WO2015068976A1 - Silicon carbide powder and method for preparing silicon carbide - Google Patents

Silicon carbide powder and method for preparing silicon carbide Download PDF

Info

Publication number
WO2015068976A1
WO2015068976A1 PCT/KR2014/010136 KR2014010136W WO2015068976A1 WO 2015068976 A1 WO2015068976 A1 WO 2015068976A1 KR 2014010136 W KR2014010136 W KR 2014010136W WO 2015068976 A1 WO2015068976 A1 WO 2015068976A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
silicon carbide
particles
peak
powder
Prior art date
Application number
PCT/KR2014/010136
Other languages
French (fr)
Korean (ko)
Inventor
김규미
조남태
류해윤
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2015068976A1 publication Critical patent/WO2015068976A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction

Definitions

  • the present invention relates to a silicon carbide powder and a method for producing silicon carbide.
  • Silicon carbide powder is generally manufactured and used by a method known as the Acheson process, which is a silicon carbide in alpha phase by thermochemical reduction at high temperature by electrodischarge by mixing silicon powder and carbon source. It is a manufacturing method of the silicon carbide powder which obtains (SiC) powder.
  • the silicon carbide powder thus prepared has the advantage that the raw material is inexpensive and advantageous for mass production, while it is difficult to control the size of the particles, for example, the particle size, so that an additional grinding process is needed to control the size of the particles.
  • it is necessary to carry out additional processes such as performing an additional acid treatment process because it is difficult to control the purity.
  • One embodiment of the present invention is to provide a method for producing silicon carbide having a uniform particle size distribution can obtain a cost reduction effect.
  • Another embodiment of the present invention provides a silicon carbide powder prepared by the method for producing silicon carbide showing a particle size distribution having two peak particle sizes at different particle sizes, including alpha phase particles and beta phase particles, Separation of silicon carbide powder, silicon carbide powder composed mainly of spherical beta-phase particles with nano-size average particle size, and silicon carbide powder composed mainly of spherical alpha-phase particles with average particle size of micrometer It is intended to provide each powder.
  • the raw material prepared by mixing the solid silicon (Si), the solid carbon (C) and the solid alpha phase silicon carbide (SiC) is prepared by heat treatment, alpha phase particles and beta phase particles It includes, and provides a silicon carbide powder having a bimodal distribution showing a peak at each of the first peak particle size and the second peak particle size.
  • the first peak particle size is in the range of 2 ⁇ m to 50 ⁇ m
  • the second peak particle size is in the range of 10 nm to 5 ⁇ m
  • the first peak particle size is greater than the second peak particle size
  • particles having a particle size of 0.5 to 2.5 of the first peak particle size may be 70 to 100% by volume.
  • particles having a particle size of 0.6 to 1.6 of the first peak particle size may be 75 to 85 volume%.
  • particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 70 to 100% by weight.
  • particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 75 to 85 volume%.
  • the volume ratio of particles having a particle size of 0.5 to 2.5 of the first peak particle size to particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 1: 9 to 9: 1.
  • the volume ratio of the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size to the particle size of the particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 1: 9 to 9: 1.
  • the content of the particles having the particle size of 0.5 to 2.5 of the first peak particle size and the second peak particle size may be 70 to 100% by volume of the total volume of the silicon carbide powder particles.
  • the content of the particles having the particle size of 0.6 to 1.6 of the first peak particle size and the second peak are present so as not to overlap each other, the content of the particles having the particle size of 0.6 to 1.6 of the first peak particle size and the second peak are The sum of the contents of the particles having a particle size of 0.4 to 2.3 of the particle size may be 75 to 85% by volume of the total volume of the silicon carbide powder particles.
  • the alpha-phase particles may be spherical, tetrahedral or plate-shaped silicon carbide having an aspect ratio of 1: 1 to 1: 4.
  • preparing a mixed raw material by mixing the solid silicon (Si), the solid carbon (C) and the solid alpha phase silicon carbide (SiC); And heat treating the mixed raw material, wherein the silicon carbide is reacted by the heat treatment, and the silicon carbide includes alpha phase particles and beta phase particles, and includes a first peak particle size and a second peak particle size.
  • a method for producing silicon carbide having a bimodal distribution each showing a peak at.
  • the above-mentioned silicon carbide powder may be produced by the silicon carbide manufacturing method, and the detailed description of the manufactured silicon carbide powder is as described above.
  • the solid alpha phase silicon carbide may be used a silicon carbide powder having an average particle size of 50nm to 50 ⁇ m.
  • Solid silicon As the solid silicon (Si), a silicon powder having an average particle size of 1 nm to 100 ⁇ m may be used.
  • the solid carbon (C) may be a carbon powder having an average particle size of 0.1nm to 10 ⁇ m.
  • Silicon powder is used as the solid silicon (Si), carbon powder is used as the solid carbon (C), and the average particle size of the silicon powder may be larger than the average particle size of the carbon powder.
  • the molar ratio of the silicon (Si) and the carbon (C) may be 1: 2 to 3: 1.
  • the content of the silicon carbide (SiC) in the mixed raw material may be 0.1 to 30 wt%.
  • the mixed raw material may not include silicon oxide.
  • the heat treatment may be performed at 900 to 2500 °C.
  • the heat treatment may be performed under an inert gas or vacuum atmosphere.
  • the method may further include grinding the obtained silicon carbide.
  • Separating the obtained silicon carbide using a sieve (sieve) or classifier may be further included.
  • the silicon carbide powder of the present invention can produce silicon carbide powder having a particle size distribution in which two peak particles exist at different particle sizes. At this time, one of the two peaks has a particle size of approximately nano size, mainly represented by spherical beta-phase particles, and the other peak has a particle size of approximately micrometer size and mainly represented by spherical alpha-phase particles. That is, one mixed raw material may be used to form particles having spherical shapes but different crystal phases.
  • It can be used as a raw material for sintering by separating only into silicon carbide powder having a particle size of approximately nano size and forming a peak mainly represented by spherical beta-phase particles, and having a particle size of approximately micro size, and mainly of a spherical alpha phase. It can be separated into only silicon carbide powder which forms the peak represented by the particles, and can be used for applications such as heat dissipating materials, inorganic fillers as structural materials, and the like.
  • FIG. 1 is a graph showing the particle size distribution of silicon carbide powders obtained in Example 1 and Comparative Example 1.
  • FIG. 1 is a graph showing the particle size distribution of silicon carbide powders obtained in Example 1 and Comparative Example 1.
  • FIG. 2 is an SEM image before pulverization and classification of the powder of silicon carbide prepared in Example 1.
  • FIG. 2 is an SEM image before pulverization and classification of the powder of silicon carbide prepared in Example 1.
  • FIG. 3 is an SEM image of silicon carbide powder having a size of 1 ⁇ m or less as a powder of silicon carbide prepared in Example 1.
  • FIG. 4 is a SEM photograph of silicon carbide powder having a size of 10 ⁇ m with powder of silicon carbide prepared in Example 1.
  • FIG. 4 is a SEM photograph of silicon carbide powder having a size of 10 ⁇ m with powder of silicon carbide prepared in Example 1.
  • the step of preparing a mixed raw material by mixing the solid silicon (Si), the solid carbon (C) and the solid alpha-phase silicon carbide (SiC); And heat-treating the mixed raw material.
  • the reaction is performed by the heat treatment to obtain silicon carbide.
  • the obtained silicon carbide contains alpha phase particles and beta phase particles, and has a bimodal distribution showing peaks at the first peak particle size and the second peak particle size, respectively.
  • the 'particle size' refers to the size of the particle, in this specification means the longest diameter in the particle in one particle.
  • the longest diameter means the longest distance among the distances between the two points defined while meeting the surface of the particle on one straight line among the straight lines passing through the center of gravity of the particle.
  • the particle size defined as described above may be measured by a laser diffraction particle size analyzer (Model: LS I3 320, manufactured by BECKMAN COULTER).
  • the silicon carbide production method of the present invention can produce silicon carbide powder having a particle size distribution in which two peak particle sizes, that is, a first peak particle size and a second peak particle size, exist at different particle sizes.
  • Peak particle size means a particle size corresponding to a peak of a graph
  • first peak particle size and second peak particle size are terms for distinguishing two peak particle sizes.
  • the first peak particle size is within about 2 ⁇ m to about 50 ⁇ m
  • the second peak particle size may be within about 10 nm to about 5 ⁇ m
  • the first peak particle size is greater than the second peak particle size
  • the peak formed around the first peak particle size is represented by the spherical alpha phase particles having a mean particle size of the micrometer size mainly among the silicon carbide particles, and the peak formed around the second peak particle size of the other is Among the silicon carbide particles, they are represented by spherical beta-phase particles having mainly nano-sized particle size.
  • the silicon carbide manufacturing method may be prepared using one mixed raw material to form particles having a spherical shape but having crystal phases of alpha phase and beta phase which are different crystal phases.
  • each peak present in the particle size distribution of the obtained silicon carbide powder is formed in a sharp shape, the silicon carbide powder formed into uniform particles having a narrow particle size distribution by separating and recovering powder particles distributed within a predetermined range around each peak particle size Can be obtained.
  • silicon carbide powder mainly formed of beta phase particles as silicon carbide powder having a relatively small average particle size while being formed of uniform particles having a narrow particle size distribution; While being formed into uniform particles having a narrow particle size distribution, silicon carbide powder mainly containing alpha phase particles can be obtained as silicon carbide powder having a relatively large average particle size.
  • a uniform silicon carbide powder having an average particle size in nano size units and a uniform silicon carbide powder having an average particle size in micrometer size units may be obtained, respectively.
  • Silicon carbide powder having a relatively small particle size for example, nano-sized particle size
  • silicon carbide powder having a relatively large particle size for example, a micrometer-size particle
  • the silicon carbide powder of small particle size and large particle size may be used without separating in a mixed state, and may also be used as an inorganic filler as a heat radiation material or a structural material.
  • a peak present at a relatively small particle size of the two peaks may have a sharper shape than other peaks, and is constant before and after the peak present at such a small particle size. It is possible to obtain a uniform silicon carbide powder having a very small particle size distribution while having a small particle size in the recovery by separating the powder particles distributed within the error range.
  • silicon carbide production method is of great significance both economically and commercially in that a uniform distribution of silicon carbide powder having a relatively small particle size, for example, a nano-sized particle size, can be obtained.
  • particles having a particle size of 0.5 to 2.5 of the first peak particle size with respect to the total content of the alpha phase particles may be 70 to 100% by volume.
  • the particles having a particle size of 0.6 to 1.6 of the first peak particle size may be 75 to 85 vol% based on the total content of the alpha phase particles of the silicon carbide powder prepared according to the present invention.
  • Silicon carbide powder having such a distribution means that the first peak is sharply formed, which also means that the powder forming the first peak, that is, the alpha phase particles are formed to have a uniform particle size.
  • particles having a particle size of 0.1 to 4.0 of the second peak particle size with respect to the total content of the beta phase particles may be 70 to 100% by volume.
  • the particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 75 to 85 vol% based on the total content of the beta phase particles of the silicon carbide powder prepared according to the present invention.
  • Silicon carbide powder having such a distribution means that the second peak is sharply formed, which also means that the powder forming the second peak, that is, the beta phase particles, is formed to have a uniform particle size.
  • the volume ratio of the content of particles having a particle size of 0.5 to 2.5 of the first peak particle size to the particle size of particles having a particle size of 0.1 to 4.0 of the second peak particle size May be from 1: 9 to 9: 1.
  • the volume ratio of particles having a particle size of 0.6 to 1.6 of the first peak particle size and particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 1: 9 to 9: 1.
  • the first peak when the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, the first peak
  • the sum of the content of the particles having a particle size of 0.5 to 2.5 and the content of the particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 70 to 100% by volume of the total volume of the silicon carbide powder particles.
  • the sum of the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size and the content of the particles having a particle size of 0.4 to 2.3 of the second peak particle size is 75 to 85 of the total volume of the silicon carbide powder particles. Volume%.
  • the silicon carbide production method is a method in which the direct carbonization method of mixing SiC as a raw material is applied, and a method of effectively obtaining uniform silicon carbide powder with a small particle size.
  • the silicon carbide manufacturing method is a method of applying the direct carbonization method, the recovery rate is much higher than that of the low carbon recovery method.
  • the direct carbonization method there is a disadvantage in that the particle size distribution of the obtained silicon carbide is very wide, and the method of manufacturing the silicon carbide solves this problem and can obtain a uniform silicon carbide having a high recovery rate and a narrow particle size distribution at the same time. to be.
  • the silicon carbide manufacturing method may have a recovery of about 99 wt% or more.
  • Solid silicon (Si) in the mixed raw material may be a silicon powder having an average particle size of about 1nm to about 100 ⁇ m.
  • carbon (C) in the mixed raw material may be carbon black, graphite powder, or the like, and for example, carbon powder having an average particle size of about 0.1 nm to about 10 ⁇ m may be used.
  • the average particle size of the silicon powder in the mixed raw material may be larger than the average particle size of the carbon powder.
  • the molar ratio of the silicon (Si) and the carbon (C) in the mixed raw material may be about 1: 2 to about 3: 1.
  • the alpha-phase silicon carbide may be used a silicon carbide powder having an average particle size of about 50nm to about 50 ⁇ m.
  • the silicon carbide manufacturing method uses the alpha-phase silicon carbide (SiC) together with silicon (Si) and carbon (C) as a raw material, and the alpha-phase silicon carbide (SiC) acts as a seed (seed) It is possible to form a particle size distribution with two peaks as described above.
  • the stable beta-phase SiC crystals are particles that are distributed at peaks present on the lower particle size side of the above-described silicon carbide particle size distribution, and the alpha-phase SiC crystals formed by depositing an unstable SiC gas on the alpha-phase SiC crystals have the aforementioned silicon carbide particle size distribution It becomes the particle
  • the particles formed by the beta-phase SiC crystals are usually spherical, the particles distributed at the peak present on the lower particle size side of the silicon carbide particle size distribution described above have a spherical beta-shaped SiC crystal structure.
  • the particles formed by the alpha-phase SiC crystals are usually not spherical, but the particles distributed at the peaks present on the larger particle size side of the silicon carbide particle size distribution described above have a spherical alpha-phase SiC crystal structure. This is because, as can be seen from the above-described production mechanism, the SiC gas which is unstable in the alpha phase SiC crystal was formed by deposition. Accordingly, the silicon carbide production method has the advantage that the alpha phase particles can obtain spherical silicon carbide particles while having SiC crystals.
  • the term 'spherical' in the present invention encompasses not only the case where the cross section has a perfect circle but also the case where it has an ellipse, that is, usually seen in the form of a sphere.
  • the alpha phase particles according to the present invention may have a tetrahedron or an aspect ratio of 1: 1 to 1: 4.
  • Silicon carbide powder having a spherical, tetrahedron or plate-shaped particle shape having an aspect ratio of 1: 1 to 1: 4 or less may have a higher packing density than an amorphous silicon carbide powder prepared through a grinding process.
  • the silicon carbide powder or alpha-phase particles and beta containing mainly the alpha-phase particles obtained according to the present invention.
  • heat dissipation characteristics of the heat dissipation product may be further improved.
  • the mixed raw material includes silicon oxides other than silicon (Si)
  • carbon monoxide (CO) may be produced, and carbon monoxide (CO) may provide a thermal diffusion path so that no local exothermic sites are formed.
  • an unstable SiC gas cannot be produced. Therefore, in this case, it becomes impossible to obtain silicon carbide in which two peaks exist in the particle size distribution.
  • the silicon carbide production method does not include silicon oxide in the mixed raw material.
  • the content of the silicon carbide (SiC) in the mixed raw material may be about 0.1 to about 30% by weight. According to the content of silicon carbide (SiC) contained in the mixed raw material, the peak shape of the obtained silicon carbide particle size distribution can be adjusted.
  • the meaning of adjusting the peak shape of the obtained silicon carbide means, for example, the content ratio of the small particle size silicon carbide particles to the large particle size silicon carbide particles, the degree to which each peak is sharp, that is, the uniformity of the particles distributed near each peak. It may mean that the sex and the like are controlled.
  • Heat treatment in the silicon carbide manufacturing method may be performed at about 900 to about 2500 °C, specifically about 1000 to about 1950 °C. Since the heat treatment temperature is relatively low, the silicon carbide manufacturing method is cost-effective in terms of economy.
  • the crystal type of silicon carbide obtained is formed in a beta-phase low-temperature stable phase, whereas the crystal type of silicon carbide obtained by the silicon carbide production method, as described above, The low temperature stable phase of the beta phase is formed together.
  • the particles present near the large particle size peak are formed as the high temperature stable phase of the alpha phase, and are located near the low particle size peak. Particles present in the tendency to be formed in the beta-phase low temperature stable phase.
  • the heat treatment may be performed under an inert gas such as argon, hydrogen, nitrogen, or a vacuum atmosphere.
  • the silicon carbide production method has an advantage of shortening the heat treatment time.
  • the heat treatment time may be about 1 minute to about 300 minutes.
  • the silicon carbide obtained by the silicon carbide production method can be obtained in the form of aggregated particles, it can be ground by milling to separate such aggregated particles.
  • Milling methods are known as ball mills, planetary mills, attrition mills, spec mills, beads mills, jet mills, etc. The method may be used without limitation.
  • the silicon carbide manufacturing method may further include grinding the obtained silicon carbide.
  • Containers such as jars used for grinding, milling media, etc. may be made of SiC material.
  • the pulverized particles may be separated by using a sieve or a classifier to separate the particles about the particle size of each peak forming the two peaks.
  • the sieve may be metal sieve or poly sieve, and the classifier may be a dry classifier or a wet classifier.
  • the silicon carbide production method may further include separating the silicon carbide obtained by using a sieve or classifier.
  • the raw material prepared by mixing the solid silicon (Si), solid carbon (C) and solid phase alpha carbide (SiC) is prepared by heat treatment, alpha phase particles and beta phase particles It includes, and provides a silicon carbide powder having a bimodal distribution showing a peak at each of the first peak particle size and the second peak particle size.
  • the silicon carbide powder is prepared by the above-described method for producing silicon carbide powder, and the detailed description is as described above.
  • the silicon carbide powder has a particle size distribution in which two peak particle sizes, that is, a first peak particle size and a second peak particle size, exist at different particle sizes.
  • the first peak particle size and the second peak particle size mean particle sizes corresponding to peaks.
  • the first peak particle size may be present in the range of 2 ⁇ m to 50 ⁇ m, the second peak particle size may exist in the range of 10 nm to 5 ⁇ m, and the first peak particle size may be larger than the second peak particle size.
  • the particles having a particle size of 0.5 to 2.5 of the first peak particle size with respect to the total content of the alpha phase particles may be 70 to 100% by volume.
  • the particles having a particle size of 0.6 to 1.6 of the first peak particle size may be 75 to 85 vol% based on the total content of the alpha phase particles of the silicon carbide powder prepared according to the present invention.
  • the particles having a particle size of 0.1 to 4.0 of the second peak particle size with respect to the total content of the beta-phase particles may be 70 to 100% by volume.
  • the particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 75 to 85 vol% based on the total content of the beta phase particles of the silicon carbide powder prepared according to the present invention.
  • the volume ratio of the content of particles having a particle size of 0.5 to 2.5 of the first peak particle size to the particle size of the particles having a particle size of 0.1 to 4.0 of the second peak particle size is 1: 9. To 9: 1.
  • the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size when the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, 0.5 to of the first peak particle size
  • the sum of the content of the particles having a particle size of 2.5 and the content of the particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 70 to 100% by volume of the total volume of the silicon carbide powder particles.
  • the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size when the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, 0.5 to of the first peak particle size
  • the sum of the content of the particles having a particle size of 2.5 and the content of the particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 75 to 85% by volume of the total volume of the silicon carbide powder particles.
  • the silicon carbide powder has an advantage of including spherical or tetrahedral or plate-shaped silicon carbide particles having an aspect ratio of 1: 1 to 1: 4 while having an alpha phase SiC crystal.
  • Si powder having an average particle size of 50 ⁇ m, carbon black having an average particle size of 30 nm, and silicon carbide powder having an average particle size of 10 ⁇ m were prepared.
  • Si powder, carbon black, and silicon carbide seed thus prepared were mixed to prepare a mixed raw material.
  • the mixing molar ratio of the Si powder and the carbon black was mixed at 1.15: 1, and the silicon carbide seed was added so as to be 15 wt% in the total content of the mixed raw materials and mixed uniformly.
  • the mixed raw material powder thus mixed was put into a graphite crucible and heat-treated at 1700 ° C. for 2 hours under an argon atmosphere to obtain silicon carbide powder.
  • the obtained silicon carbide powder was observed to have some agglomeration formed and pulverized by ball milling at 350 rpm for 15 hours to separate this agglomeration.
  • the silicon carbide powder separated by ball milling was recovered through a sieve, and the recovery rate of the powder thus recovered was 99 wt%.
  • Si powder having an average particle size of 30 ⁇ m, carbon black having an average particle size of 30 nm, and alpha phase silicon carbide powder having an average particle size of 1 ⁇ m were prepared.
  • Si powder, carbon black, and silicon carbide seed thus prepared were mixed to prepare a mixed raw material.
  • the molar ratio of Si powder and carbon black in the raw material is 1: 1.25, and silicon carbide seed is added so as to be 5 wt% of the total content of the mixed raw material.
  • the mixed raw powder is mixed in a graphite crucible for 1 hour at 1200 ° C. Heat treatment under argon atmosphere afforded silicon carbide powder.
  • the obtained silicon carbide powder was observed to have some agglomeration formed and pulverized by ball milling at 350 rpm for 15 hours to separate this agglomeration.
  • the silicon carbide powder separated by ball milling was recovered through a sieve, and the recovery rate of the powder thus recovered was 99 wt%.
  • Si powder having an average particle size of 100 ⁇ m, carbon black having an average particle size of 30 nm, and silicon carbide powder having an average particle size of 30 ⁇ m were prepared.
  • Si powder, carbon black, and silicon carbide seed thus prepared were mixed to prepare a mixed raw material.
  • the Si powder and carbon black were mixed in a mixing molar ratio of 2: 1, and the silicon carbide seed was added to be 30 wt% in the total content of the mixed raw materials and mixed uniformly.
  • the mixed raw material powder thus mixed was put into a graphite crucible and heat-treated at 1900 ° C. for 5 hours in an argon atmosphere to obtain silicon carbide powder.
  • Silicon carbide powder was prepared in the same manner as in Example 1 except that no silicon carbide seed was added.
  • the particle size of the silicon carbide powder obtained in Examples 1-3 and Comparative Example 1 was measured using LS 13 320, BECKMAN COULTER. The distribution is shown in FIG. 1 graphically, and the first peak particle size and the second peak particle size (including when one peak appears) appearing in the graph peaks are shown in Table 1 below.
  • Example 1-3 the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size was measured with respect to the total volume of the prepared particles, and the results are shown in Table 2 below.
  • Example 1-3 the content of the particles having a particle size of 0.4 to 2.3 of the second peak particle size with respect to the total volume of the prepared particles was measured, the results are shown in Table 2 below.
  • FIG. 1 is a graph showing the particle size distribution of silicon carbide powders obtained in Example 1 and Comparative Example 1.
  • FIG. 1 is a graph showing the particle size distribution of silicon carbide powders obtained in Example 1 and Comparative Example 1.
  • the particle size distribution represented by the silicon carbide powder prepared in Comparative Example 1 is nonuniformly formed through wide distribution. Specifically, it can be seen that the powder of silicon carbide obtained in Comparative Example 1, although having an average particle size in the vicinity of about 10 um, only appears as a single peak and has a very wide particle size distribution over a particle size range of 0.1 um to 250 um. Can be.
  • the particle size distribution of the silicon carbide powder prepared in Example 1 shows a bimodal distribution graph in which peaks are present at particle sizes of 1 ⁇ m or less and at particle sizes of about 10 ⁇ m, respectively, and each peak forms a sharp curve. It can be seen that the particle size is uniformly formed before and after each peak.
  • beta-phase particles having a particle size of about 1 micrometer or less the size of which can be used for sintering by the method of Example 1
  • alpha-particles having a particle size of about 10 micrometers which can be used as a heat dissipation material
  • the sum of the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size and the particles having a particle size of 0.4 to 2.3 of the second peak particle size is about 80% by volume based on the total volume of the silicon carbide powder prepared. Able to know.
  • the particle size distribution diagram of the silicon carbide powders prepared in Examples 2 and 3 has a bimodal distribution in which peaks appear at two peak particle sizes, and each of these graphs is also shown in the example of FIG. It has a tendency similar to the particle size distribution of the silicon carbide powder prepared in step 1. From the results in Table 2, at least about 80% by volume of the total volume of the silicon carbide powder prepared is particles having a particle size of 0.6 to 1.6 of the first peak particle size and particles having a particle size of 0.4 to 2.3 of the second peak particle size. It can be seen that consists of. In addition, also in Examples 2 and 3, it can be seen that the particle size distribution formed a sharp curve of the peak at each of the two peak particle size, so that the particle size was uniformly formed before and after each peak.
  • Examples 1 to 3 by producing a silicon carbide powder using a mixed raw material containing silicon carbide seeds, it is possible to uniformly control the size of the silicon carbide powder, and to have a bimodal distribution having a uniform particle size distribution It could be confirmed that silicon powder was prepared.
  • FIG. 2 is an SEM image before pulverization and classification of the powder of silicon carbide prepared in Example 1.
  • FIG. 2 is an SEM image before pulverization and classification of the powder of silicon carbide prepared in Example 1.
  • FIG. 3 is an SEM image of silicon carbide powder having a size of 1 ⁇ m or less as a powder of silicon carbide prepared in Example 1.
  • FIG. 3 it can be seen that particles having beta-shaped spherical crystals are formed as silicon carbide powder prepared according to the production method of the present invention.
  • FIG. 4 is a SEM photograph of silicon carbide powder having a size of 10 ⁇ m with powder of silicon carbide prepared in Example 1.
  • FIG. 4 particles having an alpha phase spherical crystal can be identified.

Abstract

The present invention provides a method for preparing a silicon carbide, the method comprising the steps of: preparing a mixed raw material by mixing solid-phase silicon (Si), solid-phase carbon (C) and alpha-phase silicon carbide (SiC) of solid phase; and heat-treating the mixed raw material. A silicon carbide is obtained by the heat-treatment, and the resulting silicon carbide comprises alpha-phase particles and beta-phase particles and has a bimodal particle size distribution showing a peak in each of the first peak particle size and the second peak particle size.

Description

탄화규소 분말 및 탄화규소 제조 방법Silicon Carbide Powder and Silicon Carbide Manufacturing Method
본 발명은 탄화규소 분말 및 탄화규소 제조 방법에 관한 것이다.The present invention relates to a silicon carbide powder and a method for producing silicon carbide.
탄화규소 분말은 일반적으로 애치슨 공정 (Acheson process)으로 알려진 방법에 의해 제조되어 사용되고 있고, 상기 방법은 규소 분말과 탄소원을 혼합하여 전기방전으로 고온에서 열화학환원반응(carbothermal reduction)에 의해 알파상의 탄화규소(SiC) 분말을 얻는 탄화규소 분말의 제조 방법이다. Silicon carbide powder is generally manufactured and used by a method known as the Acheson process, which is a silicon carbide in alpha phase by thermochemical reduction at high temperature by electrodischarge by mixing silicon powder and carbon source. It is a manufacturing method of the silicon carbide powder which obtains (SiC) powder.
이렇게 제조된 탄화규소 분말은 원료 물질의 가격이 저렴하고 대량생산에 유리하다는 장점이 있는 반면, 입자의 크기, 예를 들어, 입도를 제어하기 어렵기 때문에, 입자의 크기를 제어하기 위해서는 추가적인 분쇄 과정을 필요로 하거나, 순도 제어가 어렵기 때문에 고순도 분말을 얻기 위해서 추가적인 산 처리 공정을 수행하는 등의 추가 공정이 수반되어야 한다. 또한, 나노 사이즈의 탄화규소 분말을 합성하기 어렵다.The silicon carbide powder thus prepared has the advantage that the raw material is inexpensive and advantageous for mass production, while it is difficult to control the size of the particles, for example, the particle size, so that an additional grinding process is needed to control the size of the particles. In order to obtain high-purity powder, it is necessary to carry out additional processes such as performing an additional acid treatment process because it is difficult to control the purity. In addition, it is difficult to synthesize nano-size silicon carbide powder.
본 발명의 일 구현예는 균일한 입도 분포를 가지면서 비용 절감 효과를 얻을 수 있는 탄화규소 제조 방법을 제공하고자 한다.One embodiment of the present invention is to provide a method for producing silicon carbide having a uniform particle size distribution can obtain a cost reduction effect.
본 발명의 다른 구현예는 상기 탄화규소 제조 방법에 의해 제조되어 서로 다른 입도에서 2개의 피크 입도를 갖는 입도 분포를 나타내고, 알파상 입자들 및 베타상 입자들 포함하는 탄화규소 분말을 제공하고, 상기 탄화규소 분말을 분리하여, 나노 사이즈의 평균 입도를 가지면서 주로 구형의 베타상 입자들로 이루어진 탄화규소 분말과, 마이크로미터 사이즈의 평균 입도를 가지면서, 주로 구형의 알파상 입자들로 이루어진 탄화규소 분말을 각각 제공하고자 한다.Another embodiment of the present invention provides a silicon carbide powder prepared by the method for producing silicon carbide showing a particle size distribution having two peak particle sizes at different particle sizes, including alpha phase particles and beta phase particles, Separation of silicon carbide powder, silicon carbide powder composed mainly of spherical beta-phase particles with nano-size average particle size, and silicon carbide powder composed mainly of spherical alpha-phase particles with average particle size of micrometer It is intended to provide each powder.
본 발명의 일 구현예에서, 고상의 규소(Si), 고상의 탄소(C) 및 고상의 알파상 탄화규소(SiC)를 혼합하여 준비된 혼합 원료를 열처리하여 제조되고, 알파상 입자와 베타상 입자를 포함하며, 제1 피크 입도 및 제2 피크 입도에서 각각 피크를 나타내는 이봉 분포를 갖는 탄화규소 분말을 제공한다.In one embodiment of the present invention, the raw material prepared by mixing the solid silicon (Si), the solid carbon (C) and the solid alpha phase silicon carbide (SiC) is prepared by heat treatment, alpha phase particles and beta phase particles It includes, and provides a silicon carbide powder having a bimodal distribution showing a peak at each of the first peak particle size and the second peak particle size.
상기 제1 피크 입도는 2㎛ 내지 50㎛ 내에 존재하고, 상기 제2 피크 입도는 10nm 내지 5㎛ 범위 내에 존재하고, 상기 제1 피크 입도가 상기 제2 피크 입도보다 크다.The first peak particle size is in the range of 2 μm to 50 μm, the second peak particle size is in the range of 10 nm to 5 μm, and the first peak particle size is greater than the second peak particle size.
상기 알파상 입자의 전체 부피에 대해서, 상기 제1 피크 입도의 0.5 내지 2.5인 입도를 갖는 입자들이 70 내지 100 부피%일 수 있다. Regarding the total volume of the alpha phase particles, particles having a particle size of 0.5 to 2.5 of the first peak particle size may be 70 to 100% by volume.
상기 알파상 입자의 전체 부피에 대해서, 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들이 75 내지 85 부피% 일 수 있다. Regarding the total volume of the alpha phase particles, particles having a particle size of 0.6 to 1.6 of the first peak particle size may be 75 to 85 volume%.
상기 베타상 입자의 전체 부피에 대해서, 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들이 70 내지 100 중량% 일 수 있다. With respect to the total volume of the beta-phase particles, particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 70 to 100% by weight.
상기 베타상 입자의 전체 부피에 대해서, 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들이 75 내지 85 부피% 일 수 있다. Regarding the total volume of the beta-phase particles, particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 75 to 85 volume%.
상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1 일 수 있다. The volume ratio of particles having a particle size of 0.5 to 2.5 of the first peak particle size to particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 1: 9 to 9: 1.
상기 제1 피크 입도의 0.6 내지 1.6 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1 일 수 있다. The volume ratio of the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size to the particle size of the particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 1: 9 to 9: 1.
상기 제1 피크 입도의 0.5 내지 2.5 입도와 상기 제2 피크 입도의 0.1 내지 4.0인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 70 내지 100 부피% 일 수 있다. When the particle size of 0.5 to 2.5 of the first peak particle size and the particle size of 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, the content of the particles having the particle size of 0.5 to 2.5 of the first peak particle size and the second peak The sum of the contents of the particles having a particle size of 0.1 to 4.0 of the particle size may be 70 to 100% by volume of the total volume of the silicon carbide powder particles.
상기 제1 피크 입도의 0.6 내지 1.6 입도와 상기 제2 피크 입도의 0.4 내지 2.3인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.6 내지 1.6 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 75 내지 85 부피% 일 수 있다. When the particle size of 0.6 to 1.6 of the first peak particle size and the particle size of 0.4 to 2.3 of the second peak particle size are present so as not to overlap each other, the content of the particles having the particle size of 0.6 to 1.6 of the first peak particle size and the second peak are The sum of the contents of the particles having a particle size of 0.4 to 2.3 of the particle size may be 75 to 85% by volume of the total volume of the silicon carbide powder particles.
상기 알파상 입자는 구형, 14면체 또는 종횡비(aspect ratio)가 1:1 내지 1:4인 판상의 탄화규소 일 수 있다.The alpha-phase particles may be spherical, tetrahedral or plate-shaped silicon carbide having an aspect ratio of 1: 1 to 1: 4.
본 발명의 다른 구현예에서, 고상의 규소(Si), 고상의 탄소(C) 및 고상의 알파상 탄화규소(SiC)를 혼합하여 혼합 원료를 준비하는 단계; 및 상기 혼합 원료를 열처리하는 단계;를 포함하고, 상기 열처리에 의해 반응하여 탄화규소가 얻어지고, 상기 얻어진 탄화규소는 알파상 입자와 베타상 입자를 포함하고, 제1 피크 입도 및 제2 피크 입도에서 각각 피크를 나타내는 이봉 분포를 갖는 탄화규소 제조 방법을 제조한다.In another embodiment of the present invention, preparing a mixed raw material by mixing the solid silicon (Si), the solid carbon (C) and the solid alpha phase silicon carbide (SiC); And heat treating the mixed raw material, wherein the silicon carbide is reacted by the heat treatment, and the silicon carbide includes alpha phase particles and beta phase particles, and includes a first peak particle size and a second peak particle size. To prepare a method for producing silicon carbide having a bimodal distribution each showing a peak at.
상기 탄화규소 제조 방법에 의해 전술한 탄화규소 분말을 제조할 수 있고, 제조된 탄화규소 분말에 관한 상세한 설명은 전술한 바와 같다.The above-mentioned silicon carbide powder may be produced by the silicon carbide manufacturing method, and the detailed description of the manufactured silicon carbide powder is as described above.
상기 고상의 알파상 탄화규소(SiC)는 50nm 내지 50㎛의 평균 입도를 갖는 탄화규소 분말을 사용할 수 있다.The solid alpha phase silicon carbide (SiC) may be used a silicon carbide powder having an average particle size of 50nm to 50㎛.
상기 고상의 규소(Si)는 1nm 내지 100㎛의 평균 입도를 갖는 규소 분말을 사용할 수 있다.As the solid silicon (Si), a silicon powder having an average particle size of 1 nm to 100 μm may be used.
상기 고상의 탄소(C)는 0.1nm 내지 10㎛의 평균 입도를 갖는 탄소 분말을 사용할 수 있다.The solid carbon (C) may be a carbon powder having an average particle size of 0.1nm to 10㎛.
상기 고상의 규소(Si)로서 규소 분말을 사용하고, 고상의 탄소(C)로서 탄소 분말을 사용하며, 상기 규소 분말의 평균 입도가 상기 탄소 분말의 평균 입도보다 클 수 있다.Silicon powder is used as the solid silicon (Si), carbon powder is used as the solid carbon (C), and the average particle size of the silicon powder may be larger than the average particle size of the carbon powder.
상기 규소(Si) 및 상기 탄소(C)의 몰비가 1:2 내지 3:1일 수 있다.The molar ratio of the silicon (Si) and the carbon (C) may be 1: 2 to 3: 1.
상기 혼합 원료 중 상기 탄화규소(SiC)의 함량은 0.1 내지 30 wt%일 수 있다.The content of the silicon carbide (SiC) in the mixed raw material may be 0.1 to 30 wt%.
상기 혼합 원료가 규소 산화물을 포함하지 않을 수 있다.The mixed raw material may not include silicon oxide.
상기 열처리는 900 내지 2500℃에서 수행할 수 있다.The heat treatment may be performed at 900 to 2500 ℃.
상기 열처리는 불활성 가스 또는 진공 분위기 하에서 수행할 수 있다.The heat treatment may be performed under an inert gas or vacuum atmosphere.
상기 얻어진 탄화규소를 분쇄하는 단계를 더 포함할 수 있다.The method may further include grinding the obtained silicon carbide.
상기 얻어진 탄화규소를 시브(sieve) 또는 분급기를 사용하여 분리하는 단계를 더 포함할 수 있다.Separating the obtained silicon carbide using a sieve (sieve) or classifier may be further included.
본 발명의 탄화규소 제조 방법에 의해서 서로 다른 입도에서 2개의 피크 입도가 존재하는 입도 분포를 갖는 탄화규소 분말을 제조할 수 있다. 이때, 2개 중 하나의 피크는 대략 나노 사이즈의 입도를 갖고, 주로 구형의 베타상 입자에 의해 나타나고, 다른 하나의 피크는 대략 마이크로미터 사이즈의 입도를 갖고 주로 구형의 알파상 입자에 의해 나타난다. 즉, 하나의 혼합 원료를 이용하여 구형을 가지되 서로 다른 결정상을 갖는 입자들이 형성되도록 제조할 수 있다.The silicon carbide powder of the present invention can produce silicon carbide powder having a particle size distribution in which two peak particles exist at different particle sizes. At this time, one of the two peaks has a particle size of approximately nano size, mainly represented by spherical beta-phase particles, and the other peak has a particle size of approximately micrometer size and mainly represented by spherical alpha-phase particles. That is, one mixed raw material may be used to form particles having spherical shapes but different crystal phases.
대략 나노 사이즈의 입도를 갖고, 주로 구형의 베타상 입자에 의해 나타나는 피크를 형성하는 탄화규소 분말로만 분리하여 신터링의 원료 등으로 사용될 수 있고, 대략 마이크로 사이즈의 입도를 갖고, 주로 구형의 알파상 입자에 의해 나타나는 피크를 형성하는 탄화규소 분말로만 분리하여 방열 재료, 구조 재료로서의 무기 필러 등의 용도로 사용될 수 있다.It can be used as a raw material for sintering by separating only into silicon carbide powder having a particle size of approximately nano size and forming a peak mainly represented by spherical beta-phase particles, and having a particle size of approximately micro size, and mainly of a spherical alpha phase. It can be separated into only silicon carbide powder which forms the peak represented by the particles, and can be used for applications such as heat dissipating materials, inorganic fillers as structural materials, and the like.
도 1은 실시예 1 및 비교예 1에서 얻어진 탄화규소 분말의 입도 분포를 나타낸 그래프이다.1 is a graph showing the particle size distribution of silicon carbide powders obtained in Example 1 and Comparative Example 1. FIG.
도 2는 실시예 1에서 제조된 탄화규소의 분말의 분쇄 및 분급 전의 SEM 이미지이다.FIG. 2 is an SEM image before pulverization and classification of the powder of silicon carbide prepared in Example 1. FIG.
도 3은 실시예 1에서 제조된 탄화규소의 분말로 1㎛ 이하의 크기를 갖는 탄화규소 분말의 SEM 이미지이다. 3 is an SEM image of silicon carbide powder having a size of 1 μm or less as a powder of silicon carbide prepared in Example 1. FIG.
도 4는 실시예 1에서 제조된 탄화규소의 분말로 10㎛의 크기를 갖는 탄화규소 분말의 SEM 사진이다.4 is a SEM photograph of silicon carbide powder having a size of 10 μm with powder of silicon carbide prepared in Example 1. FIG.
도 5는 비교예 1에서 제조된 탄화규소의 분말의 SEM 사진이다.5 is a SEM photograph of the powder of silicon carbide prepared in Comparative Example 1.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에서, 고상의 규소(Si), 고상의 탄소(C) 및 고상의 알파상 탄화규소(SiC)를 혼합하여 혼합 원료를 준비하는 단계; 및 상기 혼합 원료를 열처리하는 단계;를 포함하는 탄화규소 제조 방법을 제공한다.In one embodiment of the present invention, the step of preparing a mixed raw material by mixing the solid silicon (Si), the solid carbon (C) and the solid alpha-phase silicon carbide (SiC); And heat-treating the mixed raw material.
상기 탄화규소 제조 방법에 있어서, 상기 열처리에 의해 반응하여 탄화규소가 얻어진다. 이때, 상기 얻어진 탄화규소는 알파상 입자와 베타상 입자를 포함하고, 제1 피크 입도 및 제2 피크 입도에서 각각 피크를 나타내는 이봉 분포를 갖는다.In the silicon carbide production method, the reaction is performed by the heat treatment to obtain silicon carbide. At this time, the obtained silicon carbide contains alpha phase particles and beta phase particles, and has a bimodal distribution showing peaks at the first peak particle size and the second peak particle size, respectively.
상기 '입도'는 입자의 크기를 의미하고, 본 명세서에서는 하나의 입자에서 입자 내의 최장 직경을 의미한다. 상기 최장 직경이란 입자의 무게 중심을 지나는 직선들 중 일 직선 상에서 입자의 표면과 만나면서 정의되는 2개의 지점들 사이의 거리들 중에서 가장 긴 거리를 의미한다. The 'particle size' refers to the size of the particle, in this specification means the longest diameter in the particle in one particle. The longest diameter means the longest distance among the distances between the two points defined while meeting the surface of the particle on one straight line among the straight lines passing through the center of gravity of the particle.
구체적으로, 상기와 같이 정의된 입도는 레이저 회절 입자 크기 분석기 (Laser Diffraction Particle Size Analyzer, 모델명: LS I3 320, BECKMAN COULTER 제조)에 의해 측정될 수 있다. Specifically, the particle size defined as described above may be measured by a laser diffraction particle size analyzer (Model: LS I3 320, manufactured by BECKMAN COULTER).
본 발명의 탄화규소 제조 방법에 의해서 서로 다른 입도에서 2개의 피크 입도, 즉, 제1 피크 입도 및 제2 피크 입도가 존재하는 입도 분포를 갖는 탄화규소 분말을 제조할 수 있다. "피크 입도"는 그래프의 피크에 해당하는 입도를 의미하고, "제1 피크 입도" 및 "제2 피크 입도"는 2개의 피크 입도를 구분하기 위한 용어이다.The silicon carbide production method of the present invention can produce silicon carbide powder having a particle size distribution in which two peak particle sizes, that is, a first peak particle size and a second peak particle size, exist at different particle sizes. "Peak particle size" means a particle size corresponding to a peak of a graph, and "first peak particle size" and "second peak particle size" are terms for distinguishing two peak particle sizes.
상기 제1 피크 입도는 약 2㎛ 내지 약 50㎛ 내에 존재하고, 상기 제2 피크 입도는 약 10nm 내지 약 5㎛ 범위 내에 존재할 수 있으며, 상기 제1 피크 입도가 상기 제2 피크 입도보다 크다.The first peak particle size is within about 2 μm to about 50 μm, the second peak particle size may be within about 10 nm to about 5 μm, and the first peak particle size is greater than the second peak particle size.
상기 제1 피크 입도를 중심으로 형성하는 피크는 탄화규소 입자 중 나타나고 주로 마이크로미터 사이즈의 평균 입도를 갖는 구형의 알파상 입자에 의해 나타나고, 다른 하나의 상기 제2 피크 입도를 중심으로 형성하는 피크는 탄화규소 입자 중 주로 나노 사이즈의 입도를 갖는 구형의 베타상 입자에 의해 나타난다. 이와 같이, 상기 탄화규소 제조 방법은 하나의 혼합 원료를 이용하여 구형을 가지되 서로 다른 결정상인 알파상 및 베타상의 결정상을 갖는 입자들이 형성되도록 제조할 수 있다.The peak formed around the first peak particle size is represented by the spherical alpha phase particles having a mean particle size of the micrometer size mainly among the silicon carbide particles, and the peak formed around the second peak particle size of the other is Among the silicon carbide particles, they are represented by spherical beta-phase particles having mainly nano-sized particle size. As described above, the silicon carbide manufacturing method may be prepared using one mixed raw material to form particles having a spherical shape but having crystal phases of alpha phase and beta phase which are different crystal phases.
얻어진 탄화규소 분말의 입도 분포에 존재하는 각 피크는 샤프한 형상으로 형성되므로, 각 피크 입도를 중심으로 일정 범위 내에 분포하는 분말 입자를 분리하여 회수함으로써, 좁은 입도 분포의 균일한 입자로 형성된 탄화규소 분말을 얻을 수 있다. Since each peak present in the particle size distribution of the obtained silicon carbide powder is formed in a sharp shape, the silicon carbide powder formed into uniform particles having a narrow particle size distribution by separating and recovering powder particles distributed within a predetermined range around each peak particle size Can be obtained.
즉, 좁은 입도 분포의 균일한 입자로 형성되면서, 상대적으로 작은 평균 입도를 갖는 탄화규소 분말로서 주로 베타상 입자를 포함하는 탄화규소 분말과; 좁은 입도 분포의 균일한 입자로 형성되면서, 상대적으로 큰 크기의 평균 입도를 갖는 탄화규소 분말로서 주로 알파상 입자를 포함하는 탄화규소 분말을 각각 얻을 수 있다.That is, silicon carbide powder mainly formed of beta phase particles as silicon carbide powder having a relatively small average particle size while being formed of uniform particles having a narrow particle size distribution; While being formed into uniform particles having a narrow particle size distribution, silicon carbide powder mainly containing alpha phase particles can be obtained as silicon carbide powder having a relatively large average particle size.
예를 들어, 나노 크기 단위의 평균 입도를 갖는 균일한 탄화규소 분말과 마이크로미터 크기 단위의 평균 입도를 갖는 균일한 탄화규소 분말을 각각 얻을 수 있다.For example, a uniform silicon carbide powder having an average particle size in nano size units and a uniform silicon carbide powder having an average particle size in micrometer size units may be obtained, respectively.
상대적으로 작은 입도, 예를 들어, 나노 크기의 입도를 가지는 탄화규소 분말은 신터링의 원료 등으로 사용될 수 있고, 상대적으로 큰 입도, 예를 들어, 마이크로미터 크기의 입도를 가지는 탄화규소 분말은 방열 재료, 구조 재료로서의 무기 필러 등의 용도로 사용될 수 있다. 다른 예에서, 그 구체적인 용도에 따라서는, 작은 입도 및 큰 입도의 탄화규소 분말을 혼합된 상태로 분리하지 않고 사용되어, 역시 방열 재료나 구조 재료로서의 무기 필러 등으로 사용될 수도 있다.Silicon carbide powder having a relatively small particle size, for example, nano-sized particle size, may be used as a raw material for sintering, and the like, and silicon carbide powder having a relatively large particle size, for example, a micrometer-size particle, may dissipate heat. It can be used for applications such as inorganic fillers as materials and structural materials. In another example, depending on the specific use thereof, the silicon carbide powder of small particle size and large particle size may be used without separating in a mixed state, and may also be used as an inorganic filler as a heat radiation material or a structural material.
상기 탄화규소 제조 방법으로 얻어진 탄화규소 분말의 분포에서, 특히, 두 개의 피크 중 상대적으로 작은 입도에서 존재하는 피크는 다른 피크보다 더욱 샤프한 형상을 가질 수 있고, 이러한 작은 입도에서 존재하는 피크의 전후로 일정 오차 범위 내에 분포하는 분말 입자를 분리하여 회수시 작은 입도를 가지면서도 매우 좁은 입도 분포를 갖는 균일한 탄화규소 분말을 얻을 수 있다. In the distribution of silicon carbide powder obtained by the silicon carbide production method, in particular, a peak present at a relatively small particle size of the two peaks may have a sharper shape than other peaks, and is constant before and after the peak present at such a small particle size. It is possible to obtain a uniform silicon carbide powder having a very small particle size distribution while having a small particle size in the recovery by separating the powder particles distributed within the error range.
일반적으로 상대적으로 작은 입도, 예를 들어, 나노 크기의 입도를 가지는 탄화규소 분말을 제조하기는 매우 어려우며 더욱이 균일한 분포를 가지도록 형성하기는 더욱 어렵다. 상기 탄화규소 제조 방법에 의해서, 상대적으로 작은 입도, 예를 들어, 나노 크기의 입도를 가지는 균일한 분포의 탄화규소 분말을 얻을 수 있다는 점에서 경제적, 상업적으로도 매우 중요한 의의가 있다.In general, it is very difficult to produce silicon carbide powder having a relatively small particle size, for example, nano-size particle size, and more difficult to form to have a uniform distribution. The silicon carbide production method is of great significance both economically and commercially in that a uniform distribution of silicon carbide powder having a relatively small particle size, for example, a nano-sized particle size, can be obtained.
일 구현예에서, 상기와 같이 제조된 탄화규소 분말에서, 알파상 입자들 전체 함량에 대해서 상기 제1 피크 입도의 0.5 내지 2.5인 입도를 갖는 입자들이 70 내지 100 부피%일 수 있다. 일례로, 본 발명에 따라 제조된 탄화규소 분말의 알파상 입자들 전체 함량에 대해서 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들이 75 내지 85 부피%일 수 있다. 이러한 분포를 갖는 탄화규소 분말은 제1 피크가 샤프하게 형성되었음을 의미하고, 이는 또한, 제1 피크를 형성하는 분말, 즉, 알파상 입자들이 균일한 입도로 형성되었음을 의미한다.In one embodiment, in the silicon carbide powder prepared as described above, particles having a particle size of 0.5 to 2.5 of the first peak particle size with respect to the total content of the alpha phase particles may be 70 to 100% by volume. For example, the particles having a particle size of 0.6 to 1.6 of the first peak particle size may be 75 to 85 vol% based on the total content of the alpha phase particles of the silicon carbide powder prepared according to the present invention. Silicon carbide powder having such a distribution means that the first peak is sharply formed, which also means that the powder forming the first peak, that is, the alpha phase particles are formed to have a uniform particle size.
다른 구현예에서, 상기와 같이 제조된 탄화규소 분말에서, 베타상 입자들 전체 함량에 대해서 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들이 70 내지 100 부피%일 수 있다. 일례로, 본 발명에 따라 제조된 탄화규소 분말의 베타상 입자들 전체 함량에 대해서 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들이 75 내지 85 부피%일 수 있다. 이러한 분포를 갖는 탄화규소 분말은 제2 피크가 샤프하게 형성되었음을 의미하고, 이는 또한, 제2 피크를 형성하는 분말, 즉, 베타상 입자들이 균일한 입도로 형성되었음을 의미한다.In another embodiment, in the silicon carbide powder prepared as described above, particles having a particle size of 0.1 to 4.0 of the second peak particle size with respect to the total content of the beta phase particles may be 70 to 100% by volume. For example, the particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 75 to 85 vol% based on the total content of the beta phase particles of the silicon carbide powder prepared according to the present invention. Silicon carbide powder having such a distribution means that the second peak is sharply formed, which also means that the powder forming the second peak, that is, the beta phase particles, is formed to have a uniform particle size.
또 다른 구현예에서, 상기와 같이 제조된 탄화규소 분말에서, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1일 수 있다. 구체적으로, 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들과 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들 함량의 부피비는 1:9 내지 9:1일 수 있다.In another embodiment, in the silicon carbide powder prepared as above, the volume ratio of the content of particles having a particle size of 0.5 to 2.5 of the first peak particle size to the particle size of particles having a particle size of 0.1 to 4.0 of the second peak particle size May be from 1: 9 to 9: 1. Specifically, the volume ratio of particles having a particle size of 0.6 to 1.6 of the first peak particle size and particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 1: 9 to 9: 1.
또 다른 구현예에서, 상기와 같이 제조된 탄화규소 분말에서, 상기 제1 피크 입도의 0.5 내지 2.5 입도와 상기 제2 피크 입도의 0.1 내지 4.0인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 70 내지 100 부피%일 수 있다. 일례로, 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들의 함량과 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량의 합은 전체 탄화규소 분말 입자 총 부피의 75 내지 85 부피%일 수 있다.In another embodiment, in the silicon carbide powder prepared as above, when the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, the first peak The sum of the content of the particles having a particle size of 0.5 to 2.5 and the content of the particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 70 to 100% by volume of the total volume of the silicon carbide powder particles. For example, the sum of the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size and the content of the particles having a particle size of 0.4 to 2.3 of the second peak particle size is 75 to 85 of the total volume of the silicon carbide powder particles. Volume%.
상기 탄화규소 제조 방법은 SiC를 원료 물질로 혼합하는 직접탄화법을 적용한 방법으로서, 효과적으로 작은 입도의 균일한 탄화규소 분말을 얻을 수 있는 방법이다.The silicon carbide production method is a method in which the direct carbonization method of mixing SiC as a raw material is applied, and a method of effectively obtaining uniform silicon carbide powder with a small particle size.
상기 탄화규소 제조 방법은 직접탄화법을 적용한 방법이기 때문에 회수율이 저조한 열탄소환원법에 비해 회수율이 월등히 높다. 다만, 직접탄화법의 경우, 얻어진 탄화규소의 입도 분포가 매우 넓다는 단점이 있는데, 상기 탄화규소 제조 방법은 이를 해결하여 회수율이 높으면서도 동시에 입도 분포가 좁은 균일한 탄화규소를 얻을 수 있는 수 있는 방법이다. 예를 들어, 상기 탄화규소 제조 방법은 회수율이 약 99wt% 이상일 수 있다.Since the silicon carbide manufacturing method is a method of applying the direct carbonization method, the recovery rate is much higher than that of the low carbon recovery method. However, in the case of the direct carbonization method, there is a disadvantage in that the particle size distribution of the obtained silicon carbide is very wide, and the method of manufacturing the silicon carbide solves this problem and can obtain a uniform silicon carbide having a high recovery rate and a narrow particle size distribution at the same time. to be. For example, the silicon carbide manufacturing method may have a recovery of about 99 wt% or more.
상기 혼합 원료 중 고상의 규소(Si)는 약 1nm 내지 약 100㎛의 평균 입도를 갖는 규소 분말을 사용할 수 있다. 사용하는 규소 분말의 입자 크기가 커지면 열처리 온도가 높아지고, 시간이 길어지게 되므로, 반응성, 열처리 공정 조건, 경제성 등을 고려하여, 상기 범위의 크기를 갖는 규소 분말을 적절히 사용할 수 있다.Solid silicon (Si) in the mixed raw material may be a silicon powder having an average particle size of about 1nm to about 100㎛. The larger the particle size of the silicon powder to be used, the higher the heat treatment temperature and the longer the time, so that the silicon powder having a size in the above range can be suitably used in consideration of reactivity, heat treatment process conditions, economical efficiency, and the like.
상기 혼합 원료 중 탄소(C)는 구체적으로, 카본 블랙, 그라파이트 분말 등을 사용할 수 있고, 예를 들어, 약 0.1nm 내지 약 10㎛의 평균 입도를 갖는 탄소 분말을 사용할 수 있다. 예를 들어, 상기 혼합 원료 중 규소 분말의 평균 입도가 탄소 분말의 평균 입도보다 클 수 있다.Specifically, carbon (C) in the mixed raw material may be carbon black, graphite powder, or the like, and for example, carbon powder having an average particle size of about 0.1 nm to about 10 μm may be used. For example, the average particle size of the silicon powder in the mixed raw material may be larger than the average particle size of the carbon powder.
상기 혼합 원료 중 상기 규소(Si) 및 상기 탄소(C)의 몰비가 약 1:2 내지 약 3:1가 되게 할 수 있다. 상기 몰비를 갖도록 원료를 배합하여 미반응 탄소, 미반응 실리콘이 발생하는 것을 최소화하여 수율을 향상시킬 수 있다.The molar ratio of the silicon (Si) and the carbon (C) in the mixed raw material may be about 1: 2 to about 3: 1. By blending the raw materials to have the molar ratio, the production of unreacted carbon and unreacted silicon can be minimized to improve yield.
상기 알파상 탄화규소(SiC)는 약 50nm 내지 약 50㎛의 평균 입도를 갖는 탄화규소 분말을 사용할 수 있다. The alpha-phase silicon carbide (SiC) may be used a silicon carbide powder having an average particle size of about 50nm to about 50㎛.
이와 같이, 상기 탄화규소 제조 방법은 원료로서 상기 알파상 탄화규소(SiC)를 규소(Si) 및 탄소(C)와 함께 사용하고, 상기 알파상 탄화규소(SiC)가 시드(seed)로서 작용하여 전술한 바와 같은 2개의 피크를 갖는 입도 분포를 형성할 수 있다.As described above, the silicon carbide manufacturing method uses the alpha-phase silicon carbide (SiC) together with silicon (Si) and carbon (C) as a raw material, and the alpha-phase silicon carbide (SiC) acts as a seed (seed) It is possible to form a particle size distribution with two peaks as described above.
이에 관하여 좀 더 자세히 설명하면, 규소(Si)를 산화물 형태가 아닌 규소(Si)로 탄소(C) 및 탄화규소(SiC)와 혼합하여 열처리하여 반응시키면, 발열 반응에 의한 생성된 열이 원활하게 확산되지 못하여 국부적으로 발열이 심해지고, 그에 따라 매우 불안정한 SiC 가스가 생성되게 된다. 이러한 불안정한 SiC 가스는 일부는 안정한 베타상 SiC 결정을 형성하고, 나머지 일부는 근처에 존재하는 알파상 SiC에 증착된다.In more detail about this, when silicon (Si) is mixed with carbon (C) and silicon carbide (SiC) with silicon (Si) rather than oxide, and heat treated, the heat generated by the exothermic reaction is smoothly reacted. It is not diffused and the local heat generation becomes severe, resulting in the formation of very unstable SiC gas. These unstable SiC gases form stable beta-phase SiC crystals, some of which are deposited on nearby alpha-phase SiC.
상기 안정한 베타상의 SiC 결정이 전술한 탄화규소 입도 분포의 낮은 입도 쪽에 존재하는 피크에 분포하는 입자이고, 상기 알파상 SiC 결정에 불안정한 SiC 가스가 증착되어 형성된 알파상 SiC 결정은 전술한 탄화규소 입도 분포의 큰 입도 쪽에 존재하는 피크에 분포하는 입자가 된다.The stable beta-phase SiC crystals are particles that are distributed at peaks present on the lower particle size side of the above-described silicon carbide particle size distribution, and the alpha-phase SiC crystals formed by depositing an unstable SiC gas on the alpha-phase SiC crystals have the aforementioned silicon carbide particle size distribution It becomes the particle | grains distributed in the peak which exists in the larger particle size side of.
베타상의 SiC 결정이 형성하는 입자는 통상적으로 구형이므로, 전술한 탄화규소 입도 분포의 낮은 입도 쪽에 존재하는 피크에 분포하는 입자는 구형의 베타상의 SiC 결정 구조를 가진다.Since the particles formed by the beta-phase SiC crystals are usually spherical, the particles distributed at the peak present on the lower particle size side of the silicon carbide particle size distribution described above have a spherical beta-shaped SiC crystal structure.
알파상의 SiC 결정이 형성하는 입자는 통상적으로 구형이 아니지만, 전술한 탄화규소 입도 분포의 큰 입도 쪽에 존재하는 피크에 분포하는 입자는 구형의 알파상 SiC 결정 구조를 가진다. 이는 전술한 생성 메커니즘에서 알 수 있듯이, 알파상 SiC 결정에 불안정한 SiC 가스가 증착되어 형성되었기 때문이다. 따라서, 상기 탄화규소 제조 방법은 알파상 입자는, SiC 결정을 가지면서도 구형의 탄화규소 입자를 얻을 수 있다는 장점을 갖는다. 본 발명에서의 '구형'은 단면이 완전한 원을 갖는 경우뿐만 아니라 타원을 갖는 경우, 즉 통상적으로 구의 형태로 볼 수 있는 경우를 모두 포함한다. 이와 달리, 본 발명에 따른 알파상 입자는 14면체 또는 종횡비(aspect ratio)가 1:1 내지 1:4의 판상을 가질 수 있다. 구형, 14면체 또는 1:1 내지 1:4 이하의 종횡비를 갖는 판상의 입자 형태를 갖는 탄화규소 분말은, 일반적으로 분쇄공정을 통하여 제조된 비정형 탄화규소 분말에 비하여 높은 충진 밀도를 가질 수 있다. 특히, 상기와 같은 형태의 베타상 입자들은 소결 특성이 우수하고, 알파상 입자들은 방열 특성이 우수하기 때문에, 본 발명에 따라 얻어진 알파상 입자들을 주로 포함하는 탄화규소 분말 또는 알파상 입자들과 베타상 입자들을 혼합한 탄화규소 분말로써 방열 제품을 제조하는 경우, 방열 제품의 방열 특성을 더욱 향상시킬 수 있다. The particles formed by the alpha-phase SiC crystals are usually not spherical, but the particles distributed at the peaks present on the larger particle size side of the silicon carbide particle size distribution described above have a spherical alpha-phase SiC crystal structure. This is because, as can be seen from the above-described production mechanism, the SiC gas which is unstable in the alpha phase SiC crystal was formed by deposition. Accordingly, the silicon carbide production method has the advantage that the alpha phase particles can obtain spherical silicon carbide particles while having SiC crystals. The term 'spherical' in the present invention encompasses not only the case where the cross section has a perfect circle but also the case where it has an ellipse, that is, usually seen in the form of a sphere. In contrast, the alpha phase particles according to the present invention may have a tetrahedron or an aspect ratio of 1: 1 to 1: 4. Silicon carbide powder having a spherical, tetrahedron or plate-shaped particle shape having an aspect ratio of 1: 1 to 1: 4 or less may have a higher packing density than an amorphous silicon carbide powder prepared through a grinding process. In particular, since the beta-phase particles of the above type have excellent sintering properties, and the alpha-phase particles have excellent heat dissipation properties, the silicon carbide powder or alpha-phase particles and beta containing mainly the alpha-phase particles obtained according to the present invention. When the heat dissipation product is manufactured from silicon carbide powder mixed with phase particles, heat dissipation characteristics of the heat dissipation product may be further improved.
반면, 예를 들어, 만약 혼합 원료로서 규소(Si)가 아닌 규소 산화물을 포함한다면, 일산화탄소(CO)가 생성될 수 있고, 일산화탄소(CO)는 열확산 경로를 제공해주어 국부적인 발열 싸이트가 형성되지 못하게 되기 때문에, 결국 전술한 바와 같이 불안정한 SiC 가스가 생성되지 못하게 된다. 그에 따라, 이 경우 입도 분포에서 2개의 피크가 존재하는 탄화규소를 얻을 수 없게 된다. On the other hand, for example, if the mixed raw material includes silicon oxides other than silicon (Si), carbon monoxide (CO) may be produced, and carbon monoxide (CO) may provide a thermal diffusion path so that no local exothermic sites are formed. As a result, as described above, an unstable SiC gas cannot be produced. Therefore, in this case, it becomes impossible to obtain silicon carbide in which two peaks exist in the particle size distribution.
따라서, 상기 탄화규소 제조 방법은 혼합 원료에 규소 산화물을 포함하지 않는다.Therefore, the silicon carbide production method does not include silicon oxide in the mixed raw material.
상기 혼합 원료 중 상기 탄화규소(SiC)의 함량은 약 0.1 내지 약 30 중량%일 수 있다. 혼합 원료에 포함되는 탄화규소(SiC)의 함량에 따라서, 얻어진 탄화규소 입도 분포의 피크 형상을 조절할 수 있다. The content of the silicon carbide (SiC) in the mixed raw material may be about 0.1 to about 30% by weight. According to the content of silicon carbide (SiC) contained in the mixed raw material, the peak shape of the obtained silicon carbide particle size distribution can be adjusted.
얻어진 탄화규소의 피크 형상을 조절한다는 의미는, 예를 들어, 작은 입도 탄화규소 입자와 큰 입도 탄화규소 입자의 함량비, 각각의 피크가 샤프한 정도, 즉, 각각의 피크 근처에 분포되는 입자의 균일성 등이 조절됨을 의미할 수 있다.The meaning of adjusting the peak shape of the obtained silicon carbide means, for example, the content ratio of the small particle size silicon carbide particles to the large particle size silicon carbide particles, the degree to which each peak is sharp, that is, the uniformity of the particles distributed near each peak. It may mean that the sex and the like are controlled.
상기 탄화규소 제조 방법에서 열처리는 약 900 내지 약 2500℃에서, 구체적으로 약 1000 내지 약 1950℃에서 수행할 수 있다. 상기 열처리 온도가 비교적 낮기 때문에 상기 탄화규소 제조 방법은 경제적인 측면에서도 비용 효율이 우수하다. Heat treatment in the silicon carbide manufacturing method may be performed at about 900 to about 2500 ℃, specifically about 1000 to about 1950 ℃. Since the heat treatment temperature is relatively low, the silicon carbide manufacturing method is cost-effective in terms of economy.
일반적으로 상기 열처리 온도 범위에서는 얻어진 탄화규소의 결정 타입이 베타상의 저온 안정상으로 형성됨에 반해, 상기 탄화규소 제조 방법에 의해 얻어진 탄화규소의 결정 타입은, 전술한 바와 같이, 알파상의 고온 안정상과 베타상의 저온 안정상이 함께 형성된다. In general, in the heat treatment temperature range, the crystal type of silicon carbide obtained is formed in a beta-phase low-temperature stable phase, whereas the crystal type of silicon carbide obtained by the silicon carbide production method, as described above, The low temperature stable phase of the beta phase is formed together.
전술한 바와 같이, 상기 탄화규소 제조 방법에 의해 얻어진 탄화규소 분말의 입도 분포에 존재하는 2개의 피크 중 큰 입도 쪽 피크 근처에 존재하는 입자들은 알파상의 고온 안정상으로 형성되고, 낮은 입도 쪽 피크 근처에 존재하는 입자들은 베타상의 저온 안정상으로 형성되는 경향이 있다.As described above, of the two peaks present in the particle size distribution of the silicon carbide powder obtained by the silicon carbide production method, the particles present near the large particle size peak are formed as the high temperature stable phase of the alpha phase, and are located near the low particle size peak. Particles present in the tendency to be formed in the beta-phase low temperature stable phase.
상기 열처리는 아르곤, 수소, 질소 등의 불활성 가스 또는 진공 분위기 하에서 수행될 수 있다.The heat treatment may be performed under an inert gas such as argon, hydrogen, nitrogen, or a vacuum atmosphere.
상기 탄화규소 제조 방법은 열처리 시간을 단축시킬 수 있는 잇점이 있다. 예를 들어, 상기 열처리 시간은 약 1분 내지 약 300분 일 수 있다.The silicon carbide production method has an advantage of shortening the heat treatment time. For example, the heat treatment time may be about 1 minute to about 300 minutes.
상기 탄화규소 제조 방법에 의해 얻어진 탄화규소는 응집된 입자 상태로 얻어질 수 있으므로, 이러한 응집된 입자를 분리하기 위하여 밀링에 의해 분쇄할 수 있다.Since the silicon carbide obtained by the silicon carbide production method can be obtained in the form of aggregated particles, it can be ground by milling to separate such aggregated particles.
밀링 방법은 볼 밀링(ball mill), 플래니터리 밀링(planetary mill), 어트리션 밀링(attrition mill), 스펙스 밀링(spex mill), 비드 밀링(beads mill), 제트 밀(jet mill)등 공지된 방법이 제한 없이 사용될 수 있다.Milling methods are known as ball mills, planetary mills, attrition mills, spec mills, beads mills, jet mills, etc. The method may be used without limitation.
이와 같이, 상기 탄화규소 제조 방법은 상기 얻어진 탄화규소를 분쇄하는 단계를 더 포함할 수 있다.As such, the silicon carbide manufacturing method may further include grinding the obtained silicon carbide.
분쇄할 때 사용되는 병(jar)과 같은 용기, 밀링 미디어(milling media) 등은 SiC 재질로 제조된 것을 사용할 수 있다.Containers such as jars used for grinding, milling media, etc. may be made of SiC material.
또한, 상기 분쇄된 입자를 상기 2개의 피크를 형성하는 각각의 피크의 입도를 중심으로 분리하기 위하여 시브 (sieve)를 이용하거나, 분급기를 이용하여 분리할 수 있다. 상기 시브 (sieve)는 메탈 시브(metal sieve) 또는 폴리 시브(poly sieve) 등을 사용할 수 있고, 분급기는 건식 분급기 또는 습식 분급기 등을 사용할 수 있다.In addition, the pulverized particles may be separated by using a sieve or a classifier to separate the particles about the particle size of each peak forming the two peaks. The sieve may be metal sieve or poly sieve, and the classifier may be a dry classifier or a wet classifier.
이와 같이, 상기 탄화규소 제조 방법은 상기 얻어진 탄화규소를 시브(sieve) 또는 분급기를 사용하여 분리하는 단계를 더 포함할 수 있다.As such, the silicon carbide production method may further include separating the silicon carbide obtained by using a sieve or classifier.
본 발명의 다른 구현예에서는, 고상의 규소(Si), 고상의 탄소(C) 및 고상의 알파상 탄화규소(SiC)를 혼합하여 준비된 혼합 원료를 열처리하여 제조되고, 알파상 입자와 베타상 입자를 포함하며, 제1 피크 입도 및 제2 피크 입도에서 각각 피크를 나타내는 이봉 분포를 갖는 탄화규소 분말을 제공한다.In another embodiment of the present invention, the raw material prepared by mixing the solid silicon (Si), solid carbon (C) and solid phase alpha carbide (SiC) is prepared by heat treatment, alpha phase particles and beta phase particles It includes, and provides a silicon carbide powder having a bimodal distribution showing a peak at each of the first peak particle size and the second peak particle size.
상기 탄화규소 분말은 전술한 탄화규소 분말의 제조 방법에 의해 제조된 것으로서, 상세한 설명은 전술한 바와 같다.The silicon carbide powder is prepared by the above-described method for producing silicon carbide powder, and the detailed description is as described above.
상기 탄화규소 분말은 서로 다른 입도에서 2개의 피크 입도, 즉, 제1 피크 입도 및 제2 피크 입도가 존재하는 입도 분포를 갖는다. 상기 제1 피크 입도 및 상기 제2 피크 입도는 피크에 해당하는 입도를 의미한다.The silicon carbide powder has a particle size distribution in which two peak particle sizes, that is, a first peak particle size and a second peak particle size, exist at different particle sizes. The first peak particle size and the second peak particle size mean particle sizes corresponding to peaks.
상기 제1 피크 입도는 2㎛ 내지 50㎛ 내에 존재하고, 상기 제2 피크 입도는 10nm 내지 5㎛ 범위 내에 존재할 수 있으며, 상기 제1 피크 입도가 상기 제2 피크 입도보다 크다.The first peak particle size may be present in the range of 2 μm to 50 μm, the second peak particle size may exist in the range of 10 nm to 5 μm, and the first peak particle size may be larger than the second peak particle size.
일 구현예에서, 상기 탄화규소 분말에서, 알파상 입자들 전체 함량에 대해서 상기 제1 피크 입도의 0.5 내지 2.5인 입도를 갖는 입자들이 70 내지 100 부피%일 수 있다. 일례로, 본 발명에 따라 제조된 탄화규소 분말의 알파상 입자들 전체 함량에 대해서 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들이 75 내지 85 부피%일 수 있다.In one embodiment, in the silicon carbide powder, the particles having a particle size of 0.5 to 2.5 of the first peak particle size with respect to the total content of the alpha phase particles may be 70 to 100% by volume. For example, the particles having a particle size of 0.6 to 1.6 of the first peak particle size may be 75 to 85 vol% based on the total content of the alpha phase particles of the silicon carbide powder prepared according to the present invention.
다른 구현예에서, 상기 탄화규소 분말에서, 베타상 입자들 전체 함량에 대해서 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들이 70 내지 100 부피%일 수 있다. 일례로, 본 발명에 따라 제조된 탄화규소 분말의 베타상 입자들 전체 함량에 대해서 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들이 75 내지 85 부피%일 수 있다.In another embodiment, in the silicon carbide powder, the particles having a particle size of 0.1 to 4.0 of the second peak particle size with respect to the total content of the beta-phase particles may be 70 to 100% by volume. For example, the particles having a particle size of 0.4 to 2.3 of the second peak particle size may be 75 to 85 vol% based on the total content of the beta phase particles of the silicon carbide powder prepared according to the present invention.
또 다른 구현예에서, 상기 탄화규소 분말에서, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1일 수 있다. In another embodiment, in the silicon carbide powder, the volume ratio of the content of particles having a particle size of 0.5 to 2.5 of the first peak particle size to the particle size of the particles having a particle size of 0.1 to 4.0 of the second peak particle size is 1: 9. To 9: 1.
또 다른 구현예에서, 상기 탄화규소 분말에서, 상기 제1 피크 입도의 0.5 내지 2.5 입도와 상기 제2 피크 입도의 0.1 내지 4.0인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 70 내지 100 부피%일 수 있다.In another embodiment, in the silicon carbide powder, when the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, 0.5 to of the first peak particle size The sum of the content of the particles having a particle size of 2.5 and the content of the particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 70 to 100% by volume of the total volume of the silicon carbide powder particles.
또 다른 구현예에서, 상기 탄화규소 분말에서, 상기 제1 피크 입도의 0.5 내지 2.5 입도와 상기 제2 피크 입도의 0.1 내지 4.0인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 75 내지 85 부피%일 수 있다.In another embodiment, in the silicon carbide powder, when the particle size of 0.5 to 2.5 of the first peak particle size and 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, 0.5 to of the first peak particle size The sum of the content of the particles having a particle size of 2.5 and the content of the particles having a particle size of 0.1 to 4.0 of the second peak particle size may be 75 to 85% by volume of the total volume of the silicon carbide powder particles.
상기 탄화규소 분말은 알파상 SiC 결정을 가지면서도 구형 또는 14면체 또는 종횡비(aspect ratio)가 1:1 내지 1:4의 판상의 탄화규소 입자를 포함한다는 장점을 갖는다.The silicon carbide powder has an advantage of including spherical or tetrahedral or plate-shaped silicon carbide particles having an aspect ratio of 1: 1 to 1: 4 while having an alpha phase SiC crystal.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
(실시예)(Example)
실시예 1Example 1
평균 입도 50㎛의 Si 분말과 평균 입도 30㎚의 카본 블랙 및 평균 입도 10㎛의 탄화규소 분말을 준비하였다. 이렇게 준비한 Si 분말, 카본블랙 그리고 탄화규소 시드를 혼합하여 혼합 원료를 준비하였다. 여기서 Si 분말과 카본블랙의 혼합 몰비는 1.15:1 로 혼합하고, 탄화규소 시드는 혼합 원료 총 함량 중 15 wt% 가 되도록 첨가하여 균일하게 혼합하였다. 이렇게 혼합된 혼합 원료 분말을 흑연도가니에 넣고 1700℃에서 2 시간 동안 아르곤 분위기 하에서 열처리하여 탄화규소 분말을 얻었다. Si powder having an average particle size of 50 μm, carbon black having an average particle size of 30 nm, and silicon carbide powder having an average particle size of 10 μm were prepared. Si powder, carbon black, and silicon carbide seed thus prepared were mixed to prepare a mixed raw material. Here, the mixing molar ratio of the Si powder and the carbon black was mixed at 1.15: 1, and the silicon carbide seed was added so as to be 15 wt% in the total content of the mixed raw materials and mixed uniformly. The mixed raw material powder thus mixed was put into a graphite crucible and heat-treated at 1700 ° C. for 2 hours under an argon atmosphere to obtain silicon carbide powder.
얻어진 탄화규소 분말은 약간의 응집이 형성되어 있음을 관찰하였고 이러한 응집을 분리하기 위하여 350 rpm으로 15시간 볼 밀링(ball mill)하여 분쇄하였다. 볼 밀링에 의해 분리된 탄화규소 분말을 시브(sieve)를 통하여 회수하였고, 이와 같이 회수된 분말의 회수율은 99wt%였다. The obtained silicon carbide powder was observed to have some agglomeration formed and pulverized by ball milling at 350 rpm for 15 hours to separate this agglomeration. The silicon carbide powder separated by ball milling was recovered through a sieve, and the recovery rate of the powder thus recovered was 99 wt%.
실시예 2Example 2
평균 입도 30㎛의 Si 분말과 평균 입도 30㎚의 카본 블랙 및 평균 입도 1㎛의 알파상 탄화규소 분말을 준비하였다. 이렇게 준비한 Si 분말, 카본블랙 그리고 탄화규소 시드를 혼합하여 혼합 원료를 준비하였다. 여기서 원료 물질 중 Si 분말과 카본블랙의 몰비는 1:1.25로 하고, 탄화규소 시드는 혼합 원료 총 함량 중 5 wt% 가 되도록 첨가하여 이렇게 혼합된 혼합 원료 분말을 흑연도가니에 넣고 1200℃에서 1 시간 동안 아르곤 분위기 하에서 열처리하여 탄화규소 분말을 얻었다. Si powder having an average particle size of 30 μm, carbon black having an average particle size of 30 nm, and alpha phase silicon carbide powder having an average particle size of 1 μm were prepared. Si powder, carbon black, and silicon carbide seed thus prepared were mixed to prepare a mixed raw material. Here, the molar ratio of Si powder and carbon black in the raw material is 1: 1.25, and silicon carbide seed is added so as to be 5 wt% of the total content of the mixed raw material. The mixed raw powder is mixed in a graphite crucible for 1 hour at 1200 ° C. Heat treatment under argon atmosphere afforded silicon carbide powder.
얻어진 탄화규소 분말은 약간의 응집이 형성되어 있음을 관찰하였고 이러한 응집을 분리하기 위하여 350 rpm으로 15시간 볼 밀링(ball mill)하여 분쇄하였다. 볼 밀링에 의해 분리된 탄화규소 분말을 시브(sieve)를 통하여 회수하였고, 이와 같이 회수된 분말의 회수율은 99wt%였다.The obtained silicon carbide powder was observed to have some agglomeration formed and pulverized by ball milling at 350 rpm for 15 hours to separate this agglomeration. The silicon carbide powder separated by ball milling was recovered through a sieve, and the recovery rate of the powder thus recovered was 99 wt%.
실시예 3Example 3
평균 입도 100㎛의 Si 분말과 평균 입도 30㎚의 카본 블랙 및 평균 입도 30㎛의 탄화규소 분말을 준비하였다. 이렇게 준비한 Si 분말, 카본블랙 그리고 탄화규소 시드를 혼합하여 혼합 원료를 준비하였다. 여기서 Si 분말과 카본블랙의 혼합 몰비 2:1 로 혼합하고, 탄화규소 시드는 혼합 원료 총 함량 중 30 wt% 가 되도록 첨가하여 균일하게 혼합하였다. 이렇게 혼합된 혼합 원료 분말을 흑연도가니에 넣고 1900℃에서 5 시간 동안 아르곤 분위기 하에서 열처리하여 탄화규소 분말을 얻었다.Si powder having an average particle size of 100 μm, carbon black having an average particle size of 30 nm, and silicon carbide powder having an average particle size of 30 μm were prepared. Si powder, carbon black, and silicon carbide seed thus prepared were mixed to prepare a mixed raw material. Here, the Si powder and carbon black were mixed in a mixing molar ratio of 2: 1, and the silicon carbide seed was added to be 30 wt% in the total content of the mixed raw materials and mixed uniformly. The mixed raw material powder thus mixed was put into a graphite crucible and heat-treated at 1900 ° C. for 5 hours in an argon atmosphere to obtain silicon carbide powder.
비교예 1Comparative Example 1
탄화규소 시드를 첨가하지 않았다는 점을 제외하고는 실시예 1과 동일한 방법에 의하여 탄화규소 분말을 제조하였다. Silicon carbide powder was prepared in the same manner as in Example 1 except that no silicon carbide seed was added.
실험예 1: 입도 분포Experimental Example 1: Particle Size Distribution
LS 13 320, BECKMAN COULTER를 사용하여 실시예 1-3 및 비교예 1에서 얻어진 탄화규소 분말의 입도를 측정하였다. 그 분포를 그래프로 도 1에 나타내고, 그래프의 피크에 나타나는 제1 피크 입도 및 제2 피크 입도 (피크가 1개 나타나는 경우 포함)을 하기 표 1에 나타낸다.The particle size of the silicon carbide powder obtained in Examples 1-3 and Comparative Example 1 was measured using LS 13 320, BECKMAN COULTER. The distribution is shown in FIG. 1 graphically, and the first peak particle size and the second peak particle size (including when one peak appears) appearing in the graph peaks are shown in Table 1 below.
표 1
구분 제1 피크 입도 제2 피크 입도
실시예 1 1 um 10 um
실시예 2 50 nm 2 um
실시예 3 5 um 30 um
비교예 1 - 10 um
Table 1
division First peak particle size Second peak particle size
Example 1 1 um 10 um
Example 2 50 nm 2 um
Example 3 5 um 30 um
Comparative Example 1 - 10 um
도 1 및 표 1을 참조하면, 실시예 1 내지 실시예 3에 따른 탄화규소 분말의 입도 분포에서는 각각 2개의 피크들이 존재함을 알 수 있다.Referring to Figure 1 and Table 1, it can be seen that there are two peaks in the particle size distribution of the silicon carbide powder according to Examples 1 to 3.
반면, 비교예 1에 따른 탄화규소 분말의 입도 분포에서는 평균 입도 약 10um 부근에서 단일 피크가 나타남을 알 수 있다.On the other hand, in the particle size distribution of the silicon carbide powder according to Comparative Example 1, it can be seen that a single peak appears around 10 μm on average.
또한, 실시예 1-3에서, 제조된 입자들 전체 부피에 대해서, 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들이 갖는 함량을 측정하였고, 그 결과를 하기 표 2에 기재한다. 또한, 실시예 1-3에서, 제조된 입자들 전체 부피에 대해서 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들이 갖는 함량을 측정하였고, 그 결과를 하기 표 2에 기재한다.In addition, in Examples 1-3, the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size was measured with respect to the total volume of the prepared particles, and the results are shown in Table 2 below. In addition, in Example 1-3, the content of the particles having a particle size of 0.4 to 2.3 of the second peak particle size with respect to the total volume of the prepared particles was measured, the results are shown in Table 2 below.
표 2
구분 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들의 함량[부피%] 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량[부피%] 부피비
실시예 1 8 72 1:9
실시예 2 40 40 1:1
실시예 3 67 13 5:1
TABLE 2
division Content [volume%] of particles having a particle size of 0.6 to 1.6 of the first peak particle size Content of particles having a particle size of 0.4 to 2.3 of the second peak particle size [% by volume] Volume ratio
Example 1 8 72 1: 9
Example 2 40 40 1: 1
Example 3 67 13 5: 1
도 1은 실시예 1 및 비교예 1에서 얻어진 탄화규소 분말의 입도 분포를 나타낸 그래프이다.1 is a graph showing the particle size distribution of silicon carbide powders obtained in Example 1 and Comparative Example 1. FIG.
도 1에서 나타난 바와 같이, 비교예 1에서 제조된 탄화규소 분말이 나타내는 입도 분포는 넓게 분포되어 있는 것을 통해서 입자가 불균일하게 형성됨을 알 수 있다. 구체적으로, 비교예 1에서 얻어진 탄화규소의 분말은, 비록 약 10 um 부근에서 평균 입도를 갖기는 하지만, 단일 피크로 나타날 뿐이고 0.1 um 내지 250 um의 입도 범위에 걸쳐서 매우 넓은 입도 분포를 가짐을 알 수 있다. As shown in FIG. 1, it can be seen that the particle size distribution represented by the silicon carbide powder prepared in Comparative Example 1 is nonuniformly formed through wide distribution. Specifically, it can be seen that the powder of silicon carbide obtained in Comparative Example 1, although having an average particle size in the vicinity of about 10 um, only appears as a single peak and has a very wide particle size distribution over a particle size range of 0.1 um to 250 um. Can be.
이에 반해, 실시예 1에서 제조된 탄화규소 분말의 입도 분포를 살펴보면, 1 um 이하의 입도에서와 약 10 um의 입도에서 피크가 각각 존재하는 이봉 분포 그래프를 나타내고, 각 피크가 샤프한 곡선을 형성하여 각 피크 전후로 입자의 크기가 균일하게 형성됨을 알 수 있다. 따라서, 실시예 1의 방법에 의해 소결용으로 사용 가능한 크기인 약 1 마이크로미터 이하의 입도를 갖는 베타상 입자들과, 방열 재료로 사용이 가능한 약 10 마이크로미터의 입도를 갖는 알파상 입자들을 동시에 얻을 수 있었다. 이때, 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들과 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량의 합은, 제조된 탄화규소 분말 전체 부피에 대해서 약 80 부피%임을 알 수 있다.In contrast, the particle size distribution of the silicon carbide powder prepared in Example 1 shows a bimodal distribution graph in which peaks are present at particle sizes of 1 μm or less and at particle sizes of about 10 μm, respectively, and each peak forms a sharp curve. It can be seen that the particle size is uniformly formed before and after each peak. Thus, beta-phase particles having a particle size of about 1 micrometer or less, the size of which can be used for sintering by the method of Example 1, and alpha-particles having a particle size of about 10 micrometers, which can be used as a heat dissipation material, are simultaneously Could get In this case, the sum of the content of the particles having a particle size of 0.6 to 1.6 of the first peak particle size and the particles having a particle size of 0.4 to 2.3 of the second peak particle size is about 80% by volume based on the total volume of the silicon carbide powder prepared. Able to know.
뿐만 아니라, 상기 표 1에서 나타낸 바와 같이, 실시예 2 및 실시예 3에서 제조된 탄화규소 분말의 입도 분포도 2개의 피크 입도에서 피크가 나타나는 이봉 분포를 가지고, 이들 각각의 그래프도 도 1의 실시예 1에서 제조된 탄화규소 분말의 입도 분포와 유사한 경향을 가진다. 상기 표 2의 결과로부터, 제조된 탄화규소 분말 전체 부피의 약 80 부피% 이상이 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들과 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들로 구성됨을 알 수 있다. 뿐만 아니라, 실시예 2 및 실시예 3에서도, 입도 분포는 2개의 피크 입도 각각에서 피크가 샤프한 곡선을 형성함을 확인할 수 있으므로 각 피크 전후로 입자의 크기가 균일하게 형성되었음을 알 수 있다.In addition, as shown in Table 1, the particle size distribution diagram of the silicon carbide powders prepared in Examples 2 and 3 has a bimodal distribution in which peaks appear at two peak particle sizes, and each of these graphs is also shown in the example of FIG. It has a tendency similar to the particle size distribution of the silicon carbide powder prepared in step 1. From the results in Table 2, at least about 80% by volume of the total volume of the silicon carbide powder prepared is particles having a particle size of 0.6 to 1.6 of the first peak particle size and particles having a particle size of 0.4 to 2.3 of the second peak particle size. It can be seen that consists of. In addition, also in Examples 2 and 3, it can be seen that the particle size distribution formed a sharp curve of the peak at each of the two peak particle size, so that the particle size was uniformly formed before and after each peak.
실시예 1 내지 실시예 3에서는 탄화규소 시드를 포함하는 혼합 원료를 이용하여 탄화규소 분말을 제조함으로써, 탄화규소 분말의 크기를 균일하게 제어할 수 있고, 균일한 입도 분포를 갖는 이봉 분포를 갖는 탄화규소 분말이 제조됨을 확인할 수 있었다.In Examples 1 to 3, by producing a silicon carbide powder using a mixed raw material containing silicon carbide seeds, it is possible to uniformly control the size of the silicon carbide powder, and to have a bimodal distribution having a uniform particle size distribution It could be confirmed that silicon powder was prepared.
도 2는 실시예 1에서 제조된 탄화규소의 분말의 분쇄 및 분급 전의 SEM 이미지이다.FIG. 2 is an SEM image before pulverization and classification of the powder of silicon carbide prepared in Example 1. FIG.
도 3은 실시예 1에서 제조된 탄화규소의 분말로 1㎛ 이하의 크기를 갖는 탄화규소 분말의 SEM 이미지이다. 도 3을 참조하면, 본 발명의 제조 방법에 따라 제조된 탄화규소 분말로서 베타상의 구형 결정을 갖는 입자가 형성됨을 확인할 수 있다.3 is an SEM image of silicon carbide powder having a size of 1 μm or less as a powder of silicon carbide prepared in Example 1. FIG. Referring to FIG. 3, it can be seen that particles having beta-shaped spherical crystals are formed as silicon carbide powder prepared according to the production method of the present invention.
도 4는 실시예 1에서 제조된 탄화규소의 분말로 10㎛의 크기를 갖는 탄화규소 분말의 SEM 사진이다. 도 4에서 알파상의 구형 결정을 갖는 입자를 확인할 수 있다.4 is a SEM photograph of silicon carbide powder having a size of 10 μm with powder of silicon carbide prepared in Example 1. FIG. In FIG. 4, particles having an alpha phase spherical crystal can be identified.
도 5는 비교예 1에서 제조된 탄화규소의 분말의 SEM 사진이다.5 is a SEM photograph of the powder of silicon carbide prepared in Comparative Example 1.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.

Claims (25)

  1. 고상의 규소(Si), 고상의 탄소(C) 및 고상의 알파상 탄화규소(SiC)를 혼합하여 준비된 혼합 원료를 열처리하여 제조되고,It is manufactured by heat-treating a mixed raw material prepared by mixing solid silicon (Si), solid carbon (C) and solid alpha phase silicon carbide (SiC),
    알파상 입자와 베타상 입자를 포함하며,Alpha and beta particles,
    제1 피크 입도 및 제2 피크 입도에서 각각 피크를 나타내는 이봉 분포를 갖는 탄화규소 분말.Silicon carbide powder having a bimodal distribution each showing a peak at a first peak particle size and a second peak particle size.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 피크 입도는 2㎛ 내지 50㎛ 내에 존재하고, 상기 제2 피크 입도는 10nm 내지 5㎛ 범위 내에 존재하고, 상기 제1 피크 입도가 상기 제2 피크 입도보다 큰The first peak particle size is within 2 μm to 50 μm, the second peak particle size is within 10 nm to 5 μm, and the first peak particle size is greater than the second peak particle size
    탄화규소 분말.Silicon carbide powder.
  3. 제1항에 있어서,The method of claim 1,
    상기 알파상 입자의 전체 부피에 대해서, 상기 제1 피크 입도의 0.5 내지 2.5인 입도를 갖는 입자들이 70 내지 100 부피%인 Regarding the total volume of the alpha phase particles, particles having a particle size of 0.5 to 2.5 of the first peak particle size are 70 to 100% by volume.
    탄화규소 분말.Silicon carbide powder.
  4. 제1항에 있어서,The method of claim 1,
    상기 알파상 입자의 전체 부피에 대해서, 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들이 75 내지 85 부피%인 75 to 85% by volume of particles having a particle size of 0.6 to 1.6 of the first peak particle size relative to the total volume of the alpha phase particles.
    탄화규소 분말.Silicon carbide powder.
  5. 제1항에 있어서,The method of claim 1,
    상기 베타상 입자의 전체 부피에 대해서, 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들이 70 내지 100 중량%인 70 to 100% by weight of particles having a particle size of 0.1 to 4.0 of the second peak particle size relative to the total volume of the beta-phase particles.
    탄화규소 분말.Silicon carbide powder.
  6. 제1항에 있어서, The method of claim 1,
    상기 베타상 입자의 전체 부피에 대해서, 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들이 75 내지 85 부피%인 75 to 85% by volume of particles having a particle size of 0.4 to 2.3 of the second peak particle size relative to the total volume of the beta-phase particles.
    탄화규소 분말.Silicon carbide powder.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1인 The volume ratio of particles having a particle size of 0.5 to 2.5 of the first peak particle size to particles having a particle size of 0.1 to 4.0 of the second peak particle size is 1: 9 to 9: 1.
    탄화규소 분말.Silicon carbide powder.
  8. 제1항에 있어서, The method of claim 1,
    상기 제1 피크 입도의 0.6 내지 1.6 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1인 The volume ratio of particles having a particle size of 0.6 to 1.6 of the first peak particle size to particles having a particle size of 0.4 to 2.3 of the second peak particle size is 1: 9 to 9: 1.
    탄화규소 분말.Silicon carbide powder.
  9. 제1항에 있어서,The method of claim 1,
    상기 제1 피크 입도의 0.5 내지 2.5 입도와 상기 제2 피크 입도의 0.1 내지 4.0인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 70 내지 100 부피%인When the particle size of 0.5 to 2.5 of the first peak particle size and the particle size of 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, the content of the particles having the particle size of 0.5 to 2.5 of the first peak particle size and the second peak The sum of the contents of the particles having a particle size of 0.1 to 4.0 of the particle size is 70 to 100% by volume of the total volume of the silicon carbide powder particles.
    탄화규소 분말.Silicon carbide powder.
  10. 제1항에 있어서,The method of claim 1,
    상기 제1 피크 입도의 0.6 내지 1.6 입도와 상기 제2 피크 입도의 0.4 내지 2.3인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.6 내지 1.6 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 75 내지 85 부피%인When the particle size of 0.6 to 1.6 of the first peak particle size and the particle size of 0.4 to 2.3 of the second peak particle size are present so as not to overlap each other, the content of the particles having the particle size of 0.6 to 1.6 of the first peak particle size and the second peak are The sum of the contents of the particles having a particle size of 0.4 to 2.3 of the particle size is 75 to 85% by volume of the total volume of the silicon carbide powder particles.
    탄화규소 분말.Silicon carbide powder.
  11. 제1항에 있어서,The method of claim 1,
    상기 알파상 입자는 구형, 14면체 또는 종횡비(aspect ratio)가 1:1 내지 1:4인 판상의 탄화규소 입자인The alpha-phase particles are spherical, tetrahedral or plate-shaped silicon carbide particles with an aspect ratio of 1: 1 to 1: 4.
    탄화규소 분말.Silicon carbide powder.
  12. 고상의 규소(Si), 고상의 탄소(C) 및 고상의 알파상 탄화규소(SiC)를 혼합하여 혼합 원료를 준비하는 단계; 및Preparing a mixed raw material by mixing solid silicon (Si), solid carbon (C), and solid alpha phase silicon carbide (SiC); And
    상기 혼합 원료를 열처리하는 단계;Heat treating the mixed raw material;
    를 포함하고,Including,
    상기 열처리에 의해 탄화규소가 얻어지고,By the heat treatment, silicon carbide is obtained,
    상기 얻어진 탄화규소는 알파상 입자와 베타상 입자를 포함하고, 제1 피크 입도 및 제2 피크 입도에서 각각 피크를 나타내는 이봉 분포를 갖는The obtained silicon carbide contains alpha phase particles and beta phase particles, and has a bimodal distribution showing peaks at the first peak particle size and the second peak particle size, respectively.
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1 피크 입도는 2㎛ 내지 50㎛ 내에 존재하고, 상기 제2 피크 입도는 10nm 내지 5㎛ 범위 내에 존재하며, 상기 제1 피크 입도가 상기 제2 피크 입도보다 큰The first peak particle size is within 2 μm to 50 μm, the second peak particle size is within a range of 10 nm to 5 μm, and the first peak particle size is greater than the second peak particle size
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  14. 제12항에 있어서,The method of claim 12,
    상기 알파상 입자의 전체 부피에 대해서, 상기 제1 피크 입도의 0.6 내지 1.6인 입도를 갖는 입자들이 70 내지 100 부피%인70 to 100% by volume of particles having a particle size of 0.6 to 1.6 of the first peak particle size relative to the total volume of the alpha phase particles
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  15. 제12항에 있어서,The method of claim 12,
    상기 베타상 입자의 전체 부피에 대해서, 상기 제2 피크 입도의 0.4 내지 2.3인 입도를 갖는 입자들이 70 내지 100 부피%인 Regarding the total volume of the beta-phase particles, particles having a particle size of 0.4 to 2.3 of the second peak particle size are 70 to 100% by volume.
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  16. 제12항에 있어서,The method of claim 12,
    상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 대 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 부피비가 1:9 내지 9:1인 The volume ratio of particles having a particle size of 0.5 to 2.5 of the first peak particle size to particles having a particle size of 0.1 to 4.0 of the second peak particle size is 1: 9 to 9: 1.
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  17. 제12항에 있어서,The method of claim 12,
    상기 제1 피크 입도의 0.5 내지 2.5 입도와 상기 제2 피크 입도의 0.1 내지 4.0인 입도가 서로 겹치지 않도록 존재하는 경우, 상기 제1 피크 입도의 0.5 내지 2.5 입도를 갖는 입자들의 함량 및 상기 제2 피크 입도의 0.1 내지 4.0인 입도를 갖는 입자들의 함량의 합이 전체 탄화규소 분말 입자 총 부피의 70 내지 100 부피%인When the particle size of 0.5 to 2.5 of the first peak particle size and the particle size of 0.1 to 4.0 of the second peak particle size are present so as not to overlap each other, the content of the particles having the particle size of 0.5 to 2.5 of the first peak particle size and the second peak The sum of the contents of the particles having a particle size of 0.1 to 4.0 of the particle size is 70 to 100% by volume of the total volume of the silicon carbide powder particles.
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  18. 제12항에 있어서,The method of claim 12,
    상기 고상의 알파상 탄화규소(SiC)는 50nm 내지 50㎛의 평균 입도를 갖는 탄화규소 분말을 사용하는The solid alpha phase silicon carbide (SiC) is a silicon carbide powder having an average particle size of 50nm to 50㎛
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  19. 제12항에 있어서,The method of claim 12,
    상기 고상의 규소(Si)는 1nm 내지 100㎛의 평균 입도를 갖는 규소 분말을 사용하는The solid silicon (Si) using a silicon powder having an average particle size of 1nm to 100㎛
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  20. 제12항에 있어서,The method of claim 12,
    상기 고상의 탄소(C)는 0.1nm 내지 10㎛의 평균 입도를 갖는 탄소 분말을 사용하는The solid carbon (C) is a carbon powder having an average particle size of 0.1nm to 10㎛
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  21. 제12항에 있어서,The method of claim 12,
    상기 고상의 규소(Si)로서 규소 분말을 사용하고, 고상의 탄소(C)로서 탄소 분말을 사용하며, 상기 규소 분말의 평균 입도가 상기 탄소 분말의 평균 입도보다 큰Silicon powder is used as the solid silicon (Si), carbon powder is used as the solid carbon (C), and the average particle size of the silicon powder is larger than the average particle size of the carbon powder.
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  22. 제12항에 있어서,The method of claim 12,
    상기 규소(Si) 및 상기 탄소(C)의 몰비가 1:2 내지 3:1인Molar ratio of the silicon (Si) and the carbon (C) is 1: 2 to 3: 1
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  23. 제12항에 있어서,The method of claim 12,
    상기 혼합 원료 중 상기 탄화규소(SiC)의 함량은 0.1 내지 30 wt%인The content of the silicon carbide (SiC) in the mixed raw material is 0.1 to 30 wt%
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  24. 제12항에 있어서,The method of claim 12,
    상기 혼합 원료가 규소 산화물을 포함하지 않는The mixed raw material does not contain silicon oxide
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
  25. 제12항에 있어서,The method of claim 12,
    상기 열처리는 900 내지 2500℃에서 수행하는The heat treatment is carried out at 900 to 2500 ℃
    탄화규소 제조 방법.Silicon Carbide Manufacturing Method.
PCT/KR2014/010136 2013-11-08 2014-10-27 Silicon carbide powder and method for preparing silicon carbide WO2015068976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0135186 2013-11-08
KR1020130135186A KR101525694B1 (en) 2013-11-08 2013-11-08 Silicon carbaide powder and method of producing silicon carbaide

Publications (1)

Publication Number Publication Date
WO2015068976A1 true WO2015068976A1 (en) 2015-05-14

Family

ID=53041695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010136 WO2015068976A1 (en) 2013-11-08 2014-10-27 Silicon carbide powder and method for preparing silicon carbide

Country Status (2)

Country Link
KR (1) KR101525694B1 (en)
WO (1) WO2015068976A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059631B2 (en) 2016-11-15 2018-08-28 Industrial Technology Research Institute Micropowder and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442731B1 (en) * 2021-12-23 2022-09-13 주식회사 쎄닉 silicon carbide powder and method for manufacturing silicon carbide ingot using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058855A (en) * 2000-07-03 2000-10-05 이종국 Preparation Method of Self-reinforced Silicon Carbide
KR20130074705A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
KR20130085841A (en) * 2012-01-20 2013-07-30 엘지이노텍 주식회사 Silicon carbide powder and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102205A (en) * 2009-11-10 2011-05-26 Sumitomo Osaka Cement Co Ltd METHOD FOR CONTROLLING PARTICLE SIZE OF alpha-SILICON CARBIDE POWDER AND SILICON CARBIDE SINGLE CRYSTAL
KR101976594B1 (en) * 2011-12-26 2019-05-09 엘지이노텍 주식회사 Silicon carbide powder, method for manufacturing the same and method for fabricating single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058855A (en) * 2000-07-03 2000-10-05 이종국 Preparation Method of Self-reinforced Silicon Carbide
KR20130074705A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
KR20130085841A (en) * 2012-01-20 2013-07-30 엘지이노텍 주식회사 Silicon carbide powder and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUMANN, HENRY N. JR.: "The Relationship of Alpha and Beta Silicon Carbide.", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 99, no. 3, March 1952 (1952-03-01), pages 109 - 114 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059631B2 (en) 2016-11-15 2018-08-28 Industrial Technology Research Institute Micropowder and method for manufacturing the same
US10214454B2 (en) 2016-11-15 2019-02-26 Industrial Technology Research Institute Structure of micropowder

Also Published As

Publication number Publication date
KR101525694B1 (en) 2015-06-03
KR20150053367A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
WO2018147508A1 (en) Method for preparing silicon-carbon-graphene composite, composite prepared according thereto, and secondary battery to which same is applied
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2013109105A1 (en) Silicon carbide powder and method for manufacturing the same
WO2015068976A1 (en) Silicon carbide powder and method for preparing silicon carbide
WO2015034317A1 (en) Thermoelectric material and method for manufacturing same
HUP9900705A2 (en) Thermostabile polymer composition and process for producing filling material
WO2016024658A1 (en) Phase-change composite containing carbon nanomaterial and preparing method therefor
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
WO2023167387A1 (en) Method for synthesizing silicon carbide powder
WO2015057019A1 (en) Thermoelectric material and method for manufacturing same
WO2012015262A2 (en) Silicon carbide and method for manufacturing the same
WO2013094934A1 (en) Method of fabricating silicon carbide powder
WO2011059185A2 (en) Production method for a nanocomposite having improved thermoelectric efficiency, and nanocomposites produced thereby
WO2016080801A1 (en) Method for producing silicon nitride nanofibers
WO2015034318A1 (en) Thermoelectric material
WO2010056077A9 (en) High-hardness coating powder, and preparation method thereof
US10112833B2 (en) Method for preparing aluminum nitride
WO2013015630A2 (en) Raw material for growth of ingot, method for fabricating raw material for growth of ingot and method for fabricating ingot
KR102298897B1 (en) Manufacturing method of SiC using wasted solar cell
WO2017135724A1 (en) Water-resistant and low-friction polymer composite comprising nano-diamond powder treated with hydrogen plasma, and method for producing polymer composite
WO2015034321A1 (en) Method for manufacturing thermoelectric material
WO2016099095A1 (en) Method for preparing agglomerated boron nitride powder
CN112408394A (en) Preparation method of tantalum disilicide nano powder
WO2013100693A1 (en) Silicon carbide powder production method
JP4111478B2 (en) Method for producing silicon carbide microspheres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861016

Country of ref document: EP

Kind code of ref document: A1