - Google Patents

Iron nitride magnetic wire and manufacturing method therefor Download PDF

Info

Publication number
WO2020111386A1
WO2020111386A1 PCT/KR2019/001375 KR2019001375W WO2020111386A1 WO 2020111386 A1 WO2020111386 A1 WO 2020111386A1 KR 2019001375 W KR2019001375 W KR 2019001375W WO 2020111386 A1 WO2020111386 A1 WO 2020111386A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic wire
preliminary
manufacturing
temperature
magnetic
Prior art date
Application number
PCT/KR2019/001375
Other languages
French (fr)
Korean (ko)
Inventor
김종렬
좌용호
강민규
이지민
황태연
이규태
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2020111386A1 publication Critical patent/WO2020111386A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0637Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with metals not specified in groups C01B21/0607 - C01B21/0635, other than aluminium, titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/10One-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/42(bi)pyramid-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the name relates to an iron nitride magnetic wire and a manufacturing method thereof, and relates to an iron nitride magnetic wire using a source solution containing Fe and a manufacturing method thereof.
  • Permanent magnets are a key material in industries that are widely used, from large equipment such as generators to small and medium equipment such as motors.
  • permanent magnets used in motors and generators are functional materials that play a key role in converting electrical energy into kinetic energy.
  • Recently, the production and demand of eco-friendly vehicles has rapidly increased due to the importance of replacing petroleum energy and low-carbon green growth, and the increase in the use of these motors has led to high efficiency, light weight, and miniaturization of motors, resulting in an explosive increase in the demand for rare earth permanent magnet materials. .
  • Rare earth-based permanent magnet materials show very high magnetic properties at room temperature, but have reached the theoretical maximum magnetic energy properties, and due to low thermal stability, a rapid decrease in properties occurs as the temperature increases.
  • heavy rare earth elements are added, but due to the unbalanced distribution of rare earth resources and the high price due to resource atomization, the high maximum magnetic energy of reducing or reducing rare earth elements in existing rare earth magnets or containing new rare earth elements Research is being conducted to find permanent magnet materials with enemies.
  • a substrate for example, in the Republic of Korea Patent Publication No. 10-2017-0108468 (application number: 10-2016-0032417, applicant: Yonsei University Industry-University Cooperation Foundation), a substrate, and formed on the substrate, a Bi thin film layer and a Mn thin film layer laminated Disclosed is a non-rare permanent magnet with improved coercive force including a thin film laminate obtained by repeatedly laminating and heat-treating units at least twice or more and a method for manufacturing the same.
  • One technical problem to be solved by the present invention is to provide an iron nitride magnetic wire with improved saturation magnetization value and a method for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide an iron nitride magnetic wire with improved coercive force and a method for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide an iron nitride magnetic wire capable of improving magnetic properties in a simple process and a method of manufacturing the same.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a magnetic wire manufacturing method.
  • the method of manufacturing the magnetic wire is electrospinning a source solution containing Fe to form a first preliminary magnetic wire, and heat-treating the first preliminary magnetic wire at a first temperature to generate Fe oxide.
  • Forming a second preliminary magnetic wire, heat-treating the second preliminary magnetic wire at a second temperature to form a third preliminary magnetic wire with reduced Fe oxide, and the third preliminary magnetic wire Heat-treating at a source gas atmosphere containing nitrogen and a third temperature to form a magnetic wire in which nitrogen is penetrated into the third preliminary magnetic wire,
  • It may include controlling the saturation magnetization value of the magnetic wire by controlling at least one of the first to third temperatures.
  • the first temperature may include more than 600 °C less than 800 °C.
  • a nitrogen atom (atom) decomposed from the source gas is penetrated into the magnetic wire, and the infiltrated nitrogen atom includes bonding with Fe included in the magnetic wire. can do.
  • the saturation magnetization value may be controlled by controlling the flow rate of the source gas provided in the forming of the magnetic wire.
  • the source gas may include that provided at a flow rate of 1.5 L/min or more.
  • the forming of the second preliminary magnetic wire may include performing in one of an atmosphere or an oxygen (O 2 ) atmosphere.
  • the second temperature and the third temperature may include lower than the first temperature.
  • the source gas may include ammonia (NH 3 ).
  • the first temperature may include that the grain size of the magnetic wire increases.
  • the second preliminary magnetic wire may include Fe 2 O 3
  • the third preliminary magnetic wire may include ⁇ -Fe
  • the magnetic wire may include Fe 16 N 2 .
  • the present invention provides a magnetic wire.
  • the magnetic wire includes iron (Fe) and iron nitride (Fe x N y ), but the content of the iron nitride may be higher than the content of the iron. (x,y>0)
  • the iron nitride (Fe x N y ) may include more than 88.7wt%.
  • x may include 16 and y may include 2.
  • a method of manufacturing a magnetic wire comprises: electrospinning a source solution containing Fe to form a first preliminary magnetic wire, and heat-treating the first preliminary magnetic wire at a first temperature to Fe oxide.
  • Forming a second preliminary magnetic wire comprising, heat-treating the second preliminary magnetic wire at a second temperature to form a third preliminary magnetic wire with reduced Fe oxide, and the third preliminary magnetic wire.
  • it may include controlling the saturation magnetization value.
  • the magnetic wire manufacturing method according to the embodiment is a simple method for controlling the temperature of the heat treatment step, and increases the content of the iron nitride (Fe 16 N 2 ) contained in the magnetic wire, thereby improving the saturation magnetization value. I can do it.
  • the magnetic wire according to the embodiment may have a wire shape. In the case of the wire form, as it has a high aspect ratio, it can exhibit a shape magnetic anisotropy effect. Such a shape magnetic anisotropy effect can lead to an improvement in the coercive force.
  • iron nitride (Fe 16 N 2 ) wire having a saturation magnetization value of 176 emu/g or more and a coercive force of 1215 Oe or more, and a method of manufacturing the same can be provided.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a magnetic wire according to an embodiment of the present invention.
  • FIG. 2 is a view showing a magnetic wire manufacturing process according to an embodiment of the present invention.
  • FIG. 3 is a view showing equipment used in the manufacture of a magnetic wire according to an embodiment of the present invention.
  • FIG. 4 is a view showing a nitrogen penetration phenomenon in a method of manufacturing a magnetic wire according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the coercive force of the magnetic wire according to an embodiment of the present invention.
  • FIG. 6 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
  • FIG 7 and 8 are photographs of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Comparative Example 1 and Comparative Example 2 of the present invention.
  • Example 9 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
  • 10 to 12 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
  • FIG. 13 to 15 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the second embodiment of the present invention.
  • 16 to 18 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 3 of the present invention.
  • 19 to 21 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 4 of the present invention.
  • Example 24 is a graph analyzing the components of each of the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
  • 25 and 26 are graphs showing a characteristic change according to the heat treatment temperature of the first preliminary magnetic wire during the manufacturing process of the magnetic wire according to the embodiment of the present invention.
  • FIG. 27 is a graph analyzing the components of the magnetic wires according to Examples 1 to 4 of the present invention.
  • 29 to 32 are graphs showing characteristics of the second preliminary magnetic wire formed during the manufacturing process of the magnetic wires according to Examples 1 to 4 of the present invention.
  • 35 is a graph showing a configuration change according to a flow rate of ammonia gas in a manufacturing process of a magnetic wire according to an embodiment of the present invention.
  • Example 36 is a graph showing magnetic properties of a magnetic wire according to Example 6 of the present invention.
  • a component when referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them.
  • a third component may be interposed between them.
  • the thickness of the films and regions are exaggerated for effective description of the technical content.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment.
  • first component in one embodiment may be referred to as the second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • 'and/or' is used to mean including at least one of the components listed before and after.
  • FIG. 1 is a flow chart illustrating a method of manufacturing a magnetic wire according to an embodiment of the present invention
  • Figure 2 is a view showing a magnetic wire manufacturing process according to an embodiment of the present invention
  • Figure 3 is according to an embodiment of the present invention
  • FIG. 4 is a diagram showing equipment used in the manufacture of a magnetic wire
  • FIG. 4 is a diagram showing a nitrogen infiltration phenomenon in a method of manufacturing a magnetic wire according to an embodiment of the present invention
  • FIG. 5 is a magnetic wire according to an embodiment It is a view for explaining the coercive force of.
  • a source solution containing Fe may be prepared.
  • the source solution may include iron nitrate hexahydrate (Iron(III) nitrate nonahydrate, Fe(NO 3 ) 3 9H 2 O).
  • the source solution may further include a viscous source.
  • the viscous source may include a polymer.
  • the polymer may include at least one of polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN), poly(vinyl acetate) (PVAC), polyvinylbutyral (PVB), poly(vinyl alcohol) (PVA), or polyethylene oxide (PEO). It can contain.
  • the viscous source can provide viscosity to the source solution to control the diameter of the magnetic wire to be described later.
  • the source solution is electrospinned, so that the first preliminary magnetic wire 110 may be formed (S110).
  • the first preliminary magnetic wire 110 may be in a state in which a Fe salt and a polymer (eg, PVP) are mixed.
  • the source solution may be injected into a syringe (10), and the source solution may be radiated using a syringe pump (20).
  • the tip 30 of the syringe has a diameter of 0.05 to 2 mm
  • the syringe tip 30 and the collector 40 to which the preliminary hybrid magnetic fibers are collected are spaced 15 cm apart
  • the syringe pump 20 Can release the source solution at a rate of 0.2 to 0.8 mL/h.
  • the voltage applied for electric radiation may be 16-20 kV.
  • the first preliminary magnetic wire may be formed through the above-described process.
  • the first preliminary magnetic wire 110 may be heat treated at a first temperature. Accordingly, the second preliminary magnetic wire 120 may be formed (S120). In addition, the first preliminary magnetic wire 110 may be heat-treated in one of an atmosphere (air) atmosphere or an oxygen (O 2 ) atmosphere. When the first preliminary magnetic wire 110 is heat-treated at the first temperature, polymers and organic substances included in the first preliminary magnetic wire 110 are removed, and Fe may be oxidized. Accordingly, the second preliminary magnetic wire 120 may include Fe oxide. For example, the second preliminary magnetic wire 120 may include Fe 2 O 3 .
  • the first temperature may be controlled.
  • the first temperature may be different depending on the heat treatment atmosphere of the first preliminary magnetic wire 110. Specifically, when the first preliminary magnetic wire 110 is heat-treated in an oxygen (O 2 ) atmosphere, the first temperature may be controlled to 600°C. In this case, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire to be described later increases, so that the saturation magnetization value of the magnetic wire can be improved. More detailed description will be given later.
  • the first temperature when the first preliminary magnetic wire 110 is heat-treated in an air atmosphere, the first temperature may be controlled to be greater than 600°C and less than 800°C.
  • the content of iron nitride (Fe 16 N 2 ) in the magnetic wire to be described later increases, so that the saturation magnetization value of the magnetic wire can be improved.
  • the first temperature when the first temperature is controlled to 600° C. or less, the removal of organic substances and polymers in the first preliminary magnetic wire 110 is not easily performed, and thus the formation of a magnetic wire described later may not be easy.
  • the first temperature when the first temperature is controlled to 800° C. or higher, a grain size of the magnetic wire to be described later increases, which may cause a problem of forming in a particle shape rather than a wire shape. That is, the magnetic wire to be described later may increase the size of the crystal grains as the first temperature increases, and when the size of the crystal grains exceeds a predetermined size, may exhibit a particle shape. Accordingly, the first temperature may be controlled so that the grain size of the magnetic wire does not exceed a predetermined size.
  • the second preliminary magnetic wire 120 may be heat treated at a second temperature.
  • the second preliminary magnetic wire 120 may be heat treated in a hydrogen (H 2 ) atmosphere. Accordingly, the Fe oxide included in the first preliminary magnetic wire 110 is reduced, and a third preliminary magnetic wire 130 may be formed (S130 ).
  • the third preliminary magnetic wire 130 may include ⁇ -Fe.
  • the second temperature may be controlled.
  • the second temperature may be lower than the first temperature.
  • the second temperature can be controlled to 290 °C.
  • the content of iron nitride (Fe 16 N 2 ) in the magnetic wire to be described later increases, so that the saturation magnetization value of the magnetic wire can be improved.
  • the third preliminary magnetic wire 130 may be heat treated at a third temperature in a source gas atmosphere containing nitrogen. Accordingly, the magnetic wire 200 according to the embodiment may be formed (S140). According to one embodiment, the source gas may include ammonia (NH 3 ).
  • the magnetic wire 200 may include iron nitride (Fe x N y ) in which a nitrogen atom and Fe are bonded.
  • the magnetic wire may include the iron nitride (Fe x N y ), and the iron (Fe) remaining unbound with nitrogen. (x,y>0)
  • the iron nitride (Fe x N y ) may be Fe 16 N 2 .
  • the saturation magnetization value of the magnetic wire may be improved.
  • the content of iron nitride (Fe 16 N 2 ) in the magnetic wire is the first temperature in the step of forming the second preliminary magnetic wire 120, and the third preliminary magnetic wire 130 is formed. It can be increased by controlling the second temperature in the step. That is, as a simple method of controlling the first temperature and the second temperature, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire is increased, so that the saturation magnetization value of the magnetic wire 200 may be improved.
  • the flow rate of the source gas provided to the third preliminary magnetic wire 130 may be controlled.
  • the source gas may be provided at a flow rate of 1.5 L/min or more. Accordingly, the content of the iron nitride (Fe 16 N 2 ) included in the magnetic wire is increased, so that the saturation magnetization value can be improved.
  • the ammonia gas when the ammonia (NH 3 ) gas is provided to the third preliminary magnetic wire 130, due to the temperature and the catalytic effect of the Fe surface, the ammonia gas is a nitrogen atom, as shown in ⁇ Formula 1> below. It can be decomposed into hydrogen atoms. Then, the decomposed nitrogen atom and the hydrogen atom may be formed in a nitrogen molecular state as shown in ⁇ Formula 2> below.
  • the iron nitride (Fe 16 N 2 ) may be formed by combining nitrogen in the atomic state with Fe.
  • a nitrogen atom decomposed from ammonia (NH 3 ) gas a nitrogen molecule is formed over time, and in the case of a nitrogen molecule, it may not be combined with Fe. Accordingly, by increasing the flow rate of the source gas provided to the third preliminary magnetic wire 130 to increase the amount of nitrogen atoms that can be combined with Fe, the magnetic wire 200 includes the The content of iron nitride (Fe 16 N 2 ) can be increased.
  • the flow rate of the source gas exceeds a predetermined flow rate, the amount of nitrogen atoms bound to Fe is saturated, so that the content of the iron fine iron (Fe 16 N 2 ) included in the magnetic wire 200 is It can remain substantially the same.
  • the ammonia (NH 3 ) gas is provided at a flow rate of 1.5 L/min or higher, the content of the iron nitride (Fe 16 N 2 ) included in the magnetic wire 200 is increased to improve the saturation magnetization value. I can do it.
  • the third temperature may be controlled.
  • the third temperature may be lower than the first and second temperatures.
  • the third temperature can be controlled to 160 °C.
  • the content of iron nitride (Fe 16 N 2 ) in the magnetic wire 200 increases, so that the saturation magnetization value of the magnetic wire 200 may be improved.
  • the third preliminary magnetic wire forming step (S130), and the magnetic wire forming step (S140) may be performed in an in-situ process. In this case, formation of contaminants and oxide layers on the surface of the third preliminary magnetic wire can be suppressed. Accordingly, the magnetic wire can be easily formed.
  • iron nitride (Fe 16 N 2 ) nanoparticles were prepared by providing ammonia (NH 3 ) gas to an Fe powder, and in this process, an oxide film was formed on the surfaces of Fe particles to form nitrogen. A problem that penetration of the product is not easily generated may occur.
  • magnetic nanoparticles including iron nitride (Fe 16 N 2 ) as illustrated in FIG. 5, aggregation may occur between particles to reduce surface energy. Such agglutination may cause magnetostain coupling and intergranulae exchange coupling between particles, and may act as a major cause of reducing coercive force.
  • iron nitride (Fe 16 N 2) If the magnetic nanoparticles (particle) containing iron nitride (Fe 16 N 2) exhibits a high saturation magnetization due to inherent material properties, due to specific aggregation particles A problem that the coercive force is lowered may occur. In addition, in the process of manufacturing iron nitride (Fe 16 N 2 ) magnetic nanoparticles, the penetration of nitrogen is not easily generated, and a problem that iron nitride (Fe 16 N 2 ) is not easily formed may occur.
  • the source solution containing Fe is electrospun to form the first preliminary magnetic wire 110, and the first preliminary magnetic wire 110 is formed.
  • the step of forming the magnetic wire 200 may include, but may include controlling a saturation magnetization value by controlling at least one of the first to third temperatures.
  • the magnetic wire manufacturing method is a simple method of controlling the temperature of the heat treatment step, and increases the content of the iron nitride (Fe 16 N 2 ) contained in the magnetic wire 200 to increase the saturation magnetization.
  • the value can be improved.
  • the magnetic wire 200 according to the embodiment may have a wire shape.
  • the wire form as it has a high aspect ratio, it can exhibit a shape magnetic anisotropy effect. Such a shape magnetic anisotropy effect can lead to an improvement in the coercive force.
  • nitrogen penetration can be easily generated, so that the content of iron nitride (Fe 16 N 2 ) can be increased.
  • iron nitride (Fe 16 N 2 ) wire having a saturation magnetization value of 176 emu/g or more and a coercive force of 1215 Oe or more, and a method of manufacturing the same can be provided.
  • Iron(III) nitrate nonahydrate, Fe(NO 3 ) 3 9H 2 O), 1,300,000 molecular weight polyvinylpyrrolidone (PVP), and 6 ml of ethanol were added to 3 ml of deionized water.
  • the source solution was prepared by mixing. At this time, the concentration of PVP was prepared at 3.4 wt% compared to the source solution.
  • the prepared source solution is placed in a syringe for electrospinning, and the solution is continuously pushed at a rate of 0.4 mL/h using a syringe pump. At this time, the tip portion of the syringe and the collector where the emitted wire is collected are spaced at 15 cm intervals, and a high voltage of 18 kV is applied to radiate the source solution by a potential difference. Thus, a first preliminary magnetic wire was produced.
  • the first preliminary magnetic wire was collected in an alumina (Al 2 O 3 ) crucible and heat-treated at an air temperature of 600° C. for 1 hour. In this process, polymers and organic substances in the first preliminary magnetic wire were decomposed to produce a second preliminary magnetic wire.
  • alumina Al 2 O 3
  • the second preliminary magnetic wire was heat-treated at a temperature of 320° C. in a hydrogen (H 2 ) atmosphere. In this process, Fe oxide in the second preliminary magnetic wire was reduced to produce a third preliminary magnetic wire.
  • the third preliminary magnetic wire was heat-treated at a temperature of 160°C in an ammonia (NH 3 ) gas atmosphere.
  • NH 3 ammonia
  • nitrogen atoms decomposed from the ammonia gas penetrated into the third preliminary magnetic wire to form Fe 16 N 2 iron nitride.
  • a magnetic wire according to Example 1 including Fe 16 N 2 iron nitride and Fe was prepared.
  • Example 2 Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. Thus, a magnetic wire according to Example 2 was produced.
  • Example 3 Prepared by the manufacturing method of the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 800°C. Thus, a magnetic wire according to Example 3 was produced.
  • Example 4 Prepared by the manufacturing method of the magnetic wire according to Example 1, the temperature of heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 900°C. Thus, a magnetic wire according to Example 4 was produced.
  • Example 5 Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. In addition, the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 305°C. Thus, a magnetic wire according to Example 5 was produced.
  • Example 6 Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. In addition, the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 290°C. Thus, a magnetic wire according to Example 6 was produced.
  • the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C.
  • the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 290°C.
  • the heat treatment temperature was controlled to 150°C.
  • the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C.
  • the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 290°C.
  • the heat treatment temperature was controlled to 140°C.
  • Example 9 Prepared by the manufacturing method of the magnetic wire according to Example 1, the conditions of heat treatment in the process of manufacturing the second preliminary magnetic wire were controlled in an oxygen (O 2 ) atmosphere. Thus, a magnetic wire according to Example 9 was produced.
  • Example 10 Prepared by the manufacturing method of the magnetic wire according to Example 1, the conditions of heat treatment in the process of manufacturing the second preliminary magnetic wire were controlled in an oxygen (O 2 ) atmosphere, and the heat treatment temperature was controlled at 700°C. Thus, a magnetic wire according to Example 10 was produced.
  • the second preliminary magnetic wire was controlled in an oxygen (O 2 ) atmosphere, and the heat treatment temperature was controlled to 800° C. under conditions of heat treatment in the process of manufacturing.
  • O 2 oxygen
  • the heat treatment temperature was controlled to 800° C. under conditions of heat treatment in the process of manufacturing.
  • Example 12 Prepared by the manufacturing method of the magnetic wire according to Example 1, the conditions of heat treatment in the process of manufacturing the second preliminary magnetic wire were controlled in an oxygen (O 2 ) atmosphere, and the heat treatment temperature was controlled at 900°C. Thus, a magnetic wire according to Example 12 was produced.
  • the concentration of PVP in the process of preparing the source solution was controlled to be 2.1 wt% compared to the source solution.
  • citric acid at a concentration of 0.5 M was further added.
  • Example 1 3.4 wt% Air 600°C 320°C 160°C
  • Example 2 3.4 wt% Air 700°C 320°C 160°C
  • Example 3 3.4 wt% Air 800°C 320°C 160°C
  • Example 4 3.4 wt% Air 900°C 320°C 160°C
  • Example 5 3.4 wt% Air 700°C 305°C 160°C
  • Example 6 3.4 wt% Air 700°C 290°C 160°C
  • Example 7 3.4 wt% Air 700°C 290°C 150°C
  • Example 8 3.4 wt% Air 700°C 290°C 140°C
  • Example 9 3.4 wt% Oxygen (O 2 ) 600°C 320°C 160°C
  • Example 10 3.4 wt% Oxygen (O 2 ) 700°C 320°C 160°C
  • Example 11 3.4 wt%
  • FIG. 6 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
  • Example 1 a magnetic wire according to Example 1 was prepared, but a first preliminary magnetic wire formed through electrospinning of the source solution during the manufacturing process of the magnetic wire was photographed by SEM (Scanning Electron Microscope). As can be seen from FIG. 6, it was confirmed that the first preliminary magnetic wire has a wire shape.
  • FIG 7 and 8 are photographs of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Comparative Example 1 and Comparative Example 2 of the present invention.
  • Example 9 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
  • the magnetic wire according to Example 2 was prepared, but the first preliminary magnetic wire formed through electrospinning of the source solution during the manufacturing process of the magnetic wire was SEM photographed.
  • 9(a) and 9(b) show photographs of different magnifications.
  • the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Example 2 was formed in a wire shape having a constant thickness without forming a bead.
  • 10 to 12 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
  • the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire are all formed in the form of a wire.
  • the prepared magnetic wire had a diameter of 100 to 300 nm, and a length of 10 ⁇ m or more.
  • FIG. 13 to 15 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the second embodiment of the present invention.
  • the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire are all formed in the form of wires.
  • the prepared magnetic wire had a diameter of 100 to 300 nm, and a length of 10 ⁇ m or more.
  • 16 to 18 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 3 of the present invention.
  • the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire are all formed in the form of a wire.
  • the prepared magnetic wire had a diameter of 100 to 300 nm, and a length of 10 ⁇ m or more.
  • 19 to 21 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 4 of the present invention.
  • the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire formed during the process of manufacturing the magnetic wire according to Example 4 are all exhibiting coarsening of particles. I could confirm. In addition, it was confirmed that the magnetic wire according to Example 4 was formed closer to the particle shape than the wire shape.
  • Crystallite sizes of the magnetic wires according to Examples 1 to 4 identified through FIGS. 10 to 21 are summarized through Table 2 below.
  • the first pre-heating temperature of the magnetic wire is 600°C, 700°C, 800°C, and As it was increased to 900°C, it was confirmed that the particle size of the magnetic wire finally formed increased. In addition, when the heat treatment temperature of the first preliminary magnetic wire exceeds 800°C, it was confirmed that the final formed magnetic wire is formed closer to the particle shape than the wire shape.
  • Example 24 is a graph analyzing the components of each of the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
  • the second preliminary magnetic wire contains Fe 2 O 3, that is, Fe oxide.
  • Fe 3 O 3 contained reduced Fe in the case of the third preliminary magnetic wire.
  • FIG. 24(c) it was confirmed that in the case of the magnetic wire, Fe 16 N 2 containing nitrogen (N) atoms bonded to Fe was included. However, in the case of the magnetic wire, it was confirmed that not only Fe 16 N 2 but also Fe was included.
  • 25 and 26 are graphs showing a characteristic change according to the heat treatment temperature of the first preliminary magnetic wire during the manufacturing process of the magnetic wire according to the embodiment of the present invention.
  • a magnetic wire is manufactured according to a manufacturing process of a magnetic wire according to an embodiment of the present invention, but the heating temperature of the first preliminary magnetic wire is 0°C to 1000°C at a heating rate of 10°C/min.
  • the magnetic wire thus formed was subjected to TG-DTA (Thermogravimetry-Differential Thermal Analysis) and the results are shown.
  • the concentration of PVP in the source solution used in the manufacturing process is 3.4 wt%.
  • the first preliminary magnetic wire by changing the heat treatment temperature to 0 ⁇ 1000 °C magnetic wire is formed Only 3 times, it was confirmed that a significant change in weight occurred.
  • the first weight change occurs at 100°C, which is believed to occur as moisture in the first pre-magnetic wire evaporates.
  • the second weight change occurs at a portion of 200°C to 250°C, which is judged to occur as organic matter and PVP in the first preliminary magnetic wire are removed.
  • the third weight change occurs at 300°C to 400°C, which is thought to be caused by the removal of residual PVP in the first preliminary magnetic wire and decomposition of NO 3 in the third preliminary magnetic wire.
  • FIG. 27 is a graph analyzing the components of the magnetic wires according to Examples 1 to 4 of the present invention.
  • the magnetic wires according to Examples 1 to 4 were composed of Fe 16 N 2 and Fe.
  • the magnetic wires according to Examples 9 to 12 were also confirmed to be composed of Fe 16 N 2 and Fe. Further, it was confirmed that the magnetic wire according to the ninth embodiment, in which the first preliminary magnetic wire was heat-treated at a temperature of 600° C., had the highest Fe 16 N 2 content.
  • 29 to 32 are graphs showing characteristics of the second preliminary magnetic wire formed during the manufacturing process of the magnetic wires according to Examples 1 to 4 of the present invention.
  • the intensity (CPS) according to 2-Theta (deg.) is measured, and 2 The crystallite size of the preliminary magnetic wire was calculated.
  • the grain size was calculated by using Scherrer's equation to broaden the peaks shown in each graph.
  • the second preliminary magnetic wires formed during the manufacturing process of the magnetic wires according to Examples 1 to 4 were 180 ⁇ , 290 ⁇ , 314 ⁇ , and 329 ⁇ in diameter, respectively. .
  • Example 33 2-Theta (deg. for each of the magnetic wires according to Example 2 (reduction temperature 320°C), Example 5 (reduction temperature 305°C), and Example 6 (reduction temperature 290°C). ) Intensity (arb.units) according to the measured components were analyzed. As can be seen in FIG. 33, it was confirmed that the magnetic wire according to Example 6, in which the second preliminary magnetic wire was reduced at a temperature of 290° C., had the highest Fe 16 N 2 content of 88.7 wt%.
  • Example 6 2-Theta (deg. for each of the magnetic wires according to Example 6 (nitride temperature 160°C), Example 7 (nitride temperature 150°C), and Example 8 (nitride temperature 140°C). ) Intensity (arb.units) according to the measured components were analyzed. As can be seen in FIG. 34, it was confirmed that the magnetic wire according to Example 6, in which the third preliminary magnetic wire was nitrided at a temperature of 160° C., had the highest Fe 16 N 2 content of 86.2 wt%.
  • 35 is a graph showing a configuration change according to a flow rate of ammonia gas in a manufacturing process of a magnetic wire according to an embodiment of the present invention.
  • a magnetic wire is manufactured according to the manufacturing process of the magnetic wire according to Example 2, but the flow rate of ammonia gas provided in the heat treatment process of the third preliminary wire is 0.5 L/min, 1.0 L/min, And 1.5 L/min, and analyzed the components of the magnetic wire prepared according to each.
  • the flow rate of ammonia gas provided in the heat treatment process of the third preliminary wire is 0.5 L/min, 1.0 L/min, And 1.5 L/min, and analyzed the components of the magnetic wire prepared according to each.
  • the flow rate of ammonia gas provided in the heat treatment process of the third preliminary wire is 0.5 L/min, 1.0 L/min, And 1.5 L/min
  • nitrogen atoms decomposed from ammonia gas are formed of nitrogen molecules over time, and nitrogen molecules cannot be penetrated into the third preliminary magnetic wire, so that Fe 16 N 2 iron nitride cannot be formed. Is judged. That is, it can be seen that the penetration into the nitrogen atom is the third spare magnetic wire Fe 16 N 2 iron nitride is formed, 1.5 L / min flow rate at least ammonia gas has to be provided, the iron nitride Fe 16 N 2 that is easily formed.
  • Example 36 is a graph showing magnetic properties of a magnetic wire according to Example 6 of the present invention.
  • the magnetic properties of the magnetic wire according to Example 6 were measured by measuring the intensity (arb.units) according to Applied Filed(Oe).
  • the magnetic properties measured through FIG. 36 are summarized in ⁇ Table 5> below.
  • the magnetic wire according to Example 6 exhibited a high saturation magnetization value of 176 emu/g or higher and a high coercive force of 1215 Oe or higher.
  • the iron nitride magnetic nanowire according to an embodiment of the present invention can be used in various industrial fields such as permanent magnets, electric motors, sensors, and automobiles.

Abstract

A method for manufacturing a magnetic wire is provided. The method for manufacturing a magnetic wire can comprise the steps of: forming a first preliminary magnetic wire by electrospinning a source solution comprising Fe; forming a second preliminary magnetic wire comprising Fe oxide by performing heat treatment on the first preliminary magnetic wire at a first temperature; performing heat treatment on the second preliminary magnetic wire at a second temperature, thereby forming a third preliminary magnetic wire in which Fe oxide is reduced; and performing, at a third temperature, heat treatment on the third preliminary magnetic wire in a source gas atmosphere comprising nitrogen, thereby forming a magnetic wire in which nitrogen penetrates the third preliminary magnetic wire.

Description

질화철 자성 와이어 및 그 제조방법Iron nitride magnetic wire and its manufacturing method
명은 질화철 자성 와이어 및 그 제조방법에 관한 것으로서, Fe를 포함하는 소스 용액을 이용한 질화철 자성 와이어 및 그 제조방법에 관련된 것이다.The name relates to an iron nitride magnetic wire and a manufacturing method thereof, and relates to an iron nitride magnetic wire using a source solution containing Fe and a manufacturing method thereof.
영구자석은 발전기와 같은 대형 기기부터 모터와 같은 중소형 기기까지 널리 사용되는 산업분야의 핵심 소재이다. 특히 모터 및 발전기에 사용되는 영구자석은 전기에너지를 운동에너지로 변환하는데 핵심적인 역할을 수행하는 기능성 소재이다. 최근 석유에너지 대체와 저탄소 녹색성장의 중요성 증가로 친환경 자동차의 생산 및 수요가 급증하고 있으며 이러한 모터의 사용량 증가는 모터의 고효율화, 경량화 및 소형화로 이어져, 희토류계 영구자석 소재의 폭발적인 수요 증가가 발생되었다. Permanent magnets are a key material in industries that are widely used, from large equipment such as generators to small and medium equipment such as motors. In particular, permanent magnets used in motors and generators are functional materials that play a key role in converting electrical energy into kinetic energy. Recently, the production and demand of eco-friendly vehicles has rapidly increased due to the importance of replacing petroleum energy and low-carbon green growth, and the increase in the use of these motors has led to high efficiency, light weight, and miniaturization of motors, resulting in an explosive increase in the demand for rare earth permanent magnet materials. .
희토류계 영구자석 소재는 상온에서 매우 높은 자성특성을 나타내나 이론적 최대자기에너지적 특성에 다다랐으며 낮은 열적 안정성으로 인해 온도가 증가함에 따라 급격한 특성 저하가 일어난다. 이러한 단점을 극복하기 위해 중희토류 원소를 첨가하지만 희토류 자원의 불균형 분포 및 자원무기화로 인한 높은 가격으로 인해 기존 희토류계 자석에서 중희토류 원소를 저감하거나 희토류 원소를 포함하지 않는 새로운 조성의 높은 최대자기에너지적을 가지는 영구자석 소재를 찾는 연구가 이루어지고 있다. Rare earth-based permanent magnet materials show very high magnetic properties at room temperature, but have reached the theoretical maximum magnetic energy properties, and due to low thermal stability, a rapid decrease in properties occurs as the temperature increases. To overcome these drawbacks, heavy rare earth elements are added, but due to the unbalanced distribution of rare earth resources and the high price due to resource atomization, the high maximum magnetic energy of reducing or reducing rare earth elements in existing rare earth magnets or containing new rare earth elements Research is being conducted to find permanent magnet materials with enemies.
예를 들어, 대한민국 특허 공개 번호 10-2017-0108468(출원번호: 10-2016-0032417, 출원인: 연세대학교 산학협력단)에는, 기판, 및 상기 기판 상에 형성되고, Bi 박막층 및 Mn 박막층으로 이루어진 적층 단위를 적어도 2회 이 상 반복 적층 및 열처리한 박막 적층체를 포함하는 보자력이 향상된 비희토류 영구자석 및 이의 제조방법이 개시되어 있다.For example, in the Republic of Korea Patent Publication No. 10-2017-0108468 (application number: 10-2016-0032417, applicant: Yonsei University Industry-University Cooperation Foundation), a substrate, and formed on the substrate, a Bi thin film layer and a Mn thin film layer laminated Disclosed is a non-rare permanent magnet with improved coercive force including a thin film laminate obtained by repeatedly laminating and heat-treating units at least twice or more and a method for manufacturing the same.
본 발명이 해결하고자 하는 일 기술적 과제는, 포화자화 값이 향상된 질화철 자성 와이어 및 그 제조방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide an iron nitride magnetic wire with improved saturation magnetization value and a method for manufacturing the same.
본 발명이 해결하고자 하는 다른 기술적 과제는, 보자력이 향상된 질화철 자성 와이어 및 그 제조방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide an iron nitride magnetic wire with improved coercive force and a method for manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 간단한 공정으로 자성 특성을 향상시킬 수 있는 질화철 자성 와이어 및 그 제조방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide an iron nitride magnetic wire capable of improving magnetic properties in a simple process and a method of manufacturing the same.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다. The technical problem to be solved by the present invention is not limited to the above.
상술된 기술적 과제들을 해결하기 위해 본 발명은 자성 와이어 제조방법을 제공한다. In order to solve the above-described technical problems, the present invention provides a magnetic wire manufacturing method.
일 실시 예에 따르면, 상기 자성 와이어 제조방법은 Fe를 포함하는 소스 용액을 전기 방사하여, 제1 예비 자성 와이어를 형성하는 단계, 상기 제1 예비 자성 와이어를 제1 온도에서 열처리하여, Fe 산화물을 포함하는 제2 예비 자성 와이어를 형성하는 단계, 상기 제2 예비 자성 와이어를 제2 온도에서 열처리하여, 상기 Fe 산화물이 환원된 제3 예비 자성 와이어를 형성하는 단계, 및 상기 제3 예비 자성 와이어를, 질소를 포함하는 소스 가스 분위기 및 제3 온도에서 열처리하여, 질소가 상기 제3 예비 자성 와이어 내로 침투된 자성 와이어를 형성하는 단계를 포함하되, According to one embodiment, the method of manufacturing the magnetic wire is electrospinning a source solution containing Fe to form a first preliminary magnetic wire, and heat-treating the first preliminary magnetic wire at a first temperature to generate Fe oxide. Forming a second preliminary magnetic wire, heat-treating the second preliminary magnetic wire at a second temperature to form a third preliminary magnetic wire with reduced Fe oxide, and the third preliminary magnetic wire , Heat-treating at a source gas atmosphere containing nitrogen and a third temperature to form a magnetic wire in which nitrogen is penetrated into the third preliminary magnetic wire,
상기 제1 내지 제3 온도 중 적어도 어느 하나의 온도를 제어하여, 상기 자성 와이어의 포화자화(saturation magnetization) 값을 제어하는 것을 포함할 수 있다. It may include controlling the saturation magnetization value of the magnetic wire by controlling at least one of the first to third temperatures.
일 실시 예에 따르면, 상기 제1 온도는 600℃ 초과 800℃ 미만인 것을 포함할 수 있다. According to one embodiment, the first temperature may include more than 600 ℃ less than 800 ℃.
일 실시 예에 따르면, 상기 자성 와이어 형성 단계에서, 상기 소스 가스로부터 분해된 질소 원자(atom)가 상기 자성 와이어 내로 침투되고, 침투된 상기 질소 원자는 상기 자성 와이어가 포함하는 Fe와 결합되는 것을 포함할 수 있다. According to an embodiment, in the forming of the magnetic wire, a nitrogen atom (atom) decomposed from the source gas is penetrated into the magnetic wire, and the infiltrated nitrogen atom includes bonding with Fe included in the magnetic wire. can do.
일 실시 예에 따르면, 상기 자성 와이어 형성 단계에서 제공되는 상기 소스 가스의 유량을 제어하여, 상기 포화자화 값을 제어하는 것을 포함할 수 있다. According to an embodiment, the saturation magnetization value may be controlled by controlling the flow rate of the source gas provided in the forming of the magnetic wire.
일 실시 예에 따르면, 상기 소스 가스는, 1.5 L/min 이상의 유속으로 제공되는 것을 포함할 수 있다. According to one embodiment, the source gas may include that provided at a flow rate of 1.5 L/min or more.
일 실시 예에 따르면, 상기 제2 예비 자성 와이어 형성 단계는, 대기(air) 분위기 또는 산소(O2) 분위기 중 어느 하나의 분위기에서 수행되는 것을 포함할 수 있다. According to an embodiment, the forming of the second preliminary magnetic wire may include performing in one of an atmosphere or an oxygen (O 2 ) atmosphere.
일 실시 예에 따르면, 상기 제2 온도 및 제3 온도는 상기 제1 온도 보다 낮은 것을 포함할 수 있다. According to an embodiment, the second temperature and the third temperature may include lower than the first temperature.
일 실시 예에 따르면, 상기 소스 가스는, 암모니아(NH3)를 포함할 수 있다. According to an embodiment, the source gas may include ammonia (NH 3 ).
일 실시 예에 따르면, 상기 제1 온도가 증가함에 따라, 상기 자성 와이어의 결정립 크기가 증가하는 것을 포함할 수 있다. According to one embodiment, as the first temperature increases, it may include that the grain size of the magnetic wire increases.
일 실시 예에 따르면, 상기 제2 예비 자성 와이어는 Fe2O3를 포함하고, 상기 제3 예비 자성 와이어는 α-Fe를 포함하고, 상기 자성 와이어는 Fe16N2를 포함할 수 있다. According to an embodiment, the second preliminary magnetic wire may include Fe 2 O 3 , the third preliminary magnetic wire may include α-Fe, and the magnetic wire may include Fe 16 N 2 .
상술된 기술적 과제들을 해결하기 위해 본 발명은 자성 와이어를 제공한다. In order to solve the above-described technical problems, the present invention provides a magnetic wire.
일 실시 예에 따르면, 상기 자성 와이어는 철(Fe), 및 질화철(FexNy)을 포함하되, 상기 질화철의 함량이 상기 철의 함량보다 높을 수 있다. (x,y>0)According to an embodiment, the magnetic wire includes iron (Fe) and iron nitride (Fe x N y ), but the content of the iron nitride may be higher than the content of the iron. (x,y>0)
일 실시 예에 따르면, 상기 상기 질화철(FexNy)은 88.7wt% 이상인 것을 포함할 수 있다. According to one embodiment, the iron nitride (Fe x N y ) may include more than 88.7wt%.
일 실시 예에 따르면, x는 16이고, y는 2인 것을 포함할 수 있다. According to an embodiment, x may include 16 and y may include 2.
본 발명의 실시 예에 따른 자성 와이어 제조방법은, Fe를 포함하는 소스 용액을 전기 방사하여, 제1 예비 자성 와이어를 형성하는 단계, 상기 제1 예비 자성 와이어를 제1 온도에서 열처리하여, Fe 산화물을 포함하는 제2 예비 자성 와이어를 형성하는 단계, 상기 제2 예비 자성 와이어를 제2 온도에서 열처리하여, Fe 산화물이 환원된 제3 예비 자성 와이어를 형성하는 단계, 및 상기 제3 예비 자성 와이어를, 질소를 포함하는 소스 가스 분위기 및 제3 온도에서 열처리하여, 질소가 상기 제3 예비 자성 와이어 내로 침투된 자성 와이어를 형성하는 단계를 포함하되, 상기 제1 내지 제3 온도 중 적어도 어느 하나의 온도를 제어하여, 포화자화(saturation magnetization) 값을 제어하는 것을 포함할 수 있다. A method of manufacturing a magnetic wire according to an embodiment of the present invention comprises: electrospinning a source solution containing Fe to form a first preliminary magnetic wire, and heat-treating the first preliminary magnetic wire at a first temperature to Fe oxide. Forming a second preliminary magnetic wire comprising, heat-treating the second preliminary magnetic wire at a second temperature to form a third preliminary magnetic wire with reduced Fe oxide, and the third preliminary magnetic wire. , Heat-treating at a source gas atmosphere containing nitrogen and a third temperature to form a magnetic wire in which nitrogen is penetrated into the third preliminary magnetic wire, wherein at least one of the first to third temperatures is included. By controlling, it may include controlling the saturation magnetization value.
즉, 상기 실시 예에 따른 자성 와이어 제조방법은, 열처리 단계의 온도를 제어하는 간단한 방법으로, 상기 자성 와이어가 포함하는 상기 질화철(Fe16N2)의 함량을 증가시켜, 포화자화 값을 향상시킬 수 있다. 또한, 상기 실시 예에 따른 자성 와이어는, 와이어의 형태를 가질 수 있다. 와이어 형태의 경우 높은 종횡비(aspect ratio)를 가짐에 따라, 형상자기이방성 효과를 나타낼 수 있다. 이러한 형상자기이방성 효과는 보자력의 향상으로 이어질 수 있다. 결과적으로, 176 emu/g 이상의 포화자화 값 및 1215Oe 이상의 보자력을 갖는 질화철(Fe16N2) 와이어 및 그 제조방법이 제공될 수 있다. That is, the magnetic wire manufacturing method according to the embodiment is a simple method for controlling the temperature of the heat treatment step, and increases the content of the iron nitride (Fe 16 N 2 ) contained in the magnetic wire, thereby improving the saturation magnetization value. I can do it. In addition, the magnetic wire according to the embodiment may have a wire shape. In the case of the wire form, as it has a high aspect ratio, it can exhibit a shape magnetic anisotropy effect. Such a shape magnetic anisotropy effect can lead to an improvement in the coercive force. As a result, iron nitride (Fe 16 N 2 ) wire having a saturation magnetization value of 176 emu/g or more and a coercive force of 1215 Oe or more, and a method of manufacturing the same can be provided.
도 1은 본 발명의 실시 예에 따른 자성 와이어의 제조방법을 설명하는 순서도이다. 1 is a flowchart illustrating a method of manufacturing a magnetic wire according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 자성 와이어 제조공정을 나타내는 도면이다. 2 is a view showing a magnetic wire manufacturing process according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 자성 와이어의 제조에 사용되는 장비를 나타내는 도면이다. 3 is a view showing equipment used in the manufacture of a magnetic wire according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 자성 와이어의 제조방법 중 질소의 침투 현상을 나타내는 도면이다. 4 is a view showing a nitrogen penetration phenomenon in a method of manufacturing a magnetic wire according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 자성 와이어의 보자력을 설명하기 위한 도면이다. 5 is a view for explaining the coercive force of the magnetic wire according to an embodiment of the present invention.
도 6은 본 발명의 실시 예 1에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어를 촬영한 사진이다. 6 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
도 7 및 도 8은 본 발명의 비교 예 1 및 비교 예 2에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어를 촬영한 사진이다. 7 and 8 are photographs of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Comparative Example 1 and Comparative Example 2 of the present invention.
도 9는 본 발명의 실시 예 2에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어를 촬영한 사진이다. 9 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
도 10 내지 도 12는 본 발명의 실시 예 1에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 10 to 12 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
도 13 내지 도 15는 본 발명의 실시 예 2에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 13 to 15 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the second embodiment of the present invention.
도 16 내지 도 18은 본 발명의 실시 예 3에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 16 to 18 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 3 of the present invention.
도 19 내지 도 21은 본 발명의 실시 예 4에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 19 to 21 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 4 of the present invention.
도 22 및 도 23은 본 발명의 실시 예 9 내지 12에 따른 자성 와이어를 촬영한 사진이다. 22 and 23 are photographs of magnetic wires according to Examples 9 to 12 of the present invention.
도 24는 본 발명의 실시 예 2에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어 각각의 성분을 분석한 그래프이다. 24 is a graph analyzing the components of each of the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
도 25 및 도 26은 본 발명의 실시 예에 따른 자성 와이어의 제조공정 중 제1 예비 자성 와이어의 열처리 온도에 따른 특성 변화를 나타내는 그래프이다. 25 and 26 are graphs showing a characteristic change according to the heat treatment temperature of the first preliminary magnetic wire during the manufacturing process of the magnetic wire according to the embodiment of the present invention.
도 27은 본 발명의 실시 예 1 내지 4에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 27 is a graph analyzing the components of the magnetic wires according to Examples 1 to 4 of the present invention.
도 28은 본 발명의 실시 예 9 내지 12에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 28 is a graph analyzing the components of the magnetic wires according to Examples 9 to 12 of the present invention.
도 29 내지 도 32는 본 발명의 실시 예 1 내지 4에 따른 자성 와이어의 제조공정 중 형성된 제2 예비 자성 와이어의 특성을 나타내는 그래프이다. 29 to 32 are graphs showing characteristics of the second preliminary magnetic wire formed during the manufacturing process of the magnetic wires according to Examples 1 to 4 of the present invention.
도 33은 본 발명의 실시 예 2, 5, 및 6에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 33 is a graph analyzing components of magnetic wires according to Examples 2, 5, and 6 of the present invention.
도 34는 본 발명의 실시 예 6, 7, 및 8에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 34 is a graph analyzing the components of the magnetic wires according to Examples 6, 7, and 8 of the present invention.
도 35는 본 발명의 실시 예에 따른 자성 와이어의 제조공정에서 암모니아 가스의 유량에 따른 구성 변화를 나타내는 그래프이다. 35 is a graph showing a configuration change according to a flow rate of ammonia gas in a manufacturing process of a magnetic wire according to an embodiment of the present invention.
도 36은 본 발명의 실시 예 6에 따른 자성 와이어의 자성 특성을 나타내는 그래프이다. 36 is a graph showing magnetic properties of a magnetic wire according to Example 6 of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the films and regions are exaggerated for effective description of the technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, in this specification,'and/or' is used to mean including at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.In the specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. Also, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, elements, or combinations thereof described in the specification, and one or more other features, numbers, steps, or configurations. It should not be understood as excluding the possibility of the presence or addition of elements or combinations thereof. In addition, in the present specification, “connecting” is used in a sense to include both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
도 1은 본 발명의 실시 예에 따른 자성 와이어의 제조방법을 설명하는 순서도이고, 도 2는 본 발명의 실시 예에 따른 자성 와이어 제조공정을 나타내는 도면이고, 도 3은 본 발명의 실시 예에 따른 자성 와이어의 제조에 사용되는 장비를 나타내는 도면이고, 도 4는 본 발명의 실시 예에 따른 자성 와이어의 제조방법 중 질소의 침투 현상을 나타내는 도면이고, 도 5는 본 발명의 실시 예에 따른 자성 와이어의 보자력을 설명하기 위한 도면이다. 1 is a flow chart illustrating a method of manufacturing a magnetic wire according to an embodiment of the present invention, Figure 2 is a view showing a magnetic wire manufacturing process according to an embodiment of the present invention, Figure 3 is according to an embodiment of the present invention FIG. 4 is a diagram showing equipment used in the manufacture of a magnetic wire, and FIG. 4 is a diagram showing a nitrogen infiltration phenomenon in a method of manufacturing a magnetic wire according to an embodiment of the present invention, and FIG. 5 is a magnetic wire according to an embodiment It is a view for explaining the coercive force of.
도 1 내지 도 3을 참조하면, Fe를 포함하는 소스 용액이 준비될 수 있다. 일 실시 예에 따르면, 상기 소스 용액은 철 질산 9수화물(Iron(III) nitrate nonahydrate, Fe(NO3)39H2O)를 포함할 수 있다. 상기 소스 용액은, 점성 소스를 더 포함할 수 있다. 일 실시 예에 따르면, 상기 점성 소스는, 고분자를 포함할 수 있다. 예를 들어, 상기 고분자는 PVP(polyvinylpyrrolidone), PAN(Polyacrylonitrile), PVAC(Poly(vinyl acetate)), PVB(Polyvinylbutyral), PVA(Poly(vinyl alcohol)) 또는 PEO(Polyethylene oxide) 중 적어도 어느 하나를 포함할 수 있다. 상기 점성 소스는, 상기 소스 용액에 점성을 부여하여, 후술되는 자성 와이어의 직경을 제어할 수 있다. 1 to 3, a source solution containing Fe may be prepared. According to one embodiment, the source solution may include iron nitrate hexahydrate (Iron(III) nitrate nonahydrate, Fe(NO 3 ) 3 9H 2 O). The source solution may further include a viscous source. According to one embodiment, the viscous source may include a polymer. For example, the polymer may include at least one of polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN), poly(vinyl acetate) (PVAC), polyvinylbutyral (PVB), poly(vinyl alcohol) (PVA), or polyethylene oxide (PEO). It can contain. The viscous source can provide viscosity to the source solution to control the diameter of the magnetic wire to be described later.
상기 소스 용액이 전기 방사되어, 제1 예비 자성 와이어(110)가 형성될 수 있다(S110). 상기 제1 예비 자성 와이어(110)는 Fe 염(salt) 및 고분자(예를 들어, PVP) 등이 혼합된 상태일 수 있다.The source solution is electrospinned, so that the first preliminary magnetic wire 110 may be formed (S110). The first preliminary magnetic wire 110 may be in a state in which a Fe salt and a polymer (eg, PVP) are mixed.
보다 구체적으로, 주사기(syringe, 10) 안에 상기 소스 용액을 주입하고, 주사기 펌프(20)를 이용하여 상기 소스 용액을 방사할 수 있다. 이 경우, 상기 주사기의 팁(30)은 직경이 0.05~2mm 이고, 상기 주사기 팁(30)과 상기 예비 하이브리드 자성 섬유가 포집되는 포집기(collector, 40)는 15cm 이격되고, 상기 주사기 펌프(20)는 0.2~0.8 mL/h의 속도로 상기 소스 용액을 방사할 수 있다. 또한, 전기 방사를 위해 인가되는 전압은 16~20 kV일 수 있다. 상술된 공정을 통해 상기 제1 예비 자성 와이어가 형성될 수 있다.More specifically, the source solution may be injected into a syringe (10), and the source solution may be radiated using a syringe pump (20). In this case, the tip 30 of the syringe has a diameter of 0.05 to 2 mm, the syringe tip 30 and the collector 40 to which the preliminary hybrid magnetic fibers are collected are spaced 15 cm apart, and the syringe pump 20 Can release the source solution at a rate of 0.2 to 0.8 mL/h. In addition, the voltage applied for electric radiation may be 16-20 kV. The first preliminary magnetic wire may be formed through the above-described process.
상기 제1 예비 자성 와이어(110)는 제1 온도에서 열처리 될 수 있다. 이에 따라, 제2 예비 자성 와이어(120)가 형성될 수 있다(S120). 또한, 상기 제1 예비 자성 와이어(110)는 대기(air) 분위기 또는 산소(O2) 분위기 중 어느 하나의 분위기에서 열처리될 수 있다. 상기 제1 예비 자성 와이어(110)가 상기 제1 온도에서 열처리되는 경우, 상기 제1 예비 자성 와이어(110)가 포함하는 고분자 및 유기물들이 제거되고, Fe는 산화될 수 있다. 이에 따라, 상기 제2 예비 자성 와이어(120)는 Fe 산화물을 포함할 수 있다. 예를 들어, 상기 제2 예비 자성 와이어(120)는 Fe2O3를 포함할 수 있다. The first preliminary magnetic wire 110 may be heat treated at a first temperature. Accordingly, the second preliminary magnetic wire 120 may be formed (S120). In addition, the first preliminary magnetic wire 110 may be heat-treated in one of an atmosphere (air) atmosphere or an oxygen (O 2 ) atmosphere. When the first preliminary magnetic wire 110 is heat-treated at the first temperature, polymers and organic substances included in the first preliminary magnetic wire 110 are removed, and Fe may be oxidized. Accordingly, the second preliminary magnetic wire 120 may include Fe oxide. For example, the second preliminary magnetic wire 120 may include Fe 2 O 3 .
일 실시 예에 따르면, 상기 제1 온도는 제어될 수 있다. 또한, 상기 제1 온도는 상기 제1 예비 자성 와이어(110)의 열처리 분위기에 따라 다를 수 있다. 구체적으로, 상기 제1 예비 자성 와이어(110)가 산소(O2) 분위기에서 열처리되는 경우, 상기 제1 온도는 600℃로 제어될 수 있다. 이 경우, 후술되는 자성 와이어 내에서 질화철(Fe16N2)의 함량이 증가하여, 자성 와이어의 포화자화 값이 향상될 수 있다. 보다 구체적인 설명은 후술된다. According to one embodiment, the first temperature may be controlled. In addition, the first temperature may be different depending on the heat treatment atmosphere of the first preliminary magnetic wire 110. Specifically, when the first preliminary magnetic wire 110 is heat-treated in an oxygen (O 2 ) atmosphere, the first temperature may be controlled to 600°C. In this case, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire to be described later increases, so that the saturation magnetization value of the magnetic wire can be improved. More detailed description will be given later.
반면, 상기 제1 예비 자성 와이어(110)가 대기(air) 분위기에서 열처리되는 경우, 상기 제1 온도는 600℃ 초과 800℃ 미만으로 제어될 수 있다. 이 경우, 후술되는 자성 와이어 내에서 질화철(Fe16N2)의 함량이 증가하여, 자성 와이어의 포화자화(saturation magnetization) 값이 향상될 수 있다. On the other hand, when the first preliminary magnetic wire 110 is heat-treated in an air atmosphere, the first temperature may be controlled to be greater than 600°C and less than 800°C. In this case, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire to be described later increases, so that the saturation magnetization value of the magnetic wire can be improved.
이와 달리, 상기 제1 온도가 600℃ 이하로 제어되는 경우, 상기 제1 예비 자성 와이어(110) 내의 유기물 및 고분자의 제거가 용이하게 이루어지지 않아, 후술되는 자성 와이어의 형성이 용이하지 않을 수 있다. 또한, 상기 제1 온도가 800℃ 이상으로 제어되는 경우, 후술되는 자성 와이어의 결정립 크기가 증가하여, 와이어 형상이 아닌 입자 형상으로 형성되는 문제점이 발생될 수 있다. 즉, 후술되는 자성 와이어는 상기 제1 온도가 증가함에 따라 결정립의 크기가 증가하게 되고, 결정립의 크기가 소정의 크기를 초과하게 되는 경우, 입자 형상을 나타낼 수 있다. 이에 따라, 자성 와이어의 결정립 크기가 소정의 크기를 초과하지 않도록 상기 제1 온도가 제어될 수 있다. Alternatively, when the first temperature is controlled to 600° C. or less, the removal of organic substances and polymers in the first preliminary magnetic wire 110 is not easily performed, and thus the formation of a magnetic wire described later may not be easy. . In addition, when the first temperature is controlled to 800° C. or higher, a grain size of the magnetic wire to be described later increases, which may cause a problem of forming in a particle shape rather than a wire shape. That is, the magnetic wire to be described later may increase the size of the crystal grains as the first temperature increases, and when the size of the crystal grains exceeds a predetermined size, may exhibit a particle shape. Accordingly, the first temperature may be controlled so that the grain size of the magnetic wire does not exceed a predetermined size.
상기 제2 예비 자성 와이어(120)는 제2 온도에서 열처리될 수 있다. 또한, 상기 제2 예비 자성 와이어(120)는 수소(H2) 분위기에서 열처리될 수 있다. 이에 따라, 상기 제1 예비 자성 와이어(110)가 포함하는 Fe 산화물이 환원되어, 제3 예비 자성 와이어(130)가 형성될 수 있다(S130). 예를 들어, 상기 제3 예비 자성 와이어(130)는 α-Fe를 포함할 수 있다. The second preliminary magnetic wire 120 may be heat treated at a second temperature. In addition, the second preliminary magnetic wire 120 may be heat treated in a hydrogen (H 2 ) atmosphere. Accordingly, the Fe oxide included in the first preliminary magnetic wire 110 is reduced, and a third preliminary magnetic wire 130 may be formed (S130 ). For example, the third preliminary magnetic wire 130 may include α-Fe.
일 실시 예에 따르면, 상기 제2 온도는 제어될 수 있다. 상기 제2 온도는 상기 제1 온도보다 낮을 수 있다. 구체적으로 상기 제2 온도는 290℃로 제어될 수 있다. 이 경우, 후술되는 자성 와이어 내에서 질화철(Fe16N2)의 함량이 증가하여, 자성 와이어의 포화자화 값이 향상될 수 있다. According to one embodiment, the second temperature may be controlled. The second temperature may be lower than the first temperature. Specifically, the second temperature can be controlled to 290 ℃. In this case, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire to be described later increases, so that the saturation magnetization value of the magnetic wire can be improved.
상기 제3 예비 자성 와이어(130)는 질소를 포함하는 소스 가스 분위기에서 제3 온도로 열처리될 수 있다. 이에 따라, 상기 실시 예에 따른 자성 와이어(200)가 형성될 수 있다(S140). 일 실시 예에 따르면, 상기 소스 가스는 암모니아(NH3)를 포함할 수 있다. The third preliminary magnetic wire 130 may be heat treated at a third temperature in a source gas atmosphere containing nitrogen. Accordingly, the magnetic wire 200 according to the embodiment may be formed (S140). According to one embodiment, the source gas may include ammonia (NH 3 ).
상기 제3 예비 자성 와이어(130)가 상기 소스 가스 분위기에서 열처리되는 경우, 도 4에 도시된 바와 같이, 상기 소스 가스로부터 분해된 질소 원자(atom, N)가 상기 자성 와이어(200) 내로 침투될 수 있다. 침투된 질소 원자는, 상기 자성 와이어(200)가 포함하는 Fe와 결합될 수 있다. 이에 따라, 상기 자성 와이어(200)는 질소 원자와 Fe가 결합된 질화철(FexNy)을 포함할 수 있다. 결과적으로, 상기 자성 와이어는 상기 질화철(FexNy), 및 질소와 결합되지 못한고 남은 철(Fe)을 포함할 수 있다. (x,y>0) 예를 들어, 상기 질화철(FexNy)은 Fe16N2일 수 있다. When the third preliminary magnetic wire 130 is heat-treated in the source gas atmosphere, nitrogen atoms (atom, N) decomposed from the source gas may be penetrated into the magnetic wire 200 as illustrated in FIG. 4. Can be. The penetrated nitrogen atom may be combined with Fe included in the magnetic wire 200. Accordingly, the magnetic wire 200 may include iron nitride (Fe x N y ) in which a nitrogen atom and Fe are bonded. As a result, the magnetic wire may include the iron nitride (Fe x N y ), and the iron (Fe) remaining unbound with nitrogen. (x,y>0) For example, the iron nitride (Fe x N y ) may be Fe 16 N 2 .
상기 질화철(Fe16N2)의 경우, 물질의 특성으로 인하여 높은 포화자화 값을 나타낼 수 있다. 이에 따라, 상기 자성 와이어 내의 질화철(Fe16N2) 함량이 증가하는 경우, 상기 자성 와이어의 포화자화 값이 향상될 수 있다. 상술된 바와 같이, 상기 자성 와이어 내의 질화철(Fe16N2) 함량은, 상기 제2 예비 자성 와이어(120) 형성 단계에서의 상기 제1 온도, 및, 상기 제3 예비 자성 와이어(130) 형성 단계에서의 상기 제2 온도를 제어하는 방법으로 증가시킬 수 있다. 즉, 상기 제1 온도 및 제2 온도를 제어하는 간단한 방법으로, 상기 자성 와이어 내의 질화철(Fe16N2) 함량이 증가되어, 상기 자성 와이어(200)의 포화자화 값이 향상될 수 있다. In the case of the iron nitride (Fe 16 N 2 ), a high saturation magnetization value may be exhibited due to the properties of the material. Accordingly, when the iron nitride (Fe 16 N 2 ) content in the magnetic wire increases, the saturation magnetization value of the magnetic wire may be improved. As described above, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire is the first temperature in the step of forming the second preliminary magnetic wire 120, and the third preliminary magnetic wire 130 is formed. It can be increased by controlling the second temperature in the step. That is, as a simple method of controlling the first temperature and the second temperature, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire is increased, so that the saturation magnetization value of the magnetic wire 200 may be improved.
일 실시 예에 따르면, 상기 제3 예비 자성 와이어(130)에 제공되는 상기 소스 가스의 유량이 제어될 수 있다. 예를 들어, 상기 소스 가스는 1.5 L/min 이상의 유속으로 제공될 수 있다. 이에 따라, 상기 자성 와이어가 포함하는 상기 질화철(Fe16N2)의 함량이 증가되어, 포화자화 값이 향상될 수 있다. According to an embodiment, the flow rate of the source gas provided to the third preliminary magnetic wire 130 may be controlled. For example, the source gas may be provided at a flow rate of 1.5 L/min or more. Accordingly, the content of the iron nitride (Fe 16 N 2 ) included in the magnetic wire is increased, so that the saturation magnetization value can be improved.
보다 구체적으로, 상기 제3 예비 자성 와이어(130)에 암모니아(NH3) 가스가 제공되는 경우, 온도와 Fe표면의 촉매효과로 인해, 암모니아 가스는 아래의 <화학식 1>과 같이, 질소 원자와 수소 원자로 분해될 수 있다. 이후, 분해된 질소 원자는 및 수소 원자는 아래의 <화학식 2>와 같이 질소 분자 상태로 형성될 수 있다. More specifically, when the ammonia (NH 3 ) gas is provided to the third preliminary magnetic wire 130, due to the temperature and the catalytic effect of the Fe surface, the ammonia gas is a nitrogen atom, as shown in <Formula 1> below. It can be decomposed into hydrogen atoms. Then, the decomposed nitrogen atom and the hydrogen atom may be formed in a nitrogen molecular state as shown in <Formula 2> below.
<화학식 1><Formula 1>
2NH3->2N+6H2NH 3 ->2N+6H
<화학식 2><Formula 2>
2N+6H->N2+3H2 2N+6H->N 2 +3H 2
상술된 바와 같이, 상기 질화철(Fe16N2)은 원자 상태의 질소가 Fe와 결합하여 형성될 수 있다. 하지만, 암모니아(NH3) 가스로부터 분해된 질소 원자의 경우, 시간이 지남에 따라 질소 분자를 형성하게 되고, 질소 분자의 경우, Fe와 결합되지 못할 수 있다. 이에 따라, 상기 제3 예비 자성 와이어(130)에 제공되는 상기 소스 가스의 유량을 증가시켜, Fe와 결합될 수 있는 질소 원자의 양을 증가시키는 방법으로, 상기 자성 와이어(200)가 포함하는 상기 질화철(Fe16N2)의 함량을 증가시킬 수 있다. 다만, 상기 소스 가스의 유량이 소정의 유량을 넘어가게 되는 경우, Fe와 결합되는 질소 원자의 양이 포화되어, 상기 자성 와이어(200)가 포함하는 상기 잘화철(Fe16N2)의 함량이 실질적으로 동일하게 유지될 수 있다. 결과적으로, 1.5 L/min 이상의 유속으로 암모니아(NH3) 가스를 제공함에 따라, 상기 자성 와이어(200)가 포함하는 상기 질화철(Fe16N2)의 함량을 증가시켜, 포화자화 값을 향상시킬 수 있다. As described above, the iron nitride (Fe 16 N 2 ) may be formed by combining nitrogen in the atomic state with Fe. However, in the case of a nitrogen atom decomposed from ammonia (NH 3 ) gas, a nitrogen molecule is formed over time, and in the case of a nitrogen molecule, it may not be combined with Fe. Accordingly, by increasing the flow rate of the source gas provided to the third preliminary magnetic wire 130 to increase the amount of nitrogen atoms that can be combined with Fe, the magnetic wire 200 includes the The content of iron nitride (Fe 16 N 2 ) can be increased. However, when the flow rate of the source gas exceeds a predetermined flow rate, the amount of nitrogen atoms bound to Fe is saturated, so that the content of the iron fine iron (Fe 16 N 2 ) included in the magnetic wire 200 is It can remain substantially the same. As a result, as the ammonia (NH 3 ) gas is provided at a flow rate of 1.5 L/min or higher, the content of the iron nitride (Fe 16 N 2 ) included in the magnetic wire 200 is increased to improve the saturation magnetization value. I can do it.
일 실시 예에 따르면, 상기 제3 온도는 제어될 수 있다. 상기 제3 온도는 상기 제1 및 제2 온도보다 낮을 수 있다. 구체적으로 상기 제3 온도는 160℃로 제어될 수 있다. 이 경우, 상기 자성 와이어(200) 내에서 질화철(Fe16N2)의 함량이 증가하여, 상기 자성 와이어(200)의 포화자화 값이 향상될 수 있다.According to one embodiment, the third temperature may be controlled. The third temperature may be lower than the first and second temperatures. Specifically, the third temperature can be controlled to 160 ℃. In this case, the content of iron nitride (Fe 16 N 2 ) in the magnetic wire 200 increases, so that the saturation magnetization value of the magnetic wire 200 may be improved.
일 실시 예에 따르면, 상기 제3 예비 자성 와이어 형성 단계(S130), 및 상기 자성 와이어 형성 단계(S140)는 in-situ 공정으로 수행될 수 있다. 이 경우, 상기 제3 예비 자성 와이어 표면에 오염물, 및 산화물층의 형성이 억제될 수 있다. 이에 따라, 상기 자성 와이어가 용이하게 형성될 수 있다. According to one embodiment, the third preliminary magnetic wire forming step (S130), and the magnetic wire forming step (S140) may be performed in an in-situ process. In this case, formation of contaminants and oxide layers on the surface of the third preliminary magnetic wire can be suppressed. Accordingly, the magnetic wire can be easily formed.
질화철(Fe16N2)을 포함하는 종래의 자성 구조체의 경우, 나노 입자(particle) 형태로 제조되었다. 구체적으로, Fe 파우더(powder)에 암모니아(NH3) 가스를 제공하는 방법으로 질화철(Fe16N2) 나노 입자를 제조하였는데, 이 과정에서 Fe 입자(particle)들 표면에 산화막이 형성되어 질소의 침투가 용이하게 발생되지 않는 문제점이 발생될 수 있다. 또한, 질화철(Fe16N2)을 포함하는 자성 나노 입자(particle)의 경우, 도 5에 도시된 바와 같이, 입자들이 표면에너지를 줄이기 위해 입자들 간에 응집현상이 발생될 수 있다. 이러한 응집 현상은 입자들간의 정자계 교환(magnetostain coupling) 및 입계 교환(intergranulae exchange coupling) 현상을 발생시켜, 보자력을 감소시키는 주요 원인으로 작용될 수 있다. In the case of the conventional magnetic structure containing iron nitride (Fe 16 N 2 ), it was manufactured in the form of nanoparticles. Specifically, iron nitride (Fe 16 N 2 ) nanoparticles were prepared by providing ammonia (NH 3 ) gas to an Fe powder, and in this process, an oxide film was formed on the surfaces of Fe particles to form nitrogen. A problem that penetration of the product is not easily generated may occur. In addition, in the case of magnetic nanoparticles including iron nitride (Fe 16 N 2 ), as illustrated in FIG. 5, aggregation may occur between particles to reduce surface energy. Such agglutination may cause magnetostain coupling and intergranulae exchange coupling between particles, and may act as a major cause of reducing coercive force.
즉, 질화철(Fe16N2)을 포함하는 자성 나노 입자(particle)의 경우 질화철(Fe16N2) 고유의 물질적 특성으로 인하여 높은 포화자화 값을 나타내지만, 입자 특유의 응집현상으로 인하여 보자력이 저하되는 문제점이 발생될 수 있다. 또한, 질화철(Fe16N2) 자성 나노 입자를 제조하는 공정에서, 질소의 침투가 용이하게 발생되지 않아, 질화철(Fe16N2)이 용이하게 형성되지 않는 문제점이 발생될 수 있다. That is, iron nitride (Fe 16 N 2) If the magnetic nanoparticles (particle) containing iron nitride (Fe 16 N 2) exhibits a high saturation magnetization due to inherent material properties, due to specific aggregation particles A problem that the coercive force is lowered may occur. In addition, in the process of manufacturing iron nitride (Fe 16 N 2 ) magnetic nanoparticles, the penetration of nitrogen is not easily generated, and a problem that iron nitride (Fe 16 N 2 ) is not easily formed may occur.
하지만, 본 발명의 실시 예에 따른 자성 와이어 제조방법은, Fe를 포함하는 소스 용액을 전기 방사하여, 상기 제1 예비 자성 와이어(110)를 형성하는 단계, 상기 제1 예비 자성 와이어(110)를 제1 온도에서 열처리하여, Fe 산화물을 포함하는 상기 제2 예비 자성 와이어(120)를 형성하는 단계, 상기 제2 예비 자성 와이어(120)를 제2 온도에서 열처리하여, Fe 산화물이 환원된 상기 제3 예비 자성 와이어를 형성하는 단계, 및 상기 제3 예비 자성 와이어(130)를, 질소를 포함하는 소스 가스 분위기 및 제3 온도에서 열처리하여, 질소가 상기 제3 예비 자성 와이어(130) 내로 침투된 상기 자성 와이어(200)를 형성하는 단계를 포함하되, 상기 제1 내지 제3 온도 중 적어도 어느 하나의 온도를 제어하여, 포화자화(saturation magnetization) 값을 제어하는 것을 포함할 수 있다. However, in the method of manufacturing a magnetic wire according to an embodiment of the present invention, the source solution containing Fe is electrospun to form the first preliminary magnetic wire 110, and the first preliminary magnetic wire 110 is formed. Heat-treating at a first temperature to form the second preliminary magnetic wire 120 including Fe oxide, and heat-treating the second preliminary magnetic wire 120 at a second temperature to reduce the Fe oxide. 3 forming a preliminary magnetic wire, and heat-treating the third preliminary magnetic wire 130 in a source gas atmosphere containing nitrogen and a third temperature, so that nitrogen penetrates into the third preliminary magnetic wire 130. The step of forming the magnetic wire 200 may include, but may include controlling a saturation magnetization value by controlling at least one of the first to third temperatures.
즉, 상기 실시 예에 따른 자성 와이어 제조방법은, 열처리 단계의 온도를 제어하는 간단한 방법으로, 상기 자성 와이어(200)가 포함하는 상기 질화철(Fe16N2)의 함량을 증가시켜, 포화자화 값을 향상시킬 수 있다. 또한, 상기 실시 예에 따른 자성 와이어(200)는, 와이어의 형태를 가질 수 있다. 와이어 형태의 경우 높은 종횡비(aspect ratio)를 가짐에 따라, 형상자기이방성 효과를 나타낼 수 있다. 이러한 형상자기이방성 효과는 보자력의 향상으로 이어질 수 있다. 뿐만 아니라, 도 5에 도시된 바와 같이, 와이어 형태의 경우, 질소의 침투가 용이하게 발생될 수 있어, 질화철(Fe16N2)의 함유량이 증가될 수 있다. 결과적으로, 176 emu/g 이상의 포화자화 값 및 1215Oe 이상의 보자력을 갖는 질화철(Fe16N2) 와이어 및 그 제조방법이 제공될 수 있다. That is, the magnetic wire manufacturing method according to the embodiment is a simple method of controlling the temperature of the heat treatment step, and increases the content of the iron nitride (Fe 16 N 2 ) contained in the magnetic wire 200 to increase the saturation magnetization. The value can be improved. In addition, the magnetic wire 200 according to the embodiment may have a wire shape. In the case of the wire form, as it has a high aspect ratio, it can exhibit a shape magnetic anisotropy effect. Such a shape magnetic anisotropy effect can lead to an improvement in the coercive force. In addition, as shown in FIG. 5, in the case of a wire form, nitrogen penetration can be easily generated, so that the content of iron nitride (Fe 16 N 2 ) can be increased. As a result, iron nitride (Fe 16 N 2 ) wire having a saturation magnetization value of 176 emu/g or more and a coercive force of 1215 Oe or more, and a method of manufacturing the same can be provided.
이상, 본 발명의 실시 예에 따른 자성 와이어 및 그 제조방법이 설명되었다. 이하, 상기 실시 예에 따른 자성 와이어 및 그 제조방법의 구체적인 실험 예 및 특성 평가 결과가 설명된다. In the above, the magnetic wire according to the embodiment of the present invention and a manufacturing method thereof have been described. Hereinafter, specific experimental examples and characteristic evaluation results of the magnetic wire and the manufacturing method according to the above-described embodiment will be described.
실시 예 1에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 1
3ml 용량의 deionized water에 철(III) 질산 9 수화물(Iron(III) nitrate nonahydrate, Fe(NO3)39H2O), 1,300,000 분자량의 PVP(polyvinylpyrrolidone), 및 6 ml 용량의 에탄올(ethanol)을 혼합하여 소스 용액을 제조하였다. 이 때, PVP의 농도는, 소스 용액 대비 3.4 wt%로 제조하였다. Iron(III) nitrate nonahydrate, Fe(NO 3 ) 3 9H 2 O), 1,300,000 molecular weight polyvinylpyrrolidone (PVP), and 6 ml of ethanol were added to 3 ml of deionized water. The source solution was prepared by mixing. At this time, the concentration of PVP was prepared at 3.4 wt% compared to the source solution.
제조된 소스 용액은 전기방사를 위해 주사기에 담고 주사기 펌프를 사용하여 0.4 mL/h의 속도로 용액을 지속적으로 밀어준다. 이 때 주사기의 팁(tip) 부분과 방사된 와이어가 포집되는 포집기(collector)는 15cm 간격으로 이격되고, 18kV의 고전압을 인가해주어 전위차에 의해 소스 용액이 방사되도록 한다. 이에 따라, 제1 예비 자성 와이어가 제조되었다. The prepared source solution is placed in a syringe for electrospinning, and the solution is continuously pushed at a rate of 0.4 mL/h using a syringe pump. At this time, the tip portion of the syringe and the collector where the emitted wire is collected are spaced at 15 cm intervals, and a high voltage of 18 kV is applied to radiate the source solution by a potential difference. Thus, a first preliminary magnetic wire was produced.
제1 예비 자성 와이어는 알루미나(alumina, Al2O3) 도가니에 모아 대기(air) 분위기에서 600℃의 온도로 1시간 동안 열처리하였다. 이 과정에서, 제1 예비 자성 와이어 내의 고분자 및 유기물이 분해되어, 제2 예비 자성 와이어가 제조되었다. The first preliminary magnetic wire was collected in an alumina (Al 2 O 3 ) crucible and heat-treated at an air temperature of 600° C. for 1 hour. In this process, polymers and organic substances in the first preliminary magnetic wire were decomposed to produce a second preliminary magnetic wire.
제2 예비 자성 와이어는, 수소(H2) 분위기에서 320℃이 온도로 열처리하였다. 이 과정에서, 제2 예비 자성 와이어 내의 Fe 산화물이 환원되어, 제3 예비 자성 와이어가 제조되었다. The second preliminary magnetic wire was heat-treated at a temperature of 320° C. in a hydrogen (H 2 ) atmosphere. In this process, Fe oxide in the second preliminary magnetic wire was reduced to produce a third preliminary magnetic wire.
제3 예비 자성 와이어는, 암모니아(NH3) 가스 분위기에서 160℃의 온도로 열처리되었다. 이 과정에서, 암모니아 가스로부터 분해된 질소 원자가 제3 예비 자성 와이어로 침투되어, Fe16N2 질화철이 형성되었다. 결과적으로, Fe16N2 질화철 및 Fe를 포함하는 실시 예 1에 따른 자성 와이어가 제조되었다. The third preliminary magnetic wire was heat-treated at a temperature of 160°C in an ammonia (NH 3 ) gas atmosphere. In this process, nitrogen atoms decomposed from the ammonia gas penetrated into the third preliminary magnetic wire to form Fe 16 N 2 iron nitride. As a result, a magnetic wire according to Example 1 including Fe 16 N 2 iron nitride and Fe was prepared.
실시 예 2에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 2
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 700℃로 제어하였다. 이에 따라, 실시 예 2에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. Thus, a magnetic wire according to Example 2 was produced.
실시 예 3에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 3
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 800℃로 제어하였다. 이에 따라, 실시 예 3에 따른 자성 와이어가 제조되었다. Prepared by the manufacturing method of the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 800°C. Thus, a magnetic wire according to Example 3 was produced.
실시 예 4에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 4
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 900℃로 제어하였다. 이에 따라, 실시 예 4에 따른 자성 와이어가 제조되었다. Prepared by the manufacturing method of the magnetic wire according to Example 1, the temperature of heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 900°C. Thus, a magnetic wire according to Example 4 was produced.
실시 예 5에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 5
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 700℃로 제어하였다. 또한, 제3 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 305℃로 제어하였다. 이에 따라, 실시 예 5에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. In addition, the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 305°C. Thus, a magnetic wire according to Example 5 was produced.
실시 예 6에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 6
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 700℃로 제어하였다. 또한, 제3 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 290℃로 제어하였다. 이에 따라, 실시 예 6에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. In addition, the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 290°C. Thus, a magnetic wire according to Example 6 was produced.
실시 예 7에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 7
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 700℃로 제어하였다. 또한, 제3 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 290℃로 제어하였다. 또한, 상기 제3 예비 자성 와이어를 암모니아 가스와 함께 열처리하는 과정에서 열처리 온도를 150℃로 제어하였다. 이에 따라, 실시 예 7에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. In addition, the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 290°C. In addition, in the process of heat-treating the third preliminary magnetic wire with ammonia gas, the heat treatment temperature was controlled to 150°C. Thus, a magnetic wire according to Example 7 was produced.
실시 예 8에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 8
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 700℃로 제어하였다. 또한, 제3 예비 자성 와이어가 제조되는 과정에서 열처리되는 온도를 290℃로 제어하였다. 또한, 상기 제3 예비 자성 와이어를 암모니아 가스와 함께 열처리하는 과정에서 열처리 온도를 140℃로 제어하였다. 이에 따라, 실시 예 8에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the temperature of the heat treatment in the process of manufacturing the second preliminary magnetic wire was controlled to 700°C. In addition, the temperature to be heat-treated in the process of manufacturing the third preliminary magnetic wire was controlled to 290°C. In addition, in the process of heat-treating the third preliminary magnetic wire with ammonia gas, the heat treatment temperature was controlled to 140°C. Thus, a magnetic wire according to Example 8 was produced.
실시 예 9에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 9
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 조건을 산소(O2) 분위기로 제어하였다. 이에 따라, 실시 예 9에 따른 자성 와이어가 제조되었다. Prepared by the manufacturing method of the magnetic wire according to Example 1, the conditions of heat treatment in the process of manufacturing the second preliminary magnetic wire were controlled in an oxygen (O 2 ) atmosphere. Thus, a magnetic wire according to Example 9 was produced.
실시 예 10에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 10
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 조건을 산소(O2) 분위기로 제어하고, 열처리 온도를 700℃로 제어하였다. 이에 따라, 실시 예 10에 따른 자성 와이어가 제조되었다. Prepared by the manufacturing method of the magnetic wire according to Example 1, the conditions of heat treatment in the process of manufacturing the second preliminary magnetic wire were controlled in an oxygen (O 2 ) atmosphere, and the heat treatment temperature was controlled at 700°C. Thus, a magnetic wire according to Example 10 was produced.
실시 예 11에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 11
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 조건을 산소(O2) 분위기로 제어하고, 열처리 온도를 800℃로 제어하였다. 이에 따라, 실시 예 11에 따른 자성 와이어가 제조되었다. Prepared by the manufacturing method of the magnetic wire according to Example 1, the second preliminary magnetic wire was controlled in an oxygen (O 2 ) atmosphere, and the heat treatment temperature was controlled to 800° C. under conditions of heat treatment in the process of manufacturing. Thus, a magnetic wire according to Example 11 was prepared.
실시 예 12에 따른 자성 와이어 제조Preparation of magnetic wire according to Example 12
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 제2 예비 자성 와이어가 제조되는 과정에서 열처리되는 조건을 산소(O2) 분위기로 제어하고, 열처리 온도를 900℃로 제어하였다. 이에 따라, 실시 예 12에 따른 자성 와이어가 제조되었다. Prepared by the manufacturing method of the magnetic wire according to Example 1, the conditions of heat treatment in the process of manufacturing the second preliminary magnetic wire were controlled in an oxygen (O 2 ) atmosphere, and the heat treatment temperature was controlled at 900°C. Thus, a magnetic wire according to Example 12 was produced.
비교 예 1에 따른 자성 와이어 제조Preparation of magnetic wire according to Comparative Example 1
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 소스 용액 제조 과정에서 PVP의 농도가 소스 용액 대비 2.1 wt%가 되도록 제어하였다. 또한, 소스 용액의 제조 과정에서, 0.5 M 농도의 citric acid가 더 첨가되었다. 이에 따라, 비교 예 1에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the concentration of PVP in the process of preparing the source solution was controlled to be 2.1 wt% compared to the source solution. In addition, in the process of preparing the source solution, citric acid at a concentration of 0.5 M was further added. Thus, a magnetic wire according to Comparative Example 1 was produced.
비교 예 2에 따른 자성 와이어 제조Preparation of magnetic wire according to Comparative Example 2
상기 실시 예 1에 따른 자성 와이어의 제조 방법으로 제조하되, 소스 용액 제조 과정에서 PVP의 농도가 소스 용액 대비 2.0 wt%가 되도록 제어하였다. 이에 따라, 비교 예 2에 따른 자성 와이어가 제조되었다. Prepared by the method of manufacturing the magnetic wire according to Example 1, the concentration of PVP in the process of preparing the source solution was controlled to be 2.0 wt% compared to the source solution. Thus, a magnetic wire according to Comparative Example 2 was produced.
상술된 실시 예들 및 비교 예들에 따른 자성 와이어의 특성이 아래 <표 1>을 통해 정리된다. The characteristics of the magnetic wire according to the above-described embodiments and comparative examples are summarized through <Table 1> below.
구분division 소스 용액 내 PVP 농도PVP concentration in source solution 제1 예비 자성 와이어 열처리 분위기First preliminary magnetic wire heat treatment atmosphere 제1 예비 자성 와이어 열처리 온도First pre-magnetic wire heat treatment temperature 제2 예비 자성 와이어 열처리 온도 Second pre-magnetic wire heat treatment temperature 제3 예비 자성 와이어 열처리 온도Third pre-magnetic wire heat treatment temperature
실시 예 1Example 1 3.4 wt%3.4 wt% 대기(air)Air 600℃600℃ 320℃320℃ 160℃160℃
실시 예 2Example 2 3.4 wt%3.4 wt% 대기(air)Air 700℃700℃ 320℃320℃ 160℃160℃
실시 예 3Example 3 3.4 wt%3.4 wt% 대기(air)Air 800℃800℃ 320℃320℃ 160℃160℃
실시 예 4Example 4 3.4 wt%3.4 wt% 대기(air)Air 900℃900℃ 320℃320℃ 160℃160℃
실시 예 5Example 5 3.4 wt%3.4 wt% 대기(air)Air 700℃700℃ 305℃305℃ 160℃160℃
실시 예 6Example 6 3.4 wt%3.4 wt% 대기(air)Air 700℃700℃ 290℃290℃ 160℃160℃
실시 예 7Example 7 3.4 wt%3.4 wt% 대기(air)Air 700℃700℃ 290℃290 150℃150℃
실시 예 8Example 8 3.4 wt%3.4 wt% 대기(air)Air 700℃700℃ 290℃290 140℃140℃
실시 예 9Example 9 3.4 wt%3.4 wt% 산소(O2)Oxygen (O 2 ) 600℃600℃ 320℃320℃ 160℃160℃
실시 예 10Example 10 3.4 wt%3.4 wt% 산소(O2)Oxygen (O 2 ) 700℃700℃ 320℃320℃ 160℃160℃
실시 예 11Example 11 3.4 wt%3.4 wt% 산소(O2)Oxygen (O 2 ) 800℃800℃ 320℃320℃ 160℃160℃
실시 예 12Example 12 3.4 wt%3.4 wt% 산소(O2)Oxygen (O 2 ) 900℃900℃ 320℃320℃ 160℃160℃
비교 예 1Comparative Example 1 2.1 wt%2.1 wt% 대기(air)Air 700℃700℃ 320℃320℃ 160℃160℃
비교 예 2Comparative Example 2 2.0 wt%2.0 wt% 대기(air)Air 700℃700℃ 320℃320℃ 160℃160℃
도 6은 본 발명의 실시 예 1에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어를 촬영한 사진이다. 6 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
도 6을 참조하면, 상기 실시 예 1에 따른 자성 와이어를 준비하되, 자성 와이어의 제조공정 중 소스 용액의 전기방사를 통해 형성된 제1 예비 자성 와이어를 SEM(Scanning Electron Microscope) 촬영하였다. 도 6에서 알 수 있듯이, 제1 예비 자성 와이어는, 와이어의 형태를 가지고 있는 것을 확인할 수 있었다. Referring to FIG. 6, a magnetic wire according to Example 1 was prepared, but a first preliminary magnetic wire formed through electrospinning of the source solution during the manufacturing process of the magnetic wire was photographed by SEM (Scanning Electron Microscope). As can be seen from FIG. 6, it was confirmed that the first preliminary magnetic wire has a wire shape.
도 7 및 도 8은 본 발명의 비교 예 1 및 비교 예 2에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어를 촬영한 사진이다. 7 and 8 are photographs of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Comparative Example 1 and Comparative Example 2 of the present invention.
도 7 및 도 8을 참조하면, 상기 비교 예 1 및 비교 예 2에 따른 자성 와이어를 준비하되, 자성 와이어의 제조공정 중 소스 용액의 전기방사를 통해 형성된 제1 예비 자성 와이어를 SEM 촬영하였다. 각 도면의 (a) 및 (b)는 서로 다른 배율의 사진을 나타낸다. 도 7 및 도 8에서 확인할 수 있듯이, 상기 비교 예 1 및 비교 예 2에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어는, 다수의 bead가 형성되어 있는 것을 확인할 수 있었다. 이 경우, bead에 의하여 최종적인 자성 와이어가 용이하게 형성되지 못하는 문제점이 발생될 수 있다. 7 and 8, a magnetic wire according to Comparative Example 1 and Comparative Example 2 was prepared, but the first preliminary magnetic wire formed through electrospinning of the source solution during the manufacturing process of the magnetic wire was SEM photographed. (A) and (b) of each drawing show photographs of different magnifications. 7 and 8, it was confirmed that a plurality of beads were formed in the first preliminary magnetic wire formed during the manufacturing process of the magnetic wires according to Comparative Example 1 and Comparative Example 2. In this case, a problem that the final magnetic wire cannot be easily formed by the bead may occur.
도 9는 본 발명의 실시 예 2에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어를 촬영한 사진이다. 9 is a photograph of the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
도 9를 참조하면, 상기 실시 예 2에 따른 자성 와이어를 준비하되, 자성 와이어의 제조공정 중 소스 용액의 전기방사를 통해 형성된 제1 예비 자성 와이어를 SEM 촬영하였다. 도 9의 (a) 및 (b)는 서로 다른 배율의 사진을 나타낸다. 도 9에서 확인할 수 있듯이, 상기 실시 예 2에 따른 자성 와이어의 제조공정 중 형성된 제1 예비 자성 와이어는, bead의 형성 없이 일정한 굵기의 와이어 형태로 형성된 것을 확인할 수 있었다. Referring to FIG. 9, the magnetic wire according to Example 2 was prepared, but the first preliminary magnetic wire formed through electrospinning of the source solution during the manufacturing process of the magnetic wire was SEM photographed. 9(a) and 9(b) show photographs of different magnifications. As can be seen in Figure 9, it was confirmed that the first preliminary magnetic wire formed during the manufacturing process of the magnetic wire according to Example 2 was formed in a wire shape having a constant thickness without forming a bead.
즉, 도 6 내지 도 9를 통해 알 수 있듯이, 상기 실시 예에 따른 자성 와이어의 제조공정 중, 소스 용액 내의 PVP 함량이 최종적인 자성 와이어의 제조에 영향을 미칠 수 있음을 알 수 있었다. That is, as can be seen through FIGS. 6 to 9, during the manufacturing process of the magnetic wire according to the above embodiment, it was found that the PVP content in the source solution can affect the production of the final magnetic wire.
도 10 내지 도 12는 본 발명의 실시 예 1에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 10 to 12 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the first embodiment of the present invention.
도 10 내지 도 12를 참조하면, 상기 실시 예 1에 따른 자성 와이어의 제조공정을 수행하여, 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 제조하고, 이를 각각 SEM 촬영하여 도 10, 도 11, 및 도 12에 도시하였다. 각 도면의 (a) 및 (b)는 서로 다른 배율의 사진을 나타낸다. 10 to 12, by performing the manufacturing process of the magnetic wire according to the first embodiment, to prepare a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire, each SEM photographed to FIG. 10 , FIGS. 11 and 12. (A) and (b) of each drawing show photographs of different magnifications.
도 10 내지 도 12에서 확인할 수 있듯이, 상기 실시 예 1에 따른 자성 와이어의 제조공정이 수행되는 동안, 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어가 모두 와이어의 형태로 형성된 것을 확인할 수 있었다. 또한, 제조된 자성 와이어는 100~300 nm의 직경, 및 10 μm 이상의 길이를 갖는 것을 확인할 수 있었다. 10 to 12, while the manufacturing process of the magnetic wire according to the first embodiment is performed, it is confirmed that the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire are all formed in the form of a wire. Could. In addition, it was confirmed that the prepared magnetic wire had a diameter of 100 to 300 nm, and a length of 10 μm or more.
도 13 내지 도 15는 본 발명의 실시 예 2에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 13 to 15 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to the second embodiment of the present invention.
도 13 내지 도 15를 참조하면, 상기 실시 예 2에 따른 자성 와이어의 제조공정을 수행하여, 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 제조하고, 이를 각각 SEM 촬영하여 도 13, 도 14, 및 도 15에 도시하였다. 각 도면의 (a) 및 (b)는 서로 다른 배율의 사진을 나타낸다. 13 to 15, by performing the manufacturing process of the magnetic wire according to the second embodiment, to prepare a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire, each SEM photographed to FIG. 13 , FIGS. 14 and 15. (A) and (b) of each drawing show photographs of different magnifications.
도 13 내지 도 15에서 확인할 수 있듯이, 상기 실시 예 1에 따른 자성 와이어의 제조공정이 수행되는 동안, 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어가 모두 와이어의 형태로 형성된 것을 확인할 수 있었다. 또한, 제조된 자성 와이어는 100~300 nm의 직경, 및 10 μm 이상의 길이를 갖는 것을 확인할 수 있었다. 13 to 15, while the manufacturing process of the magnetic wire according to the first embodiment is performed, it is confirmed that the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire are all formed in the form of wires. Could. In addition, it was confirmed that the prepared magnetic wire had a diameter of 100 to 300 nm, and a length of 10 μm or more.
도 16 내지 도 18은 본 발명의 실시 예 3에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 16 to 18 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 3 of the present invention.
도 16 내지 도 18을 참조하면, 상기 실시 예 3에 따른 자성 와이어의 제조공정을 수행하여, 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 제조하고, 이를 각각 SEM 촬영하여 도 16, 도 17, 및 도 18에 도시하였다. 각 도면의 (a) 및 (b)는 서로 다른 배율의 사진을 나타낸다. 16 to 18, by performing the manufacturing process of the magnetic wire according to Example 3, to prepare a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire, each of which is SEM photographed to FIG. 16 , FIGS. 17 and 18. (A) and (b) of each drawing show photographs of different magnifications.
도 16 내지 도 18에서 확인할 수 있듯이, 상기 실시 예 3에 따른 자성 와이어의 제조공정이 수행되는 동안, 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어가 모두 와이어의 형태로 형성된 것을 확인할 수 있었다. 또한, 제조된 자성 와이어는 100~300 nm의 직경, 및 10 μm 이상의 길이를 갖는 것을 확인할 수 있었다. 16 to 18, while the manufacturing process of the magnetic wire according to the third embodiment is performed, it is confirmed that the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire are all formed in the form of a wire. Could. In addition, it was confirmed that the prepared magnetic wire had a diameter of 100 to 300 nm, and a length of 10 μm or more.
도 19 내지 도 21은 본 발명의 실시 예 4에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어를 촬영한 사진이다. 19 to 21 are photographs of a second preliminary magnetic wire, a third preliminary magnetic wire, and a magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 4 of the present invention.
도 19 내지 도 21에서 확인할 수 있듯이, 상기 실시 예 4에 따른 자성 와이어 제조공정이 수행되는 동안 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어는 모두 입자의 조대화 현상이 나타나는 것을 확인할 수 있었다. 또한, 상기 실시 예 4에 따른 자성 와이어는, 와이어의 형태 보다 입자(particle)의 형태에 가깝게 형성된 것을 확인할 수 있었다. 19 to 21, the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire formed during the process of manufacturing the magnetic wire according to Example 4 are all exhibiting coarsening of particles. I could confirm. In addition, it was confirmed that the magnetic wire according to Example 4 was formed closer to the particle shape than the wire shape.
도 10 내지 도 21을 통해 확인된 실시 예 1 내지 4에 따른 자성 와이어의 결정립 크기(Crystallite size)는 아래 <표 2>를 통해 정리된다. Crystallite sizes of the magnetic wires according to Examples 1 to 4 identified through FIGS. 10 to 21 are summarized through Table 2 below.
구분division Crystallite size (nm)Crystallite size (nm)
실시 예 1Example 1 14.314.3
실시 예 2Example 2 18.518.5
실시 예 3Example 3 26.226.2
실시 예 4Example 4 16.716.7
즉, 도 10 내지 도 21 및 <표 2>를 통해 확인할 수 있듯이, 상기 실시 예에 따른 자성 와이어를 제조하는 공정 중, 제1 예비 자성 와이어의 열처리 온도가 600℃, 700℃, 800℃, 및 900℃로 증가함에 따라, 최종 형성되는 자성 와이어의 입자 크기가 증가하는 것을 확인할 수 있었다. 또한, 제1 예비 자성 와이어의 열처리 온도가 800℃가 넘어가는 경우, 최종 형성되는 자성 와이어가 와이어 형태 보다는 입자의 형태에 가깝게 형성되는 것을 확인할 수 있었다. That is, as can be seen through FIGS. 10 to 21 and <Table 2>, during the process of manufacturing the magnetic wire according to the embodiment, the first pre-heating temperature of the magnetic wire is 600°C, 700°C, 800°C, and As it was increased to 900°C, it was confirmed that the particle size of the magnetic wire finally formed increased. In addition, when the heat treatment temperature of the first preliminary magnetic wire exceeds 800°C, it was confirmed that the final formed magnetic wire is formed closer to the particle shape than the wire shape.
도 22 및 도 23은 본 발명의 실시 예 9 내지 12에 따른 자성 와이어를 촬영한 사진이다. 22 and 23 are photographs of magnetic wires according to Examples 9 to 12 of the present invention.
도 22 및 도 23을 참조하면, 상기 실시 예 9 내지 12에 따른 자성 와이어를 각각 SEM촬영하여, 도 22의 (a), 도 22의 (b), 도 23의 (a), 및 도 23의 (b)에 각각 도시하였다. 도 22 및 도 23에서 확인할 수 있듯이, 상기 실시 예 9 내지 11에 따른 자성 와이어의 경우, 와이어 형태로 형성된 것을 확인할 수 있었다. 하지만, 상기 실시 예 12에 따른 자성 와이어의 경우, 입자의 조대화 현상이 발생되어, 와이어 보다는 입자(particle)의 형태에 가깝게 형성된 것을 확인할 수 있었다. 22 and 23, SEM photographs of the magnetic wires according to Examples 9 to 12, respectively, are shown in FIGS. 22(a), 22(b), 23(a), and 23. (b) respectively. 22 and 23, in the case of the magnetic wires according to Examples 9 to 11, it was confirmed that they were formed in a wire form. However, in the case of the magnetic wire according to Example 12, coarsening of particles occurred, and it was confirmed that the particles were formed closer to the particle shape than the wire.
도 24는 본 발명의 실시 예 2에 따른 자성 와이어의 제조공정 중 순차적으로 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어 각각의 성분을 분석한 그래프이다. 24 is a graph analyzing the components of each of the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire sequentially formed during the manufacturing process of the magnetic wire according to Example 2 of the present invention.
도 24의 (a) 내지 (c)를 참조하면, 상기 실시 예 2에 따른 자성 와이어 제조공정이 수행되는 동안 형성된 제2 예비 자성 와이어, 제3 예비 자성 와이어, 및 자성 와이어 각각에 대해 2-Theta(deg.)에 따른 Intensity(arb.units)를 측정하여 구성 성분을 분석하였다.Referring to (a) to (c) of FIG. 24, 2-Theta for each of the second preliminary magnetic wire, the third preliminary magnetic wire, and the magnetic wire formed during the process of manufacturing the magnetic wire according to Example 2 above The component was analyzed by measuring the intensity (arb.units) according to (deg.).
도 24의 (a)에서 확인할 수 있듯이 제2 예비 자성 와이어의 경우, Fe2O3 즉 Fe 산화물을 포함하고 있는 것을 확인할 수 있었다. 또한, 도 24의 (b)에서 확인할 수 있듯이 제3 예비 자성 와이어의 경우, Fe2O3가 환원된 Fe를 포함하고 있는 것을 확인할 수 있었다. 또한, 도 24의 (c)에서 확인할 수 있듯이 자성 와이어의 경우, Fe에 질소(N)원자가 결합된 Fe16N2을 포함하고 있는 것을 확인할 수 있었다. 다만, 자성 와이어의 경우, Fe16N2뿐만 아니라 Fe 역시 포함하고 있는 것을 확인할 수 있었다. As shown in FIG. 24(a), it was confirmed that the second preliminary magnetic wire contains Fe 2 O 3, that is, Fe oxide. In addition, as can be seen in FIG. 24(b), it was confirmed that Fe 3 O 3 contained reduced Fe in the case of the third preliminary magnetic wire. In addition, as can be seen in FIG. 24(c), it was confirmed that in the case of the magnetic wire, Fe 16 N 2 containing nitrogen (N) atoms bonded to Fe was included. However, in the case of the magnetic wire, it was confirmed that not only Fe 16 N 2 but also Fe was included.
도 25 및 도 26은 본 발명의 실시 예에 따른 자성 와이어의 제조공정 중 제1 예비 자성 와이어의 열처리 온도에 따른 특성 변화를 나타내는 그래프이다. 25 and 26 are graphs showing a characteristic change according to the heat treatment temperature of the first preliminary magnetic wire during the manufacturing process of the magnetic wire according to the embodiment of the present invention.
도 25 및 도 26을 참조하면, 본 발명의 실시 예에 따른 자성 와이어의 제조공정에 따라 자성 와이어를 제조하되, 제1 예비 자성 와이어의 열처리 온도를 0~1000℃까지 10℃/min의 승온속도로 변화시키고, 이에 따라 형성된 자성 와이어에 대해 TG-DTA(열중량-시차열분석, Thermogravimetry-Differential Thermal Analysis)를 수행하고 그 결과를 도시하였다. 제조 과정에서 사용되는 소스 용액 내 PVP의 농도는 3.4 wt%이다. 25 and 26, a magnetic wire is manufactured according to a manufacturing process of a magnetic wire according to an embodiment of the present invention, but the heating temperature of the first preliminary magnetic wire is 0°C to 1000°C at a heating rate of 10°C/min. The magnetic wire thus formed was subjected to TG-DTA (Thermogravimetry-Differential Thermal Analysis) and the results are shown. The concentration of PVP in the source solution used in the manufacturing process is 3.4 wt%.
도 25 및 도 26에서 확인할 수 있듯이, 상기 실시 예에 따른 자성 와이어의 제조공정에 따라 자성 와이어를 제조하는 중, 제1 예비 자성 와이어의 열처리 온도를 0~1000℃까지 변화시켜 자성 와이어가 형성되는 겨우, 총 3번에 걸쳐 현저한 무게 변화가 발생되는 것을 확인할 수 있었다. 첫 번째 무게 변화는 100℃ 부분에서 발생되는데, 이는 제1 예비 자성 와이어 내의 수분이 증발됨에 따라 발생되는 것으로 판단된다. 두 번째 무게 변화는 200℃~250℃ 부분에서 발생되는데, 이는 제1 예비 자성 와이어 내의 유기물과 PVP가 제거됨에 따라 발생되는 것으로 판단된다. 세 번째 무게 변화는 300℃~400℃ 부분에서 발생되는데, 이는 제1 예비 자성 와이어 내의 잔여 PVP 제거 및 제3 예비 자성 와이어 내의 NO3 분해에 따라 발생되는 것으로 판단된다. As can be seen in Figures 25 and 26, during the manufacture of the magnetic wire according to the manufacturing process of the magnetic wire according to the embodiment, the first preliminary magnetic wire by changing the heat treatment temperature to 0 ~ 1000 ℃ magnetic wire is formed Only 3 times, it was confirmed that a significant change in weight occurred. The first weight change occurs at 100°C, which is believed to occur as moisture in the first pre-magnetic wire evaporates. The second weight change occurs at a portion of 200°C to 250°C, which is judged to occur as organic matter and PVP in the first preliminary magnetic wire are removed. The third weight change occurs at 300°C to 400°C, which is thought to be caused by the removal of residual PVP in the first preliminary magnetic wire and decomposition of NO 3 in the third preliminary magnetic wire.
도 27은 본 발명의 실시 예 1 내지 4에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 27 is a graph analyzing the components of the magnetic wires according to Examples 1 to 4 of the present invention.
도 27을 참조하면, 상기 실시 예 1 내지 4에 따른 자성 와이어 각각에 대해 2-Theta(deg.)에 따른 Intensity(arb.units)를 측정하여 구성 성분을 분석하였다. 도 27에 도시된 결과는 아래 <표 3>을 통해 정리될 수 있다. Referring to FIG. 27, for each of the magnetic wires according to Examples 1 to 4, components were analyzed by measuring intensity (arb.units) according to 2-Theta (deg.). The results shown in FIG. 27 can be summarized through <Table 3> below.
구분division Fe16N2 (wt %)Fe 16 N 2 (wt %) Fe (wt %)Fe (wt %)
실시 예 1Example 1 26.626.6 73.473.4
실시 예 2Example 2 54.254.2 45.845.8
실시 예 3Example 3 39.839.8 60.260.2
실시 예 4Example 4 51.351.3 48.748.7
도 27 및<표 3>을 통해 확인할 수 있듯이, 상기 실시 예 1 내지 4에 따른 자성 와이어는 Fe16N2 및 Fe로 구성되어 있는 것을 확인할 수 있었다. 또한, 제1 예비 자성 와이어가 700℃의 온도에서 열처리되어 형성된 제2 실시 예에 따른 자성 와이어가, 가장 높은 Fe16N2 함유량을 갖는 것을 확인할 수 있었다. 27 and <Table 3>, it was confirmed that the magnetic wires according to Examples 1 to 4 were composed of Fe 16 N 2 and Fe. In addition, it was confirmed that the magnetic wire according to the second embodiment, in which the first preliminary magnetic wire was heat-treated at a temperature of 700° C., had the highest Fe 16 N 2 content.
도 28은 본 발명의 실시 예 9 내지 12에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 28 is a graph analyzing the components of the magnetic wires according to Examples 9 to 12 of the present invention.
도 28을 참조하면, 상기 실시 예 9 내지 12에 따른 자성 와이어 각각에 대해 2-Theta(deg.)에 따른 Intensity(arb.units)를 측정하여 구성 성분을 분석하였다. 도 28에 도시된 결과는 아래 <표 4>를 통해 정리될 수 있다. Referring to FIG. 28, for each of the magnetic wires according to Examples 9 to 12, components were analyzed by measuring intensity (arb.units) according to 2-Theta (deg.). The results shown in FIG. 28 can be summarized through <Table 4> below.
구분division Fe16N2 (wt %)Fe 16 N 2 (wt %) Fe (wt %)Fe (wt %)
실시 예 9Example 9 66.566.5 33.533.5
실시 예 10Example 10 57.557.5 42.542.5
실시 예 11Example 11 58.758.7 41.341.3
실시 예 12Example 12 60.760.7 39.339.3
도 28 및<표 4>를 통해 확인할 수 있듯이, 상기 실시 예 9 내지 12에 따른 자성 와이어 역시 Fe16N2 및 Fe로 구성되어 있는 것을 확인할 수 있었다. 또한, 제1 예비 자성 와이어가 600℃의 온도에서 열처리되어 형성된 제9 실시 예에 따른 자성 와이어가, 가장 높은 Fe16N2 함유량을 갖는 것을 확인할 수 있었다. 28 and <Table 4>, the magnetic wires according to Examples 9 to 12 were also confirmed to be composed of Fe 16 N 2 and Fe. Further, it was confirmed that the magnetic wire according to the ninth embodiment, in which the first preliminary magnetic wire was heat-treated at a temperature of 600° C., had the highest Fe 16 N 2 content.
또한, 도 27 및 도 28에서 확인할 수 있듯이, 제1 예비 와이어가 대기 분위기에서 열처리된 경우(실시 예 1 내지 4) 자성 와이어 내의 Fe16N2의 평균 비율이 42.97 wt% 이지만, 산소(O2) 분위기에서 열처리된 경우(실시 예 9 내지 12) 자성 와이어 내의 Fe16N2의 평균 비율이 60.85 wt%인 것을 알 수 있었다. 27 and 28, when the first preliminary wire is heat-treated in an atmosphere (Examples 1 to 4), the average proportion of Fe 16 N 2 in the magnetic wire is 42.97 wt%, but oxygen (O 2 ) When heat-treated in an atmosphere (Examples 9 to 12), it was found that the average ratio of Fe 16 N 2 in the magnetic wire was 60.85 wt%.
도 29 내지 도 32는 본 발명의 실시 예 1 내지 4에 따른 자성 와이어의 제조공정 중 형성된 제2 예비 자성 와이어의 특성을 나타내는 그래프이다. 29 to 32 are graphs showing characteristics of the second preliminary magnetic wire formed during the manufacturing process of the magnetic wires according to Examples 1 to 4 of the present invention.
도 29 내지 도 32를 참조하면, 상기 실시 예 1 내지 4에 따른 자성 와이어의 제조공정 중 형성된 제2 예비 자성 와이어 각각에 대해 2-Theta(deg.)에 따른 Intensity(CPS)를 측정하여, 제2 예비 자성 와이어의 결정립(crystallite size) 크기를 산출하였다. 결정립 크기는 각 그래프에 나타난 peak의 broadening을 Scherrer's equation을 이용하여 계산하였다. Referring to FIGS. 29 to 32, for each of the second preliminary magnetic wires formed during the manufacturing process of the magnetic wires according to Examples 1 to 4, the intensity (CPS) according to 2-Theta (deg.) is measured, and 2 The crystallite size of the preliminary magnetic wire was calculated. The grain size was calculated by using Scherrer's equation to broaden the peaks shown in each graph.
도 29 내지 도 32에서 확인할 수 있듯이, 상기 실시 예 1 내지 4에 따른 자성 와이어의 제조공정 중 형성된 제2 예비 자성 와이어는 각각 180Å, 290Å, 314 Å, 및 329Å 크기의 직경을 갖는 것을 확인할 수 있었다. As can be seen from FIGS. 29 to 32, the second preliminary magnetic wires formed during the manufacturing process of the magnetic wires according to Examples 1 to 4 were 180 Å, 290 Å, 314 Å, and 329 직경 in diameter, respectively. .
도 33은 본 발명의 실시 예 2, 5, 및 6에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 33 is a graph analyzing components of magnetic wires according to Examples 2, 5, and 6 of the present invention.
도 33을 참조하면, 상기 실시 예 2(환원 온도 320℃), 실시 예 5(환원 온도 305℃), 및 실시 예 6(환원 온도 290℃)에 따른 자성 와이어 각각에 대해 2-Theta(deg.)에 따른 Intensity(arb.units)를 측정하여 구성 성분을 분석하였다. 도 33에서 확인할 수 있듯이, 제2 예비 자성 와이어가 290℃의 온도에서 환원된 실시 예 6에 따른 자성 와이어가 88.7 wt%로 가장 높은 Fe16N2의 함유량을 갖는 것을 확인할 수 있었다. 33, 2-Theta (deg. for each of the magnetic wires according to Example 2 (reduction temperature 320°C), Example 5 (reduction temperature 305°C), and Example 6 (reduction temperature 290°C). ) Intensity (arb.units) according to the measured components were analyzed. As can be seen in FIG. 33, it was confirmed that the magnetic wire according to Example 6, in which the second preliminary magnetic wire was reduced at a temperature of 290° C., had the highest Fe 16 N 2 content of 88.7 wt%.
도 34는 본 발명의 실시 예 6, 7, 및 8에 따른 자성 와이어의 구성 성분을 분석한 그래프이다. 34 is a graph analyzing the components of the magnetic wires according to Examples 6, 7, and 8 of the present invention.
도 34를 참조하면, 상기 실시 예 6(질화 온도 160℃), 실시 예 7(질화 온도 150℃), 및 실시 예 8(질화 온도 140℃)에 따른 자성 와이어 각각에 대해 2-Theta(deg.)에 따른 Intensity(arb.units)를 측정하여 구성 성분을 분석하였다. 도 34에서 확인할 수 있듯이, 제3 예비 자성 와이어가 160℃의 온도에서 질화된 실시 예 6에 따른 자성 와이어가 86.2 wt%로 가장 높은 Fe16N2의 함유량을 갖는 것을 확인할 수 있었다. 34, 2-Theta (deg. for each of the magnetic wires according to Example 6 (nitride temperature 160°C), Example 7 (nitride temperature 150°C), and Example 8 (nitride temperature 140°C). ) Intensity (arb.units) according to the measured components were analyzed. As can be seen in FIG. 34, it was confirmed that the magnetic wire according to Example 6, in which the third preliminary magnetic wire was nitrided at a temperature of 160° C., had the highest Fe 16 N 2 content of 86.2 wt%.
도 35는 본 발명의 실시 예에 따른 자성 와이어의 제조공정에서 암모니아 가스의 유량에 따른 구성 변화를 나타내는 그래프이다. 35 is a graph showing a configuration change according to a flow rate of ammonia gas in a manufacturing process of a magnetic wire according to an embodiment of the present invention.
도 35를 참조하면, 상기 실시 예 2에 따른 자성 와이어의 제조공정에 따라 자성 와이어를 제조하되, 제3 예비 와이어의 열처리 과정에서 제공되는 암모니아 가스의 유량을 0.5 L/min, 1.0 L/min, 및 1.5 L/min으로 제어하고, 각각에 따라 제조된 자성 와이어의 구성 성분을 분석하였다. 도 35에서 확인할 수 있듯이, 0.5 L/min 및 1.0 L/min의 유량으로 암모니아 가스가 제공된 경우, 자성 와이어 내에 Fe16N2 질화철이 형성되지 않았지만, 1.5 L/min의 유량으로 암모니아 가스가 제공된 경우, 자성 와이어 내에 Fe16N2 질화철이 형성되는 것을 확인할 수 있었다. 이는 상술된 바와 같이, 암모니아 가스로부터 분해된 질소 원자의 경우 시간이 지남에 따라 질소 분자로 형성되고, 질소 분자의 경우 제3 예비 자성 와이어 내로 침투되지 못해, Fe16N2 질화철이 형성되지 못하는 것으로 판단된다. 즉, 질소 원자가 제3 예비 자성 와이어 내로 침투되어 Fe16N2 질화철이 형성되며, 1.5 L/min 유량 이상의 암모니아 가스가 제공되어야, Fe16N2 질화철이 용이하게 형성되는 것을 알 수 있다. Referring to FIG. 35, a magnetic wire is manufactured according to the manufacturing process of the magnetic wire according to Example 2, but the flow rate of ammonia gas provided in the heat treatment process of the third preliminary wire is 0.5 L/min, 1.0 L/min, And 1.5 L/min, and analyzed the components of the magnetic wire prepared according to each. As can be seen in FIG. 35, when ammonia gas was provided at flow rates of 0.5 L/min and 1.0 L/min, Fe 16 N 2 iron nitride was not formed in the magnetic wire, but when ammonia gas was provided at a flow rate of 1.5 L/min , It was confirmed that Fe 16 N 2 iron nitride was formed in the magnetic wire. As described above, nitrogen atoms decomposed from ammonia gas are formed of nitrogen molecules over time, and nitrogen molecules cannot be penetrated into the third preliminary magnetic wire, so that Fe 16 N 2 iron nitride cannot be formed. Is judged. That is, it can be seen that the penetration into the nitrogen atom is the third spare magnetic wire Fe 16 N 2 iron nitride is formed, 1.5 L / min flow rate at least ammonia gas has to be provided, the iron nitride Fe 16 N 2 that is easily formed.
도 36은 본 발명의 실시 예 6에 따른 자성 와이어의 자성 특성을 나타내는 그래프이다. 36 is a graph showing magnetic properties of a magnetic wire according to Example 6 of the present invention.
도 36을 참조하면, 상기 실시 예 6에 따른 자성 와이어에 대해 Applied Filed(Oe)에 따른 Intensity(arb.units)를 측정하여, 자성 특성을 분석하였다. 도 36을 통해 측정된 자성 특성은 아래 <표 5>로 정리된다. Referring to FIG. 36, the magnetic properties of the magnetic wire according to Example 6 were measured by measuring the intensity (arb.units) according to Applied Filed(Oe). The magnetic properties measured through FIG. 36 are summarized in <Table 5> below.
구분division 포화자화(emu/g)Saturation magnetization (emu/g) 잔류자화(emu/g)Residual magnetization (emu/g) 각형비(%)Square ratio (%) 보자력(Oe)Coercive Force (Oe)
실시 예 6Example 6 176.22176.22 68.35668.356 38.79238.792 1215.51215.5
도 36 및 <표 5>를 통해 알 수 있듯이, 상기 실시 예 6에 따른 자성 와이어는 176 emu/g 이상의 높은 포화자화 값 및 1215 Oe 이상의 높은 보자력을 나타내는 것을 확인할 수 있었다. 36 and <Table 5>, it was confirmed that the magnetic wire according to Example 6 exhibited a high saturation magnetization value of 176 emu/g or higher and a high coercive force of 1215 Oe or higher.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
본 발명의 실시 예에 따른 질화철 자성 나노 와이어는 영구 자석, 전기 모터, 센서, 자동차 등 다양한 산업 분야에 이용될 수 있다.The iron nitride magnetic nanowire according to an embodiment of the present invention can be used in various industrial fields such as permanent magnets, electric motors, sensors, and automobiles.

Claims (13)

  1. Fe를 포함하는 소스 용액을 전기 방사하여, 제1 예비 자성 와이어를 형성하는 단계; Electrospinning a source solution containing Fe to form a first preliminary magnetic wire;
    상기 제1 예비 자성 와이어를 제1 온도에서 열처리하여, Fe 산화물을 포함하는 제2 예비 자성 와이어를 형성하는 단계; Heat treating the first preliminary magnetic wire at a first temperature to form a second preliminary magnetic wire comprising Fe oxide;
    상기 제2 예비 자성 와이어를 제2 온도에서 열처리하여, 상기 Fe 산화물이 환원된 제3 예비 자성 와이어를 형성하는 단계; 및 Heat-treating the second preliminary magnetic wire at a second temperature to form a third preliminary magnetic wire in which the Fe oxide is reduced; And
    상기 제3 예비 자성 와이어를, 질소를 포함하는 소스 가스 분위기 및 제3 온도에서 열처리하여, 질소가 상기 제3 예비 자성 와이어 내로 침투된 자성 와이어를 형성하는 단계를 포함하되, Comprising the step of heat-treating the third preliminary magnetic wire in a source gas atmosphere containing nitrogen and a third temperature, to form a magnetic wire in which nitrogen is penetrated into the third preliminary magnetic wire,
    상기 제1 내지 제3 온도 중 적어도 어느 하나의 온도를 제어하여, 상기 자성 와이어의 포화자화(saturation magnetization) 값을 제어하는 것을 포함하는 자성 와이어 제조방법. And controlling the saturation magnetization value of the magnetic wire by controlling at least one of the first to third temperatures.
  2. 제1 항에 있어서, According to claim 1,
    상기 제1 온도는 600℃ 초과 800℃ 미만인 것을 포함하는 자성 와이어 제조방법. The first temperature is a method of manufacturing a magnetic wire comprising more than 600 ℃ less than 800 ℃.
  3. 제1 항에 있어서, According to claim 1,
    상기 자성 와이어 형성 단계에서, 상기 소스 가스로부터 분해된 질소 원자(atom)가 상기 자성 와이어 내로 침투되고, In the forming of the magnetic wire, a nitrogen atom (atom) decomposed from the source gas is penetrated into the magnetic wire,
    침투된 상기 질소 원자는 상기 자성 와이어가 포함하는 Fe와 결합되는 것을 포함하는 자성 와이어 제조방법. The infiltrated nitrogen atom is a method of manufacturing a magnetic wire, which includes bonding with Fe included in the magnetic wire.
  4. 제1 항에 있어서, According to claim 1,
    상기 자성 와이어 형성 단계에서 제공되는 상기 소스 가스의 유량을 제어하여, 상기 포화자화 값을 제어하는 것을 포함하는 자성 와이어 제조방법. And controlling the saturation magnetization value by controlling the flow rate of the source gas provided in the forming of the magnetic wire.
  5. 제4 항에 있어서, According to claim 4,
    상기 소스 가스는, 1.5 L/min 이상의 유속으로 제공되는 것을 포함하는 자성 와이어 제조방법. The source gas, the magnetic wire manufacturing method comprising providing at a flow rate of 1.5 L / min or more.
  6. 제1 항에 있어서, According to claim 1,
    상기 제2 예비 자성 와이어 형성 단계는, 대기(air) 분위기 또는 산소(O2) 분위기 중 어느 하나의 분위기에서 수행되는 것을 포함하는 자성 와이어 제조방법. The second preliminary magnetic wire forming step, the magnetic wire manufacturing method comprising performing in any one of the atmosphere (air) atmosphere or oxygen (O 2 ) atmosphere.
  7. 제1 항에 있어서, According to claim 1,
    상기 제2 온도 및 제3 온도는 상기 제1 온도 보다 낮은 것을 포함하는 자성 와이어 제조방법. The second temperature and the third temperature is a magnetic wire manufacturing method comprising a lower than the first temperature.
  8. 제1 항에 있어서, According to claim 1,
    상기 소스 가스는, 암모니아(NH3)를 포함하는 자성 와이어 제조방법. The source gas, a method of manufacturing a magnetic wire containing ammonia (NH 3 ).
  9. 제1 항에 있어서, According to claim 1,
    상기 제1 온도가 증가함에 따라, 상기 자성 와이어의 결정립 크기가 증가하는 것을 포함하는 자성 와이어 제조방법. A method of manufacturing a magnetic wire comprising increasing the grain size of the magnetic wire as the first temperature increases.
  10. 제1 항에 있어서, According to claim 1,
    상기 제2 예비 자성 와이어는 Fe2O3를 포함하고, The second preliminary magnetic wire includes Fe 2 O 3 ,
    상기 제3 예비 자성 와이어는 α-Fe를 포함하고, The third preliminary magnetic wire includes α-Fe,
    상기 자성 와이어는 Fe16N2를 포함하는 자성 와이어 제조방법. The magnetic wire is a method of manufacturing a magnetic wire comprising Fe 16 N 2 .
  11. 철(Fe), 및 질화철(FexNy)을 포함하되, Iron (Fe), and iron nitride (Fe x N y ),
    상기 질화철의 함량이 상기 철의 함량보다 높은 것을 포함하는 자성 와이어. (x,y>0)Magnetic wire comprising a content of the iron nitride is higher than the content of the iron. (x,y>0)
  12. 제11 항에 있어서, The method of claim 11,
    상기 질화철(FexNy)은 88.7wt% 이상인 것을 포함하는 자성 와이어.The iron nitride (Fe x N y ) is a magnetic wire comprising more than 88.7wt%.
  13. 제11 항에 있어서, The method of claim 11,
    x는 16이고, y는 2인 것을 포함하는 자성 와이어.Magnetic wire comprising x is 16 and y is 2.
PCT/KR2019/001375 2018-11-30 2019-01-31 Iron nitride magnetic wire and manufacturing method therefor WO2020111386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180152321 2018-11-30
KR10-2018-0152321 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111386A1 true WO2020111386A1 (en) 2020-06-04

Family

ID=70853387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001375 WO2020111386A1 (en) 2018-11-30 2019-01-31 Iron nitride magnetic wire and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102249514B1 (en)
WO (1) WO2020111386A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272909A (en) * 1999-03-24 2000-10-03 Nobuyuki Hiratsuka Production of iron nitride and iron
KR20060043263A (en) * 2004-03-17 2006-05-15 도와 마이닝 가부시끼가이샤 Iron nitride magnetic powder and method of producing the powder
JP4802795B2 (en) * 2006-03-23 2011-10-26 Tdk株式会社 Magnetic particles and method for producing the same
JP2015507354A (en) * 2011-12-15 2015-03-05 ケース ウェスターン リザーヴ ユニヴァーシティ Rare earth element-free nitride magnet obtained by transition and method for producing the same
KR101701447B1 (en) * 2015-08-13 2017-02-02 한국세라믹기술원 Method for preparing plate-shaped magnetic iron oxide and plate-shaped magnetic iron oxide prepared by the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140072047A (en) * 2011-08-17 2014-06-12 리전츠 오브 더 유니버시티 오브 미네소타 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
KR101294594B1 (en) * 2011-09-20 2013-08-16 한국과학기술연구원 Nanofiber with magnetic property and its preparation method
CN103814417A (en) * 2011-09-22 2014-05-21 户田工业株式会社 Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
KR101295527B1 (en) * 2011-09-26 2013-08-12 한국과학기술연구원 Magnetic nanowires comprising carbon nanofibers and its preparation method
KR101886558B1 (en) * 2016-03-04 2018-08-08 한양대학교 에리카산학협력단 Method of fabricating of magnetic nano structure
KR20170108468A (en) 2016-03-17 2017-09-27 연세대학교 산학협력단 Non rare earth permanent magnet and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272909A (en) * 1999-03-24 2000-10-03 Nobuyuki Hiratsuka Production of iron nitride and iron
KR20060043263A (en) * 2004-03-17 2006-05-15 도와 마이닝 가부시끼가이샤 Iron nitride magnetic powder and method of producing the powder
JP4802795B2 (en) * 2006-03-23 2011-10-26 Tdk株式会社 Magnetic particles and method for producing the same
JP2015507354A (en) * 2011-12-15 2015-03-05 ケース ウェスターン リザーヴ ユニヴァーシティ Rare earth element-free nitride magnet obtained by transition and method for producing the same
KR101701447B1 (en) * 2015-08-13 2017-02-02 한국세라믹기술원 Method for preparing plate-shaped magnetic iron oxide and plate-shaped magnetic iron oxide prepared by the same

Also Published As

Publication number Publication date
KR20200066123A (en) 2020-06-09
KR102249514B1 (en) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2017065408A1 (en) Ferrite magnetic material and ferrite sintered magnet
WO2021125798A1 (en) Mxene fibers and preparation method thereof
WO2016072804A1 (en) Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
WO2010039012A2 (en) Multiferroic material and method of manufacturing the same
WO2015099462A1 (en) Noncovalent bond-modified carbon structure, and carbon structure/polymer composite comprising same
WO2017204562A1 (en) Coil component
US11443943B2 (en) Sputtering target, oxide semiconductor thin film, and method for producing these
WO2015003508A1 (en) Highly insulating silicon carbide/boron nitride ceramic material and preparation method therefor
US11251061B2 (en) Electrostatic chuck and manufacturing method therefor
WO2020111386A1 (en) Iron nitride magnetic wire and manufacturing method therefor
WO2020149464A1 (en) Thermoelectric material and preparation method therefor
WO2020111772A1 (en) Method for manufacturing rare earth magnet
WO2017191866A1 (en) Method for manufacturing rare-earth sintered magnet
WO2022169073A1 (en) Method for manufacturing anisotropic rare earth bulk magnet, and anisotropic rare earth bulk magnet manufactured thereby
WO2020075910A1 (en) Composite material obtained by surface coating functional material, and method for producing same
WO2012141535A2 (en) Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same
WO2014148830A1 (en) Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
WO2020256394A1 (en) Method for manufacturing composite material, and composite material
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2021010713A1 (en) Fe-based soft magnetic alloy, method for manufacturing same, and magnetic component comprising same
WO2020017887A1 (en) Iron oxide magnetic powder and manufacturing method therefor
WO2020111384A1 (en) Magnetic nanostructures comprising copper and preparation method of same
WO2020122684A1 (en) Magnesia, method for manufacturing same, highly thermally conductive magnesia composition, and magnesia ceramic using same
WO2019117363A1 (en) High-mobility oxide sintered body and thin-film transistor comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889937

Country of ref document: EP

Kind code of ref document: A1