WO2020075910A1 - Composite material obtained by surface coating functional material, and method for producing same - Google Patents

Composite material obtained by surface coating functional material, and method for producing same Download PDF

Info

Publication number
WO2020075910A1
WO2020075910A1 PCT/KR2018/015292 KR2018015292W WO2020075910A1 WO 2020075910 A1 WO2020075910 A1 WO 2020075910A1 KR 2018015292 W KR2018015292 W KR 2018015292W WO 2020075910 A1 WO2020075910 A1 WO 2020075910A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional material
composite powder
carbon
base core
composite
Prior art date
Application number
PCT/KR2018/015292
Other languages
French (fr)
Korean (ko)
Inventor
좌용호
류승환
박시우
Original Assignee
한양대학교에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교에리카산학협력단 filed Critical 한양대학교에리카산학협력단
Publication of WO2020075910A1 publication Critical patent/WO2020075910A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper

Definitions

  • the present invention relates to a composite material by a functional material surface coating and a method for manufacturing the same, more specifically, to a composite material by a functional material surface coating comprising a base core and a carbon coating layer surrounding the base core and a method for manufacturing the same It is related.
  • the existing coating method uses a solution in which functional materials are dispersed, and the viscosity is adjusted according to the method such as spin coating, dip coating, bar coating, and doctor blade coating. Set and use a method of coating on a flat film form or spraying a solution with a spray coating or the like.
  • a sol-gel coating method and a surface oxidation method of a metal oxide are used to manufacture the nano-unit core-shell composite powder, but the coating method of bulk materials of tens of microns or more has a limited number.
  • the composite material field has the advantage of synergistic effect with complementary properties, and accordingly, the coating technology for giving these properties has been gradually developed.
  • a representative technique applied to small parts is spray coating. This is a method of adsorbing the solution in which the material to be coated is dispersed through the spraying process, and can be applied to curved small parts, but it has the disadvantage of loss of raw materials generated during the spraying process and difficulty in uniform coating. have.
  • a solgal coating method and a surface oxidation method of a metal oxide are used to manufacture the core-shell composite powder, but there are disadvantages in that the particle size and material are limited.
  • One technical problem to be solved by the present invention is to provide a composite material by a functional material surface coating capable of coating on a variety of substrates by a simple method and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a composite material by a functional material surface coating with improved electrical conductivity and thermal conductivity and a method for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a composite powder with improved oxidation resistance and corrosion resistance, a manufacturing method thereof, and a composite material by a functional material surface coating including the same, and a manufacturing method thereof.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a composite powder.
  • the composite powder includes a base core, and a functional material including a carbon layer, and includes a coating layer surrounding at least a portion of the base core, wherein the functional material has a ratio of carbon to oxygen of 16 It may include the above.
  • the Raman spectrum (raman spectroscopy) of the functional material may include that the I 2D / I G value is greater than 0.4 and less than 0.59.
  • the C 1s content of the functional material may include more than 93 wt%.
  • the functional material may include a carbon layered structure in which a plurality of the carbon layers are stacked.
  • the content of the functional material may include more than 0.49 wt%.
  • the base core may include any one of polymer, ceramic, and metal.
  • the polymer may include HDPE (high-density polyethylene), and the metal may include copper (copper).
  • a bonding material that bonds the base core and the coating layer may be further included.
  • the binding material may include at least one of a silane coupling agent or a grafted polymer.
  • the present invention provides a method for manufacturing a composite powder.
  • the method of manufacturing the composite powder includes preparing a functional material including a carbon layered structure in which a plurality of carbon layers are stacked, mixing the functional material with a base core, and the base core and the And applying vibration to a functional material to form a composite powder coated with a coating layer containing the functional material on the base core, wherein the carbon of the carbon layered structure included in the functional material before being coated is included.
  • the number of layers may include more than the number of carbon layers of the carbon layered structure included in the functional material after being coated.
  • the preparing of the functional material may include inserting ions between a plurality of the carbon layers to prepare the carbon layered structure, heat-treating the carbon layered structure in which ions are inserted, and It may include the ultrasonic treatment of the heat-treated carbon layered structure.
  • the forming of the coating layer may include exfoliating the carbon layer included in the carbon layered structure by vibration.
  • the step of mixing the functional material with the base core by controlling the content of the functional material, it may include controlling the electrical conductivity and thermal conductivity of the composite powder.
  • the present invention provides a heat dissipation composite material.
  • the base core polyethylene, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, and includes at least one of PP
  • the functional material is CNT, graphene, graphite, carbon balck, h-BN , Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim.
  • a method of manufacturing a composite powder according to an embodiment of the present invention includes preparing a functional material including a carbon layered structure in which a plurality of carbon layers are stacked, mixing the functional material with a base core, and the base core and And applying a vibration on the functional material to form a coating layer comprising the functional material on the base core. Accordingly, the composite powder coated with the functional material on the base core may be provided. That is, the method of manufacturing the composite powder according to the embodiment has an advantage in that the functional material can be coated by a simple method of applying vibration on a substrate having a curved surface such as the base core.
  • the ratio of carbon to oxygen of the functional material included in the coating layer coated on the base core may be 16 or more. Accordingly, a composite powder having improved oxidation resistance and corrosion resistance can be provided.
  • the composite powder according to the embodiment as a functional material is coated on a polymer, ceramic, metal support, etc., it is possible to impart electrical conductivity, thermal conductivity, and the like to the polymer, ceramic material, which is an insulating material.
  • the composite powder according to the embodiment may be utilized in various component materials such as thermoelectric materials, heat dissipation materials, and electronic materials.
  • the composite powder according to the embodiment can be applied to both a liquid phase process, a solid phase process, and a mass production, and thus can be usefully used in manufacturing various molded products related to coating.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a composite powder according to an embodiment of the present invention.
  • FIG. 2 is a view showing a manufacturing process of a composite powder according to an embodiment of the present invention.
  • FIG 3 is a view showing a functional material contained in a composite powder according to an embodiment of the present invention.
  • FIG. 4 is a view showing a composite powder according to an embodiment of the present invention.
  • FIG. 5 is an enlarged view of FIG. 4A.
  • FIG. 6 is a view showing the separation of the functional material contained in the composite powder according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a heat dissipation composite material according to an embodiment of the present invention.
  • FIG. 8 is a front view of a heat dissipation composite material according to an embodiment of the present invention.
  • 9 to 11 are optical pictures showing before and after the functional material according to an embodiment of the present invention is heat-treated.
  • FIG. 12 is a graph showing AFM photographs and thickness information of a functional material manufactured according to an embodiment of the present invention.
  • FIG. 13 is a graph showing Raman analysis results of a functional material according to an embodiment of the present invention.
  • Example 15 is a photograph taken in general of the composite powder according to Example 1 of the present invention.
  • Example 19 is a graph showing the electrical conductivity and thermal conductivity properties of the composite powder according to Example 1 of the present invention.
  • Example 20 is a graph showing the resistance properties of the composite powder according to Example 1 of the present invention.
  • 21 and 22 are photographs comparing the content of materials included in the composite powder according to Example 2 according to the number of coating times of the functional material.
  • Example 23 is a general picture for confirming the chemical resistance of the composite powder according to Example 2 of the present invention.
  • Example 24 is an optical picture for confirming the chemical resistance of the composite powder according to Example 2 of the present invention.
  • 25 to 27 are graphs comparing component changes according to the heat treatment temperature of the base core included in the composite powder according to Example 2 of the present invention.
  • Example 28 is a general photograph of a composite powder according to Example 3 of the present invention.
  • Example 29 is an optical photograph of a composite powder according to Example 3 of the present invention.
  • Example 31 is a graph showing optimization of chemical structure and silane coupling agent binding mechanism and content of a composite powder treated with a silane coupling agent according to Example 4 of the present invention.
  • FIG 33 is a photograph of a thermal radiation composite material according to an embodiment of the present invention taken with an infrared camera.
  • a component when referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them.
  • a third component may be interposed between them.
  • the thickness of the films and regions are exaggerated for effective description of the technical content.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment.
  • first component in one embodiment
  • second component in another embodiment
  • Each embodiment described and illustrated herein also includes its complementary embodiment. Also, in this specification, 'and / or' is used to mean including at least one of the components listed before and after.
  • FIG. 1 is a flow chart illustrating a method of manufacturing a composite powder according to an embodiment of the present invention
  • Figure 2 is a view showing a manufacturing process of a composite powder according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention 4 is a view showing a functional material included in the composite powder
  • FIG. 4 is a view showing the composite powder according to an embodiment of the present invention
  • FIG. 5 is an enlarged view of FIG. 4A
  • FIG. 6 is an embodiment of the present invention It is a view showing the separation of the functional material contained in the composite powder.
  • a functional material (FM) is prepared (S100).
  • the functional material FM may include a carbon layered structure 10 in which a plurality of carbon layers 10, 11, 12, 13, 14, 15, 16, 17, 18 are stacked.
  • the functional material (FM) may be expanded-graphite (EG).
  • ions inserted between a plurality of the carbon layers (10, 11, 12, 13, 14, 15, 16, 17, 18) are H 2 SO 4, HNO 3, N 2 O 5 , CO 2, SO 2 ions.
  • graphites forming the carbon layers 10, 11, 12, 13, 14, 15, 16, 17, 18 may be expanded.
  • expanded graphite may be peeled off.
  • the functional material (FM) has a small defect compared to rGO formed by a chemical method, and crystallinity can be improved.
  • the functional material (FM) may have a ratio of carbon to oxygen (C / O ratio) of 16 or more.
  • the C 1s content of the functional material may be 93 wt% or more.
  • the ratio of carbon to oxygen (C / O ratio) of the functional material FM may be 16.23, and the C 1s content of the functional material may be 93.19 wt%.
  • the composite powder described below is manufactured through the functional material FM having a relatively high proportion of carbon, oxidation resistance and chemical resistance of the composite powder described below may be improved.
  • the functional material FM may be mixed with the base core 100 (S200).
  • the base core 100 may include any one of polymer, ceramic, and metal.
  • the polymer may include high-density polyethylene (HDPE).
  • the ceramic may include at least one of h-BN, Aluminum nitride, Alumina, and Silicon nitride.
  • the metal may include copper.
  • the content of the functional material FM mixed with the base core 100 may be controlled. Accordingly, the electrical conductivity and thermal conductivity of the composite powder described later can be controlled.
  • the content of the functional material (FM) mixed with the base core 100 is controlled to be 0.49 wt% or more, electrical conductivity and thermal conductivity of the composite powder described below may be improved.
  • Vibration is applied to the mixed base core 100 and the functional material FM, so that a coating layer 200 may be formed on the base core 100 (S300). Accordingly, the composite powder according to the embodiment may be formed.
  • the coating layer 200 may include the functional material (FM).
  • the coating layer 200 may surround at least a portion of the base core 100. That is, when vibration is applied on the mixed base core 100 and the functional material FM, the functional material FM surrounds at least a portion of the base core 100 to cover the coating layer 200. Can form.
  • the mixing vessel V is subjected to acoustic mixing. It can be formed in a way.
  • the base core 100 includes a polymer (eg, HDPE)
  • the carbon layered structure 10 Carbon layer (for example, 11) disposed on one side of the plurality of carbon layers (11, 12, 13, 14, 15, 16, 17, 18) contained in the carbon and the surface of the base core 100
  • the carbon layer 12 excluding the carbon layer 11 disposed on one side of the plurality of carbon layers 11, 12, 13, 14, 15, 16, 17, 18 included in the carbon layered structure 10 , 13, 14, 15, 16, 17, 18) may each be already coupled through a van der Waals force (Pi-Pi bond).
  • a plurality of the carbon stacked structures 10 are combined on the base core 100, and the plurality of carbon stacked structures 10 form the coating film 200 surrounding the base core 100. can do.
  • the composite powder according to the embodiment uses a bonding material that bonds the base core 100 and the coating layer 200.
  • the binding material may include any one of siloxane-based coupling agents such as Polysiloxane, Siloxane, Silazane, Silanes, and polymers grafted with Vinyl, Amino, Epoxy, Mercapto, and the like.
  • the bonding material may be polysiloxane. That is, when the base core 100 includes any one of the ceramic and the metal, the functional material FM may be coupled to the base core 100 by the binding material.
  • the coating layer 200 provides the base core 100, the functional material (FM), and the bonding material in the mixing container (V), and then vibrates the mixing container (V) It can be formed by a method of applying.
  • the frequency applied may be controlled according to the type of the base core 100.
  • the frequency applied according to the type of the base core 100 may be controlled to 40g (gravity acceleration), 60g, 80g, and the like. More specifically, when the base core 100 includes a polymer, the applied frequency may be 60 g. On the other hand, when the base core 100 includes any one of ceramic and metal, the applied frequency may be 80 g.
  • the second vibration may be sequentially applied.
  • the first vibration may be relatively high vibration
  • the second vibration may be relatively low vibration. That is, the composite powder may be formed by a method in which low vibration is applied after high vibration is applied to the base core 100 and the functional material FM.
  • the first vibration (high vibration) is applied to the base core 100 and the functional material FM
  • the functional material FM can be easily coated on the base core 100.
  • the second vibration (low vibration) is applied to the base core 100 and the functional material FM, the peeling ratio of the functional material FM is reduced, and uniformity of coating can be improved.
  • the first vibration (high vibration) and the second vibration (low vibration) are sequentially applied to the base core 100 and the functional material FM, the above-described effects may be simultaneously implemented.
  • the functional material FM is included before being coated.
  • the number of carbon layers (11, 12, 13, 14, 15, 16, 17, 18) of the carbon layered structure (10), and the carbon layered structure (F) contained in the functional material (FM) after being coated may be different from each other. Specifically, the number of the carbon layers (11, 12, 13, 14, 15, 16, 17, 18) of the carbon layered structure (10) included in the functional material (FM) before being coated, after being coated
  • the number of carbon layers 11, 12, 13, and 14 of the carbon layered structure 10 included in the functional material FM may be greater.
  • the coating process at least a part of the carbon layers 11, 12, 13, 14, 15, 16, 17, 18 of the carbon layered structure 10 is peeled off, and the carbon layers 15, 16, 17, 18) may be coated on the base core 100, the carbon layered structure 10 is peeled off.
  • the I 2D / I G value of Raman spectrum (raman sepectroscopyh).
  • the I 2D / I G value in the Raman spectroscopy of the functional material (FM) before coating is less than 0.4
  • the I 2D / I G in the Raman spectrum of the functional material (FM) after coating The value can be greater than 0.4 and less than 0.59.
  • a plurality of the carbon layer (11, 12, 13, 14, 15, 16, 17) of the carbon layered structure (10) included in the functional material (FM) , 18) It can be determined that any one of the carbon layers (for example, 15, 16, 17, 18) is peeled by vibration.
  • the method of manufacturing a composite powder according to an embodiment of the present invention includes the carbon layered structure 10 in which a plurality of the carbon layers 11, 12, 13, 14, 15, 16, 17, 18 are stacked. Preparing a functional material (FM), mixing the functional material (FM) with the base core (100), and applying vibration on the base core (100) and the functional material (FM), the And forming the coating layer 200 including the functional material FM on the base core 100. Accordingly, the composite powder coated with the functional material FM on the base core 100 may be provided. That is, in the method of manufacturing the composite powder according to the embodiment, the functional material (FM) may be coated on a substrate having a curved surface such as the base core 100 by a simple method of applying vibration. There is an advantage.
  • the ratio of carbon to carbon (C / O ratio) of the functional material (FM) included in the coating layer 200 coated on the base core 100 is 16 or more. You can. Accordingly, a composite powder having improved oxidation resistance and corrosion resistance can be provided.
  • FIG. 7 is a perspective view of a heat dissipation composite material according to an embodiment of the present invention
  • FIG. 8 is a front view of the heat dissipation composite material according to an embodiment of the present invention.
  • the heat dissipation composite material may include a plurality of base cores 100, a coating layer 200, and a heat dissipation route (route, 300).
  • the base core 100 may include at least one of polyethylene, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, PP.
  • the coating layer 200 may surround at least a portion of the plurality of base cores 100.
  • the coating layer 200 may include a functional material (FM).
  • the functional material (FM) may include at least one of CNT, graphene, graphite, carbon balck, h-BN, Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim .
  • the heat dissipation route 300 may be provided between the plurality of base cores 100.
  • the functional material FM included in the coating layer 200 and the heat dissipation resin R may be disposed in the heat dissipation route 300.
  • the heat dissipation route 300 may provide a space in which heat is moved.
  • the plurality of base cores 100 are respectively surrounded by the coating layer 200 including the functional material FM, and the plurality of coating layers 200 surrounding each base core 100 are connected.
  • the heat dissipation route 300 may be formed.
  • the composite powder comprising the base core 100 and the coating layer 200 surrounding it is the same as the method for manufacturing the composite powder according to the embodiment described with reference to FIGS. 1 to 6. It can be prepared by a method. That is, after mixing the base core 100 and the functional material FM, the composite powder may be formed through a method of applying vibration. According to one embodiment, a plurality of the composite powder may be prepared.
  • the heat dissipation composite material according to the embodiment includes a plurality of the base core 100 and the plurality of base cores 100 ),
  • the coating layer 200 surrounding at least a portion, and the heat dissipation route 300 provided between the plurality of base cores 100 may be formed.
  • the heat dissipation material R is provided in the heat dissipation route 300, so that the heat dissipation composite material according to the embodiment may be manufactured.
  • the heat dissipation composite material according to an embodiment of the present invention surrounds at least a portion of the plurality of base cores 100 and the plurality of base cores 100, and the coating layer 200 including the functional material FM. And the heat dissipation route 300 provided between the plurality of base cores 100, wherein the functional material FM contained in the coating layer 200 in the heat dissipation route 300 and the heat dissipation resin (R) may be disposed. Accordingly, a plurality of the heat dissipation routes 300 are provided inside the heat dissipation composite material according to the embodiment, so that heat dissipation efficiency can be improved.
  • Expanded Graphite is prepared. After inserting ions into the prepared EG, heat treatment and ultrasonic treatment were performed to prepare a functional material according to the embodiment.
  • 9 to 11 are optical pictures showing before and after the functional material according to an embodiment of the present invention is heat-treated.
  • a functional material according to the above embodiment is prepared, and a functional material in a state before heat treatment is prepared to obtain SEM (magnification at 100 ⁇ m, 5 ⁇ m, and 500 nm, respectively). scanning electron microscope), and referring to FIGS. 10 (a) to 10 (c), a functional material according to the above example was prepared and SEM photographed at magnifications of 100 ⁇ m, 5 ⁇ m, and 500 nm, respectively. 9 and 10, it can be seen that the functional material according to the embodiment expands as it is heat-treated.
  • FIG. 11 (a) shows a segment of graphene constituting the functional material
  • FIG. 11 (b) is a photograph of the functional material at high magnification
  • FIG. 11 (c) shows the SAED of the functional material (selected area electron diffraction) pattern image.
  • FIG. 11 (b) it was confirmed that the functional material exhibited a lattice structure
  • FIG. 11 (c) the graphene constituting the functional material exhibited a single crystal.
  • FIG. 12 is a graph showing AFM photographs and thickness information of a functional material manufactured according to an embodiment of the present invention.
  • an atomic force microscopy (AFM) photograph of the functional material was taken and illustrated.
  • the thickness of the functional material was measured and graphed. As can be seen through (a) and (b) of FIG. 12, it was confirmed that the functional material according to the embodiment was made of carbon layers having a thin thickness.
  • FIG. 13 is a graph showing Raman analysis results of a functional material according to an embodiment of the present invention.
  • a functional material according to the above embodiment is prepared, but before the heat treatment, after the heat treatment, and after the ultrasonic treatment, a Raman spectroscopy is shown for each of the states. Did.
  • the functional material according to the embodiment before heat treatment is shown as an I 2D / I G value of 0.34
  • the functional material according to the embodiment after heat treatment is an I 2D / I G value It appeared as 0.40, it was confirmed that the I 2D / I G value is 0.38 for the functional material according to the embodiment after ultrasonic treatment. That is, it can be seen that the functional material according to the embodiment has a multi-layer regardless of heat treatment or ultrasonic treatment.
  • HDPE high-density polyethylene
  • each functional material and 4 g HDPE was mixed and acoustic mixing was performed for a time of 15 minutes for each. Accordingly, the functional material (EG) is coated on the base core (HDPE), according to Examples 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, and 1-7 Composite powders were prepared.
  • FIG. 14 is an optical photograph of the base core included in the composite powder according to the first embodiment of the present invention
  • FIG. 15 is a general photograph of the composite powder according to the first embodiment of the present invention.
  • the base core prepared for the preparation of the composite powder according to Example 1 was shown by SEM imaging at 100 ⁇ m and 10 ⁇ m magnification. As can be seen from (a) and (b) of FIG. 14, it can be seen that the base core prepared for the production of the composite powder according to Example 1 is a powder in a conical shape with an upper surface curved.
  • the composite powder according to Example 1-4 was shown by SEM photographing at a magnification of 500 ⁇ m and 250 ⁇ m.
  • the The composite powder according to Example 1 was shown by TEM imaging at a magnification of 10 nm.
  • the composite powder according to Example 1-4 has a form in which the functional material (EG) surrounds the base powder (HDPE).
  • the composite powder according to Example 1-4 was formed with a thickness of 8 nm, the functional layer (EG) constituting the coating layer is a plurality of carbon layers are laminated It can be seen that it appears in the old form.
  • the composite powder according to Example 1-4 was SEM photographed at a different magnification from FIGS. 16 (a) and (b). 17 (a) and (b), it can be seen that the composite powder according to Example 1-4 has a core-shell structure as a whole.
  • FIG. 18 a Raman spectroscopy is shown for a functional material of a coating layer included in the composite powder according to Examples 1-4. As can be seen in FIG. 18, it was found that the functional material of the coating layer included in the composite powder according to Example 1-4 has an I 2D / I G value of 0.59.
  • the I 2D / I G value increases in the process of coating the functional material according to the embodiment on the base core. This is considered to be a phenomenon that occurs as part of the carbon layer laminated by vibration during the process of coating the functional material on the base core is peeled off. As a result, it can be seen that the functional material of the coating layer included in the composite powder according to Examples 1-4 has an I 2D / I G value of more than 0.4 and 0.59 or less in a Raman spectroscopy.
  • Example 19 is a graph showing the electrical conductivity and thermal conductivity properties of the composite powder according to Example 1 of the present invention.
  • Example 20 is a graph showing the resistance properties of the composite powder according to Example 1 of the present invention.
  • a copper ball with an average diameter of 1 mm and a capacity of 20 g is prepared.
  • the prepared base core was mixed with 20 ml of the binding material, polysiloxane, and 1 wt% of the functional material (EG) according to the above embodiment, acoustic mixing was performed for a time of 3 minutes.
  • the primary heat treatment was performed at a temperature of 300 ° C. for 1 hour, and a secondary heat treatment was performed at a temperature of 400 ° C. for 5 hours to prepare a composite powder according to Example 2.
  • 21 and 22 are photographs comparing the content of materials included in the composite powder according to Example 2 according to the number of coating times of the functional material.
  • the composite powder according to Example 2 shows little Cu shape, and the EG particles are uniformly coated with a size of 5 to 15 microns. I could confirm that. In addition, it was confirmed that the proportion of Si and O increased as the amount of the binding material increased to coat the functional material twice.
  • FIG. 23 are general pictures for confirming chemical resistance of the composite powder according to Example 2 of the present invention
  • FIG. 24 are optical pictures for confirming chemical resistance of the composite powder according to Example 2 of the present invention.
  • FIG. 23 (a) is a photograph of a state before dropping NaCl in a normal copper powder
  • FIG. 23 (b) is a photograph of 72 hours after dropping NaCl in a normal copper powder.
  • FIG. 23 After dropping NaCl at a concentration of 3.5 wt% on the composite powder according to Example 2, a change occurring on the copper powder was observed for 72 hours.
  • Figure 23 (c) is a photograph of the state before dropping NaCl on the composite powder according to Example 2
  • Figure 23 (d) is dropped NaCl on the composite powder according to Example 2 This is a picture taken 72 hours later.
  • FIG. 23 it was confirmed that the composite powder according to Example 2 was protected from NaCl by a coated functional material (FM).
  • 25 to 27 are graphs comparing component changes according to the heat treatment temperature of the base core included in the composite powder according to Example 2 of the present invention.
  • XRD results for each were illustrated.
  • CuO was formed and exhibited a high peak in the case of general copper powder (Cu) being heat-treated.
  • XRD results for each were illustrated.
  • CuO and Cu2O were formed as the general copper powder (Cu) was heat-treated.
  • the composite powder according to Example 2 in which the functional material (FM) was coated on the copper powder, it was confirmed that CuO and Cu2O appeared less.
  • XRD results for each were illustrated.
  • FIG. 26 it was confirmed that CuO and Cu2O were formed as the general copper powder (Cu) was heat-treated.
  • the functional material (FM) was coated on the copper powder, it was confirmed that CuO and Cu2O appeared less.
  • HDPE high-density polyethylene
  • FIG. 28 is a general photograph of a composite powder according to Example 3 of the present invention
  • FIG. 29 is an optical photograph of the composite powder according to Example 3 of the present invention.
  • the base core (HDPE) and the functional material (h-BN) used in the production of the composite powder according to Example 3 were photographed in general and FIG. 28 (a) ), And the composite powder according to Example 3 formed of a base core (HDPE) and a functional material (h-BN) was photographed in general and shown in FIG. 28 (b).
  • the composite powders according to Example 3 were shown by SEM photographing at different magnifications and different angles, respectively. 28 and 29, it was confirmed that the composite powder according to Example 3 had a functional material (h-BN) formed around the base core (HDPE).
  • PMMA is prepared as a base core. After mixing the prepared PMMA with a silane coupling agent, which is a binding material, and a functional material (h-BN), acoustic mixing was performed to prepare a composite powder according to Example 4.
  • a silane coupling agent which is a binding material
  • a functional material h-BN
  • a functional material shows an image of a case in which a silane coupling agent is not added to and a case in which a silane coupling agent is added to the uncoated polymer material, and the binding is performed.
  • a material silane coupling agent
  • a coupling material silane coupling agent
  • Example 31 is a graph showing optimization of the chemical structure and silane coupling agent binding mechanism and content of the composite powder according to Example 4 of the present invention.
  • the base core (PMMA), a coupling material (silane coupling agent), and a functional material (h-BN) is combined with the chemical formula Shown.
  • the base core (PMMA) and the functional material (h-BN) are easily combined by a silane coupling agent in the process of enhancing the composite powder according to Example 4 above. I could confirm that it was done.
  • silane coupling agent is chemically bound to the functional material (h-BN), and the content of the optimized silane coupling agent is It was confirmed that the mass ratio was 3% compared to the functional substance (h-BN).
  • the composite powder according to Example 4 is agglomerated, the agglomerated composite powder is compressed to form a heat dissipation route, and the PMMA resin is injected into the heat dissipation route.
  • the heat dissipation composite material according to the embodiment is shown by SEM photographing. As can be seen from (a) to (c) of FIG. 32, it was confirmed that the heat dissipation composite material according to the above embodiment forms a heat dissipation route in the process of agglomeration of a plurality of the composite powders according to Example 4.
  • FIG 33 is a photograph of a thermal radiation composite material according to an embodiment of the present invention taken with an infrared camera.
  • the composite material according to the above embodiment is a polymer material (left) and the functional material is a randomly dispersed composite material (middle) three types of material in the vertical direction, Shown is a picture observed with an infrared camera that heat transfer occurs as heat is applied in the horizontal direction. As can be seen in Figure 33, it was confirmed that the composite material according to the embodiment is easily made to heat dissipation.
  • a composite material according to the embodiment Double filler-to-polymer percolation
  • a composite material manufactured by the method according to the embodiment but not filling the voids of the composite material Single filler percolation
  • the thermal conductivity of the vertical and horizontal directions of the composite material according to the embodiment in which the functional material is randomly dispersed are shown in a graph.
  • the composite material according to the embodiment has excellent heat dissipation characteristics.
  • the composite material according to the embodiment of the present invention can be used in various industrial fields, such as parts materials for automobiles and spacecraft that require wear resistance, corrosion resistance, and oxidation resistance, electronic materials, electric vehicles, heat dissipation materials, and thermoelectric materials.

Abstract

Provided is a composite powder. The composite powder comprises: a base core; and a coating layer comprising a functional material including carbon layers, and surrounding at least a portion of the base core, wherein the functional material may have a carbon to oxygen ratio of 16 or higher.

Description

기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법 Composite material by surface coating of functional material and its manufacturing method
본 발명은 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법에 관한 것으로서, 보다 구체적으로 베이스 코어, 및 상기 베이스 코어를 둘러싸는 탄소 코팅층을 포함하는 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법에 관련된 것이다. The present invention relates to a composite material by a functional material surface coating and a method for manufacturing the same, more specifically, to a composite material by a functional material surface coating comprising a base core and a carbon coating layer surrounding the base core and a method for manufacturing the same It is related.
기능성 소재의 코팅기술은 전자소재, 항공소재, 자동차 등 기계 부품소재, 방열소재, 열전소재 등 산업 전반적으로 기존 재료의 한계점을 뛰어 넘기 위해 활발히 연구되고 있다. 코팅하고자 하는 재료의 형상과 특징에 따라 부분적으로 특화된 코팅방법 (예: 스핀코팅, 바코팅, 딥코팅, 스프레이 코팅 등) 들을 사용하고 있지만, 코팅에서 발생되는 기능성 나노소재 용액의 손실(loss)와 특정 형상에서만 적용될 수 있는 한계점 때문에 관련 기술의 연구가 필수적이다. Functional material coating technology has been actively researched to overcome the limitations of existing materials across industries such as electronic materials, aviation materials, automotive parts, heat dissipation materials, and thermoelectric materials. Partially specialized coating methods (e.g. spin coating, bar coating, dip coating, spray coating, etc.) are used depending on the shape and characteristics of the material to be coated, but the loss and loss of the functional nanomaterial solution generated in the coating Because of the limitations that can only be applied to specific shapes, research on related technologies is essential.
기존의 코팅 방식은 기능성 소재들이 분산된 용액을 사용하여 스핀 코팅 (spic coating), 딥 코팅(dip coating), 바 코팅(bar coating), 닥터 블레이드 코팅 (doctor blade coating) 등 그 방식에 따라 점도를 설정하고 평판 필름 형태에 코팅을 하거나, 스프레이 코팅(spray coating) 등으로 용액을 뿌려 코팅하는 방법을 사용한다. 또한, 나노 단위의 코어-쉘 구조의 복합분말을 제조하기 위해서는 졸겔 코팅방법과 금속 산화물의 표면산화 방식 등이 쓰이고 있지만, 수십 마이크로 이상의 벌크한 소재들의 코팅방법은 그 코팅 방법의 수가 한정적이다. The existing coating method uses a solution in which functional materials are dispersed, and the viscosity is adjusted according to the method such as spin coating, dip coating, bar coating, and doctor blade coating. Set and use a method of coating on a flat film form or spraying a solution with a spray coating or the like. In addition, a sol-gel coating method and a surface oxidation method of a metal oxide are used to manufacture the nano-unit core-shell composite powder, but the coating method of bulk materials of tens of microns or more has a limited number.
최근 산업적으로 고분자-세라믹-메탈 등 한 가지 소재의 특성보다 두 가지 이상의 물질들을 사용하여 복합 소재화에 대한 연구가 활발히 진행되고 있다. 복합소재 분야는 상호 보완적인 특성들로 시너지 효과를 낼 수 있다는 장점이 있으며, 이에 따라 이러한 특성부여를 위한 코팅 기술도 점차 발전되고 있다. Recently, studies on composite materialization have been actively conducted using two or more materials rather than properties of one material such as polymer-ceramic-metal. The composite material field has the advantage of synergistic effect with complementary properties, and accordingly, the coating technology for giving these properties has been gradually developed.
산업적으로 이용되고 있는 코팅기술은 필름형태의 소재에 초점이 맞춰져 있다. 예를 들어, 바코팅, 잉크젯 프린팅, 스핀코팅 등 종래기술들은 두께가 균일한 판상의 substrate에서만 적용이 가능하며, 코팅하고자 하는 용액의 묽기와 코팅 형태에 따라 코팅 방식을 선택한다. 이는 평판 필름 위주의 제품생산에 특화되어 있으나 소형의 부품 코팅 및 소자화 전의 원료 코팅 분야에서는 그 한계가 있다. Industrially used coating technology focuses on film-type materials. For example, conventional techniques such as bar coating, inkjet printing, and spin coating are applicable only on a substrate having a uniform thickness, and a coating method is selected according to the dilution and coating type of the solution to be coated. It is specialized in the production of flat film-oriented products, but has limitations in the field of coating of small parts and coating of raw materials before deviceization.
소형의 부품에 적용이 되는 대표적인 기술에는 스프레이 코팅이 있다. 이는 코팅하고 하는 물질이 분산되어 있는 용액을 분무공정을 통해 표면에 흡착시키는 방법이며, 굴곡진 소형 부품들에도 적용이 가능 하지만, 분무 과정에 발생되는 원료의 loss와 균일한 코팅이 힘들다는 단점이 있다. 또한, 코어-쉘 구조의 복합분말을 제조하기 위해서는 졸갤 코팅방법과 금속 산화물의 표면산화 방식 등이 쓰이고 있지만 파티클의 사이즈와 소재가 한정적이라는 단점이 있다. A representative technique applied to small parts is spray coating. This is a method of adsorbing the solution in which the material to be coated is dispersed through the spraying process, and can be applied to curved small parts, but it has the disadvantage of loss of raw materials generated during the spraying process and difficulty in uniform coating. have. In addition, a solgal coating method and a surface oxidation method of a metal oxide are used to manufacture the core-shell composite powder, but there are disadvantages in that the particle size and material are limited.
기능성 물질이 코팅된 복합 분말을 용이하게 제조하기 위한 다양한 기술들이 지속적으로 연구?개발되고 있다. 예를 들어, 대한민국 특허 등록 번호 10-1457024(출원번호: 10-2013-0002074, 출원인: (주)경동하이테크)에는, SiO2/M2O의 구조를 갖는 수용성의 고분자 규산염(물유리)에 항균, 탈취, 원적외선 방사, 음이온 방출 등의 복합 기능을 갖는 금속 또는 금속산화물, 금속염 분말을 미세하게 분쇄, 혼합하여 그 분말 입자의 표면에 수용성의 고분자 규산염이 코팅되도록 한 후 이를 겔화시켜 여과, 건조한 후 이를 다시 미세 분말로 재분쇄하여 이루어지는 복합 기능성 세라믹 분말의 제조방법이 개시되어 있다. 이 밖에도, 기능성 물질이 코팅된 복합 분말 및 그 제조 방법에 관한 다양한 기술들이 지속적으로 연구 개발되고 있다. Various techniques for easily manufacturing a composite powder coated with a functional material have been continuously researched and developed. For example, in the Republic of Korea Patent Registration No. 10-1457024 (Application No .: 10-2013-0002074, Applicant: Kyungdong Hi-Tech Co., Ltd.), antibacterial, deodorizing water-soluble polymer silicate (water glass) having the structure of SiO2 / M2O, Finely pulverize and mix metal or metal oxide and metal salt powders with complex functions such as far-infrared radiation, anion release, etc. so that a water-soluble polymer silicate is coated on the surface of the powder particles, gel it, filter it, dry it, and then fine it again. Disclosed is a method for producing a composite functional ceramic powder obtained by re-pulverization into a powder. In addition, various technologies related to a composite powder coated with a functional material and a manufacturing method thereof are continuously researched and developed.
본 발명이 해결하고자 하는 일 기술적 과제는, 다양한 기재 상에 간단한 방법으로 코팅이 가능한 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide a composite material by a functional material surface coating capable of coating on a variety of substrates by a simple method and a method of manufacturing the same.
본 발명이 해결하고자 하는 다른 기술적 과제는, 전기전도도 및 열전도도가 향상된 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a composite material by a functional material surface coating with improved electrical conductivity and thermal conductivity and a method for manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 내산화성 및 내부식성이 향상된 복합 분말, 그 제조방법, 그리고 이를 포함하는 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a composite powder with improved oxidation resistance and corrosion resistance, a manufacturing method thereof, and a composite material by a functional material surface coating including the same, and a manufacturing method thereof.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.The technical problem to be solved by the present invention is not limited to the above.
상술된 기술적 과제들을 해결하기 위해 본 발명은 복합 분말을 제공한다. In order to solve the above technical problems, the present invention provides a composite powder.
일 실시 예에 따르면, 상기 복합 분말은 베이스 코어, 및 탄소층을 포함하는 기능성 물질을 포함하고, 상기 베이스 코어의 적어도 일부를 둘러싸는 코팅층을 포함하되, 상기 기능성 물질은 산소 대비 탄소의 비율이 16 이상인 것을 포함할 수 있다. According to one embodiment, the composite powder includes a base core, and a functional material including a carbon layer, and includes a coating layer surrounding at least a portion of the base core, wherein the functional material has a ratio of carbon to oxygen of 16 It may include the above.
일 실시 예에 따르면, 상기 기능성 물질의 라만 스펙트럼(raman spectroscopy)에서 I2D/IG 값이 0.4 초과 0.59 이하인 것을 포함할 수 있다. According to one embodiment, in the Raman spectrum (raman spectroscopy) of the functional material may include that the I 2D / I G value is greater than 0.4 and less than 0.59.
일 실시 예에 따르면, 상기 기능성 물질의 C 1s 함량은 93 wt% 이상인 것을 포함할 수 있다. According to one embodiment, the C 1s content of the functional material may include more than 93 wt%.
일 실시 예에 따르면, 상기 기능성 물질은, 복수의 상기 탄소층이 적층된 탄소 적층 구조체를 포함할 수 있다. According to an embodiment, the functional material may include a carbon layered structure in which a plurality of the carbon layers are stacked.
일 실시 예에 따르면, 상기 기능성 물질의 함량은, 0.49 wt% 이상인 것을 포함할 수 있다. According to one embodiment, the content of the functional material may include more than 0.49 wt%.
일 실시 예에 따르면, 상기 베이스 코어는, 폴리머, 세라믹, 및 금속 중 어느 하나를 포함할 수 있다. According to an embodiment, the base core may include any one of polymer, ceramic, and metal.
일 실시 예에 따르면, 상기 폴리머는 HDPE(high-density polyethylene)을 포함하고, 상기 금속은 구리(copper)를 포함할 수 있다. According to one embodiment, the polymer may include HDPE (high-density polyethylene), and the metal may include copper (copper).
일 실시 예에 따르면, 상기 베이스 코어가 상기 세라믹, 및 상기 금속 중 어느 하나를 포함하는 경우, 상기 베이스 코어와 상기 코팅층을 결합시키는 결합 물질을 더 포함할 수 있다. According to an embodiment, when the base core includes any one of the ceramic and the metal, a bonding material that bonds the base core and the coating layer may be further included.
일 실시 예에 따르면, 상기 결합 물질은, 실란계 커플링제, 또는 그래프트된 중합체 중에서 적어도 어느 하나를 포함할 수 있다. According to an embodiment, the binding material may include at least one of a silane coupling agent or a grafted polymer.
상술된 기술적 과제들을 해결하기 위해 본 발명은 복합 분말의 제조방법을 제공한다. In order to solve the above-mentioned technical problems, the present invention provides a method for manufacturing a composite powder.
일 실시 예에 따르면, 상기 복합 분말의 제조방법은 복수의 탄소층이 적층된 탄소 적층 구조체를 포함하는 기능성 물질을 준비하는 단계, 상기 기능성 물질을 베이스 코어와 혼합하는 단계, 및 상기 베이스 코어 및 상기 기능성 물질에 진동을 인가하여, 상기 베이스 코어 상에 상기 기능성 물질을 포함하는 코팅층이 코팅된 복합 분말을 형성하는 단계를 포함하되, 코팅되기 전 상기 기능성 물질이 포함하는 상기 탄소 적층 구조체가 갖는 상기 탄소층의 수는, 코팅된 후 상기 기능성 물질이 포함하는 상기 탄소 적층 구조체가 갖는 상기 탄소층의 수보다 많은 것을 포함할 수 있다. According to one embodiment, the method of manufacturing the composite powder includes preparing a functional material including a carbon layered structure in which a plurality of carbon layers are stacked, mixing the functional material with a base core, and the base core and the And applying vibration to a functional material to form a composite powder coated with a coating layer containing the functional material on the base core, wherein the carbon of the carbon layered structure included in the functional material before being coated is included. The number of layers may include more than the number of carbon layers of the carbon layered structure included in the functional material after being coated.
일 실시 예에 따르면, 상기 기능성 물질을 준비하는 단계는, 복수의 상기 탄소층 사이에 이온을 삽입하여, 상기 탄소 적층 구조체를 제조하는 단계, 이온이 삽입된 상기 탄소 적층 구조체를 열처리하는 단계, 및 열처리된 상기 탄소 적층 구조체를 초음파 처리하는 단계를 포함할 수 있다. According to an embodiment, the preparing of the functional material may include inserting ions between a plurality of the carbon layers to prepare the carbon layered structure, heat-treating the carbon layered structure in which ions are inserted, and It may include the ultrasonic treatment of the heat-treated carbon layered structure.
일 실시 예에 따르면, 상기 코팅층을 형성하는 단계는, 상기 탄소 적층 구조체에 포함된 상기 탄소층이, 진동에 의하여 박리되는 것을 포함할 수 있다. According to an embodiment, the forming of the coating layer may include exfoliating the carbon layer included in the carbon layered structure by vibration.
일 실시 예에 따르면, 상기 기능성 물질을 베이스 코어와 혼합하는 단계에서, 상기 기능성 물질의 함량을 제어하여, 상기 복합 분말의 전기전도도 및 열전도도를 제어하는 것을 포함할 수 있다. According to one embodiment, in the step of mixing the functional material with the base core, by controlling the content of the functional material, it may include controlling the electrical conductivity and thermal conductivity of the composite powder.
상술된 기술적 과제들을 해결하기 위해 본 발명은 방열 복합 소재를 제공한다. In order to solve the above technical problems, the present invention provides a heat dissipation composite material.
일 실시 예에 따르면, 상기 방열 복합 소재는, 복수의 베이스 코어, 상기 복수의 베이스 코어 중 적어도 일부를 둘러싸고, 기능성 물질을 포함하는 코팅층, 및 상기 복수의 베이스 코어 사이에 제공되는 방열 루트(route)를 포함하되, 상기 방열 루트는 내에는 상기 코팅층이 포함하는 상기 기능성 물질, 및 방열 수지가 배치될 수 있다. According to one embodiment, the heat dissipation composite material, a plurality of base cores, surrounding at least a portion of the plurality of base cores, a coating layer comprising a functional material, and a heat dissipation route provided between the plurality of base cores (route) Including, the heat dissipation route may be disposed within the functional material and the heat dissipation resin included in the coating layer.
일 실시 예에 따르면, 상기 베이스 코어는, 폴리에틸렌, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, PP 중 적어도 어느 하나를 포함하고, 상기 기능성 물질은 CNT, graphene, graphite, carbon balck, h-BN, Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim 중 적어도 어느 하나를 포함할 수 있다. According to one embodiment, the base core, polyethylene, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, and includes at least one of PP, the functional material is CNT, graphene, graphite, carbon balck, h-BN , Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim.
본 발명의 실시 예에 따른 복합 분말의 제조방법은, 복수의 탄소층이 적층된 탄소 적층 구조체를 포함하는 기능성 물질을 준비하는 단계, 상기 기능성 물질을 베이스 코어와 혼합하는 단계, 및 상기 베이스 코어 및 상기 기능성 물질 상에 진동을 인가하여, 상기 베이스 코어 상에 상기 기능성 물질을 포함하는 코팅층을 형성하는 단계를 포함할 수 있다. 이에 따라, 상기 베이스 코어 상에 상기 기능성 물질이 코팅된, 상기 복합 분말이 제공될 수 있다. 즉, 상기 실시 예에 따른 복합 분말의 제조방법은, 상기 베이스 코어와 같이 굴곡진 형태의 표면을 갖는 기재 상에, 진동을 인가하는 간단한 방법으로 상기 기능성 물질을 코팅시킬 수 있는 장점이 있다. A method of manufacturing a composite powder according to an embodiment of the present invention includes preparing a functional material including a carbon layered structure in which a plurality of carbon layers are stacked, mixing the functional material with a base core, and the base core and And applying a vibration on the functional material to form a coating layer comprising the functional material on the base core. Accordingly, the composite powder coated with the functional material on the base core may be provided. That is, the method of manufacturing the composite powder according to the embodiment has an advantage in that the functional material can be coated by a simple method of applying vibration on a substrate having a curved surface such as the base core.
또한, 상기 실시 예에 따른 복합 분말은, 상기 베이스 코어 상에 코팅된 상기 코팅층이 포함하는 상기 기능성 물질의 산소 대비 탄소의 비율이 16 이상일 수 있다. 이에 따라, 내산화성, 및 내부식성이 향상된 복합 분말이 제공될 수 있다. In addition, in the composite powder according to the embodiment, the ratio of carbon to oxygen of the functional material included in the coating layer coated on the base core may be 16 or more. Accordingly, a composite powder having improved oxidation resistance and corrosion resistance can be provided.
또한, 상기 실시 예에 따른 복합 분말은, 고분자, 세라믹, 금속 지지체 등에 기능성 소재가 코팅됨에 따라, 절연성 물질인 고분자, 세라믹 소재 등에 전기 전도성, 열 전도성 등을 부여할 수 있다. 뿐만 아니라, 상기 실시 예에 따른 복합 분말은 열전소재, 방열 소재, 전자 소재 등 다양한 부품 소재에 활용 가능할 수 있다. In addition, the composite powder according to the embodiment, as a functional material is coated on a polymer, ceramic, metal support, etc., it is possible to impart electrical conductivity, thermal conductivity, and the like to the polymer, ceramic material, which is an insulating material. In addition, the composite powder according to the embodiment may be utilized in various component materials such as thermoelectric materials, heat dissipation materials, and electronic materials.
또한, 상기 실시 예에 따른 복합 분말은 액상 공정, 고상 공정, 및 대량 생산에도 모두 적용이 가능하여 코팅과 관련된 다양한 성형품 제조에 유용하게 사용될 수 있다. In addition, the composite powder according to the embodiment can be applied to both a liquid phase process, a solid phase process, and a mass production, and thus can be usefully used in manufacturing various molded products related to coating.
도 1은 본 발명의 실시 예에 따른 복합 분말의 제조방법을 설명하는 순서도이다. 1 is a flowchart illustrating a method of manufacturing a composite powder according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 복합 분말의 제조 공정을 나타내는 도면이다. 2 is a view showing a manufacturing process of a composite powder according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 복합 분말이 포함하는 기능성 물질을 나타내는 도면이다. 3 is a view showing a functional material contained in a composite powder according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 복합 분말을 나타내는 도면이다. 4 is a view showing a composite powder according to an embodiment of the present invention.
도 5는 도 4 A의 확대도이다. 5 is an enlarged view of FIG. 4A.
도 6은 본 발명의 실시 예에 따른 복합 분말이 포함하는 기능성 물질의 박리를 나타내는 도면이다. 6 is a view showing the separation of the functional material contained in the composite powder according to an embodiment of the present invention.
도 7은 본 발명의 실시 예에 따른 방열 복합 소재의 사시도이다. 7 is a perspective view of a heat dissipation composite material according to an embodiment of the present invention.
도 8은 본 발명의 실시 예에 따른 방열 복합 소재의 정면도이다. 8 is a front view of a heat dissipation composite material according to an embodiment of the present invention.
도 9 내지 도 11은 본 발명의 실시 예에 따른 기능성 물질이 열처리되기 전과 후를 나타내는 광학 사진들이다. 9 to 11 are optical pictures showing before and after the functional material according to an embodiment of the present invention is heat-treated.
도 12는 본 발명의 실시 예에 따라 제조된 기능성 물질의 AFM 사진과 두께 정보를 나타내는 그래프이다.12 is a graph showing AFM photographs and thickness information of a functional material manufactured according to an embodiment of the present invention.
도 13은 본 발명의 실시 예에 따른 기능성 물질의 라만 분석 결과를 나타내는 그래프이다. 13 is a graph showing Raman analysis results of a functional material according to an embodiment of the present invention.
도 14는 본 발명의 실시 예 1에 따른 복합 분말이 포함하는 베이스 코어를 광학 촬영한 사진이다. 14 is an optical photograph of the base core included in the composite powder according to Example 1 of the present invention.
도 15는 본 발명의 실시 예 1에 따른 복합 분말을 일반 촬영한 사진이다. 15 is a photograph taken in general of the composite powder according to Example 1 of the present invention.
도 16 및 도 17은 본 발명의 실시 예 1에 따른 복합 분말을 광학 촬영한 사진이다. 16 and 17 are optical photographs of the composite powder according to Example 1 of the present invention.
도 18은 도 17에 대한 라만 분석 결과를 나타내는 그래프이다. 18 is a graph showing Raman analysis results for FIG. 17.
도 19는 본 발명의 실시 예 1에 따른 복합 분말의 전기전도도 및 열전도도 특성을 나타내는 그래프이다. 19 is a graph showing the electrical conductivity and thermal conductivity properties of the composite powder according to Example 1 of the present invention.
도 20은 본 발명의 실시 예 1에 따른 복합 분말의 저항 특성을 나타내는 그래프이다. 20 is a graph showing the resistance properties of the composite powder according to Example 1 of the present invention.
도 21 및 도 22는 기능성 물질의 코팅 횟수에 따라 상기 실시 예 2에 따른 복합 분말이 포함하는 물질들의 함량을 비교하는 사진이다. 21 and 22 are photographs comparing the content of materials included in the composite powder according to Example 2 according to the number of coating times of the functional material.
도 23은 본 발명의 실시 예 2에 따른 복합 분말의 내화학성을 확인하기 위한 일반 사진들이다. 23 is a general picture for confirming the chemical resistance of the composite powder according to Example 2 of the present invention.
도 24는 본 발명의 실시 예 2에 따른 복합 분말의 내화학성을 확인하기 위한 광학 사진들이다. 24 is an optical picture for confirming the chemical resistance of the composite powder according to Example 2 of the present invention.
도 25 내지 27은 본 발명의 실시 예 2에 따른 복합 분말이 포함하는 베이스 코어의 열처리 온도에 따른 성분 변화를 비교하는 그래프들이다. 25 to 27 are graphs comparing component changes according to the heat treatment temperature of the base core included in the composite powder according to Example 2 of the present invention.
도 28은 본 발명의 실시 예 3에 따른 복합 분말을 촬영한 일반 사진이다. 28 is a general photograph of a composite powder according to Example 3 of the present invention.
도 29는 본 발명이 실시 예 3에 따른 복합 분말을 촬영한 광학 사진이다. 29 is an optical photograph of a composite powder according to Example 3 of the present invention.
도 30은 본 발명의 실시 예 4에 따른 복합 분말을 광학 촬영한 사진이다. 30 is an optical photograph of the composite powder according to Example 4 of the present invention.
도 31은 본 발명의 실시 예 4에 따른 실란 커플링제가 처리된 복합 분말의 화학구조 및 결합 물질(silane coupling agent) 결합 메커니즘 및 함량의 최적화를 나타내는 그래프이다. 31 is a graph showing optimization of chemical structure and silane coupling agent binding mechanism and content of a composite powder treated with a silane coupling agent according to Example 4 of the present invention.
도 32는 본 발명의 실시 예에 따른 방열 복합 소재를 광학 촬영한 사진이다. 32 is an optical photograph of a heat dissipation composite material according to an embodiment of the present invention.
도 33은 본 발명의 실시 예에 따른 방열 복합 소재를 적외선 카메라로 촬영한 사진이다. 33 is a photograph of a thermal radiation composite material according to an embodiment of the present invention taken with an infrared camera.
도 34는 본 발명의 실시 예에 따른 방열 복합 소재의 열전도도를 나타내는 그래프이다.34 is a graph showing the thermal conductivity of a heat dissipation composite material according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the films and regions are exaggerated for effective description of the technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.Further, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. Also, in this specification, 'and / or' is used to mean including at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.In the specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. Also, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, elements or combinations thereof described in the specification, and one or more other features, numbers, steps, or configurations. It should not be understood as excluding the possibility of the presence or addition of elements or combinations thereof. In addition, in this specification, "connecting" is used in a sense to include both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, when it is determined that detailed descriptions of related well-known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
도 1은 본 발명의 실시 예에 따른 복합 분말의 제조방법을 설명하는 순서도이고, 도 2는 본 발명의 실시 예에 따른 복합 분말의 제조 공정을 나타내는 도면이고, 도 3은 본 발명의 실시 예에 따른 복합 분말이 포함하는 기능성 물질을 나타내는 도면이고, 도 4는 본 발명의 실시 예에 따른 복합 분말을 나타내는 도면이고, 도 5는 도 4 A의 확대도이고, 도 6은 본 발명의 실시 예에 따른 복합 분말이 포함하는 기능성 물질의 박리를 나타내는 도면이다. 1 is a flow chart illustrating a method of manufacturing a composite powder according to an embodiment of the present invention, Figure 2 is a view showing a manufacturing process of a composite powder according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention 4 is a view showing a functional material included in the composite powder, FIG. 4 is a view showing the composite powder according to an embodiment of the present invention, FIG. 5 is an enlarged view of FIG. 4A, and FIG. 6 is an embodiment of the present invention It is a view showing the separation of the functional material contained in the composite powder.
도 1 내지 도 5를 참조하면, 기능성 물질(FM)이 준비된다(S100). 일 실시 예에 따르면, 상기 기능성 물질(FM)은 복수의 탄소층(10, 11, 12, 13, 14, 15, 16, 17, 18)이 적층된 탄소 적층 구조체(10)를 포함할 수 있다. 예를 들어, 상기 기능성 물질(FM)은 expanded-graphite(EG)일 수 있다. 1 to 5, a functional material (FM) is prepared (S100). According to an embodiment, the functional material FM may include a carbon layered structure 10 in which a plurality of carbon layers 10, 11, 12, 13, 14, 15, 16, 17, 18 are stacked. . For example, the functional material (FM) may be expanded-graphite (EG).
일 실시 예에 따르면, 상기 기능성 물질(FM)을 준비하는 단계는, 복수의 상기 탄소층(10, 11, 12, 13, 14, 15, 16, 17, 18) 사이에 이온(ion)을 삽입하여 상기 탄소 적층 구조체(10)를 제조하는 단계, 상기 이온이 삽입된 상기 탄소 적층 구조체(10)를 열처리하는 단계, 및 열처리된 상기 탄소 적층 구조체(10)를 초음파 처리하는 단계를 포함할 수 있다. 예를 들어, 복수의 상기 탄소층(10, 11, 12, 13, 14, 15, 16, 17, 18) 사이에 삽입되는 이온은 H2SO4, HNO3, N2O5, CO2, SO2이온일 수 있다. 구체적으로, 상기 탄소 적층 구조체(10)가 열처리는 경우, 상기 탄소층(10, 11, 12, 13, 14, 15, 16, 17, 18))를 이루는 흑연들이 팽창될 수 있다. 또한, 열처리된 상기 탄소 적층 구조체(10)가 초음파 처리되는 경우, 팽창된 흑연들이 박리될 수 있다. According to one embodiment, the step of preparing the functional material (FM), inserts ions (ion) between the plurality of the carbon layer (10, 11, 12, 13, 14, 15, 16, 17, 18) And manufacturing the carbon layered structure 10, heat-treating the carbon layered structure 10 in which the ions are inserted, and ultrasonicating the heat-treated carbon layered structure 10. . For example, ions inserted between a plurality of the carbon layers (10, 11, 12, 13, 14, 15, 16, 17, 18) are H 2 SO 4, HNO 3, N 2 O 5 , CO 2, SO 2 ions. Specifically, when the carbon layered structure 10 is heat-treated, graphites forming the carbon layers 10, 11, 12, 13, 14, 15, 16, 17, 18 may be expanded. In addition, when the heat-treated carbon stacked structure 10 is ultrasonicated, expanded graphite may be peeled off.
이에 따라, 상기 기능성 물질(FM)은 화학적 방법으로 형성된 rGO와 비교하여 결함이 작고, 결정성이 향상될 수 있다. 예를 들어, 상기 기능성 물질(FM)은 산소 대비 탄소의 비율(C/O ratio)이 16 이상일 수 있다. 또한, 상기 기능성 물질의 C 1s 함량은 93 wt% 이상일 수 있다. 구체적으로 상기 기능성 물질(FM)의 산소 대비 탄소의 비율(C/O ratio)은 16.23일 수 있고, 상기 기능성 물질의 C 1s 함량은 93.19 wt% 일 수 있다. 상대적으로 탄소의 비율이 높은 상기 기능성 물질(FM)을 통하여 후술되는 복합 분말이 제조됨에 따라, 후술되는 복합 분말의 내산화성, 및 내화학성이 향상될 수 있다. Accordingly, the functional material (FM) has a small defect compared to rGO formed by a chemical method, and crystallinity can be improved. For example, the functional material (FM) may have a ratio of carbon to oxygen (C / O ratio) of 16 or more. In addition, the C 1s content of the functional material may be 93 wt% or more. Specifically, the ratio of carbon to oxygen (C / O ratio) of the functional material FM may be 16.23, and the C 1s content of the functional material may be 93.19 wt%. As the composite powder described below is manufactured through the functional material FM having a relatively high proportion of carbon, oxidation resistance and chemical resistance of the composite powder described below may be improved.
상기 기능성 물질(FM)은 베이스 코어(100)와 혼합될 수 있다(S200). 일 실시 예에 따르면, 상기 베이스 코어(100)는 폴리머, 세라믹, 및 금속 중 어느 하나를 포함할 수 있다. 예를 들어, 상기 폴리머는 HDPE(high-density polyethylene)을 포함할 수 있다. 예를 들어, 상기 세라믹은 h-BN, Aluminum nitride, Alumina, Silicon nitride 중 적어도 어느 하나를 포함할 수 있다. 예를 들어, 상기 금속은 구리(copper)를 포함할 수 있다. The functional material FM may be mixed with the base core 100 (S200). According to an embodiment, the base core 100 may include any one of polymer, ceramic, and metal. For example, the polymer may include high-density polyethylene (HDPE). For example, the ceramic may include at least one of h-BN, Aluminum nitride, Alumina, and Silicon nitride. For example, the metal may include copper.
일 실시 예에 따르면, 상기 베이스 코어(100)와 혼합되는 상기 기능성 물질(FM)의 함량이 제어될 수 있다. 이에 따라, 후술되는 복합 분말의 전기전도도 및 열전도도가 제어될 수 있다. 예를 들어, 상기 베이스 코어(100)와 혼합되는 상기 기능성 물질(FM)의 함량이 0.49 wt%이상으로 제어됨에 따라, 후술되는 복합 분말의 전기전도도 및 열전도도가 향상될 수 있다. According to an embodiment, the content of the functional material FM mixed with the base core 100 may be controlled. Accordingly, the electrical conductivity and thermal conductivity of the composite powder described later can be controlled. For example, as the content of the functional material (FM) mixed with the base core 100 is controlled to be 0.49 wt% or more, electrical conductivity and thermal conductivity of the composite powder described below may be improved.
혼합된 상기 베이스 코어(100) 및 기능성 물질(FM)에 진동이 인가되어, 상기 베이스 코어(100) 상에, 코팅층(200)이 형성될 수 있다(S300). 이에 따라, 상기 실시 예에 따른 복합 분말이 형성될 수 있다. 상기 코팅층(200)은 상기 기능성 물질(FM)을 포함할 수 있다. 또한, 상기 코팅층(200)은 상기 베이스 코어(100)의 적어도 일부를 둘러쌀 수 있다. 즉, 혼합된 상기 베이스 코어(100) 및 상기 기능성 물질(FM) 상에 진동이 인가되는 경우, 상기 기능성 물질(FM)이 상기 베이스 코어(100)의 적어도 일부를 둘러싸, 상기 코팅층(200)을 형성할 수 있다. 일 실시 예에 따르면, 상기 코팅층(200)은 상기 베이스 코어(100) 및 상기 기능성 물질(FM)을 혼합 용기(V)내에 제공한 후, 상기 혼합 용기(V)를 어쿠스트 믹싱(acoustic mixing)하는 방법으로 형성될 수 있다. Vibration is applied to the mixed base core 100 and the functional material FM, so that a coating layer 200 may be formed on the base core 100 (S300). Accordingly, the composite powder according to the embodiment may be formed. The coating layer 200 may include the functional material (FM). In addition, the coating layer 200 may surround at least a portion of the base core 100. That is, when vibration is applied on the mixed base core 100 and the functional material FM, the functional material FM surrounds at least a portion of the base core 100 to cover the coating layer 200. Can form. According to one embodiment, after the coating layer 200 provides the base core 100 and the functional material FM in a mixing vessel V, the mixing vessel V is subjected to acoustic mixing. It can be formed in a way.
구체적으로, 상기 베이스 코어(100)가 폴리머(예를 들어, HDPE)를 포함하는 경우, 상기 베이스 코어(100) 상에 상기 기능성 물질(FM)이 혼합되는 과정에서, 상기 탄소 적층 구조체(10)가 포함하는 복수의 탄소층(11, 12, 13, 14, 15, 16, 17, 18) 중 일 측에 배치된 탄소층(예를 들어, 11)은 상기 베이스 코어(100) 표면의 탄소와 결합될 수 있다. 반면, 상기 탄소 적층 구조체(10)가 포함하는 복수의 탄소층(11, 12, 13, 14, 15, 16, 17, 18) 중 일 측에 배치된 탄소층(11)을 제외한 탄소층(12, 13, 14, 15, 16, 17, 18)들은 각각 반데르발스 힘(파이-파이 결합)을 통하여 이미 결합된 상태일 수 있다. 이에 따라, 상기 베이스 코어(100) 상에 복수의 상기 탄소 적층 구조체(10)들이 결합되고, 복수의 상기 탄소 적층 구조체(10)들은 상기 베이스 코어(100)를 둘러싸는 상기 코팅막(200)을 형성할 수 있다. Specifically, when the base core 100 includes a polymer (eg, HDPE), in the process of mixing the functional material (FM) on the base core 100, the carbon layered structure 10 Carbon layer (for example, 11) disposed on one side of the plurality of carbon layers (11, 12, 13, 14, 15, 16, 17, 18) contained in the carbon and the surface of the base core 100 Can be combined. On the other hand, the carbon layer 12 excluding the carbon layer 11 disposed on one side of the plurality of carbon layers 11, 12, 13, 14, 15, 16, 17, 18 included in the carbon layered structure 10 , 13, 14, 15, 16, 17, 18) may each be already coupled through a van der Waals force (Pi-Pi bond). Accordingly, a plurality of the carbon stacked structures 10 are combined on the base core 100, and the plurality of carbon stacked structures 10 form the coating film 200 surrounding the base core 100. can do.
이와 달리, 상기 베이스 코어(100)가 상기 세라믹, 및 상기 금속 중 어느 하나를 포함하는 경우, 상기 실시 예에 따른 복합 분말은 상기 베이스 코어(100)와 상기 코팅층(200)을 결합시키는 결합 물질을 더 포함할 수 있다. 예를 들어, 상기 결합 물질은 Polysiloxane, Siloxane, Silazane, Silanes, 등의 실란계 커플링제, 및 Vinyl, Amino, Epoxy, Mercapto 등이 그래프트된 중합체 중 어느 하나를 포함할 수 있다. 구체적으로, 상기 베이스 코어(100)가 구리인 경우, 상기 결합 물질은 Polysiloxane일 수 있다. 즉, 상기 베이스 코어(100)가 상기 세라믹, 및 상기 금속 중 어느 하나를 포함하는 경우, 상기 기능성 물질(FM)은 상기 결합 물질에 의하여 상기 베이스 코어(100)에 결합될 수 있다. 일 실시 예에 따르면, 상기 코팅층(200)은 상기 베이스 코어(100), 상기 기능성 물질(FM), 및 상기 결합 물질을 혼합 용기(V)내에 제공한 후, 상기 혼합 용기(V)에 진동을 인가하는 방법으로 형성될 수 있다.On the other hand, when the base core 100 includes any one of the ceramic and the metal, the composite powder according to the embodiment uses a bonding material that bonds the base core 100 and the coating layer 200. It may further include. For example, the binding material may include any one of siloxane-based coupling agents such as Polysiloxane, Siloxane, Silazane, Silanes, and polymers grafted with Vinyl, Amino, Epoxy, Mercapto, and the like. Specifically, when the base core 100 is copper, the bonding material may be polysiloxane. That is, when the base core 100 includes any one of the ceramic and the metal, the functional material FM may be coupled to the base core 100 by the binding material. According to one embodiment, the coating layer 200 provides the base core 100, the functional material (FM), and the bonding material in the mixing container (V), and then vibrates the mixing container (V) It can be formed by a method of applying.
일 실시 예에 따르면, 상기 베이스 코어(100)의 종류에 따라서 인가되는 진동수가 제어될 수 있다. 예를 들어, 상기 베이스 코어(100)의 종류에 따라 인가되는 진동수는 40g(중력가속도), 60g, 80g 등으로 제어될 수 있다. 보다 구체적으로, 상기 베이스 코어(100)가 폴리머를 포함하는 경우, 인가되는 진동수는 60g일 수 있다. 반면, 상기 베이스 코어(100)가 세라믹, 및 금속 중 어느 하나를 포함하는 경우, 인가되는 진동수는 80g 일 수 있다. According to an embodiment, the frequency applied may be controlled according to the type of the base core 100. For example, the frequency applied according to the type of the base core 100 may be controlled to 40g (gravity acceleration), 60g, 80g, and the like. More specifically, when the base core 100 includes a polymer, the applied frequency may be 60 g. On the other hand, when the base core 100 includes any one of ceramic and metal, the applied frequency may be 80 g.
또한, 상기 베이스 코어(100) 및 상기 기능성 물질(FM)에 제1 진동이 인가 된 이후 순차적으로 제2 진동이 인가될 수 있다. 예를 들어, 상기 제1 진동은 상대적으로 고진동이고, 상기 제2 진동은 상대적으로 저진동일 수 있다. 즉, 상기 복합 분말은 상기 베이스 코어(100) 및 상기 기능성 물질(FM)에 고진동이 인가된 이후 저진동이 인가되는 방법으로 형성될 수 있다. 상기 베이스 코어(100) 및 상기 기능성 물질(FM)에 상기 제1 진동(고진동)이 인가됨에 따라, 상기 베이스 코어(100) 상에 상기 기능성 물질(FM)이 용이하게 코팅될 수 있다. 또한, 상기 베이스 코어(100) 및 상기 기능성 물질(FM)에 상기 제2 진동(저진동)이 인가됨에 따라, 상기 기능성 물질(FM)의 박리 비율이 감소되고, 코팅의 균일성이 향상될 수 있다. 뿐만 아니라, 상기 베이이스 코어(100) 및 상기 기능성 물질(FM)에 상기 제1 진동(고진동) 및 제2 진동(저진동)이 순차적으로 인가되는 경우, 상술된 효과들이 동시에 구현될 수 있다.In addition, after the first vibration is applied to the base core 100 and the functional material FM, the second vibration may be sequentially applied. For example, the first vibration may be relatively high vibration, and the second vibration may be relatively low vibration. That is, the composite powder may be formed by a method in which low vibration is applied after high vibration is applied to the base core 100 and the functional material FM. As the first vibration (high vibration) is applied to the base core 100 and the functional material FM, the functional material FM can be easily coated on the base core 100. In addition, as the second vibration (low vibration) is applied to the base core 100 and the functional material FM, the peeling ratio of the functional material FM is reduced, and uniformity of coating can be improved. . In addition, when the first vibration (high vibration) and the second vibration (low vibration) are sequentially applied to the base core 100 and the functional material FM, the above-described effects may be simultaneously implemented.
일 실시 예에 따르면, 상기 코팅층(200)은 상기 기능성 물질(FM) 및 상기 베이스 코어(100) 상에 진동이 인가되는 방법을 통하여 형성됨에 따라, 코팅되기 전 상기 기능성 물질(FM)이 포함하는 상기 탄소 적층 구조체(10)가 갖는 상기 탄소층(11, 12, 13, 14, 15, 16, 17, 18)의 수와, 코팅된 후 상기 기능성 물질(FM)이 포함하는 상기 탄소 적층 구조체(10)가 갖는 상기 탄소층(11, 12, 13, 14)의 수가 서로 다를 수 있다. 구체적으로, 코팅되기 전 상기 기능성 물질(FM)이 포함하는 상기 탄소 적층 구조체(10)가 갖는 상기 탄소층(11, 12, 13, 14, 15, 16, 17, 18)의 수가, 코팅된 후 상기 기능성 물질(FM)이 포함하는 상기 탄소 적층 구조체(10)가 갖는 상기 탄소층(11, 12, 13, 14)의 수보다 많을 수 있다. 즉, 코팅 공정에 의하여, 상기 탄소 적층 구조체(10)의 상기 탄소층(11, 12, 13, 14, 15, 16, 17, 18)의 적어도 일부가 박리되고, 상기 탄소층(15, 16, 17, 18)이 박리된 상기 탄소 적층 구조체(10)가 상기 베이스 코어(100) 상에 코팅될 수 있다. According to an embodiment, as the coating layer 200 is formed through a method in which vibration is applied on the functional material FM and the base core 100, the functional material FM is included before being coated. The number of carbon layers (11, 12, 13, 14, 15, 16, 17, 18) of the carbon layered structure (10), and the carbon layered structure (F) contained in the functional material (FM) after being coated ( The number of carbon layers 11, 12, 13, 14 possessed by 10) may be different from each other. Specifically, the number of the carbon layers (11, 12, 13, 14, 15, 16, 17, 18) of the carbon layered structure (10) included in the functional material (FM) before being coated, after being coated The number of carbon layers 11, 12, 13, and 14 of the carbon layered structure 10 included in the functional material FM may be greater. That is, by the coating process, at least a part of the carbon layers 11, 12, 13, 14, 15, 16, 17, 18 of the carbon layered structure 10 is peeled off, and the carbon layers 15, 16, 17, 18) may be coated on the base core 100, the carbon layered structure 10 is peeled off.
이러한 결과는 라만 스펙트럼(raman sepectroscopyh)의 I2D/IG 값으로 확인 할 수 있다. 예를 들어, 코팅되기 전 상기 기능성 물질(FM)의 라만 스펙트럼(raman spectroscopy)에서 I2D/IG 값은 0.4 미만이고, 코팅된 후 상기 기능성 물질(FM)의 라만 스펙트럼에서 I2D/IG 값은 0.4 초과 0.59 이하일 수 있다. 이는, 상기 코팅층(200)이 형성되는 단계에서, 상기 기능성 물질(FM)이 포함하는 상기 탄소 적층 구조체(10)가 갖는 복수의 상기 탄소층(11, 12, 13, 14, 15, 16, 17, 18) 중 어느 하나의 탄소층(예를 들어, 15, 16, 17, 18)이 진동에 의하여 박리되기 때문인 것으로 판단될 수 있다. These results can be confirmed by the I 2D / I G value of Raman spectrum (raman sepectroscopyh). For example, the I 2D / I G value in the Raman spectroscopy of the functional material (FM) before coating is less than 0.4, and the I 2D / I G in the Raman spectrum of the functional material (FM) after coating The value can be greater than 0.4 and less than 0.59. This, in the step of forming the coating layer 200, a plurality of the carbon layer (11, 12, 13, 14, 15, 16, 17) of the carbon layered structure (10) included in the functional material (FM) , 18) It can be determined that any one of the carbon layers (for example, 15, 16, 17, 18) is peeled by vibration.
본 발명의 실시 예에 따른 복합 분말의 제조방법은, 복수의 상기 탄소층(11, 12, 13, 14, 15, 16, 17, 18)이 적층된 상기 탄소 적층 구조체(10)를 포함하는 상기 기능성 물질(FM)을 준비하는 단계, 상기 기능성 물질(FM)을 상기 베이스 코어(100)와 혼합하는 단계, 및 상기 베이스 코어(100) 및 상기 기능성 물질(FM) 상에 진동을 인가하여, 상기 베이스 코어(100) 상에 상기 기능성 물질(FM)을 포함하는 상기 코팅층(200)을 형성하는 단계를 포함할 수 있다. 이에 따라, 상기 베이스 코어(100) 상에 상기 기능성 물질(FM)이 코팅된, 상기 복합 분말이 제공될 수 있다. 즉, 상기 실시 예에 따른 복합 분말의 제조방법은, 상기 베이스 코어(100)와 같이 굴곡진 형태의 표면을 갖는 기재 상에, 진동을 인가하는 간단한 방법으로 상기 기능성 물질(FM)을 코팅시킬 수 있는 장점이 있다. The method of manufacturing a composite powder according to an embodiment of the present invention includes the carbon layered structure 10 in which a plurality of the carbon layers 11, 12, 13, 14, 15, 16, 17, 18 are stacked. Preparing a functional material (FM), mixing the functional material (FM) with the base core (100), and applying vibration on the base core (100) and the functional material (FM), the And forming the coating layer 200 including the functional material FM on the base core 100. Accordingly, the composite powder coated with the functional material FM on the base core 100 may be provided. That is, in the method of manufacturing the composite powder according to the embodiment, the functional material (FM) may be coated on a substrate having a curved surface such as the base core 100 by a simple method of applying vibration. There is an advantage.
또한, 상기 실시 예에 따른 복합 분말은, 상기 베이스 코어(100) 상에 코팅된 상기 코팅층(200)이 포함하는 상기 기능성 물질(FM)의 산소 대비 탄소의 비율(C/O ratio)이 16 이상일 수 있다. 이에 따라, 내산화성, 및 내부식성이 향상된 복합 분말이 제공될 수 있다. In addition, in the composite powder according to the embodiment, the ratio of carbon to carbon (C / O ratio) of the functional material (FM) included in the coating layer 200 coated on the base core 100 is 16 or more. You can. Accordingly, a composite powder having improved oxidation resistance and corrosion resistance can be provided.
이상, 본 발명의 실시 예에 따른 복합 분말 및 그 제조방법이 설명되었다. 이하, 본 발명의 실시 예에 따른 방열 복합 소재가 도 7 및 도 8을 참조하여 설명된다. In the above, the composite powder according to the embodiment of the present invention and a method of manufacturing the same have been described. Hereinafter, a heat dissipation composite material according to an embodiment of the present invention will be described with reference to FIGS. 7 and 8.
도 7은 본 발명의 실시 예에 따른 방열 복합 소재의 사시도이고, 도 8은 본 발명의 실시 예에 따른 방열 복합 소재의 정면도이다. 7 is a perspective view of a heat dissipation composite material according to an embodiment of the present invention, and FIG. 8 is a front view of the heat dissipation composite material according to an embodiment of the present invention.
도 7 및 도 8을 참조하면, 상기 실시 예에 따른 방열 복합 소재는 복수의 베이스 코어(100), 코팅층(200), 및 방열 루트(route, 300)를 포함할 수 있다. 일 실시 예에 따르면, 상기 베이스 코어(100)는 폴리에틸렌, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, PP 중 적어도 어느 하나를 포함할 수 있다. 7 and 8, the heat dissipation composite material according to the embodiment may include a plurality of base cores 100, a coating layer 200, and a heat dissipation route (route, 300). According to one embodiment, the base core 100 may include at least one of polyethylene, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, PP.
상기 코팅층(200)은 상기 복수의 베이스 코어(100) 중 적어도 일부를 둘러 쌀 수 있다. 일 실시 예에 따르면, 상기 코팅층(200)은 기능성 물질(FM)을 포함할 수 있다. 예를 들어, 상기 기능성 물질(FM)은 CNT, graphene, graphite, carbon balck, h-BN, Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim 중 적어도 어느 하나를 포함할 수 있다. 상기 방열 루트(300)는 상기 복수의 베이스 코어(100) 사이에 제공될 수 있다. 일 실시 예에 따르면, 상기 방열 루트(300)내에는 상기 코팅층(200)이 포함하는 상기 기능성 물질(FM), 및 방열 수지(R)가 배치될 수 있다. 상기 방열 루트(300)는 열(heat)이 이동되는 공간을 제공할 수 있다. The coating layer 200 may surround at least a portion of the plurality of base cores 100. According to one embodiment, the coating layer 200 may include a functional material (FM). For example, the functional material (FM) may include at least one of CNT, graphene, graphite, carbon balck, h-BN, Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim . The heat dissipation route 300 may be provided between the plurality of base cores 100. According to an embodiment, the functional material FM included in the coating layer 200 and the heat dissipation resin R may be disposed in the heat dissipation route 300. The heat dissipation route 300 may provide a space in which heat is moved.
즉, 상기 복수의 베이스 코어(100)는 각각 상기 기능성 물질(FM)을 포함하는 상기 코팅층(200)으로 둘러싸이고, 각각의 상기 베이스 코어(100)를 둘러싸는 복수의 상기 코팅층(200)들이 연결되어, 상기 방열 루트(300)를 형성할 수 있다. That is, the plurality of base cores 100 are respectively surrounded by the coating layer 200 including the functional material FM, and the plurality of coating layers 200 surrounding each base core 100 are connected. Thus, the heat dissipation route 300 may be formed.
일 실시 예에 따르면, 상기 베이스 코어(100) 및 이를 둘러싸는 상기 코팅층(200)을 포함하는 복합 분말은, 도 1 내지 도 6을 참조하여 설명된 상기 실시 예에 따른 복합 분말의 제조방법과 같은 방법으로 제조될 수 있다. 즉, 상기 베이스 코어(100) 및 상기 기능성 물질(FM)을 혼합한 후, 진동을 인가하는 방법을 통하여, 상기 복합 분말이 형성될 수 있다. 일 실시 예에 따르면, 상기 복합 분말이 복수개 준비될 수 있다. 이후, 복수의 상기 복합 분말을 응집시키고, 응집된 복수의 상기 복합 분말을 압착시켜, 상기 실시 예에 따른 방열 복합 소재가 포함하는, 복수의 상기 베이스 코어(100), 상기 복수의 베이스 코어(100) 중 적어도 일부를 둘러싸는 상기 코팅층(200), 및 상기 복수의 베이스 코어(100) 사이에 제공되는 상기 방열 루트(300)가 형성될 수 있다. 이후, 상기 방열 루트(300) 내에 상기 방열 물질(R)이 제공되어, 상기 실시 예에 따른 방열 복합 소재가 제조될 수 있다. According to one embodiment, the composite powder comprising the base core 100 and the coating layer 200 surrounding it is the same as the method for manufacturing the composite powder according to the embodiment described with reference to FIGS. 1 to 6. It can be prepared by a method. That is, after mixing the base core 100 and the functional material FM, the composite powder may be formed through a method of applying vibration. According to one embodiment, a plurality of the composite powder may be prepared. Thereafter, a plurality of the composite powder is agglomerated, and the agglomerated plurality of the composite powder is compressed, so that the heat dissipation composite material according to the embodiment includes a plurality of the base core 100 and the plurality of base cores 100 ), The coating layer 200 surrounding at least a portion, and the heat dissipation route 300 provided between the plurality of base cores 100 may be formed. Thereafter, the heat dissipation material R is provided in the heat dissipation route 300, so that the heat dissipation composite material according to the embodiment may be manufactured.
본 발명의 실시 예에 따른 방열 복합 소재는, 복수의 상기 베이스 코어(100), 상기 복수의 베이스 코어(100) 중 적어도 일부를 둘러싸고, 상기 기능성 물질(FM)을 포함하는 상기 코팅층(200), 및 상기 복수의 베이스 코어(100) 사이에 제공되는 상기 방열 루트(300)를 포함하되, 상기 방열 루트(300) 내에는 상기 코팅층(200)이 포함하는 상기 기능성 물질(FM), 및 상기 방열 수지(R)가 배치될 수 있다. 이에 따라, 상기 실시 예에 따른 방열 복합 소재의 내부에는 복수의 상기 방열 루트(300)가 제공되어, 방열 효율이 향상될 수 있다. The heat dissipation composite material according to an embodiment of the present invention surrounds at least a portion of the plurality of base cores 100 and the plurality of base cores 100, and the coating layer 200 including the functional material FM. And the heat dissipation route 300 provided between the plurality of base cores 100, wherein the functional material FM contained in the coating layer 200 in the heat dissipation route 300 and the heat dissipation resin (R) may be disposed. Accordingly, a plurality of the heat dissipation routes 300 are provided inside the heat dissipation composite material according to the embodiment, so that heat dissipation efficiency can be improved.
이상, 본 발명의 실시 예에 따른 방열 복합 소재가 설명되었다. 이하, 본 발명의 실시 예에 따른 복합 분말의 구체적인 실험 예 및 특성 평가 결과가 설명된다. In the above, the heat dissipation composite material according to the embodiment of the present invention has been described. Hereinafter, specific experimental examples and property evaluation results of the composite powder according to the embodiment of the present invention will be described.
실시 예에 따른 기능성 물질 준비 Preparation of functional materials according to embodiments
Expanded Graphite(EG)가 준비된다. 준비된 EG 내에 이온을 삽입한 후, 열처리 및 초음파 처리를 수행하여, 실시 예에 따른 기능성 물질을 준비하였다. Expanded Graphite (EG) is prepared. After inserting ions into the prepared EG, heat treatment and ultrasonic treatment were performed to prepare a functional material according to the embodiment.
도 9 내지 도 11은 본 발명의 실시 예에 따른 기능성 물질이 열처리되기 전과 후를 나타내는 광학 사진들이다. 9 to 11 are optical pictures showing before and after the functional material according to an embodiment of the present invention is heat-treated.
도 9의 (a) 내지 (c)를 참조하면, 상기 실시 예에 따른 기능성 물질을 준비하되, 열처리되기 전 상태의 기능성 물질을 준비하여 100 μm, 5 μm, 및 500 nm의 배율에서 각각 SEM(scanning electron microscope) 촬영하였고, 도 10 의 (a) 내지 (c)을 참조하면, 상기 실시 예에 따른 기능성 물질을 준비하여 100 μm, 5 μm, 및 500 nm의 배율에서 각각 SEM 촬영하여 도시하였다. 도 9 및 도 10에서 확인할 수 있듯이, 상기 실시 예에 따른 기능성 물질은 열처리됨에 따라 팽창 되는 것을 알 수 있다. Referring to (a) to (c) of FIG. 9, a functional material according to the above embodiment is prepared, and a functional material in a state before heat treatment is prepared to obtain SEM (magnification at 100 μm, 5 μm, and 500 nm, respectively). scanning electron microscope), and referring to FIGS. 10 (a) to 10 (c), a functional material according to the above example was prepared and SEM photographed at magnifications of 100 μm, 5 μm, and 500 nm, respectively. 9 and 10, it can be seen that the functional material according to the embodiment expands as it is heat-treated.
도 11의 (a) 내지 (c)를 참조하면, 열처리에 의한 팽창 및 후처리에 의한 박리가 완료된 상기 기능성 물질을 서로 다른 배율에서 TEM(transmission electron microscope) 촬영하여 도시하였다. 도 11의 (a)는 상기 기능성 물질을 이루는 그래핀의 일 segment를 나타내고, 도 11의 (b)는 상기 기능성 물질을 고배율에서 촬영한 사진이며, 도 11의 (c)는 상기 기능성 물질의 SAED(selected area electron diffraction) 패턴 이미지를 나타낸다. 도 11의 (b)에서 알 수 있듯이 상기 기능성 물질은 격자구조를 나타내고, 도 11의 (c)에서 알 수 있듯이 상기 기능성 물질을 이루는 그래핀은 single crystal을 나타내는 것을 확인할 수 있었다. Referring to (a) to (c) of FIG. 11, the functional material, which has been expanded by heat treatment and peeled by post-treatment, is photographed by TEM (transmission electron microscope) at different magnifications. FIG. 11 (a) shows a segment of graphene constituting the functional material, FIG. 11 (b) is a photograph of the functional material at high magnification, and FIG. 11 (c) shows the SAED of the functional material (selected area electron diffraction) pattern image. As shown in FIG. 11 (b), it was confirmed that the functional material exhibited a lattice structure, and as shown in FIG. 11 (c), the graphene constituting the functional material exhibited a single crystal.
도 12는 본 발명의 실시 예에 따라 제조된 기능성 물질의 AFM 사진과 두께 정보를 나타내는 그래프이다.12 is a graph showing AFM photographs and thickness information of a functional material manufactured according to an embodiment of the present invention.
도 12의 (a)를 참조하면, 상기 기능성 물질의 AFM(atomic force microscopy) 사진을 촬영하여 도시하였고, 도 12의 (b)를 참조하면, 상기 기능성 물질의 두께를 측정하여 그래프로 나타내었다. 도 12의 (a) 및 (b)를 통해 확인할 수 있듯이, 상기 실시 예에 따른 기능성 물질은 두께가 얇은 탄소층들로 이루어지는 것을 확인할 수 있었다.Referring to (a) of FIG. 12, an atomic force microscopy (AFM) photograph of the functional material was taken and illustrated. Referring to (b) of FIG. 12, the thickness of the functional material was measured and graphed. As can be seen through (a) and (b) of FIG. 12, it was confirmed that the functional material according to the embodiment was made of carbon layers having a thin thickness.
도 13은 본 발명의 실시 예에 따른 기능성 물질의 라만 분석 결과를 나타내는 그래프이다. 13 is a graph showing Raman analysis results of a functional material according to an embodiment of the present invention.
도 13의 (a) 내지 (c)를 참조하면, 상기 실시 예에 따른 기능성 물질을 준비하되, 열처리되기 전, 열처리된 후, 및 초음파 처리된 후 상태 각각에 대해 라만 스펙트럼(raman spectroscopy)를 나타내었다. Referring to (a) to (c) of FIG. 13, a functional material according to the above embodiment is prepared, but before the heat treatment, after the heat treatment, and after the ultrasonic treatment, a Raman spectroscopy is shown for each of the states. Did.
도 13의 (a)에서 알 수 있듯이, 열처리되기 전의 상기 실시 예에 따른 기능성 물질은 I2D/IG 값이 0.34로 나타나고, 열처리된 후의 상기 실시 예에 따른 기능성 물질은 I2D/IG 값이 0.40으로 나타나고, 초음파 처리된 후의 상기 실시 예에 따른 기능성 물질은 I2D/IG 값이 0.38로 나타나는 것을 확인할 수 있었다. 즉, 상기 실시 예에 따른 기능성 물질은, 열처리나 초음파 처리와 상관없이 다층 구조(multi-layer)를 갖는 다는 것을 알 수 있다. As can be seen from FIG. 13 (a), the functional material according to the embodiment before heat treatment is shown as an I 2D / I G value of 0.34, and the functional material according to the embodiment after heat treatment is an I 2D / I G value It appeared as 0.40, it was confirmed that the I 2D / I G value is 0.38 for the functional material according to the embodiment after ultrasonic treatment. That is, it can be seen that the functional material according to the embodiment has a multi-layer regardless of heat treatment or ultrasonic treatment.
또한, 상기 실시 예에 따른 기능성 물질이 포함하는 성분들의 구체적인 함량 및 비율이 아래 <표 1>을 통하여 정리된다. In addition, the specific contents and proportions of the components included in the functional material according to the embodiment are summarized through <Table 1> below.
Atomic conc.Atomic conc. C 1s (wt%)C 1s (wt%) O 1s (wt%)O 1s (wt%) S 2p (wt%)S 2p (wt%) N 1s(wt%)N 1s (wt%) C/O ratioC / O ratio
EX-GEX-G 93.1993.19 5.745.74 0.380.38 0.680.68 16.2316.23
실시 예 1에 따른 복합 분말 제조Composite powder preparation according to Example 1
Ball milling 공정을 통하여 입경을 줄인 HDPE(high-density polyethylene) 4g을 준비한다. 또한, 0.5 wt%, 1 wt%, 3 wt%, 5 wt%, 10 wt%, 20 wt%, 및 30 wt%의 농도를 갖는 상기 실시 예에 따른 기능성 물질을 준비한 후, 각각의 기능성 물질과 4g HDPE를 혼합하고, 각각에 대해 15분의 시간 동안 어쿠스틱 믹싱(Acoustic mixing)을 수행하였다. 이에 따라, 베이스 코어(HDPE)에 기능성 물질(EG)이 코팅된, 실시 예 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 및 1-7에 따른 복합 분말을 제조하였다. Prepare 4 g of high-density polyethylene (HDPE) with a reduced particle diameter through a ball milling process. In addition, after preparing a functional material according to the above embodiment having a concentration of 0.5 wt%, 1 wt%, 3 wt%, 5 wt%, 10 wt%, 20 wt%, and 30 wt%, each functional material and 4 g HDPE was mixed and acoustic mixing was performed for a time of 15 minutes for each. Accordingly, the functional material (EG) is coated on the base core (HDPE), according to Examples 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, and 1-7 Composite powders were prepared.
도 14는 본 발명의 실시 예 1에 따른 복합 분말이 포함하는 베이스 코어를 광학 촬영한 사진이고, 도 15는 본 발명의 실시 예 1에 따른 복합 분말을 일반 촬영한 사진이다. 14 is an optical photograph of the base core included in the composite powder according to the first embodiment of the present invention, and FIG. 15 is a general photograph of the composite powder according to the first embodiment of the present invention.
도 14의 (a) 및 (b)를 참조하면, 상기 실시 예 1에 따른 복합 분말의 제조에 준비되는 베이스 코어를 100 μm 및 10 μm의 배율에서 SEM 촬영하여 나타내었다. 도 14의 (a) 및 (b)에서 알 수 있듯이 상기 실시 예 1에 따른 복합 분말의 제조에 준비되는 베이스 코어는, 원뿔 형태에 위쪽 표면이 굴곡진 형태의 분말인 것을 알 수 있다. 14 (a) and (b), the base core prepared for the preparation of the composite powder according to Example 1 was shown by SEM imaging at 100 μm and 10 μm magnification. As can be seen from (a) and (b) of FIG. 14, it can be seen that the base core prepared for the production of the composite powder according to Example 1 is a powder in a conical shape with an upper surface curved.
도 15의 (a)를 참조하면, 상기 실시 예 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 및 1-7에 따른 복합 분말이 제조되기 전, 각각의 베이스 코어 및 기능성 물질이 혼합된 상태를 일반 사진 촬영 하여 나타내었고, 도 15의 (b)를 참조하면, 상기 실시 예 1-1, 1-2, 1-3, 1-4, 1-5, 및 1-6에 따른 복합 분말을 일반 사진 촬영하여 나타내었다. 도 15의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예 1에 따른 복합 분말의 제조 방법을 통하여, 베이스 코어 상에 기능성 물질을 용이하게 코팅시킬 수 있음을 확인할 수 있었다. 15 (a), before the composite powders according to Examples 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, and 1-7 were prepared, The state in which each base core and the functional material are mixed is shown by taking a general picture, and referring to FIG. 15 (b), the above Examples 1-1, 1-2, 1-3, 1-4, 1- Composite powders according to 5, and 1-6 are shown by general photographing. As can be seen from (a) and (b) of FIG. 15, it was confirmed that the functional material can be easily coated on the base core through the method of manufacturing the composite powder according to Example 1 above.
도 16 및 도 17은 본 발명의 실시 예 1에 따른 복합 분말을 광학 촬영한 사진이다. 16 and 17 are optical photographs of the composite powder according to Example 1 of the present invention.
도 16의 (a) 및 (b)를 참조하면, 상기 실시 예 1-4에 따른 복합 분말을 500 μm 및 250 μm의 배율에서 SEM 촬영하여 도시하였고, 도 16의 (c)를 참조하면, 상기 실시 예 1에 따른 복합 분말을 10 nm 의 배율에서 TEM 촬영하여 도시하였다. Referring to (a) and (b) of FIG. 16, the composite powder according to Example 1-4 was shown by SEM photographing at a magnification of 500 μm and 250 μm. Referring to FIG. 16 (c), the The composite powder according to Example 1 was shown by TEM imaging at a magnification of 10 nm.
도 16의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예 1-4에 따른 복합 분말은 기능성 물질(EG)이 베이스 분말(HDPE)을 둘러싸는 형태를 갖는 것을 알 수 있었다. 또한, 도 16의 (c)에서 알 수 있듯이, 상기 실시 예 1-4에 따른 복합 분말은 코팅층이 8 nm의 두께로 형성되었고, 코팅층을 구성하는 기능성 물질(EG)이 다수의 탄소층이 적층된 형태로 나타나는 것을 알 수 있었다. As can be seen from (a) and (b) of Figure 16, it can be seen that the composite powder according to Example 1-4 has a form in which the functional material (EG) surrounds the base powder (HDPE). In addition, as can be seen in Figure 16 (c), the composite powder according to Example 1-4 was formed with a thickness of 8 nm, the functional layer (EG) constituting the coating layer is a plurality of carbon layers are laminated It can be seen that it appears in the old form.
도 17의 (a) 및 (b)를 참조하면, 상기 실시 예 1-4에 따른 복합 분말을 도 16의 (a) 및 (b)와 다른 배율에서 SEM 촬영하였다. 도 17의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예1-4에 따른 복합 분말은 전체적으로 코어-쉘 구조를 갖는 것을 알 수 있었다. 17 (a) and (b), the composite powder according to Example 1-4 was SEM photographed at a different magnification from FIGS. 16 (a) and (b). 17 (a) and (b), it can be seen that the composite powder according to Example 1-4 has a core-shell structure as a whole.
도 18은 도 17에 대한 라만 분석 결과를 나타내는 그래프이다. 18 is a graph showing Raman analysis results for FIG. 17.
도 18을 참조하면, 상기 실시 예 1-4에 따른 복합 분말이 포함하는 코팅층의 기능성 물질에 대해 라만 스펙트럼(raman spectroscopy)를 나타내었다. 도 18에서 알 수 있듯이, 상기 실시 예 1-4에 따른 복합 분말이 포함하는 코팅층의 기능성 물질은, I2D/IG 값이 0.59인 것을 알 수 있었다. Referring to FIG. 18, a Raman spectroscopy is shown for a functional material of a coating layer included in the composite powder according to Examples 1-4. As can be seen in FIG. 18, it was found that the functional material of the coating layer included in the composite powder according to Example 1-4 has an I 2D / I G value of 0.59.
즉, 도 13 및 도 18의 비교를 통하여 알 수 있듯이, 상기 실시 예에 따른 기능성 물질이, 상기 베이스 코어 상에 코팅되는 과정에서 I2D/IG 값이 증가하는 것을 알 수 있었다. 이는, 기능성 물질이 베이스 코어 상에 코팅되는 과정에서 진동에 의하여 적층된 탄소층 중 일부가 박리됨에 따라 나타나는 현상인 것으로 판단된다. 결과적으로, 상기 실시 예 1-4에 따른 복합 분말이 포함하는 코팅층의 기능성 물질은 라만 스펙트럼(raman spectroscopy)에서 I2D/IG 값이 0.4 초과 0.59 이하라는 것을 알 수 있다. That is, as can be seen through comparison of FIGS. 13 and 18, it was found that the I 2D / I G value increases in the process of coating the functional material according to the embodiment on the base core. This is considered to be a phenomenon that occurs as part of the carbon layer laminated by vibration during the process of coating the functional material on the base core is peeled off. As a result, it can be seen that the functional material of the coating layer included in the composite powder according to Examples 1-4 has an I 2D / I G value of more than 0.4 and 0.59 or less in a Raman spectroscopy.
도 19는 본 발명의 실시 예 1에 따른 복합 분말의 전기전도도 및 열전도도 특성을 나타내는 그래프이다. 19 is a graph showing the electrical conductivity and thermal conductivity properties of the composite powder according to Example 1 of the present invention.
도 19의 (a)를 참조하면, 상기 실시 예 1에 따른 복합 분말의 전기전도도 특성을 측정하되, 복합 분말이 포함하는 기능성 물질의 함량에 따른 상관관계를 비교하기 위하여, 상기 실시 예 1에 따른 복합 분말의 준비 과정에서 베이스 코어와 혼합되는 기능성 물질의 함량을(EG content, wt%) 0~30 wt%로 제어하고, 각각의 함량으로 제조된 복합 분말의 전기전도도(Electrical conductivity, S/m)를 나타내었다. 도 19의 (a)에서 확인할 수 있듯이, 상기 실시 예 1에 따른 복합 분말은, 기능성 물질의 함량이 증가함에 따라 전기전도도가 증가되는 것을 알 수 있었다. 특히, 0.49 wt%의 기능성 물질을 포함하는 복합 분말의 전기전도도는 이전과 비교하여 현저히 향상되는 것을 알 수 있었다. Referring to (a) of Figure 19, to measure the electrical conductivity properties of the composite powder according to the first embodiment, to compare the correlation according to the content of the functional material contained in the composite powder, according to the first embodiment In the process of preparing the composite powder, the content of the functional material mixed with the base core (EG content, wt%) is controlled to 0 to 30 wt%, and the electrical conductivity (S / m) of the composite powder prepared with each content is controlled. ). As can be seen from Figure 19 (a), it can be seen that the composite powder according to Example 1 increases the electrical conductivity as the content of the functional material increases. In particular, it can be seen that the electrical conductivity of the composite powder containing 0.49 wt% of the functional material is significantly improved compared to the previous.
도 19의 (b)를 참조하면, 상기 실시 예 1에 따른 복합 분말의 열전도도 특성을 측정하되, 복합 분말이 포함하는 기능성 물질의 함량에 따른 상관관계를 비교하기 위하여, 상기 실시 예 1에 따른 복합 분말의 준비 과정에서 베이스 코어와 혼합되는 기능성 물질의 함량을(EG content, wt%) 0~30 wt%로 제어하고, 각각의 함량으로 제조된 복합 분말의 열전도도(Thermal conductivity, W/mK)를 나타내었다. 도 19의 (b)에서 확인할 수 있듯이, 상기 실시 예 1에 따른 복합 분말은, 기능성 물질의 함량이 증가함에 따라 열전도도 또한 증가되는 것을 알 수 있었다. Referring to (b) of Figure 19, to measure the thermal conductivity properties of the composite powder according to Example 1, to compare the correlation according to the content of the functional material contained in the composite powder, according to Example 1 In the process of preparing the composite powder, the content of the functional material mixed with the base core (EG content, wt%) is controlled to 0 to 30 wt%, and the thermal conductivity (W / mK) of the composite powder prepared with each content is controlled. ). As can be seen in Figure 19 (b), it can be seen that the composite powder according to Example 1, the thermal conductivity also increases as the content of the functional material increases.
도 20은 본 발명의 실시 예 1에 따른 복합 분말의 저항 특성을 나타내는 그래프이다. 20 is a graph showing the resistance properties of the composite powder according to Example 1 of the present invention.
도 20을 참조하면, 상기 실시 예 1에 따른 복합 분말의 저항 특성을 측정하되, 복합 분말이 포함하는 기능성 물질의 함량에 따른 상관관계를 비교하기 위하여, 상기 실시 예 1에 따른 복합 분말의 준비 과정에서 베이스 코어와 혼합되는 기능성 물질의 함량을(EG content, wt%) 0~30 wt%로 제어하고, 각각의 함량으로 제조된 복합 분말의 저항(Resistivity)를 측정하여 나타내었다. 도 20에서 확인할 수 있듯이, 상기 실시 예 1에 따른 복합 분말은, 기능성 물질의 함량이 증가함에 따라 저항이 감소되는 것을 알 수 있었다. Referring to Figure 20, to measure the resistance properties of the composite powder according to Example 1, to compare the correlation according to the content of the functional material contained in the composite powder, the preparation process of the composite powder according to Example 1 In the content of the functional material to be mixed with the base core (EG content, wt%) is controlled to 0 to 30 wt%, it is shown by measuring the resistance (Resistivity) of the composite powder prepared with each content. As can be seen in Figure 20, the composite powder according to Example 1, it was found that the resistance decreases as the content of the functional material increases.
실시 예 2에 따른 복합 분말 제조Preparation of composite powder according to Example 2
베이스 코어로서 평균 직경 1mm, 용량 20g의 copper ball이 준비된다. 준비된 베이스 코어를 결합 물질인 20ml 용량의 polysiloxane, 및 1 wt%의 상기 실시 예에 따른 기능성 물질(EG)과 혼합한 후, 3분의 시간 동안 어쿠스틱 믹싱을 수행하였다. 계속해서, 300℃의 온도에서 1시간 동안 1차 열처리를 수행하고, 400℃의 온도에서 5시간 동안 2차 열처리를 수행하여 상기 실시 예 2에 따른 복합 분말을 제조하였다. As the base core, a copper ball with an average diameter of 1 mm and a capacity of 20 g is prepared. After the prepared base core was mixed with 20 ml of the binding material, polysiloxane, and 1 wt% of the functional material (EG) according to the above embodiment, acoustic mixing was performed for a time of 3 minutes. Subsequently, the primary heat treatment was performed at a temperature of 300 ° C. for 1 hour, and a secondary heat treatment was performed at a temperature of 400 ° C. for 5 hours to prepare a composite powder according to Example 2.
도 21 및 도 22는 기능성 물질의 코팅 횟수에 따라 상기 실시 예 2에 따른 복합 분말이 포함하는 물질들의 함량을 비교하는 사진이다. 21 and 22 are photographs comparing the content of materials included in the composite powder according to Example 2 according to the number of coating times of the functional material.
도 21을 참조하면 기능성 물질이 1회 코팅된 상기 실시 예 2에 따른 복합 분말의 SEM-EDX를 나타내고, 도 22를 참조하면 기능성 물질이 2회 코팅된 상기 실시 예 2에 따른 복합 분말의 SEM-EDX를 나타낸다. Referring to FIG. 21, SEM-EDX of the composite powder according to Example 2, wherein the functional material was coated once, and FIG. 22, SEM- of the composite powder according to Example 2, wherein the functional material was coated twice. EDX.
도 21의 SEM-EDX 결과가 아래 <표 2>를 통하여 정리되고, 도 22의 SEM-EDX 결과가 아래 <표 3>을 통하여 정리된다. The SEM-EDX results of FIG. 21 are summarized through <Table 2> below, and the SEM-EDX results of FIG. 22 are summarized through <Table 3> below.
ElementElement Weight %Weight% Atomic %Atomic%
C KC K 75.6275.62 85.0885.08
O KO K 11.7811.78 9.959.95
Si KSi K 8.538.53 4.104.10
Cu LCu L 4.074.07 0.870.87
ElementElement Weight %Weight% Atomic %Atomic%
C KC K 48.6848.68 63.0963.09
O KO K 24.1124.11 23.4623.46
Si KSi K 21.9721.97 12.1712.17
Cu LCu L 5.245.24 1.281.28
도 21 및 <표 1>에서 알 수 있듯이, 기능성 물질이 1회 코팅된 상기 실시 예 2에 따른 복합 분말은 약 75%의 C로 둘러싸여 있고, Cu의 표면이 약간 노출되어 있는 것을 확인할 수 있었다. 또한, 결합 물질에 의하여 Si 및 O의 피크들도 나타나는 것을 확인할 수 있었다. As can be seen in Figure 21 and <Table 1>, the composite powder according to Example 2, wherein the functional material was coated once, was surrounded by about 75% C, and it was confirmed that the surface of Cu was slightly exposed. In addition, it was confirmed that the peaks of Si and O also appear by the binding material.
도 22 및 <표 2>에서 알 수 있듯이 기능성 물질이 2회 코팅된 상기 실시 예 2에 따른 복합 분말은 Cu의 형태가 거의 나타나지 않고, EG 입자들이 5~15 마이크론의 크기로 균일하게 코팅되어 있는 것을 확인할 수 있었다. 또한, 기능성 물질이 2회 코팅되기 위해 결합 물질의 양이 늘어남에 따라, Si 및 O의 비율이 증가된 것을 확인할 수 있었다. As can be seen in Figure 22 and <Table 2>, the composite powder according to Example 2, in which the functional material was coated twice, shows little Cu shape, and the EG particles are uniformly coated with a size of 5 to 15 microns. I could confirm that. In addition, it was confirmed that the proportion of Si and O increased as the amount of the binding material increased to coat the functional material twice.
도 23은 본 발명의 실시 예 2에 따른 복합 분말의 내화학성을 확인하기 위한 일반 사진들이고, 도 24는 본 발명의 실시 예 2에 따른 복합 분말의 내화학성을 확인하기 위한 광학 사진들이다. 23 are general pictures for confirming chemical resistance of the composite powder according to Example 2 of the present invention, and FIG. 24 are optical pictures for confirming chemical resistance of the composite powder according to Example 2 of the present invention.
도 23의 (a) 및 (b)를 참조하면, 일반 구리 분말이 준비된다. 준비된 구리 분말 상에 3.5 wt% 농도의 NaCl을 떨어뜨린 후, 72시간이 동안 구리 분말 상에 발생되는 변화를 관찰하였다. 도 23의 (a)는 일반 구리 분말에 NaCl을 떨어뜨리기 전 상태를 촬영한 사진이고, 도 23의 (b)는 일반 구리 분말에 NaCl을 떨어뜨린 후 72시간이 지난 상태를 촬영한 사진이다. 도 23의 (a) 및 (b)에서 알 수 있듯이, 일반 구리 분말의 경우, NaCl과 접촉된 후 일정 시간이 지나면 부식이 발생되는 것을 확인할 수 있었다. Referring to (a) and (b) of Figure 23, a general copper powder is prepared. After dropping NaCl at a concentration of 3.5 wt% on the prepared copper powder, changes occurring on the copper powder for 72 hours were observed. FIG. 23 (a) is a photograph of a state before dropping NaCl in a normal copper powder, and FIG. 23 (b) is a photograph of 72 hours after dropping NaCl in a normal copper powder. As can be seen from (a) and (b) of FIG. 23, in the case of the general copper powder, it was confirmed that corrosion occurred after a certain time after contact with NaCl.
도 23의 (c) 및 (d)를 참조하면, 상기 실시 예 2에 따른 복합 분말 상에 3.5 wt% 농도의 NaCl을 떨어뜨린 후, 72시간 동안 구리 분말 상에 발생되는 변화를 관찰하였다. 도 23의 (c)는 상기 실시 예 2에 따른 복합 분말 상에 NaCl을 떨어뜨리기 전 상태를 촬영한 사진이고, 도 23의 (d)는 상기 실시 예 2에 따른 복합 분말 상에 NaCl을 떨어뜨린 후 72시간이 지난 상태를 촬영한 사진이다. 도 23의 (c) 및 (d)에서 알 수 있듯이, 상기 실시 예 2에 따른 복합 분말은, 코팅된 기능성 물질(FM)에 의하여, NaCl로부터 표면이 보호되는 것을 확인할 수 있었다. Referring to (c) and (d) of FIG. 23, after dropping NaCl at a concentration of 3.5 wt% on the composite powder according to Example 2, a change occurring on the copper powder was observed for 72 hours. Figure 23 (c) is a photograph of the state before dropping NaCl on the composite powder according to Example 2, Figure 23 (d) is dropped NaCl on the composite powder according to Example 2 This is a picture taken 72 hours later. As can be seen from (c) and (d) of FIG. 23, it was confirmed that the composite powder according to Example 2 was protected from NaCl by a coated functional material (FM).
도 24의 (a) 및 (b)를 참조하면, 도 23의 (b) 및 (d) 상태의 일반 구리 분말과 상기 실시 예 2에 따른 복합 분말을 SEM 촬영하였다. 도 24의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예 2에 따른 복합 분말은, 코팅된 기능성 물질(FM)에 의하여 표면의 상태가 균일하게 보존되는 것을 확인할 수 있었다. Referring to (a) and (b) of FIG. 24, SEM images of the general copper powder in the state (b) and (d) of FIG. 23 and the composite powder according to Example 2 were taken by SEM. As can be seen from (a) and (b) of FIG. 24, it was confirmed that the composite powder according to Example 2 was uniformly preserved in the state of the surface by the coated functional material (FM).
도 25 내지 27은 본 발명의 실시 예 2에 따른 복합 분말이 포함하는 베이스 코어의 열처리 온도에 따른 성분 변화를 비교하는 그래프들이다. 25 to 27 are graphs comparing component changes according to the heat treatment temperature of the base core included in the composite powder according to Example 2 of the present invention.
도 25를 참조하면, 일반 구리 분말(Cu), 기능성 물질(FM)이 1회 코팅된 복합 분말(Single), 기능성 물질(FM)이 2회 코팅된 복합 분말(Double)들을 300℃의 온도에서, 1시간(1h), 3시간(3h), 5시간(5h) 동안 열처리한 후, 각각에 대한 XRD 결과를 도시하였다. 도 25에서 알 수 있듯이, 일반 구리 분말(Cu)의 경우 열처리됨에 따라, CuO가 형성되어 높은 피크를 나타내는 것을 확인할 수 있었다. Referring to FIG. 25, a general copper powder (Cu), a composite powder (Single) coated with a functional material (FM) once, and a composite powder (Double) coated with a functional material (FM) twice at a temperature of 300 ° C. After heat treatment for 1 hour (1h), 3 hours (3h), and 5 hours (5h), XRD results for each were illustrated. As can be seen in FIG. 25, it was confirmed that CuO was formed and exhibited a high peak in the case of general copper powder (Cu) being heat-treated.
도 26을 참조하면, 일반 구리 분말(Cu), 기능성 물질(FM)이 1회 코팅된 복합 분말(Single), 기능성 물질(FM)이 2회 코팅된 복합 분말(Double)들을 400℃의 온도에서, 1시간(1h), 3시간(3h), 5시간(5h) 동안 열처리한 후, 각각에 대한 XRD 결과를 도시하였다. 도 26에서 알 수 있듯이, 일반 구리 분말(Cu)의 경우 열처리됨에 따라, CuO 및 Cu2O가 형성되는 것을 확인할 수 있었다. 하지만, 구리 분말에 상기 기능성 물질(FM)이 코팅된 상기 실시 예 2에 따른 복합 분말의 경우, CuO 및 Cu2O가 적게 나타나는 것을 확인할 수 있었다. Referring to FIG. 26, the general copper powder (Cu), the composite powder (Single) coated with the functional material (FM) once, and the composite powder (Double) coated with the functional material (FM) twice at a temperature of 400 ° C. After heat treatment for 1 hour (1h), 3 hours (3h), and 5 hours (5h), XRD results for each were illustrated. As can be seen in FIG. 26, it was confirmed that CuO and Cu2O were formed as the general copper powder (Cu) was heat-treated. However, in the case of the composite powder according to Example 2, in which the functional material (FM) was coated on the copper powder, it was confirmed that CuO and Cu2O appeared less.
도 27을 참조하면, 일반 구리 분말(Cu), 기능성 물질(FM)이 1회 코팅된 복합 분말(Single), 기능성 물질(FM)이 2회 코팅된 복합 분말(Double)들을 500℃의 온도에서, 1시간(1h), 3시간(3h), 5시간(5h) 동안 열처리한 후, 각각에 대한 XRD 결과를 도시하였다. 도 26에서 알 수 있듯이, 일반 구리 분말(Cu)의 경우 열처리됨에 따라, CuO 및 Cu2O가 형성되는 것을 확인할 수 있었다. 하지만, 구리 분말에 상기 기능성 물질(FM)이 코팅된 상기 실시 예 2에 따른 복합 분말의 경우, CuO 및 Cu2O가 적게 나타나는 것을 확인할 수 있었다. Referring to FIG. 27, a general copper powder (Cu), a composite powder (Single) coated with a functional material (FM) once, and a composite powder (Double) coated with a functional material (FM) twice at a temperature of 500 ° C. After heat treatment for 1 hour (1h), 3 hours (3h), and 5 hours (5h), XRD results for each were illustrated. As can be seen in FIG. 26, it was confirmed that CuO and Cu2O were formed as the general copper powder (Cu) was heat-treated. However, in the case of the composite powder according to Example 2, in which the functional material (FM) was coated on the copper powder, it was confirmed that CuO and Cu2O appeared less.
도 25 내지 도 27에서 알 수 있듯이, 상기 실시 예 2에 따른 복합 분말은, 구리 분말 상에 기능성 물질(FM)이 코팅됨에 따라, 구리 분말의 내산화도가 향상되는 것을 알 수 있다. As can be seen in Figures 25 to 27, it can be seen that the composite powder according to Example 2, as the functional material (FM) is coated on the copper powder, the oxidation resistance of the copper powder is improved.
실시 예 3에 따른 복합 분말 제조Composite powder preparation according to Example 3
Ball milling 공정을 통하여 입경을 줄인 HDPE(high-density polyethylene) 7g을 준비한다. 또한, 1 wt%의 농도를 갖는 h-BN 기능성을 준비한 후, 기능성 물질과 7g HDPE를 혼합하고, 15 분의 시간 동안 어쿠스틱 믹싱(Acoustic mixing)을 수행하였다. 이에 따라, 베이스 코어(HDPE)에 기능성 물질(h-BN)이 코팅된 상기 실시 예 3에 따른 복합 분말을 제조하였다. Prepare 7 g of high-density polyethylene (HDPE) with a reduced particle size through a ball milling process. In addition, after preparing h-BN functionality having a concentration of 1 wt%, the functional substance and 7 g HDPE were mixed, and acoustic mixing was performed for a time of 15 minutes. Accordingly, a composite powder according to Example 3 was prepared in which a functional material (h-BN) was coated on a base core (HDPE).
도 28은 본 발명의 실시 예 3에 따른 복합 분말을 촬영한 일반 사진이고, 도 29는 본 발명이 실시 예 3에 따른 복합 분말을 촬영한 광학 사진이다. 28 is a general photograph of a composite powder according to Example 3 of the present invention, and FIG. 29 is an optical photograph of the composite powder according to Example 3 of the present invention.
도 28의 (a) 및 (b)를 참조하면, 상기 실시 예 3에 따른 복합 분말의 제조에 사용되는 베이스 코어(HDPE) 및 기능성 물질(h-BN)을 일반 사진 촬영하여 도 28의 (a)에 도시하였고, 베이스 코어(HDPE) 및 기능성 물질(h-BN)로 형성된 상기 실시 예 3에 따른 복합 분말을 일반 사진 촬영하여 도 28의 (b)에 도시하였다. 도 29의 (a) 내지 (d)를 참조하면, 상기 실시 예 3에 따른 복합 분말을 각각 다른 배율 및 다른 각도에서 SEM 촬영하여 나타내었다. 도 28 및 도 29를 통해 알 수 있듯이, 상기 실시 예 3에 따른 복합 분말은, 기능성 물질(h-BN)이 베이스 코어(HDPE)의 주위를 둘러싸는 형태로 형성된 것을 확인할 수 있었다. Referring to (a) and (b) of FIG. 28, the base core (HDPE) and the functional material (h-BN) used in the production of the composite powder according to Example 3 were photographed in general and FIG. 28 (a) ), And the composite powder according to Example 3 formed of a base core (HDPE) and a functional material (h-BN) was photographed in general and shown in FIG. 28 (b). Referring to (a) to (d) of FIG. 29, the composite powders according to Example 3 were shown by SEM photographing at different magnifications and different angles, respectively. 28 and 29, it was confirmed that the composite powder according to Example 3 had a functional material (h-BN) formed around the base core (HDPE).
실시 예 4에 따른 복합 분말 제조Preparation of composite powder according to Example 4
베이스 코어로서 PMMA가 준비된다. 준비된 PMMA를 결합 물질인 silane coupling agent, 및 기능성 물질(h-BN)과 혼합한 후, 어쿠스틱 믹싱을 수행하여 상기 실시 예 4에 따른 복합 분말을 제조하였다. PMMA is prepared as a base core. After mixing the prepared PMMA with a silane coupling agent, which is a binding material, and a functional material (h-BN), acoustic mixing was performed to prepare a composite powder according to Example 4.
도 30은 본 발명의 실시 예 4에 따른 복합 분말을 광학 촬영한 사진이다. 30 is an optical photograph of the composite powder according to Example 4 of the present invention.
도 30의 (a) 내지 (e)를 참조하면, 기능성 물질(h-BN)이 코팅되지 않은 고분자 소재에 결합 물질(silane coupling agent)이 첨가되지 않은 경우와 첨가된 경우의 이미지를 나타내며, 결합 물질(silane coupling agent)이 첨가된 경우 균일한 코팅이 이뤄짐을 확인할 수 있었으며, 각각의 코팅된 복합분말을 복합소재로 제조하였을 때의 이미지를 확인했을 때에도 마찬가지로 결합 물질(silane coupling agent)이 첨가된 경우 복합소재 전체적으로 균일한 분산이 이뤄짐을 확인할 수 있었다. Referring to (a) to (e) of FIG. 30, a functional material (h-BN) shows an image of a case in which a silane coupling agent is not added to and a case in which a silane coupling agent is added to the uncoated polymer material, and the binding is performed. When a material (silane coupling agent) was added, it was confirmed that a uniform coating was achieved, and when the images of each coated composite powder were made of a composite material were confirmed, a coupling material (silane coupling agent) was added. In this case, it was confirmed that uniform dispersion was achieved throughout the composite material.
도 30의 (d) 및 (e)에서 알 수 있듯이, 상기 실시 예 4에 따른 복합 분말의 제조 과정에서, silane couping agent가 사용됨에 따라, 베이스 코어(PMMA)와 기능성 물질(h-BN)이 용이하게 결합된 것을 확인할 수 있었다. As can be seen from (d) and (e) of FIG. 30, in the process of manufacturing the composite powder according to Example 4, as the silane couping agent is used, the base core (PMMA) and the functional material (h-BN) are It was confirmed that it was easily combined.
도 31은 본 발명의 실시 예 4에 따른 복합 분말의 화학구조 및 결합 물질(silane coupling agent) 결합 메커니즘 및 함량의 최적화를 나타내는 그래프이다. 31 is a graph showing optimization of the chemical structure and silane coupling agent binding mechanism and content of the composite powder according to Example 4 of the present invention.
도 31의 (a)를 참조하면, 상기 실시 예 4에 따른 복합 분말의 제조를 위해, 베이스 코어(PMMA), 결합 물질(silane coupling agent), 및 기능성 물질(h-BN)이 결합되는 화학식을 나타내었다. 도 31의 (a)에서 알 수 있듯이, 상기 실시 예 4에 따른 복합 분말의 제고 과정에서 결합 물질(silane coupling agent)에 의하여 베이스 코어(PMMA), 및 기능성 물질(h-BN)이 용이하게 결합된 것을 확인할 수 있었다. Referring to (a) of Figure 31, for the preparation of the composite powder according to Example 4, the base core (PMMA), a coupling material (silane coupling agent), and a functional material (h-BN) is combined with the chemical formula Shown. As can be seen from FIG. 31 (a), the base core (PMMA) and the functional material (h-BN) are easily combined by a silane coupling agent in the process of enhancing the composite powder according to Example 4 above. I could confirm that it was done.
도 31의 (b) 및 (c)를 참조하면, 결합 물질(silane coupling agent)이 기능성 물질(h-BN)에 화학적으로 결합됨을 확인할 수 있으며, 최적화된 결합물질(silane coupling agent)의 함량은 기능성 물질(h-BN) 대비 3%의 질량비인 것을 확인할 수 있었다. Referring to (b) and (c) of FIG. 31, it can be confirmed that the silane coupling agent is chemically bound to the functional material (h-BN), and the content of the optimized silane coupling agent is It was confirmed that the mass ratio was 3% compared to the functional substance (h-BN).
실시 예에 따른 방열 복합 소재 준비Preparation of heat dissipation composite material according to the embodiment
상기 실시 예 4에 따른 복합 분말을 복수개 준비한 이후, 복수의 복합 분말을 응집시키고, 압착하였다. 또한, 압착과정에서 형성된 방열 루트 내에 PMMA 수지를 주입시켜, 상기 실시 예에 따른 방열 복합 소재를 준비하였다. After preparing a plurality of composite powders according to Example 4, a plurality of composite powders were agglomerated and compressed. In addition, by injecting PMMA resin into the heat dissipation route formed in the pressing process, a heat dissipation composite material according to the above embodiment was prepared.
상기 실시 예들에 따른 복합 분말, 및 방열 복합 소재가 아래 <표 4>를 통하여 정리된다. The composite powder and the heat dissipation composite material according to the above embodiments are summarized through <Table 4> below.
구분division 구성Configuration
실시 예 1 복합 분말Example 1 Composite powder HDPE + EGHDPE + EG
실시 예 2 복합 분말Example 2 Composite Powder Cu ball + EGCu ball + EG
실시 예 3 복합 분말Example 3 Composite Powder HDPE + h-BNHDPE + h-BN
실시 예 4 복합 분말Example 4 Composite Powder PMMA + h-BNPMMA + h-BN
실시 예 방열 복합 소재Example heat dissipation composite material 실시 예 4 응집 후 압착Example 4 Compression after agglomeration
도 32는 본 발명의 실시 예에 따른 방열 복합 소재를 광학 촬영한 사진이다. 32 is an optical photograph of a heat dissipation composite material according to an embodiment of the present invention.
도 32의 (a) 내지 (c)를 참조하면, 상기 실시 예 4에 따른 복합 분말이 응집된 상태, 응집된 복합 분말을 압착시켜 방열 루트가 형성된 상태, 및 방열 루트 내에 PMMA 수지가 주입된 상기 실시 예에 따른 방열 복합 소재를 SEM 촬영하여 나타내었다. 도 32의 (a) 내지 (c)에서 알 수 있듯이, 상기 실시 예에 따른 방열 복합 소재는, 복수의 상기 실시 예 4에 따른 복합 분말이 응집되는 과정에서 방열 루트가 형성되는 것을 확인할 수 있었다. Referring to (a) to (c) of FIG. 32, the composite powder according to Example 4 is agglomerated, the agglomerated composite powder is compressed to form a heat dissipation route, and the PMMA resin is injected into the heat dissipation route. The heat dissipation composite material according to the embodiment is shown by SEM photographing. As can be seen from (a) to (c) of FIG. 32, it was confirmed that the heat dissipation composite material according to the above embodiment forms a heat dissipation route in the process of agglomeration of a plurality of the composite powders according to Example 4.
도 33은 본 발명의 실시 예에 따른 방열 복합 소재를 적외선 카메라로 촬영한 사진이다. 33 is a photograph of a thermal radiation composite material according to an embodiment of the present invention taken with an infrared camera.
도 33을 참조하면, 상기 실시 예에 따른 복합 소재를 기능성소재(오른쪽)가 삽입되지 않은 고분자 소재(왼쪽) 및 기능성 소재가 임의적으로 분산된 복합소재(중간) 3가지 타입의 소재를 수직방향, 수평방향으로 열이 인가됨에 따라 열전달이 이루어지는 것을 적외선 카메라로 관찰한 사진을 나타내었다. 도 33에서 확인할 수 있듯이, 상기 실시 예에 따른 복합 소재는 열 분산이 용이하게 이루어지는 것을 확인할 수 있었다.Referring to Figure 33, the composite material according to the above embodiment, the functional material (right) is a polymer material (left) and the functional material is a randomly dispersed composite material (middle) three types of material in the vertical direction, Shown is a picture observed with an infrared camera that heat transfer occurs as heat is applied in the horizontal direction. As can be seen in Figure 33, it was confirmed that the composite material according to the embodiment is easily made to heat dissipation.
도 34는 본 발명의 실시 예에 따른 방열 복합 소재의 열전도도를 나타내는 그래프이다. 34 is a graph showing the thermal conductivity of a heat dissipation composite material according to an embodiment of the present invention.
도 34의 (a) 및 (b)를 참조하면, 상기 실시 예에 따른 복합 소재(Double filler-to-polymer percolation), 상기 실시 예에 따른 방법으로 제조하되 복합소재의 공극을 채우지 못한 복합소재(Single filler percolation), 및 기능성 소재가 임의분산된 상기 실시 예에 따른 복합 소재(Randomly dispersed)의 수직방향, 수평방향 열전도도를 그래프로 나타내었다. 도 34의 (a) 및 (b)에서 알 수 있듯이 상기 실시 예에 따른 복합 소재는 방열 특성이 우수한 것을 확인할 수 있었다. Referring to (a) and (b) of FIG. 34, a composite material according to the embodiment (Double filler-to-polymer percolation), a composite material manufactured by the method according to the embodiment but not filling the voids of the composite material ( Single filler percolation), and the thermal conductivity of the vertical and horizontal directions of the composite material according to the embodiment in which the functional material is randomly dispersed (Randomly dispersed) are shown in a graph. As can be seen from (a) and (b) of FIG. 34, it was confirmed that the composite material according to the embodiment has excellent heat dissipation characteristics.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
본 발명의 실시 예에 따른 복합 소재는, 내마모, 내부식, 내산화성을 요구하는 자동차 및 우주선의 부품 소재, 전자 소재, 전기 자동차, 방열 소재, 열전 소재 등 다양한 산업 분야에 활용될 수 있다. The composite material according to the embodiment of the present invention can be used in various industrial fields, such as parts materials for automobiles and spacecraft that require wear resistance, corrosion resistance, and oxidation resistance, electronic materials, electric vehicles, heat dissipation materials, and thermoelectric materials.

Claims (15)

  1. 베이스 코어; 및Base core; And
    탄소층을 포함하는 기능성 물질을 포함하고, 상기 베이스 코어의 적어도 일부를 둘러싸는 코팅층을 포함하되, It comprises a functional material comprising a carbon layer, and includes a coating layer surrounding at least a portion of the base core,
    상기 기능성 물질은 산소 대비 탄소의 비율이 16 이상인 것을 포함하는 복합 분말. The functional material is a composite powder comprising a carbon to oxygen ratio of 16 or more.
  2. 제1 항에 있어서, According to claim 1,
    상기 기능성 물질의 라만 스펙트럼(raman spectroscopy)에서 I2D/IG 값이 0.4 초과 0.59 이하인 것을 포함하는 복합 분말. A composite powder comprising an I 2D / I G value of greater than 0.4 and less than 0.59 in a Raman spectroscopy of the functional material.
  3. 제1 항에 있어서, According to claim 1,
    상기 기능성 물질의 C 1s 함량은 93 wt% 이상인 것을 포함하는 복합 분말. C 1s content of the functional material is a composite powder comprising at least 93 wt%.
  4. 제1 항에 있어서, According to claim 1,
    상기 기능성 물질은, 복수의 상기 탄소층이 적층된 탄소 적층 구조체를 포함하는 복합 분말. The functional material is a composite powder comprising a carbon layered structure in which a plurality of the carbon layers are stacked.
  5. 제1 항에 있어서, According to claim 1,
    상기 기능성 물질의 함량은, 0.49 wt% 이상인 것을 포함하는 복합 분말. The content of the functional substance is a composite powder comprising 0.49 wt% or more.
  6. 제1 항에 있어서, According to claim 1,
    상기 베이스 코어는, 폴리머, 세라믹, 및 금속 중 어느 하나를 포함하는 복합 분말. The base core is a composite powder comprising any one of polymer, ceramic, and metal.
  7. 제6 항에 있어서, The method of claim 6,
    상기 폴리머는 HDPE(high-density polyethylene)을 포함하고, 상기 금속은 구리(copper)를 포함하는 복합 분말. The polymer includes HDPE (high-density polyethylene), and the metal is copper (copper).
  8. 제6 항에 있어서, The method of claim 6,
    상기 베이스 코어가 상기 세라믹, 및 상기 금속 중 어느 하나를 포함하는 경우, When the base core includes any one of the ceramic and the metal,
    상기 베이스 코어와 상기 코팅층을 결합시키는 결합 물질을 더 포함하는 복합 분말. A composite powder further comprising a bonding material bonding the base core and the coating layer.
  9. 제8 항에 있어서, The method of claim 8,
    상기 결합 물질은, 실란계 커플링제, 또는 그래프트된 중합체 중에서 적어도 어느 하나를 포함하는 복합 분말. The binding material is a composite powder comprising at least one of a silane coupling agent or a grafted polymer.
  10. 복수의 탄소층이 적층된 탄소 적층 구조체를 포함하는 기능성 물질을 준비하는 단계; Preparing a functional material including a carbon layered structure in which a plurality of carbon layers are stacked;
    상기 기능성 물질을 베이스 코어와 혼합하는 단계; 및Mixing the functional material with a base core; And
    상기 베이스 코어 및 상기 기능성 물질에 진동을 인가하여, 상기 베이스 코어 상에 상기 기능성 물질을 포함하는 코팅층이 코팅된 복합 분말을 형성하는 단계를 포함하되, Comprising the steps of applying a vibration to the base core and the functional material, forming a composite powder coated with a coating layer containing the functional material on the base core,
    코팅되기 전 상기 기능성 물질이 포함하는 상기 탄소 적층 구조체가 갖는 상기 탄소층의 수는, 코팅된 후 상기 기능성 물질이 포함하는 상기 탄소 적층 구조체가 갖는 상기 탄소층의 수보다 많은 것을 포함하는 복합 분말의 제조방법. The number of the carbon layers of the carbon layered structure included in the functional material before coating is greater than the number of carbon layers of the carbon layered structure included in the functional material after being coated. Manufacturing method.
  11. 제10 항에 있어서, The method of claim 10,
    상기 기능성 물질을 준비하는 단계는, The step of preparing the functional material,
    적층된 복수의 상기 탄소층 사이에 이온을 삽입하여, 상기 탄소 적층 구조체를 제조하는 단계; Inserting ions between the stacked plurality of carbon layers to produce the carbon stack structure;
    이온이 삽입된 상기 탄소 적층 구조체를 열처리하는 단계; 및 Heat-treating the carbon layered structure in which ions are inserted; And
    열처리된 상기 탄소 적층 구조체를 초음파 처리하는 단계를 포함하는 복합 분말의 제조방법. Method of manufacturing a composite powder comprising the step of ultrasonically treating the heat-treated carbon layered structure.
  12. 제10 항에 있어서, The method of claim 10,
    상기 코팅층을 형성하는 단계는,The step of forming the coating layer,
    상기 탄소 적층 구조체에 포함된 상기 탄소층이, 진동에 의하여 박리되는 것을 포함하는 복합 분말의 제조방법. Method for producing a composite powder comprising the carbon layer contained in the carbon layered structure is peeled off by vibration.
  13. 제10 항에 있어서, The method of claim 10,
    상기 기능성 물질을 베이스 코어와 혼합하는 단계에서, In the step of mixing the functional material with the base core,
    상기 기능성 물질의 함량을 제어하여, 상기 복합 분말의 전기전도도 및 열전도도를 제어하는 것을 포함하는 복합 분말의 제조방법.A method of manufacturing a composite powder, comprising controlling the content of the functional material to control the electrical conductivity and thermal conductivity of the composite powder.
  14. 복수의 베이스 코어; A plurality of base cores;
    상기 복수의 베이스 코어 중 적어도 일부를 둘러싸고, 기능성 물질을 포함하는 코팅층; 및A coating layer surrounding at least a portion of the plurality of base cores and including a functional material; And
    상기 복수의 베이스 코어 사이에 제공되는 방열 루트(route)를 포함하되, It includes a heat dissipation route (route) provided between the plurality of base cores,
    상기 방열 루트는 내에는 상기 코팅층이 포함하는 상기 기능성 물질, 및 방열 수지가 배치되는 방열 복합 소재. The heat dissipation route is a heat dissipation composite material in which the functional material and heat dissipation resin included in the coating layer are disposed.
  15. 제14 항에 있어서, The method of claim 14,
    상기 베이스 코어는, 폴리에틸렌, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, PP 중 적어도 어느 하나를 포함하고, The base core includes at least one of polyethylene, SEBS, EVA, PMMA, PDMS, PVDF, PTEF, PP,
    상기 기능성 물질은 CNT, graphene, graphite, carbon balck, h-BN, Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim 중 적어도 어느 하나를 포함하는 방열 복합 소재.The functional material is CNT, graphene, graphite, carbon balck, h-BN, Aluminum nitride, Alumina, Silicon nitride, copper, silver, gold, telilium, platinuim at least one of the heat-resistant composite material.
PCT/KR2018/015292 2018-10-12 2018-12-05 Composite material obtained by surface coating functional material, and method for producing same WO2020075910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180121897A KR102153964B1 (en) 2018-10-12 2018-10-12 Complex powder by surface coating and fabricating method of the same
KR10-2018-0121897 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075910A1 true WO2020075910A1 (en) 2020-04-16

Family

ID=70165059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015292 WO2020075910A1 (en) 2018-10-12 2018-12-05 Composite material obtained by surface coating functional material, and method for producing same

Country Status (2)

Country Link
KR (1) KR102153964B1 (en)
WO (1) WO2020075910A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322694B1 (en) * 2020-02-12 2021-11-08 존스미디어 주식회사 Nonwoven ink-jet printing media with deodorization and antibacterial function
CN112225986B (en) * 2020-09-14 2021-06-29 兰州大学 High-thermal-conductivity flame-retardant polyolefin-based composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150075207A (en) * 2013-12-24 2015-07-03 주식회사 포스코 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
KR101581451B1 (en) * 2013-12-31 2015-12-30 한국세라믹기술원 Oil-based Solvent containing graphite oxide coating agent manufacturing method Graphite oxide coatings manufacturing method
KR20160029369A (en) * 2014-09-05 2016-03-15 덕산하이메탈(주) Graphene Coated Conductive particles, and conductive materials including the same
KR20170024471A (en) * 2015-08-25 2017-03-07 주식회사 엘지화학 Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
KR20180048557A (en) * 2015-07-01 2018-05-10 아쉬.에.에프. Conductive composites made from coated powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649979B2 (en) * 2008-02-28 2015-01-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Graphite nanoplatelets and compositions
KR101266391B1 (en) * 2012-10-17 2013-05-22 주식회사 엘엠에스 Coated particle, composition including the coated particle, and heat transfer sheet using the coated particle
KR101457024B1 (en) 2013-01-08 2014-10-31 (주)경동하이테크 Method for manufacturing multi-functional ceramic power and multi-functional ceramic power manufactured by the method
US9899672B2 (en) * 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150075207A (en) * 2013-12-24 2015-07-03 주식회사 포스코 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
KR101581451B1 (en) * 2013-12-31 2015-12-30 한국세라믹기술원 Oil-based Solvent containing graphite oxide coating agent manufacturing method Graphite oxide coatings manufacturing method
KR20160029369A (en) * 2014-09-05 2016-03-15 덕산하이메탈(주) Graphene Coated Conductive particles, and conductive materials including the same
KR20180048557A (en) * 2015-07-01 2018-05-10 아쉬.에.에프. Conductive composites made from coated powder
KR20170024471A (en) * 2015-08-25 2017-03-07 주식회사 엘지화학 Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof

Also Published As

Publication number Publication date
KR102153964B1 (en) 2020-09-09
KR20200041611A (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2017065340A1 (en) Method for manufacturing two-dimensional hybrid composite
WO2020075910A1 (en) Composite material obtained by surface coating functional material, and method for producing same
CN100360001C (en) Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
WO2015012427A1 (en) Heat-radiating sheet using graphene/graphite nanoplate/carbon nanotube/nanometal complex, and manufacturing method therefor
KR101387374B1 (en) Silver microparticle powder and method for production thereof
WO2015147449A1 (en) Electromagnetic wave shielding sheet and method for manufacturing same
WO2013009150A2 (en) Inorganic particle scattering film having a good light-extraction performance
WO2015108276A1 (en) Method for forming coating having composite coating particle size and coating formed thereby
WO2015137761A1 (en) Method for preparing conductive heat-dissipating graphene coating material using sol-gel method and graphene oxide, and conductive heat-dissipating graphene coating material prepared thereby
WO2016047988A1 (en) Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition
WO2019135533A1 (en) Method for manufacturing electromagnetic interference shielding film
WO2015034317A1 (en) Thermoelectric material and method for manufacturing same
WO2021075635A1 (en) Method for controlling polarity of mxene by controlling surface functional group
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
KR20170141340A (en) Sintered ceramics for electrostatic chuck and manufacturing method of the same
WO2018164472A1 (en) Conductive ceramic composition having excellent electrical conductivity
WO2020122684A1 (en) Magnesia, method for manufacturing same, highly thermally conductive magnesia composition, and magnesia ceramic using same
WO2015034318A1 (en) Thermoelectric material
CN112823430A (en) Method for producing intermediate for thermoelectric conversion module
KR20160035552A (en) Surface-modified boron nitride, composition having the same dispersed within, and wire coated with the composition
KR0147499B1 (en) Thermostable coating materials
Kawakami et al. Powder preparation for 0.5 Pb (Ni1/3Nb2/3) O3–0.15 PbZrO3–0.35 PbTiO3 thick films by the aerosol deposition method
WO2015034321A1 (en) Method for manufacturing thermoelectric material
WO2015068976A1 (en) Silicon carbide powder and method for preparing silicon carbide
WO2021054628A1 (en) Method for preparing layered cobalt arsenide, layered cobalt arsenide prepared thereby, and cobalt arsenide nanosheet exfoliated therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936359

Country of ref document: EP

Kind code of ref document: A1