WO2016047988A1 - Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition - Google Patents

Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition Download PDF

Info

Publication number
WO2016047988A1
WO2016047988A1 PCT/KR2015/009910 KR2015009910W WO2016047988A1 WO 2016047988 A1 WO2016047988 A1 WO 2016047988A1 KR 2015009910 W KR2015009910 W KR 2015009910W WO 2016047988 A1 WO2016047988 A1 WO 2016047988A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
group
modified
silane
nitride particles
Prior art date
Application number
PCT/KR2015/009910
Other languages
French (fr)
Korean (ko)
Inventor
서영수
박건우
하승훈
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150130543A external-priority patent/KR102262025B1/en
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Publication of WO2016047988A1 publication Critical patent/WO2016047988A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to surface modified inorganic particles, and more particularly, to surface modified boron nitride particles, a composition in which the particles are dispersed, and a wire coated with the composition.
  • Thermally conductive materials are showing an increasing trend in their range of use and usage due to the higher integration of electronic components and products and increased power consumption.
  • Thermally conductive materials including existing metals, have made great efforts to replace metal composites using materials having high formability and productivity due to low formability and productivity. Therefore, in order to increase the thermal conductivity and injection moldability, it is used to replace a certain portion of the metal by using a composite made of a thermal conductive filler such as ceramic, carbon, and a polymer.
  • Heat transfer from ceramics to electrical insulators is caused primarily by lattice vibrations by phonons instead of free electrons, and the phonon scattering is induced by thermal resistance, which is related to the presence of a thermal barrier between the matrix and the filler. Therefore, research is being conducted to increase the mobility of phonons by suppressing scattering.
  • the thermally conductive fillers in the matrix can be formed to form a continuous network or large particles can be used to reduce the number of thermal resistance bonds between adjacent filler particles.
  • a filler may be used or a type of filler that reduces the thermal contact resistance between the thermally conductive fillers.
  • fillers with various particle size distributions and using polymers with low melt viscosity to improve interfacial adhesion and wettability of the filler and polymer matrix reduces the possibility of void formation in the polymer composites. Although effective in improving the thermal conductivity, there is a problem that is not applied when the compatibility between the polymer and the filler is not good.
  • Boron nitride having a layered structure is excellent in thermal conductivity, but due to its plate shape, there is a problem that aggregation can occur well with each other, so it is difficult to use as a thermally conductive material.
  • the problem to be solved by the present invention is to provide a surface-modified boron nitride to improve the dispersibility.
  • Another object of the present invention is to provide a coating composition containing a surface-modified boron nitride.
  • Another problem to be solved by the present invention is to provide an electronic component having a coating layer containing a surface-modified boron nitride.
  • One aspect of the present invention to achieve the above object provides a multi-surface modified boron nitride. It comprises boron nitride particles, a first surface modifier bonded to the surface of the boron nitride particles and containing an aromatic group at the terminal, and a second surface modifier bonded to the surface of the boron nitride particles and containing an amine group or an epoxy group at the terminal. do.
  • the surface modifiers are silane compounds and may be bonded to the surface of the boron nitride particles by siloxane bonds.
  • the boron nitride particles may be a plate-shaped hexagonal boron nitride.
  • the aromatic group of the first surface modifier is a phenyl group, an anilinyl group, a benzoyl group, a phenoxy group, a biphenyl group, or a naphthalenyl group.
  • the first surface modifier is trimethoxyphenylsilane, N- [3- (trimethoxysilyl) propyl] aniline, allylphenyldichlorosilane, aminophenyltrimethoxysilane, t-butylphenyldichlorosilane, p- (t -Butyl) phenethyltrichlorosilane, 3,5-dimethoxyphenyltriethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, diphenylmethylethoxysilane, 3- (p-methoxyphenyl) propyl Trichlorosilane, p-methoxyphenyltrimethoxy
  • the amine group of the second surface modifier may be a primary amine group, a secondary amine group, a tertiary amine group, or a diamine group.
  • the second surface modifier is 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] ethylenediamine, (3-aminopropyl) tri Methoxysilane, and combinations thereof.
  • the second surface modifier may be N- [3- (trimethoxysilyl) propyl] ethylenediamine having a diamine group at its terminal.
  • the epoxy of the second surface modifier may be an epoxide group, glycidyl group, or glycidyloxy group.
  • the second surface modifier is 3-epoxypropyltrimethoxysilane, 3-epoxypropyltriethoxysilane, 4-epoxybutyltrimethoxysilane, 4-epoxybutyltriethoxysilane, 3-glycidyloxypropyltri Methoxysilane, and combinations thereof.
  • the second surface modifier may be 3-glycidyloxypropyltrimethoxysilane having a glycidyloxy group at the terminal.
  • a third surface modifier containing an alkyl group at the terminal may be further bonded to the surface of the boron nitride particles.
  • the coating composition includes 100 parts by weight of the polymer or polymer precursor, 1 to 80 parts by weight of the multi-surface modified boron nitride as described above, and the balance of the solvent.
  • the polymer precursor is epoxy resin, phenol resin, polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyether It may be selected from the group consisting of mid, polyamide, polyamideimide, polyimide, polyurethane, polyvinyl formal, and combinations thereof.
  • a wire It comprises a conductive wire and a thermally conductive film formed on the conductive wire.
  • the thermally conductive film contains a polymer matrix and a multi-surface modified boron nitride as described above dispersed in the polymer matrix.
  • the polymer matrix is polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyetherimide, polyamide, poly Amideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenol resin, and combinations thereof.
  • an internal insulating discharge layer including an organic insulating polymer matrix and an inorganic nanofiller dispersed in the organic insulating polymer matrix may be disposed.
  • the inorganic nanofiller may be selected from the group consisting of silica, titania, alumina, zirconia, yttria, chromium oxide, zinc oxide, iron oxide, clay, and combinations thereof.
  • the boron nitride particles are plate-shaped particles, and the plate-like surface of the boron nitride particles may face the conductive wire.
  • the plate-like surface of the boron nitride particles and the surface of the conductive wire may be parallel.
  • An angle between the plate surface of the boron nitride particles and the surface of the conductive wire may be smaller than an angle between the plate surface of the boron nitride particles and the waterline perpendicular to the surface of the conductive wire.
  • the surface modifier occupies the surface of the boron nitride by modifying the surface of the boron nitride by using a surface modifier having an aromatic group at the terminal and a surface modifier having an amine group or an epoxy group at the terminal.
  • a surface modifier having an aromatic group at the terminal and a surface modifier having an amine group or an epoxy group at the terminal.
  • dispersibility can be greatly improved in the polymer solution or the polymer matrix.
  • the aromatic group and the amine group or the epoxy group may exhibit strong interaction with the polymer and the solvent in the polymer solution and the polymer in the polymer matrix, and thus dispersibility may be maintained.
  • FIG. 1 is a schematic view showing a surface-modified boron nitride according to one embodiment of the present invention.
  • FIG. 2A is a schematic view showing a cross section of a wire according to an embodiment of the present invention
  • FIG. 2B is an enlarged cross-sectional view of part B of FIG. 2A.
  • Figure 3a is a photograph of the fracture surface of the boron nitride (20 wt%)-PAI complex according to Experimental Example 1
  • Figure 3b is a boron nitride (20 wt%)-PAI complex of Comparative Example 2 A photograph of the fracture surface observed with a scanning microscope.
  • Figure 4a is a photograph of the fracture surface of the boron nitride-epoxy composite according to Experimental Example 2 with a scanning electron microscope
  • Figure 4b is a photograph of a fracture surface of the boron nitride-epoxy composite according to Comparative Example 7 with a scanning microscope .
  • a layer is located on another layer may mean that not only are these layers directly in contact, but also another layer (s) between these layers.
  • FIG. 1 is a schematic view showing a surface-modified boron nitride according to one embodiment of the present invention.
  • the boron nitride particles BN may be amorphous boron nitride, crystalline boron nitride, or a complex thereof.
  • boron nitride (BN) may be hexagonal boron nitride (hexagonal BN) having a crystal structure similar to graphite.
  • hexagonal BN hexagonal boron nitride
  • boron nitride (BN) may have a structure in which hexagonal mesh layers are stacked in multiple layers, or may be made of a single layer, and may be plate-shaped particles.
  • Such plate-like boron nitride may have a particle diameter of about 0.1 to about 20 ⁇ m, specifically 0.3 to about 5 ⁇ m, more specifically 0.3 to about 1 ⁇ m, and also about 1 nm to about 3 ⁇ m, or It may have a particle thickness of about 10 nm to about 500 nm, or about 10 nm to about 200 nm, or about 10 nm to about 100 nm, or about 10 nm to about 30 nm.
  • the particle diameter or the particle thickness may be an average value of several particles.
  • the plate-like boron nitride (BN) may have a ratio of particle diameter to thickness, that is, an aspect ratio of 1: 10 to 1: 100, specifically 1: 30 to 1: 70.
  • the plate-like boron nitride (BN) has a large surface energy (surface energy) in the side compared to the upper and lower surfaces, that is, the plate-like surface corresponding to the surface of the mesh layer may be low in stability.
  • such plate-like boron nitride (BN) may have more reaction sites on the side, that is, hydroxyl groups, than the upper and lower sides.
  • first and second surface modifiers S 1 and S 2 may be provided.
  • a third surface modifier S 3 may additionally be provided.
  • the surface modifiers S 1 , S 2 , and S 3 may include a head group, a terminal functional group, and a tail portion connecting the head group and the terminal functional group to the boron nitride. part).
  • the tail portion may be an alkyl group of C1 to C10 (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10), specifically C1 to C6, more specifically C1 to C4.
  • one or more -CH 2 -of the alkyl group may be substituted with -NH-.
  • the present invention is not limited thereto, and the tail portion may be omitted, particularly when the terminal functional group is an alkyl group.
  • the surface modifiers S 1 , S 2 , S 3 may each be a silane having a silane group substituted with a silane group, specifically, 1, 2 or 3 substituents as a head group.
  • the substituent (s) of the silane group may be a hydroxyl group, an alkoxy group, a halo group, or a combination thereof.
  • the surface modifiers (S 1 , S 2 , S 3 ) are each a headalkoxy silane group, dialkoxy silane group, alkoxy silane group, dialkoxyhalo silane group, alkoxydihalo silane as head group.
  • a group, a trihalo silane group, a dihalosilane group, and a halosilane group can be provided.
  • the alkoxy group may be a methoxy group or an ethoxy group
  • the halo group may be a chloro group.
  • silane groups react with reaction sites, for example, hydroxyl groups, on the sides rather than on the upper and lower sides of the plate-like boron nitride (BN) to bond with boron nitride (BN), for example, to siloxane bonds. Can be combined.
  • Each surface modifier (S 1 , S 2 , S 3 ) may have different terminal functional groups.
  • the first surface modifier S 1 may include an aromatic group R 1 as a terminal functional group.
  • the aromatic group may be substituted or unsubstituted, and may be a phenyl group, an anilinyl group, a benzoyl group, a phenoxy group, a biphenyl group, or a naphthalene group ( naphthalenyl group).
  • Substituents for the aromatic groups may be C1, C2, C3 or C4 alkyl groups, C1, C2, or C3 alkoxy groups, C2, or C3 allyl groups, amine groups, hydroxyl groups, or halogen groups.
  • the aromatic group of the first surface modifier (S 1 ) may be a substituted or unsubstituted ananilinyl group, and further may be an unsubstituted anilinyl group.
  • the first surface modifier (S 1 ) having an aromatic group as a terminal functional group is trimethoxyphenylsilane, N- [3- (trimethoxysilyl) propyl] aniline (N- [3- (trimethoxysilyl) propyl aniline), allylphenyldichlorosilane, aminophenyltrimethoxysilane, t-butylphenyldichlorosilane, p- (t-butyl) phenethyltrichlorosilane (p- ( t-butyl) phenethyltrichlorosilane), 3,5-dimethoxyphenyltriethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, diphenylmethylethoxysilane (diphenylmethylethoxysilane), 3- (p-methoxyphenyl) propyltrichlorosilane, 3- (pmeth
  • the second surface modifier (S 2 ) may have an amine group or an epoxy group (R 2 ) as the terminal functional group.
  • the amine group (R 2 ) may be substituted or unsubstituted, but may be a primary amine group, a secondary amine group, a tertiary amine group, or a diamine group, but is not limited thereto.
  • the diamine group may be ethylenediamine, propanediamine, or butanediamine.
  • the second surface modifier (S 2 ) having an amine group (R 2 ) is 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl ] Ethylenediamine, (3-aminopropyl) trimethoxysilane, and combinations thereof, but is not limited thereto.
  • the epoxy group (R 2 ) may be an epoxide group, glycidyl group, or glycidyloxy group.
  • a first surface modifying agent having an epoxy group such a (R 2) group as a terminal functional (S 2) is, in particular, 3-epoxy-trimethoxysilane, 3-in-epoxypropyl triethoxysilane, 4-epoxy-butyl trimethoxysilane Methoxysilane, 4-epoxybutyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, and combinations thereof.
  • the third surface modifier S 3 may have an alkyl group R 3 as a terminal functional group. As described above, in this case, the tail portion may be omitted.
  • the alkyl group (R 3 ) may be an alkyl group of 1 to C10 (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10), specifically C1 to C6, more specifically C1 to C4 have.
  • the third surface modifier (S 3 ) is ethyltrimethoxysilane, methoxytrimethylsilane, ethoxytrimethylsilane, triethylchlorosilane, trimethylchlorosilane ), Heptyltrimethoxysilane, and combinations thereof.
  • the surface-modified specifically silane surface-modified boron nitride 35 may include the first to third surface modifiers S 1 , S 2 , and S 3 , that is, the first silane, the second silane, and the third silane. Additional surface modifiers For example, silanes may be chemically bonded to the surface of the boron nitride (BN), but is not limited thereto.
  • the surface-modified boron nitride 35 may be powder, gel, or liquid, but is not limited thereto.
  • the first surface-modifying agent (S 1) and the second surface modifier third surface modifying agent (S 3) having an alkyl group (R 3) between (S 2) as the group terminal function may be disposed.
  • the terminal functional groups are smaller in order of aromatic group, amine group or epoxy group, and alkyl group. As such, surface modifiers having relatively small terminal functional groups may be disposed between surface modifiers having relatively large terminal functional groups.
  • the method of surface modifying boron nitride using a multiple surface modifier may be as follows.
  • the boron nitride powder may be mixed in a solvent to form a mixed solution. Ultrasonic waves may be added to the mixed solution.
  • the boron nitride (BN) can be peeled off, i.e., layered, to have a thinner thickness, and can also generate more reaction sites (ex. -OH) on the surface, especially the side, of the boron nitride (BN). .
  • the boron nitride (BN) may be further exfoliated and may have more reaction sites, and at the same time, may be bonded to the first silane (S 1 ) by a siloxane bond.
  • boron nitride (BN) surface-modified by the first silane (S 1 ) can be obtained.
  • a second silane (S 2 ) containing an amine group or an epoxy group (R 2 ) may be added and ultrasonic waves may be added.
  • the boron nitride (BN) may be further peeled off and may have more reaction sites, and may be bonded to the second silane (S 2 ) by siloxane bonds.
  • the boron nitride 35 surface-modified by the first silane S 1 and the second silane S 2 may be obtained.
  • the boron nitride 35 surface-modified by the first to third silanes (S 1 , S 2 , S 3 ) can be obtained.
  • the surface-modified boron nitride 35 dispersed in the solvent may be filtered and washed to remove the unreacted silane.
  • the washed solid may be dried to obtain a boron nitride powder surface modified by multiple silanes.
  • the present invention is not limited thereto, and the silane surface-modified boron nitride 35 may be obtained in a sol form, a gel form, or a liquid phase dispersed in a solvent phase.
  • the terminal functional group of the first silane (S 1 ), that is, the aromatic group (R 1 ) is larger than the terminal functional group of the second silane (S 2 ), that is, the amine group or the epoxy group (R 2 ).
  • the first silane (S 1 ) on the surface of the boron nitride may be somewhat sparsely coupled.
  • the first silane to the second silane (S 2) having a small terminal features compared to (S 1) the first can be easily accessed and coupled to remaining reactive sites between the silane of (S 1).
  • the terminal functional group of the third silane (S 3 ), that is, the alkyl group (R 3 ) is smaller than those of the first silane (S 1 ) and the second silane (S 2 ) (R 1 , R 2 ). .
  • the third silane S 3 can be easily accessed and coupled to the remaining reaction site between the first silanes S 1 and the second silane S 2 .
  • different types of silanes having different sized terminal functional groups are used, but silanes having larger sized functional groups are first reacted with boron nitride or at the same time having smaller sized functional groups.
  • At least one second silane (S 2 ) having an amine group or an epoxy group (R 2 ) as a terminal functional group may be disposed between the).
  • a third silane (S 3 ) having an alkyl group (R 3 ) as a terminal functional group may be disposed between the first silane (S 1 ) and the second silane (S 2 ).
  • boron nitride having an improved surface occupancy by silane may exhibit greatly improved dispersibility with respect to a polymer solution or a polymer matrix described later.
  • the solvent may be a polar solvent, for example, toluene, xylene, ethanol, methanol, cresol, water, acetone, cyclohexane, phenol, N-methylpyrolidone (NMP), glycol ether, N, N-dimethylformamide (N, N-Dimethylformamide, DMF), and combinations thereof may be included, but is not limited thereto.
  • a polar solvent for example, toluene, xylene, ethanol, methanol, cresol, water, acetone, cyclohexane, phenol, N-methylpyrolidone (NMP), glycol ether, N, N-dimethylformamide (N, N-Dimethylformamide, DMF), and combinations thereof may be included, but is not limited thereto.
  • the process of irradiating the ultrasonic wave may have an advantage of shortening the time required compared to the surface treatment process performed using only the heat and the solvent of the prior art, but is not limited thereto.
  • the surface treatment time required to secure surface coverage showing satisfactory dispersibility with respect to the polymer solution or the polymer matrix can be shortened through the sonication.
  • the bath ultrasonic treatment may take about 3 days, and in the case of horn ultrasonic treatment, the surface treatment may be performed.
  • the time required can be dramatically shortened to about 3.5 hours.
  • the coating composition in which the surface-modified boron nitride is dispersed in multiple silanes may include 100 parts by weight of a polymer or polymer precursor, 1 to 200 parts by weight of surface-modified boron nitride, and the balance of It may include a solvent.
  • the boron nitride may be surface-modified with the first and second silanes, additionally with the third silane, as described in the first embodiment. For example, 1 to 80 parts by weight, 10 to 70 parts by weight, and 10 to 50 parts by weight. 20 to 30 parts by weight, 20 to 60 parts by weight, or 30 to 50 parts by weight.
  • the polymer precursor may be a polymerizable material and may be a monomer, an oligomer having a few to several tens of monomers, or a prepolymer.
  • the polymer precursor may be a prepolymer, wherein the prepolymer is polyester (ex. Polyethylene terephthalate), polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocy Anuate triacrylate) -polyesterimide, polyetherimide, polyamide, polyamideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenolic resin, and combinations thereof It may include, but is not limited thereto.
  • the polymer precursor may include an aromatic group, an epoxy group, or a combination thereof in the main chain thereof.
  • the prepolymer may be a polyesterimide represented by the following formula (1).
  • n 2 to 99
  • m is an integer of 1 to 4.
  • the prepolymer may be a polyamideimide represented by the following formula (2).
  • n is an integer of 2 to 99.
  • the solvent is a group consisting of toluene, xylene, ethanol, methanol, cresol, water, acetone, cyclohexane, phenol, N-methylpyrrolidone, glycol ether, N, N-dimethylformamide, and combinations thereof. It may include, but is not limited to selected from.
  • the solvent may further include, but is not limited to, a diluent used to dilute the composition.
  • the mixture of the polymer precursor and the solvent may be a varnish.
  • 'Varnish' means a paint forming a coating film.
  • boron nitride surface modified with the first and second silanes, additionally with the third silane may exhibit high dispersibility in the composition due to the high surface occupancy of the silane modifiers.
  • the aromatic group, which is the terminal functional group of the first silane may exhibit strong interaction with the polymer precursor, particularly the polymer precursor having the aromatic group, and also due to the amine group, which is the terminal functional group of the second silane, the solvent, for example, N- Strong interactions can also be shown for solvents with amine groups such as methylpyrrolidone.
  • the dispersibility of the boron nitride surface-modified with the multiple silanes in the composition can be further improved.
  • the organic insulating polymer is polyester, polyester imide, polyester amide, polyester amide imide, (tri (2-hydroxy ethyl) isocyanuate triacrylate)-polyester imide, poly ether imide, polyamide , Polyamideimide, polyimide, polyurethane, polyvinyl formal, and combinations thereof may be included, but is not limited thereto.
  • the inorganic nanofiller 25 may include one selected from the group consisting of silica, titania, alumina, zirconia, yttria, chromium oxide, zinc oxide, iron oxide, clay, and combinations thereof, but is not limited thereto. It is not.
  • the silica may be fumed silica, but may be fused silica, precipitated silica, silica prepared by a sol-gel method, or colloidal silica, but is not limited thereto.
  • the titania may be fumed titania, but may be molten titania, precipitated titania, titania produced by the sol-gel method, or colloidal titania, but is not limited thereto.
  • the alumina may be fumed alumina, fused alumina, precipitated alumina, alumina prepared by the sol-gel method, or colloidal alumina, but is not limited thereto.
  • the inorganic nanofiller 25 may also be surface modified by a silane modifier. Specifically, the surface of the inorganic nanofiller 25 is a surface-modified chemical bond between the first silane containing an aromatic group as the terminal functional group and the second silane containing an amine group as the terminal functional group. Can be.
  • the first silane containing an aromatic group and the second silane containing an amine group may be similar to those described in the first embodiment.
  • the content of the inorganic nanofiller 25 surface-modified with silane in the internal discharge layer 20 is about 0.1 wt% to about 30 wt%, about 0.1 wt% to about 5 wt%, about 0.1 wt% to about 10 Wt%, about 0.1 wt% to about 20 wt%, about 0.1 wt% to about 30 wt%, about 5 wt% to about 10 wt%, about 5 wt% to about 20 wt%, about 5 wt% to about 30 Weight percent, about 10 weight percent to about 20 weight percent, about 10 weight percent to about 30 weight percent, or about 20 weight percent to about 30 weight percent.
  • the thickness of the internal discharge layer 20 may be 10 ⁇ m to 45 ⁇ m. However, the present invention is not limited thereto, and all thicknesses commonly applied in the art may be applied.
  • the thermal conductive layer 30 may be disposed on the internally discharged conductive layer 20.
  • the present invention is not limited thereto, and in this case, the internal discharge layer 20 may be omitted.
  • the thickness of the thermal conductive layer 30 may be 5 to 10 ⁇ m.
  • the thickness of the thermally conductive layer 30 may be 20 to 50 ⁇ m.
  • the thermal conductive layer 30 is composed of the composition described in the second embodiment, that is, the boron nitride 35 surface-modified with the first and second silanes described in the first embodiment, additionally with the third silane, the polymer precursor, And it can be prepared by coating a composition comprising the remainder of the solvent on the conductive wire 10, then drying and curing. In the coating process, after applying the composition on the conductive wire 10, the composition is uniformly coated on the conductive wire 10 by using a die (hollow cylindrical tool, dies). can do.
  • the thermal conductive layer 30 may include a polymer matrix cured by the polymer precursor in the curing process and boron nitride 35 surface-modified by multiple silanes dispersed in the polymer matrix.
  • the drying and curing steps may be performed at the same time. Specifically, rapid drying of the solvent and the curing may be simultaneously performed by applying strong heat of about 350 ° C to about 550 ° C. However, it is not limited thereto.
  • the polymer matrix is polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyetherimide, polyamide, poly Amideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenolic resin, and combinations thereof may be included, but is not limited thereto.
  • the surface-modified boron nitride 35 has a surface modified by two or more silanes, and the first silane includes a first silane containing an aromatic group as a terminal functional group and a second containing an amine group or an epoxy group as a terminal functional group.
  • the chemical bond with the silane may be specifically surface modified by a siloxane bond.
  • the first silane containing an aromatic group and the second silane containing an amine group or an epoxy group may be similar to those described in the first embodiment.
  • the content of boron nitride surface-modified with multiple silanes in the thermally conductive layer 30 is about 0.1 wt% to about 60 wt%, about 0.1 wt% to about 30 wt%, about 0.1 wt% to about 5 wt% , About 0.1 wt% to about 10 wt%, about 0.1 wt% to about 20 wt%, about 0.1 wt% to about 30 wt%, about 5 wt% to about 10 wt%, about 5 wt% to about 20 wt% , About 5 wt% to about 30 wt%, about 10 wt% to about 20 wt%, about 10 wt% to about 30 wt%, or about 20 wt% to about 30 wt%, but is not limited thereto. .
  • the thickness of the thermal conductive layer 30 may be larger than the thickness of the boron nitride 35.
  • the boron nitride 35 may have a hexagonal mesh layer or a structure in which a plurality of mesh layers are stacked.
  • the boron nitride 35 may be a plate-shaped particle having one or two or more laminated plates, one of the upper and lower surfaces corresponding to the surface of the mesh layer of the boron nitride 35 being the conductive wire 10. It may be arranged to look at the surface of).
  • the angle ⁇ 1 of the plate-like surface of the boron nitride 35 with the surface of the conductive wire 10 is such that the plate-shaped surface of the boron nitride 35 is perpendicular to the surface of the conductive wire 10. It may be smaller than the angle ⁇ 2 with the waterline.
  • the boron nitride 35 may have an arrangement lying in the thermal conductive layer 30, so that the overlap between the boron nitrides 35 may be improved, thereby increasing thermal conductivity.
  • the plate-like surface of the boron nitride 35 may be disposed in parallel with the surface of the conductive wire 10.
  • the dispersibility of the boron nitride 35 may be reduced by the rapid thermal movement around the heat generated by the heat, but the boron nitride 35 surface-modified by multiple silane is As described above, since the aromatic group is retained on its surface, the polymer matrix having the aromatic group can be strongly interacted by ⁇ - ⁇ interaction, so that high dispersibility can be maintained even in this case.
  • the coil may then be heat treated, for example at a temperature of about 150 ° C. to 250 ° C.
  • the surfaces of the wire may be fused to each other to remove the air layer between the wires.
  • the polymer matrix in the thermal conductive layer 30 may be wound and fused to each other between adjacent wires.
  • the melting point of the polymer matrix may be selected to adjust the heat treatment temperature or to select a polymer constituting the polymer matrix to have a lower value than the heat treatment temperature.
  • 'PN' N- [3- (trimethoxysilyl) propyl] aniline
  • the NMP solution in which PAI was dispersed at 33wt% was molded in a Teflon mold, and then cured in a hot air oven at 240 ° C. for 240 minutes to obtain PAI pellets.
  • Table 1 below shows the thermal conductivity of boron nitride-PAI composite pellets or PAI pellets according to Experimental Examples 1 and Comparative Examples 1 to 5. At this time, the thermal conductivity was measured using a laser flash method.
  • FIG. 3a is a photograph of the fracture surface of the boron nitride-PAI complex according to Experimental Example 1
  • FIG. 3b is a photograph of the fracture surface of the boron nitride-PAI complex according to Comparative Example 2 .
  • the boron nitride-PAI composite containing the surface-modified boron nitride is a PAI resin with voids between boron nitrides as boron nitride is not completely dispersed. It can be seen that it is not filled by.
  • the boron nitride-PAI composite according to Experimental Example 1 surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group (FIG. 3A) has almost no porosity. It can be seen that.
  • boron nitride surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group is present in the PAI matrix. It can be seen that the degree of dispersion is better than the other cases.
  • YD-128 epoxy Kermo Chemical Co., Ltd.
  • Jeffoxy Hybrid Chemical Co., Ltd.
  • a polyoxyalkyleneamine-based curing agent a polyoxyalkyleneamine-based curing agent
  • the mixture was added at a concentration of% (25 parts by weight of surface-modified hexagonal boron nitride with respect to 100 parts by weight of the weight of YD-128 epoxy and zephamine) and mixed evenly.
  • the mixture was poured into a Teflon mold and cured in a hot air oven for 130 ° C. for 60 minutes to obtain a composite of boron nitride and epoxy surface-modified with PN and DN in pellet form.
  • a concentration of 20wt% (YD-) was added to a mixed solution of hexagonal boron nitride surface-modified with PN and YD-128 epoxy (Kukdo Chemical Co., Ltd.) and Jeffamine (Huntsman Co., Ltd.) in a ratio of 5: 3. 128 parts by weight of a surface modified hexagonal boron nitride) was added to 100 parts by weight of the epoxy and zephamine), and then molded in a Teflon mold. The molded mixture was cured in a hot air oven at 130 ° C. for 60 minutes to obtain a composite of boron nitride and epoxy surface-modified with PN in pellet form.
  • the boron nitride-epoxy complex according to Experimental Example 2 which is surface-modified with silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group,
  • DN silane
  • PN silane
  • Figure 4a is a photograph of the fracture surface of the boron nitride-epoxy composite according to Experimental Example 2 with a scanning electron microscope
  • Figure 4b is a photograph of a fracture surface of the boron nitride-epoxy composite according to Comparative Example 7 with a scanning microscope .
  • the boron nitride-epoxy composite containing the surface-modified boron nitride (Comparative Example 7, FIG. 4B) has an epoxy resin with voids between the boron nitrides as boron nitride is not completely dispersed. It can be seen that it is not filled by.
  • the boron nitride-epoxy composite according to Experimental Example 2 surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group (FIG. 4A) has a fracture surface with little voids. It can be seen that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a multiple surface modified boron nitride, a composition having same dispersed therein, and a wire coated with the composition. The multiple surface modified boron nitride is provided with: boron nitride particles; a first surface modifier binding to the surface of the boron nitride particles and containing an aromatic group at an end; and a second surface modifier binding to the surface of the boron nitride particles and containing an amine group or an epoxy group at an end.

Description

표면 개질된 질화붕소, 상기 입자가 분산된 조성물, 및 상기 조성물로 코팅된 와이어Surface-modified boron nitride, the composition in which the particles are dispersed, and the wire coated with the composition
본 발명은 표면 개질된 무기입자에 관한 것으로 구체적으로는 표면 개질된 질화 붕소 입자, 상기 입자가 분산된 조성물, 및 상기 조성물로 코팅된 와이어에 관한 것이다.The present invention relates to surface modified inorganic particles, and more particularly, to surface modified boron nitride particles, a composition in which the particles are dispersed, and a wire coated with the composition.
열전도성 재료는 전자부품/제품의 고집적화와 소비전력 증가로 인해 이의 사용 범위와 사용량이 대폭 증가하는 추세를 보이고 있다. 기존 금속을 포함한 열전도성 재료는 낮은 성형성 및 생산성에 의해 성형성과 생산성이 우수한 재료를 이용하여 금속 복합체를 대체하려는 많은 노력이 있어 왔다. 따라서 열전도성과 사출 성형성을 높이기 위해 세라믹, 카본 등의 열전도성 필러와 고분자로 이루어진 복합체를 사용하여 일정부분의 금속을 대체하여 사용되고 있다.Thermally conductive materials are showing an increasing trend in their range of use and usage due to the higher integration of electronic components and products and increased power consumption. Thermally conductive materials, including existing metals, have made great efforts to replace metal composites using materials having high formability and productivity due to low formability and productivity. Therefore, in order to increase the thermal conductivity and injection moldability, it is used to replace a certain portion of the metal by using a composite made of a thermal conductive filler such as ceramic, carbon, and a polymer.
세라믹에서 전기 절연체로 열의 이동은 자유 전자 대신 주로 포논에 의한 격자 진동에 의해 일어나며 이때 발생하는 포논산란은 주로 열저항에 의해 유도되는데 매트릭스와 필러 사이의 열장벽의 존재와 관련되어 있다. 따라서 산란을 억제하여 포논의 이동성을 증가하려는 연구가 이루어지고 있다.Heat transfer from ceramics to electrical insulators is caused primarily by lattice vibrations by phonons instead of free electrons, and the phonon scattering is induced by thermal resistance, which is related to the presence of a thermal barrier between the matrix and the filler. Therefore, research is being conducted to increase the mobility of phonons by suppressing scattering.
나노필러가 함유된 고분자 복합재료의 열전도도를 향상시키기 위해서는 매트릭스 내에서 열전도성 필러가 연속적인 네트워크를 형성하도록 만들거나 인접한 필러 입자들 사이에서 열 저항 접합의 수를 감소시키기 위해 크기가 큰 입자를 사용하거나 열전도성 필러 사이의 열접촉 저항을 줄일 수 있는 형태의 필러를 사용하여 열전도성 필러와 매트릭스의 접촉이 용이해지도록 한다.In order to improve the thermal conductivity of nanocomposite-containing polymer composites, the thermally conductive fillers in the matrix can be formed to form a continuous network or large particles can be used to reduce the number of thermal resistance bonds between adjacent filler particles. In order to facilitate the contact between the thermally conductive fillers and the matrix, a filler may be used or a type of filler that reduces the thermal contact resistance between the thermally conductive fillers.
대부분의 고분자 재료는 0.1~0.3 W/mK 수준의 낮은 열전도도 값을 갖고 있으며 높은 결정성을 갖는 고분자는 비결정성 고분자보다 높은 열전도도 값을 보인다. 따라서 열전도성 복합재료 제조시 결정성 고분자를 매트릭스로 선정하는 것이 유리하지만 비결정성 고분자보다 가공 조건이 난해한 문제점이 있다.Most polymer materials have low thermal conductivity values of 0.1 ~ 0.3 W / mK, and high crystalline polymers exhibit higher thermal conductivity values than amorphous polymers. Therefore, it is advantageous to select a crystalline polymer as a matrix when manufacturing a thermally conductive composite material, but processing conditions are more difficult than those of an amorphous polymer.
상기 내용과 더불어 다양한 입자 크기 분포를 갖는 필러를 선택하고 필러와 고분자 매트릭스의 계면접착력 및 젖음성을 향상시킬 수 있는 용융 점도가 낮은 고분자를 사용하면, 고분자 복합재료의 공극 형성 가능성을 감소시켜 복합재료의 열전도도 향상에 효과적이나, 고분자와 필러의 상용성이 좋지 않을 경우에는 적용되지 않는 문제점이 있다.In addition to the above, selecting fillers with various particle size distributions and using polymers with low melt viscosity to improve interfacial adhesion and wettability of the filler and polymer matrix reduces the possibility of void formation in the polymer composites. Although effective in improving the thermal conductivity, there is a problem that is not applied when the compatibility between the polymer and the filler is not good.
층상구조를 갖는 질화붕소는 열전도성이 우수하나, 그의 판상 형태로 인해 서로 간에 응집이 잘 일어날 수 있는 문제점이 있어, 열전도성 재료로 사용하기에 힘들다.Boron nitride having a layered structure is excellent in thermal conductivity, but due to its plate shape, there is a problem that aggregation can occur well with each other, so it is difficult to use as a thermally conductive material.
본 발명이 해결하고자 하는 과제는 분산성이 향상되도록 표면 개질된 질화붕소를 제공함에 있다.The problem to be solved by the present invention is to provide a surface-modified boron nitride to improve the dispersibility.
본 발명이 해결하고자 하는 다른 과제는 표면 개질된 질화붕소를 함유하는 코팅용 조성물을 제공함에 있다.Another object of the present invention is to provide a coating composition containing a surface-modified boron nitride.
본 발명이 해결하고자 하는 또 다른 해결과제는 표면 개질된 질화붕소를 함유하는 코팅층을 구비하는 전자 부품을 제공함에 있다.Another problem to be solved by the present invention is to provide an electronic component having a coating layer containing a surface-modified boron nitride.
상기 과제를 이루기 위하여 본 발명의 일 측면은 다중 표면 개질된 질화붕소를 제공한다. 이는 질화붕소 입자, 상기 질화붕소 입자의 표면에 결합되고 말단에 방향족기를 함유하는 제1 표면 개질제, 및 상기 질화붕소 입자의 표면에 결합되고 말단에 아민기 또는 에폭시기를 함유하는 제2 표면 개질제를 구비한다.One aspect of the present invention to achieve the above object provides a multi-surface modified boron nitride. It comprises boron nitride particles, a first surface modifier bonded to the surface of the boron nitride particles and containing an aromatic group at the terminal, and a second surface modifier bonded to the surface of the boron nitride particles and containing an amine group or an epoxy group at the terminal. do.
상기 표면 개질제들은 실란화합물들이고, 상기 질화붕소 입자의 표면에 실록산 결합에 의해 결합될 수 있다. 상기 질화붕소 입자는 판상형의 육방정계 질화붕소일 수 있다. The surface modifiers are silane compounds and may be bonded to the surface of the boron nitride particles by siloxane bonds. The boron nitride particles may be a plate-shaped hexagonal boron nitride.
상기 제1 표면 개질제의 방향족기는 페닐기(phenyl group), 아닐리닐기(anilinyl group), 벤조일기(benzoyl group), 페녹시기(phenoxy group), 바이페닐기(biphenyl group), 또는 나프탈렌기(naphthalenyl group)일 수 있다. 상기 제1 표면 개질제는 트리메톡시페닐실란, N-[3-(트리메톡시실릴)프로필]아닐린, 알릴페닐디클로로실란, 아미노페닐트리메톡시실란, t-부틸페닐디클로로실란 , p-(t-부틸)페네틸트리클로로실란, 3,5-디메톡시페닐트리에톡시실란, 디페닐디에톡시실란, 디페닐디메톡시실란, 디페닐메틸에톡시실란 , 3-(p-메톡시페닐)프로필트리클로로실란, p-메톡시페닐트리메톡시실란, 페네틸메틸디클로로실란 , 페네틸트리메톡시실란, 3-페녹시프로필디메틸클로로실란, 3-페녹시프로필메틸디클로로실란 , 3-페녹시프로필트리클로로실란, 페닐디메틸클로로실란, 페닐디메틸에톡시실란, 페닐에틸디클로로실란, 페닐메틸디클로로실란, 1-페닐-1-(메틸디클로로실릴)부탄, 페닐메틸디메톡시실란, 페닐메틸디에톡시실란, (3-페닐프로필)트리클로로실란, 페닐트리클로로실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 트리페닐클로로실란, 트리페닐에톡시실란, (트리페닐메틸)메틸디클로로실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다. 상기 제1 표면 개질제는 말단에 아닐리닐기를 구비하는 N-[3-(트리메톡시실릴)프로필]아닐린일 수 있다.The aromatic group of the first surface modifier is a phenyl group, an anilinyl group, a benzoyl group, a phenoxy group, a biphenyl group, or a naphthalenyl group. Can be. The first surface modifier is trimethoxyphenylsilane, N- [3- (trimethoxysilyl) propyl] aniline, allylphenyldichlorosilane, aminophenyltrimethoxysilane, t-butylphenyldichlorosilane, p- (t -Butyl) phenethyltrichlorosilane, 3,5-dimethoxyphenyltriethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, diphenylmethylethoxysilane, 3- (p-methoxyphenyl) propyl Trichlorosilane, p-methoxyphenyltrimethoxysilane, phenethylmethyldichlorosilane, phenethyltrimethoxysilane, 3-phenoxypropyldimethylchlorosilane, 3-phenoxypropylmethyldichlorosilane, 3-phenoxypropyltrichloro Rosilane, phenyldimethylchlorosilane, phenyldimethylethoxysilane, phenylethyldichlorosilane, phenylmethyldichlorosilane, 1-phenyl-1- (methyldichlorosilyl) butane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, ( 3-phenylpropyl) trichlorosilane, phenyltrichlorosilane, Phenyltriethoxysilane, phenyltrimethoxysilane, triphenylchlorosilane, triphenylethoxysilane, (triphenylmethyl) methyldichlorosilane, and combinations thereof. The first surface modifier may be N- [3- (trimethoxysilyl) propyl] aniline having an anilinyl group at its terminal.
상기 제2 표면 개질제의 아민기는 1차 아민기, 2차 아민기, 3차 아민기, 또는 디아민기일 수 있다. 상기 제2 표면 개질제는 3-[2-(2-아미노에틸아미노)에틸아미노]프로필트리메톡시실란, N-[3-(트리메톡시실릴)프로필]에틸렌디아민, (3-아미노프로필)트리메톡시실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다. 상기 제2 표면 개질제은 말단에 디아민기를 구비하는 N-[3-(트리메톡시실릴)프로필]에틸렌디아민일 수 있다.The amine group of the second surface modifier may be a primary amine group, a secondary amine group, a tertiary amine group, or a diamine group. The second surface modifier is 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] ethylenediamine, (3-aminopropyl) tri Methoxysilane, and combinations thereof. The second surface modifier may be N- [3- (trimethoxysilyl) propyl] ethylenediamine having a diamine group at its terminal.
상기 제2 표면 개질제의 에폭시는 에폭사이드기, 글리시딜기, 또는 글리시딜옥시기일 수 있다. 상기 제2 표면 개질제는 3-에폭시프로필트리메톡시실란, 3-에폭시프로필트리에톡시실란, 4-에폭시부틸트리메톡시실란, 4-에폭시부틸트리에톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다. 상기 제2 표면 개질제는 말단에 글리시딜옥시기를 구비하는 3-글리시딜옥시프로필트리메톡시실란일 수 있다.The epoxy of the second surface modifier may be an epoxide group, glycidyl group, or glycidyloxy group. The second surface modifier is 3-epoxypropyltrimethoxysilane, 3-epoxypropyltriethoxysilane, 4-epoxybutyltrimethoxysilane, 4-epoxybutyltriethoxysilane, 3-glycidyloxypropyltri Methoxysilane, and combinations thereof. The second surface modifier may be 3-glycidyloxypropyltrimethoxysilane having a glycidyloxy group at the terminal.
상기 질화붕소 입자의 표면에 말단에 알킬기를 함유하는 제3 표면 개질제가 더 결합될 수 있다.A third surface modifier containing an alkyl group at the terminal may be further bonded to the surface of the boron nitride particles.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 코팅용 조성물을 제공한다. 상기 코팅용 조성물은 고분자 혹은 고분자 전구체(polymer precursor) 100 중량부, 앞서 설명한 바와 같은 다중 표면 개질된 질화붕소 1 내지 80 중량부, 및 잔부의 용매를 포함한다. 상기 고분자 전구체는 에폭시수지, 페놀수지, 폴리에스테르, 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다.Another aspect of the present invention to achieve the above object provides a coating composition. The coating composition includes 100 parts by weight of the polymer or polymer precursor, 1 to 80 parts by weight of the multi-surface modified boron nitride as described above, and the balance of the solvent. The polymer precursor is epoxy resin, phenol resin, polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyether It may be selected from the group consisting of mid, polyamide, polyamideimide, polyimide, polyurethane, polyvinyl formal, and combinations thereof.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은 와이어을 제공한다. 이는 전도성 와이어, 및 상기 전도성 와이어 상에 형성된 열전도성막을 구비한다. 상기 열전도성막은 고분자 매트릭스 및 상기 고분자 매트릭스 내에 분산된 앞서 설명한 바와 같은 다중 표면 개질된 질화붕소를 함유한다. Another aspect of the present invention to achieve the above object provides a wire. It comprises a conductive wire and a thermally conductive film formed on the conductive wire. The thermally conductive film contains a polymer matrix and a multi-surface modified boron nitride as described above dispersed in the polymer matrix.
상기 고분자 매트릭스는 폴리에스테르, 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 에폭시 수지, 페놀 수지 및 이들의 조합들로 이루어지는 군으로부터 선택될 수 있다.The polymer matrix is polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyetherimide, polyamide, poly Amideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenol resin, and combinations thereof.
상기 전도성 와이어와 상기 열전도성막 사이에, 유기 절연 고분자 매트릭스, 및 상기 유기 절연 고분자 매트릭스 내에 분산된 무기 나노필러를 포함하는 내부분방전성층이 배치될 수 있다. 상기 무기 나노필러는 실리카, 티타니아, 알루미나, 지르코니아, 이트리아, 산화크롬, 산화 아연, 산화철, 클레이, 및 이들의 조합들로 이루어지는 군으로부터 선택될 수 있다.Between the conductive wire and the thermally conductive film, an internal insulating discharge layer including an organic insulating polymer matrix and an inorganic nanofiller dispersed in the organic insulating polymer matrix may be disposed. The inorganic nanofiller may be selected from the group consisting of silica, titania, alumina, zirconia, yttria, chromium oxide, zinc oxide, iron oxide, clay, and combinations thereof.
상기 질화붕소 입자는 판상형의 입자이고, 상기 질화붕소 입자의 판상면은 상기 전도성 와이어를 바라볼 수 있다. 상기 질화붕소 입자의 판상면과 상기 전도성 와이어의 표면은 평행할 수 있다. 상기 질화붕소 입자의 판상면이 상기 전도성 와이어의 표면과 이루는 각은 상기 질화붕소 입자의 판상면이 상기 전도성 와이어의 표면에 수직한 수선과 이루는 각에 비해 작을 수 있다.The boron nitride particles are plate-shaped particles, and the plate-like surface of the boron nitride particles may face the conductive wire. The plate-like surface of the boron nitride particles and the surface of the conductive wire may be parallel. An angle between the plate surface of the boron nitride particles and the surface of the conductive wire may be smaller than an angle between the plate surface of the boron nitride particles and the waterline perpendicular to the surface of the conductive wire.
본 발명의 실시예들에 따르면, 방향족기를 말단에 구비하는 표면 개질제와 아민기 또는 에폭시기를 말단에 구비하는 표면 개질제를 사용하여 질화붕소의 표면을 개질함으로써, 질화붕소의 표면 상에 표면 개질제가 차지하는 표면 점유율을 크게 향상시켜, 고분자 용액 또는 고분자 매트릭스에 대해 분산성을 크게 향상시킬 수 있다. 이와 더불어서, 방향족기와 아민기 또는 에폭시기는 고분자 용액 내에서 고분자와 용매에, 고분자 매트릭스 내에서는 고분자에 강한 상호작용을 나타낼 수 있어 분산성이 유지될 수 있다.According to embodiments of the present invention, the surface modifier occupies the surface of the boron nitride by modifying the surface of the boron nitride by using a surface modifier having an aromatic group at the terminal and a surface modifier having an amine group or an epoxy group at the terminal. By greatly improving the surface occupancy, dispersibility can be greatly improved in the polymer solution or the polymer matrix. In addition, the aromatic group and the amine group or the epoxy group may exhibit strong interaction with the polymer and the solvent in the polymer solution and the polymer in the polymer matrix, and thus dispersibility may be maintained.
도 1은 본 발명의 일 실시예에 따른 표면 개질된 질화 붕소를 나타낸 개략도이다.1 is a schematic view showing a surface-modified boron nitride according to one embodiment of the present invention.
도 2a는 본 발명의 일 실시예에 따른 와이어의 단면을 나타낸 개략도이고, 도 2b는 도 2a의 B 부분을 확대하여 나타낸 단면도이다.2A is a schematic view showing a cross section of a wire according to an embodiment of the present invention, and FIG. 2B is an enlarged cross-sectional view of part B of FIG. 2A.
도 3a는 실험예 1에 따른 질화붕소(20 wt%)-PAI 복합체의 파단면을 주사전자현미경으로 관찰한 사진이고, 도 3b는 비교예 2에 따른 질화붕소(20 wt%)-PAI 복합체의 파단면을 주사현미경으로 관찰한 사진이다.Figure 3a is a photograph of the fracture surface of the boron nitride (20 wt%)-PAI complex according to Experimental Example 1, Figure 3b is a boron nitride (20 wt%)-PAI complex of Comparative Example 2 A photograph of the fracture surface observed with a scanning microscope.
도 4a는 실험예 2에 따른 질화붕소-에폭시 복합체의 파단면을 주사전자현미경으로 관찰한 사진이고, 도 4b는 비교예 7에 다른 질화붕소-에폭시 복합체의 파단면을 주사현미경으로 관찰한 사진이다.Figure 4a is a photograph of the fracture surface of the boron nitride-epoxy composite according to Experimental Example 2 with a scanning electron microscope, Figure 4b is a photograph of a fracture surface of the boron nitride-epoxy composite according to Comparative Example 7 with a scanning microscope .
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to describe the present invention in more detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like numbers refer to like elements throughout.
본 명세서에서, 어떤 층이 다른 층 상에 위치한다고 함은 이들 층들이 직접적으로 접해있는 것 뿐 아니라 이들 층들 사이에 또 다른 층(들)이 위치하는 것을 의미할 수 있다. In this specification, the fact that a layer is located on another layer may mean that not only are these layers directly in contact, but also another layer (s) between these layers.
제1 실시예 : 다중 실란으로 표면 개질된 질화붕소Example 1 Boron Nitride Surface-Modified with Multiple Silanes
도 1은 본 발명의 일 실시예에 따른 표면 개질된 질화 붕소를 나타낸 개략도이다.1 is a schematic view showing a surface-modified boron nitride according to one embodiment of the present invention.
도 1을 참조하면, 질화 붕소 입자(BN)는 비정질 질화붕소, 결정질 질화붕소 또는 이들의 복합체일 수 있다. 일 예로서, 질화 붕소(BN)는 흑연과 유사한 결정구조를 갖는 육방정계 질화붕소(hexagonal BN)일 수 있다. 다시 말해서, 질화 붕소(BN)는 육각형의 메쉬 층들이 다중층으로 적층된 구조를 갖거나 단일층으로 이루어질 수 있고, 판상형의 입자일 수 있다. 이러한 판상형의 질화 붕소(BN)는 약 0.1 내지 약 20㎛, 구체적으로 0.3 내지 약 5㎛, 더 구체적으로는 0.3 내지 약 1㎛의 입자 직경을 가질 수 있고, 또한 약 1nm 내지 약 3㎛, 또는 약 10nm 내지 약 500nm, 또는 약 10nm 내지 약 200nm, 또는 약 10nm 내지 약 100nm, 또는 약 10nm 내지 약 30nm의 입자 두께를 가질 수 있다. 상기 입자 직경 또는 상기 입자 두께는 여러 입자들의 평균값일 수 있다. 또한, 이러한 판상형의 질화 붕소(BN)은 두께에 대한 입자 직경의 비 즉, 종횡비(aspect ratio)는 1 : 10 내지 1 : 100, 구체적으로는 1 : 30 내지 1 : 70일 수 있다. 이와 같이 두께에 대한 입자 직경이 큰 질화 붕소(BN)를 후술하는 와이어의 코팅층으로 사용하는 경우 보다 효과적으로 열전도성을 증가시킬 수 있다.Referring to FIG. 1, the boron nitride particles BN may be amorphous boron nitride, crystalline boron nitride, or a complex thereof. As an example, boron nitride (BN) may be hexagonal boron nitride (hexagonal BN) having a crystal structure similar to graphite. In other words, boron nitride (BN) may have a structure in which hexagonal mesh layers are stacked in multiple layers, or may be made of a single layer, and may be plate-shaped particles. Such plate-like boron nitride (BN) may have a particle diameter of about 0.1 to about 20 μm, specifically 0.3 to about 5 μm, more specifically 0.3 to about 1 μm, and also about 1 nm to about 3 μm, or It may have a particle thickness of about 10 nm to about 500 nm, or about 10 nm to about 200 nm, or about 10 nm to about 100 nm, or about 10 nm to about 30 nm. The particle diameter or the particle thickness may be an average value of several particles. In addition, the plate-like boron nitride (BN) may have a ratio of particle diameter to thickness, that is, an aspect ratio of 1: 10 to 1: 100, specifically 1: 30 to 1: 70. Thus, when using boron nitride (BN) having a large particle diameter with respect to the thickness as a coating layer of the wire to be described later can be more effectively increased thermal conductivity.
또한, 이러한 판상형의 질화 붕소(BN)는 메쉬층의 표면에 해당하는 상하부 면들 즉, 판상면에 비해 측면에서 표면 에너지(surface energy)가 크고 그에 따라 안정성이 낮을 수 있다. 다시 말해서, 이러한 판상형의 질화 붕소(BN)는 상하부 면들에 비해 측면에 더 많은 반응 사이트들 즉, 하이드록실기들(hydroxyl groups)을 가질 수 있다.In addition, the plate-like boron nitride (BN) has a large surface energy (surface energy) in the side compared to the upper and lower surfaces, that is, the plate-like surface corresponding to the surface of the mesh layer may be low in stability. In other words, such plate-like boron nitride (BN) may have more reaction sites on the side, that is, hydroxyl groups, than the upper and lower sides.
한편, 제1 및 제2 표면 개질제들(S1, S2)이 제공될 수 있다. 이에 더하여, 제3 표면 개질제(S3)가 추가적으로 제공될 수 있다. 상기 표면 개질제들(S1, S2, S3)은 상기 질화 붕소에 결합하는 헤드 그룹(head group), 말단 기능기(terminal functional group), 및 헤드 그룹과 말단 기능기를 연결하는 테일부(tail part)를 가질 수 있다. 상기 테일부는 C1 내지 C10 (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10), 구체적으로는 C1 내지 C6, 더 구체적으로는 C1 내지 C4의 알킬기일 수 있다. 일 실시예에서, 상기 알킬기 중 하나 이상의 -CH2-는 -NH-로 치환될 수도 있다. 그러나, 이에 한정되지 않고 상기 테일부는, 특히 말단 기능기가 알킬기일 경우에는, 생략될 수도 있다.Meanwhile, first and second surface modifiers S 1 and S 2 may be provided. In addition, a third surface modifier S 3 may additionally be provided. The surface modifiers S 1 , S 2 , and S 3 may include a head group, a terminal functional group, and a tail portion connecting the head group and the terminal functional group to the boron nitride. part). The tail portion may be an alkyl group of C1 to C10 (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10), specifically C1 to C6, more specifically C1 to C4. In one embodiment, one or more -CH 2 -of the alkyl group may be substituted with -NH-. However, the present invention is not limited thereto, and the tail portion may be omitted, particularly when the terminal functional group is an alkyl group.
상기 표면 개질제들(S1, S2, S3)은 각각이 헤드 그룹으로서 실란기, 구체적으로, 1, 2 또는 3개의 치환기로 치환된 실란기를 구비하는 실란일 수 있다. 상기 실란기의 치환기(들)는 하이드록시기(hydroxyl group), 알콕시기(alkoxy group), 할로기(halo group), 또는 이들의 조합일 수 있다. 더 구체적으로, 상기 표면 개질제들(S1, S2, S3)은 각각이 헤드 그룹으로서 트리알콕시 실란기, 디알콕시 실란기, 알콕시 실란기, 디알콕시할로 실란기, 알콕시디할로 실란기, 트리할로 실란기, 디할로실란기, 할로실란기를 구비할 수 있다. 여기서, 알콕시기는 메톡시기 또는 에톡시기일 수 있고, 할로기는 클로로기일 수 있다. 이러한 실란기는 상기 판상형의 질화 붕소(BN)의 상하부면 보다는 측면들에서 반응 사이트들 예를 들어, 하이드록실기들(hydroxyl groups)와 반응하여 질화 붕소(BN)와 결합 예를 들어, 실록산 결합에 의해 결합될 수 있다.The surface modifiers S 1 , S 2 , S 3 may each be a silane having a silane group substituted with a silane group, specifically, 1, 2 or 3 substituents as a head group. The substituent (s) of the silane group may be a hydroxyl group, an alkoxy group, a halo group, or a combination thereof. More specifically, the surface modifiers (S 1 , S 2 , S 3 ) are each a headalkoxy silane group, dialkoxy silane group, alkoxy silane group, dialkoxyhalo silane group, alkoxydihalo silane as head group. A group, a trihalo silane group, a dihalosilane group, and a halosilane group can be provided. Here, the alkoxy group may be a methoxy group or an ethoxy group, and the halo group may be a chloro group. Such silane groups react with reaction sites, for example, hydroxyl groups, on the sides rather than on the upper and lower sides of the plate-like boron nitride (BN) to bond with boron nitride (BN), for example, to siloxane bonds. Can be combined.
상기 각 표면 개질제(S1, S2, S3)는 서로 다른 말단 기능기를 가질 수 있다. Each surface modifier (S 1 , S 2 , S 3 ) may have different terminal functional groups.
구체적으로, 제1 표면 개질제(S1)는 방향족기(R1)를 말단 기능기로서 구비할 수 있다. 상기 방향족기는 치환 또는 비치환될 수 있고, 페닐기(phenyl group), 아닐리닐기(anilinyl group), 벤조일기(benzoyl group), 페녹시기(phenoxy group), 바이페닐기(biphenyl group), 또는 나프탈렌기(naphthalenyl group)일 수 있다. 상기 방향족기에 대한 치환기는 C1, C2, C3 또는 C4 알킬기, C1, C2, 또는 C3 알콕시기, C2, 또는 C3 알릴기, 아민기, 하이드록실기, 또는 할로겐기일 수 있다. 일 예에서, 상기 제1 표면 개질제(S1)의 방향족기는 치환 또는 비치환된 아닐리닐기(anilinyl group)일 수 있고, 나아가 치환되지 않은 아닐리닐기(anilinyl group)일 수 있다.Specifically, the first surface modifier S 1 may include an aromatic group R 1 as a terminal functional group. The aromatic group may be substituted or unsubstituted, and may be a phenyl group, an anilinyl group, a benzoyl group, a phenoxy group, a biphenyl group, or a naphthalene group ( naphthalenyl group). Substituents for the aromatic groups may be C1, C2, C3 or C4 alkyl groups, C1, C2, or C3 alkoxy groups, C2, or C3 allyl groups, amine groups, hydroxyl groups, or halogen groups. In one example, the aromatic group of the first surface modifier (S 1 ) may be a substituted or unsubstituted ananilinyl group, and further may be an unsubstituted anilinyl group.
방향족기를 말단기능기로서 구비하는 제1 표면 개질제(S1)는 트리메톡시페닐실란 (trimethoxyphenylsilane), N-[3-(트리메톡시실릴)프로필]아닐린(N-[3-(trimethoxysilyl)propyl]aniline), 알릴페닐디클로로실란 (allylphenyldichlorosilane), 아미노페닐트리메톡시실란 (aminophenyltrimethoxysilane), t-부틸페닐디클로로실란 (t-butylphenyldichlorosilane), p-(t-부틸)페네틸트리클로로실란 (p-(t-butyl)phenethyltrichlorosilane), 3,5-디메톡시페닐트리에톡시실란 (3,5-dimethoxyphenyltriethoxysilane), 디페닐디에톡시실란 (diphenyldiethoxysilane), 디페닐디메톡시실란 (diphenyldimethoxysilane), 디페닐메틸에톡시실란 (diphenylmethylethoxysilane), 3-(p-메톡시페닐)프로필트리클로로실란 (3-(pmethoxyphenyl)propyltrichlorosilane), p-메톡시페닐트리메톡시실란 (p-methoxyphenyltrimethoxysilane), 페네틸메틸디클로로실란 (phenethylmethyldichlorosilane), 페네틸트리메톡시실란 (phenethyltrimethoxysilane), 3-페녹시프로필디메틸클로로실란 (3-phenoxypropyldimethylchlorosilane), 3-페녹시프로필메틸디클로로실란 (3-phenoxypropylmethyldichlorosilane), 3-페녹시프로필트리클로로실란 (3-phenoxypropyltrichlorosilane), 페닐디메틸클로로실란 (phenyldimethylchlorosilane), 페닐디메틸에톡시실란 (phenyldimethylethoxysilane), 페닐에틸디클로로실란 (phenylethyldichlorosilane), 페닐메틸디클로로실란 (phenylmethyldichlorosilane), 1-페닐-1-(메틸디클로로실릴)부탄 (1-phenyl-1-(methyldichlorosilyl)butane), 페닐메틸디메톡시실란 (phenylmethyldimethoxysilane), 페닐메틸디에톡시실란 (phenylmethyldiethoxysilane), (3-페닐프로필)트리클로로실란 ((3-phenylpropyl)trichlorosilane), 페닐트리클로로실란 (phenyltrichlorosilane), 페닐트리에톡시실란 (phenyltriethoxysilane), 페닐트리메톡시실란 (phenyltrimethoxysilane), 트리페닐클로로실란 (triphenylchlorosilane), 트리페닐에톡시실란 (triphenylethoxysilane), (트리페닐메틸)메틸디클로로실란 ((triphenylmethyl)methyldichlorosilane), 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다.The first surface modifier (S 1 ) having an aromatic group as a terminal functional group is trimethoxyphenylsilane, N- [3- (trimethoxysilyl) propyl] aniline (N- [3- (trimethoxysilyl) propyl aniline), allylphenyldichlorosilane, aminophenyltrimethoxysilane, t-butylphenyldichlorosilane, p- (t-butyl) phenethyltrichlorosilane (p- ( t-butyl) phenethyltrichlorosilane), 3,5-dimethoxyphenyltriethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, diphenylmethylethoxysilane (diphenylmethylethoxysilane), 3- (p-methoxyphenyl) propyltrichlorosilane, 3- (pmethoxyphenyl) propyltrichlorosilane, p-methoxyphenyltrimethoxysilane, phenethylmethyldichlorosilane, Phenethyl tree Methoxysilane (phenethyltrimethoxysilane), 3-phenoxypropyldimethylchlorosilane, 3-phenoxypropylmethyldichlorosilane, 3-phenoxypropyltrichlorosilane, 3-phenoxypropyltrichlorosilane, phenyl Dimethylchlorosilane, phenyldimethylethoxysilane, phenylethyldichlorosilane, phenylmethyldichlorosilane, 1-phenyl-1- (methyldichlorosilyl) butane (1-phenyl-1 -(methyldichlorosilyl) butane), phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, (3-phenylpropyl) trichlorosilane ((3-phenylpropyl) trichlorosilane), phenyltrichlorosilane , Phenyltriethoxysilane, phenyltrimethoxysilane, triphenylchloro Is (triphenylchlorosilane), may be selected from the triphenyl silane (triphenylethoxysilane), (triphenylmethyl) methyl dichlorosilane ((triphenylmethyl) methyldichlorosilane), and the group consisting of the combination of the two.
제2 표면 개질제(S2)는 아민기 또는 에폭시기(R2)를 말단 기능기로서 구비할 수 있다. 상기 아민기(R2)는 치환 또는 비치환될 수 있고, 1차 아민기, 2차 아민기, 3차 아민기, 또는 디아민기일 수 있으나 이에 한정되는 것은 아니다. 상기 디아민기는 에틸렌디아민, 프로판디아민, 또는 부탄디아민일 수 있다. 아민기(R2)를 갖는 제2 표면 개질제(S2)는 3-[2-(2-아미노에틸아미노)에틸아미노]프로필트리메톡시실란, N-[3-(트리메톡시실릴)프로필]에틸렌디아민, (3-아미노프로필)트리메톡시실란, 및 이들의 조합들로 이루어지는 군으로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.The second surface modifier (S 2 ) may have an amine group or an epoxy group (R 2 ) as the terminal functional group. The amine group (R 2 ) may be substituted or unsubstituted, but may be a primary amine group, a secondary amine group, a tertiary amine group, or a diamine group, but is not limited thereto. The diamine group may be ethylenediamine, propanediamine, or butanediamine. The second surface modifier (S 2 ) having an amine group (R 2 ) is 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl ] Ethylenediamine, (3-aminopropyl) trimethoxysilane, and combinations thereof, but is not limited thereto.
한편, 상기 에폭시기(R2)는 에폭사이드기, 글리시딜기, 또는 글리시딜옥시기일 수 있다. 이러한 에폭시기(R2)를 말단 기능기로서 구비하는 제1 표면 개질제(S2)는, 구체적으로, 3-에폭시프로필트리메톡시실란, 3-에폭시프로필트리에톡시실란, 4-에폭시부틸트리메톡시실란, 4-에폭시부틸트리에톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다.On the other hand, the epoxy group (R 2 ) may be an epoxide group, glycidyl group, or glycidyloxy group. A first surface modifying agent having an epoxy group such a (R 2) group as a terminal functional (S 2) is, in particular, 3-epoxy-trimethoxysilane, 3-in-epoxypropyl triethoxysilane, 4-epoxy-butyl trimethoxysilane Methoxysilane, 4-epoxybutyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, and combinations thereof.
제3 표면 개질제(S3)는 알킬기(R3)를 말단 기능기로서 구비할 수 있다. 앞서 설명한 바와 같이, 이 경우, 상기 테일부는 생략될 수도 있다. 상기 알킬기(R3)는 1 내지 C10 (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10), 구체적으로는 C1 내지 C6, 더 구체적으로는 C1 내지 C4의 알킬기일 수 있다. 구체적으로, 제3 표면 개질제(S3)는 에틸트리메톡시실란 (ethyltrimethoxysilane), 메톡시트리메틸실란 (methoxytrimethylsilane), 에톡시트리메틸실란 (ethoxytrimethylsilane), 트리에틸클로로실란(triethylchlorosilane), 트리메틸클로로실란 (trimethylchlorosilane), 헵틸트리메톡시실란(heptyltrimethoxysilane), 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것일 수 있다.The third surface modifier S 3 may have an alkyl group R 3 as a terminal functional group. As described above, in this case, the tail portion may be omitted. The alkyl group (R 3 ) may be an alkyl group of 1 to C10 (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10), specifically C1 to C6, more specifically C1 to C4 have. Specifically, the third surface modifier (S 3 ) is ethyltrimethoxysilane, methoxytrimethylsilane, ethoxytrimethylsilane, triethylchlorosilane, trimethylchlorosilane ), Heptyltrimethoxysilane, and combinations thereof.
상기 표면개질된 구체적으로 실란 표면개질된 질화붕소(35)는 제1 내지 제3 표면 개질제들(S1, S2, S3) 즉, 제 1 실란, 제 2 실란, 및 제 3 실란 이외의 추가적인 표면 개질제들 예를 들어, 실란들이 상기 질화붕소(BN)의 표면에 화학적으로 결합된 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 표면개질된 질화붕소(35)는 분말상, 젤상, 또는 액상일 수 있으나, 이에 제한되는 것은 아니다.The surface-modified specifically silane surface-modified boron nitride 35 may include the first to third surface modifiers S 1 , S 2 , and S 3 , that is, the first silane, the second silane, and the third silane. Additional surface modifiers For example, silanes may be chemically bonded to the surface of the boron nitride (BN), but is not limited thereto. The surface-modified boron nitride 35 may be powder, gel, or liquid, but is not limited thereto.
상기 표면개질된 질화붕소(35)에서 방향족기(R1)를 말단 기능기로서 구비하는 적어도 한 쌍의 제1 표면 개질제들(S1) 사이에 아민기 또는 에폭시기(R2)를 말단 기능기로서 구비하는 적어도 하나의 제2 표면 개질제(S2)가 배치될 수 있다. 이에 더하여, 상기 제1 표면 개질제(S1)와 상기 제2 표면 개질제(S2) 사이에 알킬기(R3)를 말단 기능기로서 구비하는 제3 표면 개질제(S3)가 배치될 수 있다. 상기 말단 기능기들은 방향족기, 아민기 또는 에폭시기, 그리고 알킬기의 순으로 그 크기가 작아진다. 이와 같이, 크기가 상대적으로 큰 말단 기능기들을 구비하는 표면 개질제들 사이에 크기가 상대적으로 작은 말단 기능기를 구비하는 표면 개질제가 배치될 수 있다.The surface of an aromatic group (R 1) in the modified boron nitride (35) at least a first surface modifier of the pair comprising a group-terminal function (S 1) an amine group or between the epoxy group (R 2) to the terminal functional group At least one second surface modifier (S 2 ) provided as may be disposed. In addition, the first surface-modifying agent (S 1) and the second surface modifier third surface modifying agent (S 3) having an alkyl group (R 3) between (S 2) as the group terminal function may be disposed. The terminal functional groups are smaller in order of aromatic group, amine group or epoxy group, and alkyl group. As such, surface modifiers having relatively small terminal functional groups may be disposed between surface modifiers having relatively large terminal functional groups.
질화 붕소를 다중 표면 개질제를 사용하여 표면 개질하는 방법은 다음과 같을 수 있다.The method of surface modifying boron nitride using a multiple surface modifier may be as follows.
먼저, 질화붕소 분말을 용매 내에 넣고 혼합하여 혼합액을 형성할 수 있다. 상기 혼합액에 초음파를 가할 수 있다. 이 경우, 상기 질화붕소(BN)는 더 얇은 두께를 갖도록 박리 즉, 층상분리될 수 있으며, 또한 질화붕소(BN)의 표면 특히 측면에 더 많은 반응 사이트(ex. -OH) 들을 생성시킬 수 있다.First, the boron nitride powder may be mixed in a solvent to form a mixed solution. Ultrasonic waves may be added to the mixed solution. In this case, the boron nitride (BN) can be peeled off, i.e., layered, to have a thinner thickness, and can also generate more reaction sites (ex. -OH) on the surface, especially the side, of the boron nitride (BN). .
이 후, 상기 혼합액 내에 방향족기(R1)를 함유하는 제1 실란(S1)을 첨가한 후, 여기에 초음파를 가할 수 있다. 이 과정에서, 상기 질화붕소(BN)는 더욱 박리될 수 있고 또한 더 많은 반응 사이트를 가질 수 있음과 동시에, 상기 제1 실란(S1)과 실록산 결합에 의해 결합될 수 있다. 그 결과, 상기 제1 실란(S1)에 의해 표면 개질된 질화붕소(BN)를 얻을 수 있다. Thereafter, after the first silane (S 1 ) containing the aromatic group (R 1 ) is added to the mixed solution, ultrasonic waves may be added thereto. In this process, the boron nitride (BN) may be further exfoliated and may have more reaction sites, and at the same time, may be bonded to the first silane (S 1 ) by a siloxane bond. As a result, boron nitride (BN) surface-modified by the first silane (S 1 ) can be obtained.
상기 제1 실란(S1)에 의해 표면 개질된 질화붕소(BN)가 분산된 분산액 내에 아민기 또는 에폭시기(R2)를 함유하는 제2 실란(S2)을 첨가하고 초음파를 가할 수 있다. 이 과정에서도 마찬가지로, 상기 질화붕소(BN)는 더욱 박리될 수 있고 또한 더 많은 반응 사이트를 가질 수 있음과 동시에, 상기 제2 실란(S2)과 실록산 결합에 의해 결합될 수 있다. 그 결과, 상기 제1 실란(S1) 및 제2 실란(S2)에 의해 표면 개질된 질화붕소(35)를 얻을 수 있다.In the dispersion in which the boron nitride (BN) surface-modified by the first silane (S 1 ) is dispersed, a second silane (S 2 ) containing an amine group or an epoxy group (R 2 ) may be added and ultrasonic waves may be added. In this process as well, the boron nitride (BN) may be further peeled off and may have more reaction sites, and may be bonded to the second silane (S 2 ) by siloxane bonds. As a result, the boron nitride 35 surface-modified by the first silane S 1 and the second silane S 2 may be obtained.
여기에 다시 제3 실란(S3)을 넣고 같은 과정을 거치면 제1 내지 제3 실란(S1, S2, S3)들에 의해 표면 개질된 질화붕소(35)를 얻을 수 있다.When the third silane (S 3 ) is added to the same process again, the boron nitride 35 surface-modified by the first to third silanes (S 1 , S 2 , S 3 ) can be obtained.
이 후, 상기 용매 내에 분산된 표면 개질된 질화붕소(35)를 여과 및 세척하여 미반응 실란을 제거할 수 있다. 또한, 세척된 고형물을 건조하여 다중 실란에 의해 표면 개질된 질화붕소 분말을 얻을 수 있다. 그러나, 이에 한정되지 않고 실란 표면 개질된 질화붕소(35)는 용매 상에 분산된 졸상, 젤상, 또는 액상으로 얻을 수도 있다.Thereafter, the surface-modified boron nitride 35 dispersed in the solvent may be filtered and washed to remove the unreacted silane. In addition, the washed solid may be dried to obtain a boron nitride powder surface modified by multiple silanes. However, the present invention is not limited thereto, and the silane surface-modified boron nitride 35 may be obtained in a sol form, a gel form, or a liquid phase dispersed in a solvent phase.
한편, 제1 실란(S1)의 말단 기능기 즉, 방향족기(R1)는 제2 실란(S2)의 말단 기능기 즉, 아민기 또는 에폭시기(R2)에 비해 크다. 따라서, 질화붕소의 표면 상에 제1 실란(S1)은 다소 듬성듬성 결합될 수 있다. 이 후, 제1 실란들(S1)에 비해 작은 말단 기능기를 갖는 제2 실란(S2)은, 제1 실란들(S1) 사이의 잔존 반응 사이트에 용이하게 접근 및 결합될 수 있다. 이와 마찬가지로, 제3 실란(S3)의 말단 기능기 즉, 알킬기(R3)는 제1 실란(S1)과 제2 실란(S2)의 그것들(R1, R2)에 비해 더 작다. 따라서, 제3 실란(S3)은, 제1 실란들(S1)과 제2 실란(S2) 사이의 잔존 반응 사이트에 용이하게 접근 및 결합될 수 있다. 이와 같이, 서로 크기가 다른 말단 기능기들을 갖는 서로 다른 종류의 실란들을 사용하되, 크기가 큰 말단 기능기를 갖는 실란을 먼저 질화붕소와 반응시킨 후 또는 그와 동시에 그에 비해 크기가 작은 말단 기능기를 갖는 실란을 질화붕소와 반응시켜, 질화붕소를 표면 개질함에 따라, 상기 표면 개질된 질화붕소(35)에서 방향족기(R1)를 말단 기능기로서 구비하는 적어도 한 쌍의 제1 실란들(S1) 사이에 아민기 또는 에폭시기(R2)를 말단 기능기로서 구비하는 적어도 하나의 제2 실란(S2)이 배치될 수 있다. 이에 더하여, 상기 제1 실란(S1)과 상기 제2 실란(S2) 사이에 알킬기(R3)를 말단 기능기로서 구비하는 제3 실란(S3)이 배치될 수 있다. 이 경우, 질화붕소의 표면 상에 실란이 차지하는 표면 점유율(surface coverage)이 크게 향상될 수 있다. 이와 같이, 실란에 의한 표면 점유율이 향상된 질화붕소는 후술하는 고분자 용액 또는 고분자 매트릭스에 대해 크게 향상된 분산성을 나타낼 수 있다.On the other hand, the terminal functional group of the first silane (S 1 ), that is, the aromatic group (R 1 ) is larger than the terminal functional group of the second silane (S 2 ), that is, the amine group or the epoxy group (R 2 ). Thus, the first silane (S 1 ) on the surface of the boron nitride may be somewhat sparsely coupled. Then, the first silane to the second silane (S 2) having a small terminal features compared to (S 1), the first can be easily accessed and coupled to remaining reactive sites between the silane of (S 1). Likewise, the terminal functional group of the third silane (S 3 ), that is, the alkyl group (R 3 ) is smaller than those of the first silane (S 1 ) and the second silane (S 2 ) (R 1 , R 2 ). . Thus, the third silane S 3 can be easily accessed and coupled to the remaining reaction site between the first silanes S 1 and the second silane S 2 . As such, different types of silanes having different sized terminal functional groups are used, but silanes having larger sized functional groups are first reacted with boron nitride or at the same time having smaller sized functional groups. to the silane reacted with the boron nitride as a boron nitride-modified surface, at least a pair of a first silane having an aromatic group (R 1) as the group terminal function in the surface-modified boron nitride (35) (s 1 At least one second silane (S 2 ) having an amine group or an epoxy group (R 2 ) as a terminal functional group may be disposed between the). In addition, a third silane (S 3 ) having an alkyl group (R 3 ) as a terminal functional group may be disposed between the first silane (S 1 ) and the second silane (S 2 ). in this case, The surface coverage occupied by silane on the surface of boron nitride can be greatly improved. As such, boron nitride having an improved surface occupancy by silane may exhibit greatly improved dispersibility with respect to a polymer solution or a polymer matrix described later.
상기 용매는 극성 용매일 수 있는데, 예를 들어, 톨루엔, 자일렌, 에탄올, 메탄올, 크레졸, 물, 아세톤, 사이클로헥산, 페놀, N-메틸피롤리돈 (N-methylpyrolidone, NMP), 글리콜에테르, N,N-디메틸포름아마이드 (N,N-Dimethylformamide, DMF), 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The solvent may be a polar solvent, for example, toluene, xylene, ethanol, methanol, cresol, water, acetone, cyclohexane, phenol, N-methylpyrolidone (NMP), glycol ether, N, N-dimethylformamide (N, N-Dimethylformamide, DMF), and combinations thereof may be included, but is not limited thereto.
상기 초음파를 조사하는 과정, 즉, 초음파 처리는, 종래 기술의 열과 용매만을 사용하여 수행되었던 표면 처리 과정에 비해 소요 시간 단축의 이점을 보유하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 고분자 용액 또는 고분자 매트릭스에 대해 만족할만한 분산성을 나타내는 표면점유율(surface coverage)을 확보하기 위하여 소요되는 표면 처리시간이 상기 초음파 처리를 통해 단축될 수 있다. 예를 들어, 종래 열을 통한 처리의 경우 9일 정도 걸렸다면, 배스(bath) 초음파의 경우 상기 표면 처리에 소요되는 시간이 약 3 일 정도일 수 있고, 혼(horn) 초음파의 경우 상기 표면 처리에 소요되는 시간이 약 3.5 시간 정도로 획기적으로 단축될 수 있다.The process of irradiating the ultrasonic wave, that is, the ultrasonic wave treatment, may have an advantage of shortening the time required compared to the surface treatment process performed using only the heat and the solvent of the prior art, but is not limited thereto. For example, the surface treatment time required to secure surface coverage showing satisfactory dispersibility with respect to the polymer solution or the polymer matrix can be shortened through the sonication. For example, if the conventional heat treatment takes about 9 days, the bath ultrasonic treatment may take about 3 days, and in the case of horn ultrasonic treatment, the surface treatment may be performed. The time required can be dramatically shortened to about 3.5 hours.
제2 실시예 : 다중 실란으로 표면 개질된 질화붕소가 분산된 코팅용 조성물Second Embodiment A coating composition in which boron nitride is surface-modified with multiple silanes
본 발명의 다른 실시예에 따른 다중 실란으로 표면 개질된 질화붕소가 분산된 코팅용 조성물은, 고분자 또는 고분자 전구체(polymer precursor) 100 중량부, 표면 개질된 질화붕소 1 내지 200 중량부, 및 잔부의 용매를 포함할 수 있다. 상기 질화붕소는 제1 실시예에 설명한 바와 같이 제1 및 제2 실란, 추가적으로 제3 실란으로 표면 개질될 수 있으며, 일 예로서, 1 내지 80 중량부, 10 내지 70 중량부, 10 내지 50 중량부, 20 내지 30 중량부, 20 내지 60 중량부, 또는 30 내지 50 중량부로 함유될 수 있다.According to another embodiment of the present invention, the coating composition in which the surface-modified boron nitride is dispersed in multiple silanes may include 100 parts by weight of a polymer or polymer precursor, 1 to 200 parts by weight of surface-modified boron nitride, and the balance of It may include a solvent. The boron nitride may be surface-modified with the first and second silanes, additionally with the third silane, as described in the first embodiment. For example, 1 to 80 parts by weight, 10 to 70 parts by weight, and 10 to 50 parts by weight. 20 to 30 parts by weight, 20 to 60 parts by weight, or 30 to 50 parts by weight.
상기 고분자 전구체는 고분자화될 수 있는 물질로서 모노머, 모노머가 수 내지 수십개 결합된 올리고머 또는 프리폴리머일 수 있다. 일 예로서, 상기 고분자 전구체는 프리폴리머일 수 있는데, 상기 프리폴리머는 폴리에스테르(ex. 폴리에틸렌테레프탈레이드), 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 에폭시 수지, 페놀 수지, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 고분자 전구체는 그의 주쇄 내에 방향족기, 에폭시기, 또는 이들의 조합을 포함할 수 있다.The polymer precursor may be a polymerizable material and may be a monomer, an oligomer having a few to several tens of monomers, or a prepolymer. As an example, the polymer precursor may be a prepolymer, wherein the prepolymer is polyester (ex. Polyethylene terephthalate), polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocy Anuate triacrylate) -polyesterimide, polyetherimide, polyamide, polyamideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenolic resin, and combinations thereof It may include, but is not limited thereto. The polymer precursor may include an aromatic group, an epoxy group, or a combination thereof in the main chain thereof.
일 예에서, 상기 프리폴리머는 하기 화학식 1로 나타낸 폴리에스테르이미드일 수 있다.In one example, the prepolymer may be a polyesterimide represented by the following formula (1).
[화학식 1] [Formula 1]
Figure PCTKR2015009910-appb-I000001
Figure PCTKR2015009910-appb-I000001
상기 화학식 1에서, n은 2 내지 99, m은 1 내지 4의 정수이다.In Formula 1, n is 2 to 99, m is an integer of 1 to 4.
일 예에서, 상기 프리폴리머는 하기 화학식 2로 나타낸 폴리아미드이미드일 수 있다.In one example, the prepolymer may be a polyamideimide represented by the following formula (2).
[화학식 2] [Formula 2]
Figure PCTKR2015009910-appb-I000002
Figure PCTKR2015009910-appb-I000002
상기 화학식 2에서, n은 2 내지 99의 정수이다.In Formula 2, n is an integer of 2 to 99.
상기 용매는, 톨루엔, 자일렌, 에탄올, 메탄올, 크레졸, 물, 아세톤, 사이클로헥산, 페놀, N-메틸피롤리돈, 글리콜에테르, N,N-디메틸포름아마이드, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 용매는 상기 조성물을 희석하기 위해 사용되는 희석제를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.The solvent is a group consisting of toluene, xylene, ethanol, methanol, cresol, water, acetone, cyclohexane, phenol, N-methylpyrrolidone, glycol ether, N, N-dimethylformamide, and combinations thereof. It may include, but is not limited to selected from. For example, the solvent may further include, but is not limited to, a diluent used to dilute the composition.
상기 고분자 전구체와 상기 용매의 혼합물은 '바니시'일 수도 있다. '바니시'는 코팅막을 형성하는 도료를 의미한다. The mixture of the polymer precursor and the solvent may be a varnish. 'Varnish' means a paint forming a coating film.
이러한 조성물의 제조방법은 일 예로서, 상기 고분자 전구체와 상기 용매의 혼합물에 상기 표면 개질된 질화붕소를 첨가하고, 여기에 추가적으로 초음파를 조사함에 의해서 형성될 수 있다.For example, the method of preparing the composition may be formed by adding the surface-modified boron nitride to the mixture of the polymer precursor and the solvent, and additionally irradiating ultrasonic waves.
이러한 조성물 내에서, 제1 및 제2 실란, 추가적으로 제3 실란으로 표면 개질된 질화붕소는 실란 개질기들의 높은 표면 점유율로 인해 상기 조성물 내에서 높은 분산성을 나타낼 수 있다. 또한, 제1 실란의 말단 작용기인 방향족기로 인해 상기 고분자 전구체 특히 방향족기를 구비하는 고분자 전구체와 강한 상호작용을 나타낼 수 있으며, 또한 제2 실란의 말단 작용기인 아민기로 인해 상기 용매 예를 들어, N-메틸피롤리돈과 같이 아민기를 갖는 용매에 대해 또한 강한 상호작용을 나타낼 수 있다. 그 결과, 상기 조성물 내에서 상기 다중 실란으로 표면 개질된 질화붕소의 분산성은 더욱 향상될 수 있다.In such compositions, boron nitride surface modified with the first and second silanes, additionally with the third silane, may exhibit high dispersibility in the composition due to the high surface occupancy of the silane modifiers. In addition, the aromatic group, which is the terminal functional group of the first silane, may exhibit strong interaction with the polymer precursor, particularly the polymer precursor having the aromatic group, and also due to the amine group, which is the terminal functional group of the second silane, the solvent, for example, N- Strong interactions can also be shown for solvents with amine groups such as methylpyrrolidone. As a result, the dispersibility of the boron nitride surface-modified with the multiple silanes in the composition can be further improved.
다중 multiple 실란으로With silane 표면  surface 개질된Modified 질화붕소가Boron nitride 분산된 고분자 코팅층을 포함하는 에나멜 와이어 Enameled wire with dispersed polymer coating layer
도 2a는 본 발명의 일 실시예에 따른 와이어의 단면을 나타낸 개략도이고, 도 2b는 도 2a의 B 부분을 확대하여 나타낸 단면도이다. 이러한 와이어는 에나멜 와이어로도 불리워질 수 있다.2A is a schematic view showing a cross section of a wire according to an embodiment of the present invention, and FIG. 2B is an enlarged cross-sectional view of part B of FIG. 2A. Such wires may also be called enameled wires.
도 2a 및 도 2b를 참조하면, 전도성 와이어(10)가 제공된다. 전도성 와이어(10)는, 예를 들어, 구리, 알루미늄, 니켈, 금, 은, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 전도성 와이어(10)는 그의 단면이 원형, 각형(rectangular type), 또는 플랫형(flat type)일 수 있으나, 이에 제한되는 것은 아니다.2A and 2B, a conductive wire 10 is provided. The conductive wire 10 may be, for example, one selected from the group consisting of copper, aluminum, nickel, gold, silver, and combinations thereof, but is not limited thereto. The conductive wire 10 may have a circular cross section, a rectangular type, or a flat type, but is not limited thereto.
전도성 와이어(10) 상에 부분방전(partial discharge)에 대해 내성을 갖는 내부분방전성층(20)이 코팅될 수 있다. 내부분방전성층(20)은 유기 절연 고분자층이거나, 혹은 유기 절연고분자 매트릭스 및 그 내에 분산된 무기 나노필러(25)를 포함할 수 있다. An internally dischargeable layer 20 that is resistant to partial discharge may be coated on the conductive wire 10. The internally dischargeable layer 20 may be an organic insulating polymer layer or may include an organic insulating polymer matrix and an inorganic nanofiller 25 dispersed therein.
상기 유기 절연 고분자는, 폴리에스테르, 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The organic insulating polymer is polyester, polyester imide, polyester amide, polyester amide imide, (tri (2-hydroxy ethyl) isocyanuate triacrylate)-polyester imide, poly ether imide, polyamide , Polyamideimide, polyimide, polyurethane, polyvinyl formal, and combinations thereof may be included, but is not limited thereto.
상기 무기 나노필러(25)는 실리카, 티타니아, 알루미나, 지르코니아, 이트리아, 산화크롬, 산화 아연, 산화철, 클레이, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 실리카는 발연 실리카일 수 있으며, 용융 실리카, 침강실리카, 솔-젤 법에 의해 제조된 실리카, 또는 콜로이달 실리카일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 티타니아는 발연 티타니아일 수 있으며, 용융 티타니아, 침강 티타니아, 솔-젤 법에 의해 제조된 티타니아, 또는 콜로이달 티타니아일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알루미나는 발연 알루미나일 수 있으며, 용융 알루미나, 침강 알루미나, 솔-젤 법에 의해 제조된 알루미나, 또는 콜로이달 알루미나일 수 있으나, 이에 제한되는 것은 아니다.The inorganic nanofiller 25 may include one selected from the group consisting of silica, titania, alumina, zirconia, yttria, chromium oxide, zinc oxide, iron oxide, clay, and combinations thereof, but is not limited thereto. It is not. For example, the silica may be fumed silica, but may be fused silica, precipitated silica, silica prepared by a sol-gel method, or colloidal silica, but is not limited thereto. For example, the titania may be fumed titania, but may be molten titania, precipitated titania, titania produced by the sol-gel method, or colloidal titania, but is not limited thereto. For example, the alumina may be fumed alumina, fused alumina, precipitated alumina, alumina prepared by the sol-gel method, or colloidal alumina, but is not limited thereto.
상기 무기 나노필러(25) 또한 실란 개질제에 의해 표면 개질된 것일 수 있다. 구체적으로, 무기 나노필러(25)의 표면은 말단 기능기로서 방향족기를 함유하는 제1 실란과 말단 기능기로서 아민기를 함유하는 제2 실란과의 화학결합 구체적으로는 실록산 결합에 의해 표면 개질된 것일 수 있다. 방향족기를 함유하는 제1 실란과 아민기를 함유하는 제2 실란은 제 1 실시예에 기술된 것과 유사한 것들일 수 있다. The inorganic nanofiller 25 may also be surface modified by a silane modifier. Specifically, the surface of the inorganic nanofiller 25 is a surface-modified chemical bond between the first silane containing an aromatic group as the terminal functional group and the second silane containing an amine group as the terminal functional group. Can be. The first silane containing an aromatic group and the second silane containing an amine group may be similar to those described in the first embodiment.
상기 내부분방전성층(20)에서 실란으로 표면 개질된 무기 나노필러(25)의 함량은 약 0.1 중량% 내지 약 30 중량%, 약 0.1 중량% 내지 약 5 중량%, 약 0.1 중량% 내지 약 10 중량%, 약 0.1 중량% 내지 약 20 중량%, 약 0.1 중량% 내지 약 30 중량%, 약 5 중량% 내지 약 10 중량%, 약 5 중량% 내지 약 20 중량%, 약 5 중량% 내지 약 30 중량%, 약 10 중량% 내지 약 20 중량%, 약 10 중량% 내지 약 30 중량%, 또는 약 20 중량% 내지 약 30 중량%일 수 있으나, 이에 제한되는 것은 아니다.The content of the inorganic nanofiller 25 surface-modified with silane in the internal discharge layer 20 is about 0.1 wt% to about 30 wt%, about 0.1 wt% to about 5 wt%, about 0.1 wt% to about 10 Wt%, about 0.1 wt% to about 20 wt%, about 0.1 wt% to about 30 wt%, about 5 wt% to about 10 wt%, about 5 wt% to about 20 wt%, about 5 wt% to about 30 Weight percent, about 10 weight percent to about 20 weight percent, about 10 weight percent to about 30 weight percent, or about 20 weight percent to about 30 weight percent.
이러한 내부분방전성층(20)의 두께는 10㎛ 내지 45㎛일 수 있다. 그러나, 이에 한정되는 것은 아니고 당업계에서 통상적으로 적용되는 두께를 모두 적용할 수 있다.The thickness of the internal discharge layer 20 may be 10 μm to 45 μm. However, the present invention is not limited thereto, and all thicknesses commonly applied in the art may be applied.
내부분방전성층(20) 상에 열전도성층(30)이 배치될 수 있다. 그러나, 이에 한정되는 것은 아니고, 이 경우 내부분방전성층(20)은 생략될 수도 있다. 내부분방전성층(20) 상에 열전도성층(30)이 배치된 경우 상기 열전도성층(30)의 두께는 5 내지 10㎛일 수 있다. 그러나, 내부분방전성층(20)이 생략된 경우 상기 열전도성층(30)의 두께는 20 내지 50㎛일 수 있다.The thermal conductive layer 30 may be disposed on the internally discharged conductive layer 20. However, the present invention is not limited thereto, and in this case, the internal discharge layer 20 may be omitted. When the thermal conductive layer 30 is disposed on the internally conductive discharge layer 20, the thickness of the thermal conductive layer 30 may be 5 to 10 μm. However, when the internally discharged conductive layer 20 is omitted, the thickness of the thermally conductive layer 30 may be 20 to 50 μm.
열전도성층(30)은 제2 실시예에서 설명된 조성물 즉, 제1 실시예에 설명한 제1 및 제2 실란, 추가적으로 제3 실란으로 표면 개질된 질화붕소(35), 고분자 전구체(polymer precursor), 및 잔부의 용매를 포함하는 조성물을 상기 전도성 와이어(10) 상에 코팅한 후 건조 및 경화시켜 제조될 수 있다. 상기 코팅과정에서, 상기 전도성 와이어(10) 상에 상기 조성물을 도포한 후, 다이스(속이 빈 원통형의 공구, dies)를 사용함으로써 상기 전도성 와이어(10) 상에 상기 조성물이 균일하게 코팅될 수 있도록 할 수 있다.The thermal conductive layer 30 is composed of the composition described in the second embodiment, that is, the boron nitride 35 surface-modified with the first and second silanes described in the first embodiment, additionally with the third silane, the polymer precursor, And it can be prepared by coating a composition comprising the remainder of the solvent on the conductive wire 10, then drying and curing. In the coating process, after applying the composition on the conductive wire 10, the composition is uniformly coated on the conductive wire 10 by using a die (hollow cylindrical tool, dies). can do.
상기 열전도성층(30)은 상기 경화과정에서 상기 고분자 전구체가 경화된 고분자 매트릭스 및 고분자 매트릭스 내에 분산된 다중 실란에 의해 표면 개질된 질화붕소(35)를 포함할 수 있다. 상기 건조 및 경화단계는 동시에 수행될 수 있는데, 구체적으로 약 350℃ 내지 약 550℃의 강한 열을 가함으로써 용매의 급속한 건조와 상기 경화가 동시에 수행될 수 있다. 그러나, 이에 제한되는 것은 아니다. The thermal conductive layer 30 may include a polymer matrix cured by the polymer precursor in the curing process and boron nitride 35 surface-modified by multiple silanes dispersed in the polymer matrix. The drying and curing steps may be performed at the same time. Specifically, rapid drying of the solvent and the curing may be simultaneously performed by applying strong heat of about 350 ° C to about 550 ° C. However, it is not limited thereto.
상기 고분자 매트릭스는 폴리에스테르, 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 에폭시 수지, 페놀 수지, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. The polymer matrix is polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyetherimide, polyamide, poly Amideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenolic resin, and combinations thereof may be included, but is not limited thereto.
상기 표면 개질된 질화붕소(35)는 2 이상의 실란에 의해 표면이 개질된 것으로, 제1 실란은 말단 기능기로서 방향족기를 함유하는 제1 실란과 말단 기능기로서 아민기 또는 에폭시기를 함유하는 제2 실란과의 화학결합 구체적으로는 실록산 결합에 의해 표면 개질된 것일 수 있다. 방향족기를 함유하는 제1 실란과 아민기 또는 에폭시기를 함유하는 제2 실란은 제 1 실시예에 기술된 것과 유사한 것들일 수 있다. 표면 개질된 질화붕소(35)와 관련하여서는 제1 실시예를 참고하기로 한다.The surface-modified boron nitride 35 has a surface modified by two or more silanes, and the first silane includes a first silane containing an aromatic group as a terminal functional group and a second containing an amine group or an epoxy group as a terminal functional group. The chemical bond with the silane may be specifically surface modified by a siloxane bond. The first silane containing an aromatic group and the second silane containing an amine group or an epoxy group may be similar to those described in the first embodiment. With regard to the surface-modified boron nitride 35, reference is made to the first embodiment.
상기 열전도성층(30)에서 다중 실란으로 표면 개질된 질화붕소(35)의 함량은 약 0.1 중량% 내지 약 60 중량%, 약 0.1 중량% 내지 약 30 중량%, 약 0.1 중량% 내지 약 5 중량%, 약 0.1 중량% 내지 약 10 중량%, 약 0.1 중량% 내지 약 20 중량%, 약 0.1 중량% 내지 약 30 중량%, 약 5 중량% 내지 약 10 중량%, 약 5 중량% 내지 약 20 중량%, 약 5 중량% 내지 약 30 중량%, 약 10 중량% 내지 약 20 중량%, 약 10 중량% 내지 약 30 중량%, 또는 약 20 중량% 내지 약 30 중량%일 수 있으나, 이에 제한되는 것은 아니다.The content of boron nitride surface-modified with multiple silanes in the thermally conductive layer 30 is about 0.1 wt% to about 60 wt%, about 0.1 wt% to about 30 wt%, about 0.1 wt% to about 5 wt% , About 0.1 wt% to about 10 wt%, about 0.1 wt% to about 20 wt%, about 0.1 wt% to about 30 wt%, about 5 wt% to about 10 wt%, about 5 wt% to about 20 wt% , About 5 wt% to about 30 wt%, about 10 wt% to about 20 wt%, about 10 wt% to about 30 wt%, or about 20 wt% to about 30 wt%, but is not limited thereto. .
상기 열전도성층(30)의 두께는 상기 질화붕소(35)의 두께에 비해 클 수 있다. 앞서 설명한 바와 같이, 상기 질화붕소(35)는 육각형의 메쉬층, 또는 다수의 메쉬층들이 적층된 구조를 가질 수 있다. 다시 말해서, 질화붕소(35)는 하나 또는 적층된 둘 이상의 판들을 구비하는 판상형의 입자일 수 있는데, 상기 질화붕소(35)의 메쉬층의 표면에 해당하는 상하부 면들 중 하나는 상기 전도성 와이어(10)의 표면을 바라보도록 배치될 수 있다. 다시 말해서, 상기 질화붕소(35)의 판상면이 상기 전도성 와이어(10)의 표면과 이루는 각(θ1)은 상기 질화붕소(35)의 판상면이 상기 전도성 와이어(10)의 표면에 수직한 수선과 이루는 각(θ2)에 비해 작을 수 있다. 이 경우, 질화붕소(35)는 상기 열전도성층(30) 내에서 누워있는 배치를 가질 수 있어 질화붕소들(35) 사이의 중첩도가 향상될 수 있으므로 열전도성을 증가시킬 수 있다. 나아가, 상기 질화붕소(35)의 판상면은 상기 전도성 와이어(10)의 표면과 평행하게 배치될 수 있다. The thickness of the thermal conductive layer 30 may be larger than the thickness of the boron nitride 35. As described above, the boron nitride 35 may have a hexagonal mesh layer or a structure in which a plurality of mesh layers are stacked. In other words, the boron nitride 35 may be a plate-shaped particle having one or two or more laminated plates, one of the upper and lower surfaces corresponding to the surface of the mesh layer of the boron nitride 35 being the conductive wire 10. It may be arranged to look at the surface of). In other words, the angle θ 1 of the plate-like surface of the boron nitride 35 with the surface of the conductive wire 10 is such that the plate-shaped surface of the boron nitride 35 is perpendicular to the surface of the conductive wire 10. It may be smaller than the angle θ 2 with the waterline. In this case, the boron nitride 35 may have an arrangement lying in the thermal conductive layer 30, so that the overlap between the boron nitrides 35 may be improved, thereby increasing thermal conductivity. Furthermore, the plate-like surface of the boron nitride 35 may be disposed in parallel with the surface of the conductive wire 10.
한편, 상기 코팅층을 건조 및 경화하는 단계에서, 열에 의해 발생한 주변의 급격한 열운동에 의해 상기 질화붕소(35)의 분산성이 저하될 수 있으나, 다중 실란에 의해 표면 개질된 질화붕소(35)는 앞서 설명한 바와 같이 방향족기를 그의 표면 상에 보유하므로 방향족기를 갖는 고분자 매트릭스와 π-π상호작용에 의해 강하게 상호작용할 수 있기 때문에, 이 경우에도 높은 분산성을 유지할 수 있다. On the other hand, in the step of drying and curing the coating layer, the dispersibility of the boron nitride 35 may be reduced by the rapid thermal movement around the heat generated by the heat, but the boron nitride 35 surface-modified by multiple silane is As described above, since the aromatic group is retained on its surface, the polymer matrix having the aromatic group can be strongly interacted by π-π interaction, so that high dispersibility can be maintained even in this case.
에나멜 enamel 와이어wire 코일 coil
상술한 바와 같이 내부분방전성층(20)과 열전도성층(30), 또는 열전도성층(30)이 형성된 와이어를 보빈(bobbin) 상에 권취(winding)하여 코일을 제조할 수 있다. As described above, the coil may be manufactured by winding the wire on which the internal discharge layer 20, the thermal conductive layer 30, or the thermal conductive layer 30 are formed on a bobbin.
이 후, 코일을 열처리, 예들 들어 약 150℃ 내지 250℃의 온도로 열처리할 수 있다. 이 때, 상기 와이어의 표면들은 서로 융착되어 와이어들 사이의 공기층을 제거할 수 있다. 구체적으로, 상기 열처리 과정에서 상기 열전도성층(30) 내의 고분자 매트릭스는, 권취되어 서로 인접하는 와이어들 사이에서 서로 융착될 수 있다. 이를 위해, 상기 고분자 매트릭스의 융점은 상기 열처리 온도에 비해 낮은 값을 갖도록, 상기 고분자 매트릭스를 구성하는 고분자를 선택하거나 또는 상기 열처리 온도를 조절할 수 있다.The coil may then be heat treated, for example at a temperature of about 150 ° C. to 250 ° C. At this time, the surfaces of the wire may be fused to each other to remove the air layer between the wires. Specifically, in the heat treatment process, the polymer matrix in the thermal conductive layer 30 may be wound and fused to each other between adjacent wires. To this end, the melting point of the polymer matrix may be selected to adjust the heat treatment temperature or to select a polymer constituting the polymer matrix to have a lower value than the heat treatment temperature.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
[실험예들; Examples][Experimental Examples; Examples]
실란Silane 표면  surface 개질된Modified 질화붕소와Boron nitride and 폴리아미드이미드 복합체 제조 Polyamideimide Composite Preparation
<실험예 1 : PN과 DN로 표면 개질된 질화붕소와 PAI 복합체 제조>Experimental Example 1 Preparation of Boron Nitride and PAI Composite Surface-Modified with PN and DN
1L 용량의 유리병에 600㎖의 N,N-디메틸포름아마이드 (N,N-Dimethylmethanamide, 이하, 'DMF'이라고 함)와 30g의 육방정 질화붕소를 넣고, 25 ℃의 온도 하에서 스터러바(stirrer bar)를 사용하여 30분간 혼합액을 형성하였다. 이후, 상기 혼합액을 혼(horn) 초음파기 내에 위치시키고 25℃의 온도 하에서 200와트의 초음파를 2시간 동안 가하여 육방정 질화붕소를 박리하였다.In a 1 L glass bottle, 600 ml of N, N-dimethylformamide (N, N-Dimethylmethanamide, hereinafter referred to as 'DMF') and 30 g of hexagonal boron nitride are placed and a stirrer is used at a temperature of 25 ° C. bar) to form a mixture for 30 minutes. Thereafter, the mixed solution was placed in a horn sonicator, and 200 watts of ultrasonic waves were applied at a temperature of 25 ° C. for 2 hours to remove hexagonal boron nitride.
이 후, 상기 혼합액에 에 N-[3-(트리메톡시실릴)프로필]아닐린(N-[3-(trimethoxysilyl)propyl]aniline, 이하, 'PN'이라고 함)을 3.21g 첨가하여 혼 초음파기 내에 위치시키고 70℃의 온도 하에서 200와트의 초음파를 3시간 동안 가하여, PN 표면 개질된 육방정 질화붕소-DMF 혼합액을 얻었다.Thereafter, 3.21 g of N- [3- (trimethoxysilyl) propyl] aniline (hereinafter referred to as 'PN') was added to the mixed solution in a mixed sonicator. Positioning and applying 200 watts of ultrasonic waves at a temperature of 70 ° C. for 3 hours to obtain a PN surface modified hexagonal boron nitride-DMF mixture.
여기에 N-[3-(트리메톡시실릴)프로필]에틸렌디아민(N-[3-(Trimethoxysilyl)propyl]ethylenediamine, 이하 'DN'이라고 함)를 3.084 g 첨가하여 혼 초음파기 내에 위치시키고 70℃의 온도 하에서 200와트의 초음파를 3시간동안 가하여, PN과 DN으로 표면 개질된 육방정 질화붕소-DMF 혼합액을 얻었다.3.084 g of N- [3- (trimethoxysilyl) propyl] ethylenediamine (hereinafter referred to as 'DN') was added thereto, placed in a horn sonicator at 70 ° C. An ultrasonic wave of 200 watts was applied under the temperature for 3 hours to obtain a hexagonal boron nitride-DMF mixed solution surface-modified with PN and DN.
결과물을 유리 필터 깔대기에 부은 다음 필터 상의 고형물에 DMF와 N-메틸-2-피페리돈 (N-Methyl-2-pyrrolidone, 이하 'NMP'이라고 함)을 3회 이상 분사하여 상기 고형물을 세척함으로써, 미반응된 실란을 제거하였다. 상기 세척된 고형물을 열풍 오븐에 넣고 120℃에서 24시간 동안 건조하여, PN과 DN으로 표면 개질된 육방정 질화붕소의 분말을 수득하였다.The resultant was poured into a glass filter funnel and the solids on the filter were sprayed three or more times with DMF and N-methyl-2-pyrrolidone (hereinafter referred to as 'NMP') to wash the solids. Unreacted silane was removed. The washed solid was placed in a hot air oven and dried at 120 ° C. for 24 hours to obtain a powder of hexagonal boron nitride surface-modified with PN and DN.
이 후, 폴리아미드이미드(이하, 'PAI'라고 함)가 33wt%로 분산된 NMP 용액에, PN과 DN으로 표면 개질된 육방정 질화붕소를 PAI와 표면 개질된 육방정 질화붕소의 중량합 대비 표면 개질된 육방정 질화붕소가 20wt% 혹은 60wt%의 함량(PAI 100 중량부에 대해 표면 개질된 육방정 질화붕소가 25 중량부 혹은 150 중량부)을 갖도록 첨가하였다. 이 후, 배스 초음파기 내에 위치시키고 100와트의 초음파를 30분 동안 가하고, 테프론(teflon) 몰드에서 몰딩하였다. 상기 몰딩된 혼합물을 열풍 오븐 내에서 240℃, 240분간 경화하여 펠렛(pellet) 형태의 PN과 DN으로 표면 개질된 질화붕소와 폴리아미드이미드의 복합체를 얻었다.Subsequently, in a NMP solution in which polyamideimide (hereinafter referred to as 'PAI') is dispersed at 33 wt%, hexagonal boron nitride surface-modified with PN and DN is compared with the sum of the weights of PAI and hexagonal boron nitride surface-modified. The surface-modified hexagonal boron nitride was added to have a content of 20wt% or 60wt% (25 parts by weight or 150 parts by weight of surface-modified hexagonal boron nitride relative to 100 parts by weight of PAI). Thereafter, placed in a bath sonicator and applied 100 watts of ultrasonic waves for 30 minutes, Molded in a teflon mold. The molded mixture was cured in a hot air oven at 240 ° C. for 240 minutes to obtain a composite of boron nitride and polyamideimide surface-modified with pellet PN and DN.
<비교예 1 : 질화붕소를 함유하지 않는 PAI 샘플 제조>Comparative Example 1: Preparation of PAI Sample without Boron Nitride
PAI가 33wt%로 분산된 NMP 용액을 테프론 몰드에서 몰딩한 후, 열풍 오븐 내에서 240℃, 240분간 경화하여 PAI 펠렛을 얻었다.The NMP solution in which PAI was dispersed at 33wt% was molded in a Teflon mold, and then cured in a hot air oven at 240 ° C. for 240 minutes to obtain PAI pellets.
<비교예 2 : 표면 개질되지 않은 질화붕소와 PAI 복합체 제조>Comparative Example 2 Preparation of Surface-Mounted Boron Nitride and PAI Composite
표면 개질되지 않은 육방정 질화붕소를, PAI가 33wt%로 분산된 NMP 용액에, PAI와 육방정 질화붕소의 중량합 대비 육방정 질화붕소가 20wt% 혹은 60wt%의 함량(PAI 100 중량부에 대해 육방정 질화붕소가 25 중량부 혹은 150 중량부)을 갖도록 첨가한 후, 테프론 몰드에서 몰딩하였다. 상기 몰딩된 혼합물을 열풍 오븐 내에서 240℃, 240분간 경화하여 펠렛 형태의 표면 개질되지 않은 질화붕소와 PAI의 복합체를 얻었다.20 wt% or 60 wt% of hexagonal boron nitride with respect to the sum of the weights of PAI and hexagonal boron nitride in an NMP solution in which surface-modified hexagonal boron nitride is dispersed in 33 wt% of PAI (with respect to 100 parts by weight of PAI Hexagonal boron nitride was added to have 25 parts by weight or 150 parts by weight) and then molded in a Teflon mold. The molded mixture was cured in a hot air oven at 240 ° C. for 240 minutes to obtain a composite of surface-modified boron nitride and PAI in pellet form.
<비교예 3 : TE로 표면 개질된 질화붕소와 PAI 복합체 제조>Comparative Example 3 Preparation of Boron Nitride and PAI Composite Surface-Modified with TE
1L 용량의 유리병에 600㎖의 DMF와 30g의 육방정 질화붕소를 넣고, 25 ℃의 온도 하에서 스터러바를 사용하여 30분간 혼합액을 형성하였다. 이 후, 상기 혼합액을 혼 초음파기 내에 위치시키고 25 ℃의 온도 하에서 200와트의 초음파를 2시간 동안 가하여 육박정 질화붕소를 박리하였다. 이 후, 상기 혼합액에 TE를 3.21g 첨가하여 혼 초음파기 내에 위치시키고 70 ℃의 온도 하에서 200와트의 초음파를 3시간 동안 가하여, TE로 표면 개질된 육방정 질화붕소-DMF 혼합액을 얻었다.600 ml of DMF and 30 g of hexagonal boron nitride were placed in a 1 L glass bottle, and a mixed solution was formed for 30 minutes using a stub bar at a temperature of 25 ° C. Thereafter, the mixed solution was placed in a horn sonicator, and 200 watts of ultrasonic waves were applied at a temperature of 25 ° C. for 2 hours to remove boron nitride boron nitride. Thereafter, 3.21 g of TE was added to the mixed solution, placed in a horn sonicator, and 200 watts of ultrasonic waves were applied at a temperature of 70 ° C. for 3 hours to obtain a hexagonal boron nitride-DMF mixture surface-modified with TE.
여기에 결과물을 유리 필터 깔대기에 부은 다음 필터 상의 고형물에 DMF와 NMP를 3회 이상 분사하여 상기 고형물을 세척함으로써, 미반응된 실란을 제거하였다. 상기 세척된 고형물을 열풍 오븐에 넣고 120℃에서 24시간 동안 건조하여, TE로 표면 개질된 육방정 질화붕소의 분말을 수득하였다.The resultant was poured into a glass filter funnel and then the solids on the filter were sprayed three or more times with DMF and NMP to wash the solids, thereby removing unreacted silane. The washed solid was placed in a hot air oven and dried at 120 ° C. for 24 hours to obtain a powder of hexagonal boron nitride surface-modified with TE.
이 후, TE로 표면 개질된 육방정 질화붕소를, PAI가 33wt%로 분산된 NMP 용액에, PAI와 표면 개질된 육방정 질화붕소의 중량합 대비 표면 개질된 육방정 질화붕소가 20wt% 혹은 60wt%의 함량(PAI 100 중량부에 대해 표면 개질된 육방정 질화붕소가 25 중량부 혹은 150 중량부)을 갖도록 첨가하였다. 이 후, 배스 초음파기 내에 위치 시키고 100와트의 초음파를 30분 동안 가하고, 테프론(teflon) 몰드에서 몰딩하였다. 상기 몰딩된 혼합물을 열풍 오븐 내에서 240℃, 240분간 경화하여 펠렛 형태의 TE로 표면 개질된 질화붕소와 폴리아미드이미드의 복합체를 얻었다.Subsequently, 20 wt% or 60 wt% of the hexagonal boron nitride surface-modified with TE was added to the NMP solution in which PAI was dispersed at 33 wt%, and the surface-modified hexagonal boron nitride was compared with the sum of the weights of PAI and the surface-modified hexagonal boron nitride. It was added to have a content of% (25 parts by weight or 150 parts by weight of hexagonal boron nitride surface-modified relative to 100 parts by weight of PAI). After that, it was placed in the bath sonicator and the ultrasonic wave of 100 watts was applied for 30 minutes, Molded in a teflon mold. The molded mixture was cured in a hot air oven at 240 ° C. for 240 minutes to obtain a composite of boron nitride and polyamideimide surface-modified with TE in pellet form.
<비교예 4 : PN로 표면 개질된 질화붕소와 PAI 복합체 제조>Comparative Example 4 Preparation of Boron Nitride and PAI Composite Surface-Modified with PN
TE 대신에 PN을 3.21g 사용하는 것을 제외하고는 비교예 3과 동일한 방법을 사용하여, 펠렛 형태의 PN으로 표면 개질된 질화붕소와 PAI의 복합체를 얻었다.Except for using 3.21 g of PN instead of TE, using the same method as in Comparative Example 3 to obtain a composite of the surface-modified boron nitride and PAI with PN in the form of pellets.
<비교예 5 : DN로 표면 개질된 질화붕소와 PAI 복합체 제조>Comparative Example 5 Preparation of Boron Nitride and PAI Composite Modified with DN>
TE 대신에 DN을 3.21g 사용하는 것을 제외하고는 비교예 3과 동일한 방법을 사용하여, 펠렛 형태의 DN으로 표면 개질된 질화붕소와 PAI의 복합체를 얻었다.Except for using 3.21 g of DN instead of TE, using the same method as in Comparative Example 3, a complex of boron nitride and PAI surface-modified with DN in the form of pellets was obtained.
하기 표 1은 실험예들 1 및 비교예들 1 내지 5에 따른 질화붕소-PAI 복합체 펠렛 또는 PAI 펠렛의 열전도도를 나타낸다. 이 때, 열전도도는 레이저 플래쉬(laser flash)법을 사용하여 측정하였다.Table 1 below shows the thermal conductivity of boron nitride-PAI composite pellets or PAI pellets according to Experimental Examples 1 and Comparative Examples 1 to 5. At this time, the thermal conductivity was measured using a laser flash method.
질화붕소 함유여부Contains boron nitride 질화붕소 표면 개질제 종류Boron Nitride Surface Modifier Type 열전도도 (W/mK), (질화붕소 함량: 20wt%)Thermal conductivity (W / mK), (Boron nitride content: 20wt%) 열전도도 (W/mK), (질화붕소 함량: 60wt%)Thermal Conductivity (W / mK), (Boron Nitride Content: 60wt%)
실험예 1Experimental Example 1 PN & DNPN & DN 0.640.64 2.562.56
비교예 1Comparative Example 1 -- 0.300.30
비교예 2Comparative Example 2 -- 0.440.44 0.990.99
비교예 3Comparative Example 3 TETE 0.570.57 1.971.97
비교예 4Comparative Example 4 PNPN 0.570.57 2.102.10
비교예 5Comparative Example 5 DNDN 0.610.61 2.172.17
PN: N-[3-trimethoxysilyl)propyl]anilineTE: (3-glycidyloxypropyl)trimethoxysilaneDN: N-[3-(trimethoxysilyl)propyl]ethylenediaminePAI: Polyamide-imidePN: N- [3-trimethoxysilyl) propyl] anilineTE: (3-glycidyloxypropyl) trimethoxysilaneDN: N- [3- (trimethoxysilyl) propyl] ethylenediaminePAI: Polyamide-imide
상기 표 1을 참조하면, 다중 실란 구체적으로, 말단기능기로서 아민기를 갖는 실란(DN)과 말단기능기로서 페닐기를 갖는 실란(PN)으로 표면 개질된 실험예 1에 따른 질화붕소-PAI 복합체는 질화붕소를 함유하지 않거나(비교예 1), 질화붕소가 표면개질되지 않았거나(비교예 2), 또는 질화붕소가 한 종류의 실란으로 개질된(비교예 3, 비교예 4, 비교예 5) 경우에 비해 열전도도의 증가가 우수한 것을 알 수 있다. Referring to Table 1 above, specifically, the boron nitride-PAI complex according to Experimental Example 1, which is surface modified with silane (DN) having an amine group as a terminal functional group and silane (PN) having a phenyl group as a terminal functional group, It does not contain boron nitride (Comparative Example 1), boron nitride is not surface modified (Comparative Example 2), or boron nitride is modified with one type of silane (Comparative Example 3, Comparative Example 4, Comparative Example 5). It can be seen that the increase in thermal conductivity is superior to the case.
도 3a는 실험예 1에 따른 질화붕소-PAI 복합체의 파단면을 주사전자현미경으로 관찰한 사진이고, 도 3b는 비교예 2에 따른 질화붕소-PAI 복합체의 파단면을 주사현미경으로 관찰한 사진이다.3a is a photograph of the fracture surface of the boron nitride-PAI complex according to Experimental Example 1, and FIG. 3b is a photograph of the fracture surface of the boron nitride-PAI complex according to Comparative Example 2 .
도 3a 및 도 3b를 참조하면, 표면 개질되지 않은 질화붕소가 함유된 질화붕소-PAI 복합체(비교예 2, 도 3b)는 질화붕소가 완전히 분산되지 않음에 따라 질화붕소들 사이에 공극이 PAI 수지에 의해 채워지지 않은 것을 알 수 있다. 한편, 말단기능기로서 아민기를 갖는 실란(DN)과 말단기능기로서 페닐기를 갖는 실란(PN)으로 표면 개질된 실험예 1에 따른 질화붕소-PAI 복합체(도 3a)는 공극이 거의 없는 파단면을 나타냄을 알 수 있다. 3A and 3B, the boron nitride-PAI composite containing the surface-modified boron nitride (Comparative Example 2, FIG. 3B) is a PAI resin with voids between boron nitrides as boron nitride is not completely dispersed. It can be seen that it is not filled by. On the other hand, the boron nitride-PAI composite (FIG. 3A) according to Experimental Example 1 surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group (FIG. 3A) has almost no porosity. It can be seen that.
상기 도 3a 및 도 3b, 그리고 표 1에 따른 결과로부터, 말단기능기로서 아민기를 갖는 실란(DN)과 말단기능기로서 페닐기를 갖는 실란(PN)으로 표면 개질된 질화붕소는 PAI 매트릭스 내에서의 분산정도가 다른 경우들에 비해 더 우수하다는 것을 알 수 있다.From the results according to FIGS. 3A and 3B and Table 1, boron nitride surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group is present in the PAI matrix. It can be seen that the degree of dispersion is better than the other cases.
실란Silane 표면  surface 개질된Modified 질화붕소와Boron nitride and 에폭시수지 복합체 제조 Epoxy Resin Composite
<실험예 2 : PN과 DN으로 표면 개질된 질화붕소와 에폭시 복합체 제조>Experimental Example 2 Preparation of Boron Nitride and Epoxy Composite Modified with PN and DN
1L 용량의 유리병에 600㎖의 DMF와 30g의 육방정 질화붕소를 넣고, 25 ℃의 온도 하에서 스터러바(stirrer bar)를 사용하여 30분간 혼합액을 형성하였다. 이 후, 상기 혼합액을 혼 초음파기 내에 위치시키고 25 ℃의 온도 하에서 200와트의 초음파를 2시간 동안 가하여 육방정 질화붕소를 박리하였다. 이 후, 상기 혼합액에 PN을 3.21 g첨가하여 혼 초음파기 내에 위치시키고 70 ℃의 온도 하에서 200와트의 초음파를 3시간 동안 가하여, PN 표면 개질된 육방정 질화붕소-DMF 혼합액을 얻었다.600 ml of DMF and 30 g of hexagonal boron nitride were placed in a 1 L glass bottle, and a mixed solution was formed for 30 minutes using a stirrer bar at a temperature of 25 ° C. Thereafter, the mixed solution was placed in a horn sonicator, and 200 watts of ultrasonic waves were applied at a temperature of 25 ° C. for 2 hours to remove hexagonal boron nitride. Thereafter, 3.21 g of PN was added to the mixed solution, placed in a horn sonicator, and 200 watts of ultrasonic waves were applied at a temperature of 70 ° C. for 3 hours to obtain a PN surface-modified hexagonal boron nitride-DMF mixed solution.
여기에 DN을 3.084 g 첨가하여 혼 초음파기 내에 위치 시기고 70 ℃의 온도 하에서 200와트의 초음파를 3시간동안 가하여, PN과 DN으로 표면 개질된 육방정 질화붕소-DMF 혼합액을 얻었다.In addition, 3.084 g of DN was added and placed in the horn sonicator, and the temperature was 200 watts at 70 ° C. Ultrasonic waves were added for 3 hours to obtain hexagonal boron nitride-DMF mixtures surface-modified with PN and DN.
여기에 결과물을 유리 필터 깔대기에 부은 다음 필터 상의 고형물에 DMF와 NMP를 3회 이상 분사하여 상기 고형물을 세척함으로써, 미반응된 실란을 제거하였다. 상기 세척된 고형물을 열풍 오븐에 넣고 120℃에서 24시간 동안 건조하여, PN과 DN으로 표면 개질된 육방정 질화붕소의 분말을 수득하였다.The resultant was poured into a glass filter funnel and then the solids on the filter were sprayed three or more times with DMF and NMP to wash the solids, thereby removing unreacted silane. The washed solid was placed in a hot air oven and dried at 120 ° C. for 24 hours to obtain a powder of hexagonal boron nitride surface-modified with PN and DN.
이 후, YD-128 에폭시(국도화학사)와 폴리옥시알킬렌아민계 경화제인 제프아민(Jeffamine, Huntsman사)를 5:3의 비로 섞은 후, PN과 DN으로 표면 개질된 육방정 질화붕소를 20wt%의 농도(YD-128 에폭시와 제프아민의 중량합 100 중량부에 대해 표면 개질된 육방정 질화붕소가 25 중량부)로 첨가한 후 골고루 섞어 혼합액을 만든다. 이 혼합액을 테프론 몰드에 붓고 열풍 오븐 내에서 130℃, 60분간 경화하여 펠렛 형태의 PN과 DN으로 표면 개질된 질화붕소와 에폭시의 복합체를 얻었다.Thereafter, YD-128 epoxy (Kukdo Chemical Co., Ltd.) and Jeffoxy (Huntsman Co., Ltd.), a polyoxyalkyleneamine-based curing agent, were mixed at a ratio of 5: 3, and then 20wt of hexagonal boron nitride surface-modified with PN and DN. The mixture was added at a concentration of% (25 parts by weight of surface-modified hexagonal boron nitride with respect to 100 parts by weight of the weight of YD-128 epoxy and zephamine) and mixed evenly. The mixture was poured into a Teflon mold and cured in a hot air oven for 130 ° C. for 60 minutes to obtain a composite of boron nitride and epoxy surface-modified with PN and DN in pellet form.
<비교예 6 : 질화붕소를 함유하지 않는 에폭시 샘플 제조>Comparative Example 6: Preparation of Epoxy Sample Without Boron Nitride
YD-128 에폭시(국도화학사)와 경화제인 제프아민(Jeffamine, Huntsman사)를 5:3의 비로 섞은 혼합액을 테프론 몰드에서 몰딩한 후, 열풍 오븐 내에서 130℃, 60분간 경화하여 에폭시 펠렛을 얻었다.A mixture of YD-128 epoxy (Kukdo Chemical Co., Ltd.) and Jeffamine (Huntsman Co., Ltd.) in a ratio of 5: 3 was molded in a Teflon mold, and then cured in a hot air oven at 130 ° C. for 60 minutes to obtain epoxy pellets. .
<비교예 7 : : 표면 개질되지 않은 질화붕소와 에폭시 복합체 제조>Comparative Example 7: Preparation of Surface Modified Boron Nitride and Epoxy Composite
표면 개질되지 않은 육방정 질화붕소를, YD-128 에폭시(국도화학사)와 경화제인 제프아민(Jeffamine, Huntsman사)를 5:3의 비로 섞은 혼합액에, 20wt%의 농도(YD-128 에폭시와 제프아민의 중량합 100 중량부에 대해 육방정 질화붕소가 25 중량부)로 첨가한 후, 테프론 몰드에서 몰딩하였다. 상기 몰딩된 혼합물을 열풍 오븐 내에서 130℃, 60분간 경화하여 펠렛 형태의 표면 개질되지 않은 질화붕소와 에폭시 복합체를 얻었다.20wt% concentration (YD-128 epoxy and Jeff) in a mixed solution of unmodified hexagonal boron nitride and YD-128 epoxy (Kukdo Chemical Co., Ltd.) and Jeffamine (Huntsman Co., Ltd.) in a ratio of 5: 3. 25 parts by weight of hexagonal boron nitride) was added to 100 parts by weight of the amine, followed by molding in a Teflon mold. The molded mixture was cured in a hot air oven at 130 ° C. for 60 minutes to obtain a surface-modified boron nitride and epoxy composite in pellet form.
<비교예 8 : PN으로 표면 개질된 질화붕소와 에폭시 복합체 제조>Comparative Example 8 Preparation of Boron Nitride and Epoxy Composite Modified with PN
1L 용량의 유리병에 600㎖의 DMF와 30g의 육방정 질화붕소를 넣고, 25 ℃의 온도 하에서 스터러바를 사용하여 30분간 혼합액을 형성하였다. 이 후, 상기 혼합액을 혼 초음파기 내에 위치시키고 25 ℃의 온도 하에서 200와트의 초음파를 2시간 동안 가하여 육방정 질화붕소를 박리하였다. 이 후, 상기 혼합액에 PN을 3.21g 첨가하여 혼 초음파기 내에 위치시키고 70 ℃의 온도 하에서 200와트의 초음파를 3시간 동안 가하여, PN으로 표면 개질된 육방정 질화붕소-DMF 혼합액을 얻었다. 600 ml of DMF and 30 g of hexagonal boron nitride were placed in a 1 L glass bottle, and a mixed solution was formed for 30 minutes using a stub bar at a temperature of 25 ° C. Thereafter, the mixed solution was placed in a horn sonicator, and 200 watts of ultrasonic waves were applied at a temperature of 25 ° C. for 2 hours to remove hexagonal boron nitride. Thereafter, 3.21 g of PN was added to the mixed solution, placed in a horn sonicator, and 200 watts of ultrasonic waves were applied for 3 hours at a temperature of 70 ° C. to obtain a hexagonal boron nitride-DMF mixture surface-modified with PN.
여기에 결과물을 유리 필터 깔대기에 부은 다음 필터 상의 고형물에 DMF와 NMP를 3회 이상 분사하여 상기 고형물을 세척함으로써, 미반응된 실란을 제거하였다. 상기 세척된 고형물을 열풍 오븐에 넣고 120℃에서 24시간 동안 건조하여, PN으로 표면 개질된 육방정 질화붕소의 분말을 수득하였다.The resultant was poured into a glass filter funnel and then the solids on the filter were sprayed three or more times with DMF and NMP to wash the solids, thereby removing unreacted silane. The washed solid was placed in a hot air oven and dried at 120 ° C. for 24 hours to obtain a powder of hexagonal boron nitride surface-modified with PN.
이 후, PN으로 표면 개질된 육방정 질화붕소를, YD-128 에폭시(국도화학사)와 경화제인 제프아민(Jeffamine, Huntsman사)를 5:3의 비로 섞은 혼합액에, 20wt%의 농도(YD-128 에폭시와 제프아민의 중량합 100 중량부에 대해 표면 개질된 육방정 질화붕소가 25 중량부)로 첨가한 후, 테프론 몰드에서 몰딩하였다. 상기 몰딩된 혼합물을 열풍 오븐 내에서 130℃, 60분간 경화하여 펠렛 형태의 PN으로 표면 개질된 질화붕소와 에폭시의 복합체를 얻었다.Thereafter, a concentration of 20wt% (YD-) was added to a mixed solution of hexagonal boron nitride surface-modified with PN and YD-128 epoxy (Kukdo Chemical Co., Ltd.) and Jeffamine (Huntsman Co., Ltd.) in a ratio of 5: 3. 128 parts by weight of a surface modified hexagonal boron nitride) was added to 100 parts by weight of the epoxy and zephamine), and then molded in a Teflon mold. The molded mixture was cured in a hot air oven at 130 ° C. for 60 minutes to obtain a composite of boron nitride and epoxy surface-modified with PN in pellet form.
하기 표 2는 실험예 2 및 비교예들 6 내지 8에 따른 질화붕소-에폭시 복합체 펠렛 또는 에폭시 펠렛의 열전도도를 나타낸다. 이 때, 열전도도는 레이저 플래쉬(laser flash)법을 사용하여 측정하였다.Table 2 below shows the thermal conductivity of boron nitride-epoxy composite pellets or epoxy pellets according to Experimental Example 2 and Comparative Examples 6 to 8. At this time, the thermal conductivity was measured using a laser flash method.
질화붕소 함유여부Contains boron nitride 질화붕소 표면 개질제 종류Boron Nitride Surface Modifier Type 열전도도 (W/mK), (질화붕소 함량: 20wt%)Thermal conductivity (W / mK), (Boron nitride content: 20wt%)
실험예 2Experimental Example 2 PN & DNPN & DN 0.480.48
비교예 6Comparative Example 6 -- -- 0.210.21
비교예 7Comparative Example 7 -- 0.420.42
비교예 8Comparative Example 8 PNPN 0.460.46
PN: N-[3-trimethoxysilyl)propyl]anilineDN: N-[3-(trimethoxysilyl)propyl]ethylenediaminePN: N- [3-trimethoxysilyl) propyl] anilineDN: N- [3- (trimethoxysilyl) propyl] ethylenediamine
상기 표 2를 참조하면, 다중 실란 구체적으로, 말단기능기로서 아민기를 갖는 실란(DN)과 말단기능기로서 페닐기를 갖는 실란(PN)으로 표면 개질된 실험예 2에 따른 질화붕소-에폭시 복합체는 질화붕소를 함유하지 않거나(비교예 6), 질화붕소가 표면개질되지 않았거나(비교예 7), 또는 질화붕소가 한 종류의 실란으로 개질된(비교예 8) 경우에 비해 열전도도의 증가가 우수한 것을 알 수 있다. Referring to Table 2 above, the boron nitride-epoxy complex according to Experimental Example 2, which is surface-modified with silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group, The increase in thermal conductivity compared to the case of not containing boron nitride (Comparative Example 6), boron nitride not surface modified (Comparative Example 7), or boron nitride modified with one type of silane (Comparative Example 8) It can be seen that it is excellent.
도 4a는 실험예 2에 따른 질화붕소-에폭시 복합체의 파단면을 주사전자현미경으로 관찰한 사진이고, 도 4b는 비교예 7에 다른 질화붕소-에폭시 복합체의 파단면을 주사현미경으로 관찰한 사진이다.Figure 4a is a photograph of the fracture surface of the boron nitride-epoxy composite according to Experimental Example 2 with a scanning electron microscope, Figure 4b is a photograph of a fracture surface of the boron nitride-epoxy composite according to Comparative Example 7 with a scanning microscope .
도 4a 및 도 4b를 참조하면, 표면 개질되지 않은 질화붕소가 함유된 질화붕소-에폭시 복합체(비교예 7, 도 4b)는 질화붕소가 완전히 분산되지 않음에 따라 질화붕소들 사이에 공극이 에폭시 수지에 의해 채워지지 않은 것을 알 수 있다. 한편, 말단기능기로서 아민기를 갖는 실란(DN)과 말단기능기로서 페닐기를 갖는 실란(PN)으로 표면 개질된 실험예 2에 따른 질화붕소-에폭시 복합체(도 4a)는 공극이 거의 없는 파단면을 나타냄을 알 수 있다. 4A and 4B, the boron nitride-epoxy composite containing the surface-modified boron nitride (Comparative Example 7, FIG. 4B) has an epoxy resin with voids between the boron nitrides as boron nitride is not completely dispersed. It can be seen that it is not filled by. On the other hand, the boron nitride-epoxy composite according to Experimental Example 2 surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group (FIG. 4A) has a fracture surface with little voids. It can be seen that.
상기 도 4a 및 도 4b, 그리고 표 2에 따른 결과로부터, 말단기능기로서 아민기를 갖는 실란(DN)과 말단기능기로서 페닐기를 갖는 실란(PN)으로 표면 개질된 질화붕소는 에폭시 매트릭스 내에서의 분산정도가 다른 경우들에 비해 더 우수하다는 것을 알 수 있다.From the results according to FIGS. 4A and 4B and Table 2, boron nitride surface-modified with a silane (DN) having an amine group as a terminal functional group and a silane (PN) having a phenyl group as a terminal functional group is obtained in the epoxy matrix. It can be seen that the degree of dispersion is better than the other cases.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those skilled in the art within the spirit and scope of the present invention. This is possible.

Claims (23)

  1. 질화붕소 입자;Boron nitride particles;
    상기 질화붕소 입자의 표면에 결합되고 말단에 방향족기를 함유하는 제1 표면 개질제; 및A first surface modifier bonded to the surface of the boron nitride particles and containing an aromatic group at the terminal; And
    상기 질화붕소 입자의 표면에 결합되고 말단에 아민기 또는 에폭시기를 함유하는 제2 표면 개질제를 포함하는 다중 표면 개질된 질화붕소.A multi-surface modified boron nitride bonded to the surface of the boron nitride particles and comprising a second surface modifier containing an amine group or an epoxy group at the terminal.
  2. 제1항에 있어서,The method of claim 1,
    상기 표면 개질제들은 실란화합물들이고, 상기 질화붕소 입자의 표면에 실록산 결합에 의해 결합된 다중 표면 개질된 질화붕소.And the surface modifiers are silane compounds, the multi-surface modified boron nitride bonded to the surface of the boron nitride particles by siloxane bonds.
  3. 제1항에 있어서,The method of claim 1,
    상기 질화붕소 입자는 판상형의 육방정계 질화붕소인 다중 표면 개질된 질화붕소.The boron nitride particles are plate-shaped hexagonal boron nitride multi-surface modified boron nitride.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 표면 개질제의 방향족기는 페닐기(phenyl group), 아닐리닐기(anilinyl group), 벤조일기(benzoyl group), 페녹시기(phenoxy group), 바이페닐기(biphenyl group), 또는 나프탈렌기(naphthalenyl group)인 다중 표면 개질된 질화붕소.The aromatic group of the first surface modifier is a phenyl group, an anilinyl group, a benzoyl group, a phenoxy group, a biphenyl group, or a naphthalenyl group. Multi-surface modified boron nitride.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 표면 개질제는 트리메톡시페닐실란, N-[3-(트리메톡시실릴)프로필]아닐린, 알릴페닐디클로로실란, 아미노페닐트리메톡시실란, t-부틸페닐디클로로실란 , p-(t-부틸)페네틸트리클로로실란, 3,5-디메톡시페닐트리에톡시실란, 디페닐디에톡시실란, 디페닐디메톡시실란, 디페닐메틸에톡시실란 , 3-(p-메톡시페닐)프로필트리클로로실란, p-메톡시페닐트리메톡시실란, 페네틸메틸디클로로실란 , 페네틸트리메톡시실란, 3-페녹시프로필디메틸클로로실란, 3-페녹시프로필메틸디클로로실란 , 3-페녹시프로필트리클로로실란, 페닐디메틸클로로실란, 페닐디메틸에톡시실란, 페닐에틸디클로로실란, 페닐메틸디클로로실란, 1-페닐-1-(메틸디클로로실릴)부탄, 페닐메틸디메톡시실란, 페닐메틸디에톡시실란, (3-페닐프로필)트리클로로실란, 페닐트리클로로실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 트리페닐클로로실란, 트리페닐에톡시실란, (트리페닐메틸)메틸디클로로실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것인 다중 표면 개질된 질화붕소.The first surface modifier is trimethoxyphenylsilane, N- [3- (trimethoxysilyl) propyl] aniline, allylphenyldichlorosilane, aminophenyltrimethoxysilane, t-butylphenyldichlorosilane, p- (t -Butyl) phenethyltrichlorosilane, 3,5-dimethoxyphenyltriethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, diphenylmethylethoxysilane, 3- (p-methoxyphenyl) propyl Trichlorosilane, p-methoxyphenyltrimethoxysilane, phenethylmethyldichlorosilane, phenethyltrimethoxysilane, 3-phenoxypropyldimethylchlorosilane, 3-phenoxypropylmethyldichlorosilane, 3-phenoxypropyltrichloro Rosilane, phenyldimethylchlorosilane, phenyldimethylethoxysilane, phenylethyldichlorosilane, phenylmethyldichlorosilane, 1-phenyl-1- (methyldichlorosilyl) butane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, ( 3-phenylpropyl) trichlorosilane, phenyltrichlorosilane, Multi-surface modified nitrides selected from the group consisting of phenyltriethoxysilane, phenyltrimethoxysilane, triphenylchlorosilane, triphenylethoxysilane, (triphenylmethyl) methyldichlorosilane, and combinations thereof boron.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 표면 개질제는 말단에 아닐리닐기를 구비하는 N-[3-(트리메톡시실릴)프로필]아닐린인 다중 표면 개질된 질화붕소.Wherein said first surface modifier is N- [3- (trimethoxysilyl) propyl] aniline having an anilinyl group at its terminus.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2 표면 개질제의 아민기는 1차 아민기, 2차 아민기, 3차 아민기, 또는 디아민기인 다중 표면 개질된 질화붕소.Wherein the amine group of the second surface modifier is a primary amine group, a secondary amine group, a tertiary amine group, or a diamine group.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제2 표면 개질제는 3-[2-(2-아미노에틸아미노)에틸아미노]프로필트리메톡시실란, N-[3-(트리메톡시실릴)프로필]에틸렌디아민, (3-아미노프로필)트리메톡시실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것인 다중 표면 개질된 질화붕소.The second surface modifier is 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] ethylenediamine, (3-aminopropyl) tri The multi-surface modified boron nitride selected from the group consisting of methoxysilane, and combinations thereof.
  9. 제1항에 있어서,The method of claim 1,
    상기 제2 표면 개질제은 말단에 디아민기를 구비하는 N-[3-(트리메톡시실릴)프로필]에틸렌디아민인 다중 표면 개질된 질화붕소.Wherein said second surface modifier is N- [3- (trimethoxysilyl) propyl] ethylenediamine having a diamine group at its end.
  10. 제1항에 있어서,The method of claim 1,
    상기 제2 표면 개질제의 에폭시는 에폭사이드기, 글리시딜기, 또는 글리시딜옥시기인 다중 표면 개질된 질화붕소.And the epoxy of the second surface modifier is an epoxide group, glycidyl group, or glycidyloxy group.
  11. 제10항에 있어서,The method of claim 10,
    상기 제2 표면 개질제은 3-에폭시프로필트리메톡시실란, 3-에폭시프로필트리에톡시실란, 4-에폭시부틸트리메톡시실란, 4-에폭시부틸트리에톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것인 다중 표면 개질된 질화붕소.The second surface modifier is 3-epoxypropyltrimethoxysilane, 3-epoxypropyltriethoxysilane, 4-epoxybutyltrimethoxysilane, 4-epoxybutyltriethoxysilane, 3-glycidyloxypropyltrimeth The multi-surface modified boron nitride selected from the group consisting of oxysilane, and combinations thereof.
  12. 제11항에 있어서,The method of claim 11,
    상기 제2 표면 개질제는 말단에 글리시딜옥시기를 구비하는 3-글리시딜옥시프로필트리메톡시실란인 다중 표면 개질된 질화붕소.Wherein said second surface modifier is 3-glycidyloxypropyltrimethoxysilane having a glycidyloxy group at its terminus.
  13. 제1항에 있어서,The method of claim 1,
    상기 질화붕소 입자의 표면에 결합되고 말단에 알킬기를 함유하는 제3 표면 개질제를 더 포함하는 다중 표면 개질된 질화붕소.The multi-surface modified boron nitride further comprises a third surface modifier bonded to the surface of the boron nitride particles and containing an alkyl group at the end.
  14. 고분자 전구체(polymer precursor) 100 중량부, 제1항 내지 제13항 중 어느 한 항의 다중 표면 개질된 질화붕소 1 내지 80 중량부, 및 잔부의 용매를 포함하는 코팅용 조성물.A coating composition comprising 100 parts by weight of a polymer precursor, 1 to 80 parts by weight of the multi-surface modified boron nitride according to any one of claims 1 to 13, and a balance of a solvent.
  15. 제14항에 있어서,The method of claim 14,
    상기 고분자 전구체는 폴리에스테르, 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 에폭시 수지, 페놀 수지, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것인 코팅용 조성물.The polymer precursor is polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyetherimide, polyamide, poly A coating composition selected from the group consisting of amideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin, phenol resin, and combinations thereof.
  16. 전도성 와이어; 및Conductive wires; And
    상기 전도성 와이어 상에 형성되고 고분자 매트릭스 및 상기 고분자 매트릭스 내에 분산된 다중 표면 개질된 질화붕소를 함유하는 열전도성막을 포함하고,A thermally conductive film formed on the conductive wire and containing a polymer matrix and a multi-surface modified boron nitride dispersed in the polymer matrix,
    상기 다중 표면 개질된 질화붕소는 The multi-surface modified boron nitride is
    질화붕소 입자; 상기 질화붕소 입자의 표면에 결합되고 말단에 방향족기를 함유하는 제1 표면 개질제; 및 상기 질화붕소 입자의 표면에 결합되고 말단에 아민기 또는 에폭시기를 함유하는 제2 표면 개질제를 포함하는, 와이어. Boron nitride particles; A first surface modifier bonded to the surface of the boron nitride particles and containing an aromatic group at the terminal; And a second surface modifier bonded to the surface of the boron nitride particles and containing an amine group or an epoxy group at an end thereof.
  17. 제16항에 있어서,The method of claim 16,
    상기 고분자 매트릭스는 폴리에스테르, 폴리에스테르이미드, 폴리에스테르아미드, 폴리에스테르아미드이미드, (트리(2-하이드록시 에틸)이소시아누에이트 트리아크릴레이트)-폴리에스테르이미드, 폴리에테르이미드, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리우레탄, 폴리비닐포르말, 에폭시 수지 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것인 와이어.The polymer matrix is polyester, polyesterimide, polyesteramide, polyesteramideimide, (tri (2-hydroxyethyl) isocyanuate triacrylate) -polyesterimide, polyetherimide, polyamide, poly Wire selected from the group consisting of amideimide, polyimide, polyurethane, polyvinyl formal, epoxy resin and combinations thereof.
  18. 제16항에 있어서,The method of claim 16,
    상기 전도성 와이어와 상기 열전도성막 사이에,Between the conductive wire and the thermal conductive film,
    유기 절연 고분자를 포함하는 내부분방전성층을 더 포함하는 와이어.A wire further comprising an internal discharge layer comprising an organic insulating polymer.
  19. 제18항에 있어서,The method of claim 18,
    상기 내부분방전성층은 상기 유기 절연 고분자 내에 분산된 무기 나노필러를 더 포함하는 와이어.The internally dischargeable layer further includes an inorganic nanofiller dispersed in the organic insulating polymer.
  20. 제19항에 있어서,The method of claim 19,
    상기 무기 나노필러는 실리카, 티타니아, 알루미나, 지르코니아, 이트리아, 산화크롬, 산화 아연, 산화철, 클레이, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 와이어.Wherein said inorganic nanofiller is selected from the group consisting of silica, titania, alumina, zirconia, yttria, chromium oxide, zinc oxide, iron oxide, clay, and combinations thereof.
  21. 제16항에 있어서,The method of claim 16,
    상기 질화붕소 입자는 판상형의 입자이고,The boron nitride particles are plate-shaped particles,
    상기 질화붕소 입자의 판상면은 상기 전도성 와이어를 바라보는 와이어.The plate surface of the boron nitride particles is a wire facing the conductive wire.
  22. 제21항에 있어서,The method of claim 21,
    상기 질화붕소 입자의 판상면과 상기 전도성 와이어의 표면은 평행한 와이어.The plate surface of the boron nitride particles and the surface of the conductive wire is parallel wire.
  23. 제21항에 있어서,The method of claim 21,
    상기 질화붕소 입자의 판상면이 상기 전도성 와이어의 표면과 이루는 각은 상기 질화붕소 입자의 판상면이 상기 전도성 와이어의 표면에 수직한 수선과 이루는 각에 비해 작은 와이어.The angle at which the plate-shaped surface of the boron nitride particles forms with the surface of the conductive wire is smaller than the angle at which the plate-shaped surface of the boron nitride particles forms a perpendicular line to the surface of the conductive wire.
PCT/KR2015/009910 2014-09-22 2015-09-22 Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition WO2016047988A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140126118 2014-09-22
KR10-2014-0126118 2014-09-22
KR1020150130543A KR102262025B1 (en) 2014-09-22 2015-09-15 Surface-modified boron nitride, composition having the same dispersed within, and wire coated with the composition
KR10-2015-0130543 2015-09-15

Publications (1)

Publication Number Publication Date
WO2016047988A1 true WO2016047988A1 (en) 2016-03-31

Family

ID=55581444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009910 WO2016047988A1 (en) 2014-09-22 2015-09-22 Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition

Country Status (1)

Country Link
WO (1) WO2016047988A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337230A (en) * 2021-05-11 2021-09-03 广东创辉鑫材科技股份有限公司 High-thermal-conductivity semi-cured adhesive film for metal substrate and preparation method thereof
CN114956867A (en) * 2022-05-19 2022-08-30 青岛理工大学 Modified hexagonal boron nitride-silane composite emulsion, preparation method and application thereof, and concrete surface protection method
CN115521736A (en) * 2022-10-28 2022-12-27 江苏鸿佳电子科技有限公司 Composite film for LED packaging and preparation method thereof
CN115558243A (en) * 2022-10-12 2023-01-03 富地润滑科技股份有限公司 Friction modified epoxy resin composite material, preparation method thereof and friction structure
CN115928250A (en) * 2022-12-12 2023-04-07 南京众山电池电子有限公司 Preparation method and application of polyester fiber insulating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192500A (en) * 2000-01-12 2001-07-17 Edison Polymer Innovation Corp Surface-treated boron nitride for forming high thermal conductive polymer based boron nitride composition having low viscosity and method for forming the same composition
KR20070090113A (en) * 2006-03-01 2007-09-05 모멘티브 퍼포먼스 머티리얼즈 인크. Optical substrate comprising boron nitride particles
KR101269653B1 (en) * 2011-12-20 2013-05-30 세종대학교산학협력단 Inorganic nanofiller, partial discharge resistant enameled wire comprising the same, and preparing method of the enameled wire
KR20140013831A (en) * 2012-07-27 2014-02-05 황윤태 Conductive coating composition, conductive coating film and electric wire having excellent electromagnetic wave shielding property
KR101361396B1 (en) * 2006-01-06 2014-02-21 제너럴 일렉트릭 캄파니 Enhanced boron nitride composition and compositions made therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192500A (en) * 2000-01-12 2001-07-17 Edison Polymer Innovation Corp Surface-treated boron nitride for forming high thermal conductive polymer based boron nitride composition having low viscosity and method for forming the same composition
KR101361396B1 (en) * 2006-01-06 2014-02-21 제너럴 일렉트릭 캄파니 Enhanced boron nitride composition and compositions made therewith
KR20070090113A (en) * 2006-03-01 2007-09-05 모멘티브 퍼포먼스 머티리얼즈 인크. Optical substrate comprising boron nitride particles
KR101269653B1 (en) * 2011-12-20 2013-05-30 세종대학교산학협력단 Inorganic nanofiller, partial discharge resistant enameled wire comprising the same, and preparing method of the enameled wire
KR20140013831A (en) * 2012-07-27 2014-02-05 황윤태 Conductive coating composition, conductive coating film and electric wire having excellent electromagnetic wave shielding property

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337230A (en) * 2021-05-11 2021-09-03 广东创辉鑫材科技股份有限公司 High-thermal-conductivity semi-cured adhesive film for metal substrate and preparation method thereof
CN113337230B (en) * 2021-05-11 2022-03-15 广东创辉鑫材科技股份有限公司 High-thermal-conductivity semi-cured adhesive film for metal substrate and preparation method thereof
CN114956867A (en) * 2022-05-19 2022-08-30 青岛理工大学 Modified hexagonal boron nitride-silane composite emulsion, preparation method and application thereof, and concrete surface protection method
CN114956867B (en) * 2022-05-19 2023-03-03 青岛理工大学 Modified hexagonal boron nitride-silane composite emulsion, preparation method and application thereof, and concrete surface protection method
CN115558243A (en) * 2022-10-12 2023-01-03 富地润滑科技股份有限公司 Friction modified epoxy resin composite material, preparation method thereof and friction structure
CN115558243B (en) * 2022-10-12 2024-05-28 富地润滑科技股份有限公司 Friction modified epoxy resin composite material, preparation method thereof and friction structure
CN115521736A (en) * 2022-10-28 2022-12-27 江苏鸿佳电子科技有限公司 Composite film for LED packaging and preparation method thereof
CN115521736B (en) * 2022-10-28 2023-05-12 江苏鸿佳电子科技有限公司 Composite film for LED packaging and preparation method thereof
CN115928250A (en) * 2022-12-12 2023-04-07 南京众山电池电子有限公司 Preparation method and application of polyester fiber insulating material
CN115928250B (en) * 2022-12-12 2024-05-28 南京众山电池电子有限公司 Preparation method and application of polyester fiber insulating material

Similar Documents

Publication Publication Date Title
WO2016047988A1 (en) Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition
WO2015147449A1 (en) Electromagnetic wave shielding sheet and method for manufacturing same
Kim et al. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method
WO2017200310A1 (en) Wireless power transmission apparatus for vehicle
WO2015012427A1 (en) Heat-radiating sheet using graphene/graphite nanoplate/carbon nanotube/nanometal complex, and manufacturing method therefor
TW401374B (en) Heat conductive BN filler and electrically insulating/heat dissipating sheet
WO2017204565A1 (en) Insulating and heat dissipating coating composition, and insulating and heat dissipating unit formed thereby
WO2014030782A1 (en) Carbon fibre composite coated with silicon carbide, and production method for same
WO2017065340A1 (en) Method for manufacturing two-dimensional hybrid composite
WO2019112151A1 (en) Polyimide film having low permittivity and high thermal conductivity
KR101104390B1 (en) Manufacturing method of organic inorganic nanohybrid/nanocomposite varnish materials and the coated electrical wire
WO2019143000A1 (en) Highly thermally conductive polyimide film comprising two or more types of fillers
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
JP2021109971A (en) Silicone composite for high temperature insulation application
WO2020141925A1 (en) Method for manufacturing heat dissipation sheet
KR102262025B1 (en) Surface-modified boron nitride, composition having the same dispersed within, and wire coated with the composition
WO2020162668A1 (en) Thermosetting resin composition for semiconductor package, prepreg, and metal clad laminate
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
WO2020071588A1 (en) Method for producing polyamideimide film, and polyamideimide film produced therefrom
JP2713051B2 (en) Polyamic acid and polyimide resin, their production method, and semiconductor device protection material
JP3010982B2 (en) Insulation heat dissipation sheet
JPH06104542A (en) Metal base wiring board
WO2020075908A1 (en) Polyamic acid composition for producing polyimide resin with superior adhesion and polyimide resin produced therefrom
WO2023085808A1 (en) Composite film and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845060

Country of ref document: EP

Kind code of ref document: A1