WO2012141535A2 - Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same - Google Patents

Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same Download PDF

Info

Publication number
WO2012141535A2
WO2012141535A2 PCT/KR2012/002831 KR2012002831W WO2012141535A2 WO 2012141535 A2 WO2012141535 A2 WO 2012141535A2 KR 2012002831 W KR2012002831 W KR 2012002831W WO 2012141535 A2 WO2012141535 A2 WO 2012141535A2
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
thin film
inorganic
zinc
ink composition
Prior art date
Application number
PCT/KR2012/002831
Other languages
French (fr)
Korean (ko)
Other versions
WO2012141535A3 (en
Inventor
조성윤
이창진
강영구
임종선
강영훈
정준영
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2012141535A2 publication Critical patent/WO2012141535A2/en
Publication of WO2012141535A3 publication Critical patent/WO2012141535A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Definitions

  • the present invention relates to an inorganic semiconductor ink composition and an inorganic semiconductor thin film produced through the same.
  • the inorganic oxide semiconductor thin film has various properties, and thus is used for various purposes.
  • the zinc oxide (ZnO) thin film has a band gap of about 3.4 eV, can be formed at low temperatures, and exhibits high mobility.
  • it can be easily prepared in the form of nanoparticles or precursors (precursor), the solution process is possible at a low cost has recently attracted great interest in the application to thin film transistors.
  • the thin film transistor device is an important key device for switching one pixel in a display information device, and determines the performance of electronic products related to the current display, and forms a large market in the electronic information industry.
  • electronic products such as display devices form a low price point
  • the electronic information industry has an extremely low cost, large area processes, and mass production.
  • Thin film transistor device manufacturing using such a solution-based process has many researches based on organic semiconductors, but organic thin film transistors have not only basic characteristics such as mobility, flicker ratio, and current density, but also durability to maintain long life. And many challenges to be solved in terms of electrical reliability.
  • the solution process material using inorganic semiconductor material shows higher mobility than the organic semiconductor material, and the solution process material is classified into ink in the form of nanoparticles and sol-gel material in the form of precursors. can do.
  • Inorganic semiconductor ink has been reported compound semiconductor nanoparticles, such as CdSe or metal oxide nanoparticles, such as ZnO, such inorganic semiconductor nanoparticles are first prepared in the form of nanoparticles of inorganic semiconductor material through a precursor, etc.
  • inorganic nanoparticles have a low dispersity and a dispersant must be used to disperse the nanoparticles, and a high temperature of a process temperature must be used for crystal growth of the nanoparticles.
  • sol-gel material Another form of a solution process material using an inorganic semiconductor material is prepared in the form of a sol-gel and is in the form of a precursor.
  • the sol-gel material obtains desired semiconductor properties by transforming a precursor prepared by chemical synthesis into an inorganic oxide through a sol-gel process in which a thin film is formed by various solution processes and heat-treated in the presence of moisture in the air.
  • the method through the sol-gel process also requires a high process temperature for crystallization of the inorganic oxide thin film, and due to the very fast reaction rate, it is difficult to uniformly control the composition or defect control of the thin film through the solution process.
  • Keszler et al, US University of Oregon are producing the transistor 2 is Zn (OH) is known in the conventional indicating Zn (OH) excellent charge transfer and divalent spin coating the dissolved aqueous ammonia be used to be dissolved in an aqueous ammonia solution I've done it.
  • a transistor exhibiting a charge mobility of 6 cm 2 / V ⁇ s may be manufactured at a high temperature of 500 ° C. or higher, and a transistor exhibiting a charge mobility of about 1 cm 2 / V ⁇ s was manufactured at a low temperature of about 150 ° C. .
  • ZnO transistors by sintering with zinc acetate as a precursor.
  • the charge mobility of ZnO transistor with sintering temperature was 0.40 at 350 ° C, 2.65 at 400 ° C, 5.25 at 500 ° C, and 5.09 cm 2 / V ⁇ s at 600 ° C, respectively.
  • There is a problem that the mobility is sharply reduced J. Am. Chem. Soc., 2007, 129, pp. 2750).
  • the heat resistance temperature of the glass substrate or other coating material used in the display is 400 ° C. or lower, preferably 350 ° C. or lower, sintering is possible at low temperatures and a method of manufacturing a zinc oxide (ZnO) thin film having excellent characteristics is required. .
  • the inventors of the present invention while studying a method for producing a zinc oxide conductive film showing excellent properties, by dispersing the zinc oxide nanoparticles in the zinc oxide precursor, an inorganic semiconductor ink capable of producing a zinc oxide conductive film with improved charge mobility and flashing ratio characteristics
  • the composition was developed and the present invention was completed.
  • the present invention comprises a zinc oxide precursor solution, zinc oxide nanoparticles and a dispersion solvent, the inorganic oxide ink, characterized in that the zinc oxide nanoparticles are 0.1 to 50% by weight relative to the zinc oxide precursor solution To provide a composition.
  • the inorganic semiconductor ink composition and the inorganic semiconductor thin film manufactured by the same according to the present invention can be used as a channel material of the transistor device, thereby manufacturing an inorganic thin film transistor with improved electrical performance.
  • it is suitable for the solution process it is easy to manufacture a thin film, low temperature process is possible, and the zinc oxide precursor solution and the zinc oxide nanoparticles can be mixed to produce a dense and uniform thin film, and thus an excellent inorganic thin film The transistor can be manufactured.
  • FIG. 1 is a schematic view showing an inorganic thin film transistor manufactured according to the present invention.
  • FIG. 2 is a graph showing current transfer characteristics of an inorganic thin film transistor manufactured according to the present invention.
  • the present invention provides an inorganic semiconductor ink composition
  • a zinc oxide precursor solution comprising a zinc oxide precursor solution, zinc oxide nanoparticles and a dispersion solvent, wherein the zinc oxide nanoparticles are 0.1 to 50% by weight relative to the zinc oxide precursor solution.
  • the inorganic semiconductor ink composition according to the present invention comprises a zinc oxide precursor solution; Zinc oxide nanoparticles.
  • Zinc oxide is typically grown because it grows into a non-stoichiometric structure during crystal growth and uses electrons generated as a primary carrier source due to ionization of intrinsic defects such as invasive zinc atoms or oxygen vacancies. n-type semiconductor characteristics.
  • the zinc oxide has a wide bandgap, excellent light transmittance, excellent electric field effect compared to conventional amorphous silicon, and high charge mobility.
  • the zinc oxide is deposited as a thin film using an exposure or vacuum deposition process, a high process cost is generated, thereby reducing the process cost by manufacturing a zinc oxide thin film using a solution process.
  • the inorganic semiconductor ink composition according to the present invention can produce a compact zinc oxide thin film having no pores even at a low heat treatment temperature during the production of a zinc oxide thin film including zinc oxide nanoparticles, zinc oxide thin film prepared accordingly Has a characteristic of improving charge mobility.
  • the inorganic semiconductor ink composition according to the present invention is mixed and dispersed in 0.1 to 50% by weight of zinc oxide nanoparticles relative to the zinc oxide precursor solution. If the zinc oxide nanoparticles are mixed and dispersed in the zinc oxide precursor solution in an amount outside the above range, there is a problem that the charge mobility decreases.
  • the zinc oxide nanoparticles are preferably 5 to 20 nm in size. If the size of the zinc oxide nanoparticles is less than 5 nm, there is a problem that dispersion due to aggregation is difficult, and if the size of the zinc oxide nanoparticles exceeds 20 nm, the size of the nanoparticles is larger than the thickness of the thin film surface The shape is rough, and there is a problem in that the semiconductor characteristics of the thin film are deteriorated by the nanoparticles acting as a barrier to prevent electron movement.
  • the zinc oxide nanoparticles are directly mixed in the zinc oxide precursor solution due to the fine particle size, there is a problem that the zinc oxide nanoparticles are not well dispersed and aggregated.
  • the zinc oxide nanoparticles are first dispersed in a dispersion solvent to prepare a zinc oxide nanoparticle solution, and the prepared zinc oxide nanoparticle solution is mixed with a zinc oxide precursor solution to prepare an inorganic semiconductor ink composition.
  • the zinc oxide nanoparticles are preferably dispersed in 0.1 to 10% by weight relative to the dispersion solvent.
  • the zinc oxide nanoparticles are dispersed in less than 0.1% by weight, there is a problem that the improvement of charge mobility due to the addition of the zinc oxide nanoparticles does not appear, and the zinc oxide nanoparticles are dispersed in excess of 10% by weight. In this case, due to the addition of excessive zinc oxide nanoparticles there is a problem that is not dispersed due to aggregation.
  • the dispersion solvent may be used alone or in combination of two or more kinds of ammonium hydroxide, isopropyl alcohol, chlorobenzene, N-methyl pyrrolidone, ethanol amine, ethanol, methanol, etc. Ethanol can be used.
  • the zinc oxide precursor solution makes it possible to produce an inorganic semiconductor thin film through coating or printing.
  • the zinc oxide precursor solution is zinc hydroxide, zinc acetate, zinc formate, zinc oxalate, zinc nitrate, zinc propionate, and zinc propionate. ), Zinc acetylacetonate, zinc acrylate, zinc methacrylate, zinc sulfate, zinc chloride and their hydrates and mixtures thereof It is preferable to use a compound selected from the group consisting of as a starting material, but is not limited thereto. Any compound containing zinc may be used as a starting material of a zinc oxide precursor solution.
  • the zinc oxide precursor solution may be used in various manufacturing methods depending on the starting materials.
  • the starting material of the zinc oxide precursor solution is zinc nitrate dyhydrate
  • a white hydroxide compound produced after dissolving and reacting sodium hydroxide and zinc nitrate dihydrate in distilled water is obtained, and the hydroxide compound After washing to minimize impurities, it may be dissolved in an aqueous ammonia solution to prepare a zinc oxide precursor, and a zinc oxide precursor solution may be prepared by selecting an appropriate preparation method according to the starting material.
  • the inorganic semiconductor ink composition according to the present invention is prepared by mixing the zinc oxide nanoparticles dispersed solution and the zinc oxide precursor solution, wherein the nanoparticles are dispersed solution is homogeneously dispersed zinc oxide nanoparticles in a solvent As a state, it is easy to disperse the zinc oxide nanoparticles in the zinc oxide precursor solution, and the zinc oxide precursor solution is present in the liquid phase to be suitable for the solution process.
  • By mixing the solution in which the nanoparticles are dispersed and the zinc oxide precursor solution it can be used in a solution process having a low process cost, and an inorganic semiconductor ink composition in which the zinc oxide nanoparticles are homogeneously dispersed can be prepared.
  • the mixing of the solution in which the nanoparticles are dispersed and the zinc oxide precursor solution is preferably performed in a volume ratio of 1: 1.
  • the zinc oxide nanoparticle solution is mixed below the above range, sufficient zinc oxide nanoparticles cannot be provided to the ink composition to be prepared, so that electrical characteristics such as charge mobility during the production of the zinc oxide thin film are deteriorated.
  • the zinc oxide nanoparticles are mixed beyond the above range, there is also a problem that the charge mobility is lowered.
  • the inorganic semiconductor ink composition according to the present invention is suitable for a solution process to produce a zinc oxide thin film at a low process cost, and the zinc oxide thin film is dense and uniform through a low temperature process by mixing the zinc oxide precursor solution and zinc oxide nanoparticles Can be prepared.
  • the present invention is a.
  • step 1 Printing or coating the inorganic semiconductor ink composition on a substrate to prepare a film (step 1); And
  • step 2 It provides a method for producing a zinc oxide semiconductor thin film dispersed with zinc oxide nanoparticles comprising the step (step 2) of heat-treating the film prepared in step 1.
  • step 1 is a step of preparing a film by printing or coating the inorganic semiconductor ink composition on the substrate.
  • the printing of step 1 may use inkjet printing, roll printing, gravure printing, aerosol printing, screen printing, and the like, and the coating may be roll coating, spin coating, bar coating, spray coating, dip, or the like. (dip) coating or the like can be used.
  • the zinc oxide semiconductor thin film according to the present invention may be manufactured by selecting an easy method among the printing and coating methods, and it is preferable to use spin coating, but is not limited thereto.
  • step 2 is a step of heat-treating the film prepared in step 1.
  • the zinc oxide semiconductor thin film is manufactured by heat-treating the thin film coated on the substrate in step 1, and the zinc oxide nanoparticles are homogeneously dispersed in the prepared zinc oxide semiconductor thin film, thereby providing excellent electrical properties such as excellent charge mobility. Indicates.
  • the zinc oxide semiconductor thin film manufactured by the manufacturing method according to the present invention may be used as an N-type semiconductor thin film of an inorganic thin film transistor, thereby improving electrical characteristics such as charge mobility and blink rate of the inorganic thin film transistor. .
  • a substrate and a zinc oxide semiconductor thin film manufactured by the manufacturing method are sequentially stacked, and a source and a drain electrode are stacked on the zinc oxide semiconductor thin film.
  • inorganic thin film transistors which are spaced at regular intervals. A schematic diagram of an inorganic thin film transistor according to the present invention is shown in FIG.
  • the inorganic thin film transistor according to the present invention includes a zinc oxide semiconductor thin film in which zinc oxide nanoparticles are dispersed in the film, thereby excellent in electrical properties such as charge mobility and flashing ratio.
  • the present invention can be applied to various electronic devices such as a memory and a display, and in particular, it can be applied to a display device due to the high transmittance of a zinc oxide thin film.
  • a silicon (Si) wafer, a glass substrate, a plastic substrate, or the like may be used, and the substrate is selected according to a product to which the inorganic thin film transistor is to be applied.
  • the substrate is a silicon (Si) wafer substrate
  • an inorganic thin film transistor may be applied to a memory device, and in the case of a glass substrate, it may be applied to a display device.
  • a flexible characteristic may be applied. Applicable to the required electronic device.
  • the inorganic thin film transistor may further include a passivation layer stacked over the source and drain electrodes.
  • the passivation layer protects the source and drain electrodes, thereby improving the lifetime of the inorganic thin film transistor.
  • the inorganic thin film transistor may further include a gate electrode between the substrate and the zinc oxide semiconductor thin film.
  • the substrate when the substrate is a silicon (Si) wafer, the substrate itself may act as a gate electrode.
  • the inorganic thin film transistor when the material of the substrate is a material that cannot act as a gate electrode, the inorganic thin film transistor may further include a gate electrode, and the gate electrode may be a general silicon-based gate electrode, but is not limited thereto. It may be formed of a known general gate electrode material.
  • the gate electrode in the present application means that the gate insulator is included.
  • the present invention comprises the steps of coating the inorganic semiconductor ink composition in which zinc oxide nanoparticles are dispersed on the substrate and heat treatment to produce a zinc oxide semiconductor thin film (step 1);
  • step 2 Depositing a source and a drain electrode on the zinc oxide semiconductor thin film prepared in step 1 (step 2); And
  • step 3 It provides a method of manufacturing an inorganic thin film transistor comprising the step (step 3) of coating a protective film on the source and drain electrodes deposited in step 2 above.
  • step 1 is a step of coating an inorganic semiconductor ink composition in which zinc oxide nanoparticles are dispersed on a substrate (gate electrode) and heat treating to prepare a zinc oxide semiconductor thin film.
  • the zinc oxide semiconductor thin film of Step 1 is made of an inorganic semiconductor ink composition in which zinc oxide nanoparticles are dispersed, and the zinc oxide nanoparticles are evenly dispersed in the thin film. Accordingly, electrical characteristics such as charge mobility, blink rate, and the like of the zinc oxide semiconductor thin film are improved.
  • step 2 is a step of depositing a source (drain) and drain (drain) electrode on the zinc oxide semiconductor thin film prepared in step 1.
  • the source and drain electrodes are spaced apart from each other, and the deposition of the source and drain electrodes is preferably performed using an evaporator, but is not limited thereto. It doesn't happen.
  • step 3 is a step of coating a protective film on the source and drain electrodes deposited in step 2.
  • the passivation layer of step 3 By coating the passivation layer of step 3, the source and drain electrodes can be protected, thereby improving the lifetime of the inorganic thin film transistor.
  • the thickness of the passivation layer is preferably 500 to 2000 nm, and the passivation layer is formed in the thickness range, thereby preventing stability of the inorganic thin film transistor in air and preventing damage from the outside during the post process.
  • the protective layer of step 3 may be formed by coating a polymer that is polymethylmethacrylate (Poly methylmethacrylate, PMMA), polyimide (Polyimide) or polybenzoxazole (Polybenzoxazole),
  • the protective layer is an acrylic photocurable composition comprising a polymer such as methyl methacrylate (MMA), butyl methacrylate (BMA), fluorine-substituted acrylate, or the like, or a cardo-based photocurable composition such as Structural Formula 1 below UV light. Irradiation may be formed through a photocuring reaction, for example, the acrylic photocurable composition may be a composition disclosed in the Republic of Korea Patent No. 10-0140905, the cardo-based photocurable composition is Japanese Patent No. 3,148,429B The compositions as disclosed in the call may be used.
  • the photocurable composition may include 1 to 5% by weight of a photoinitiator, and may be cured by light irradiation such as ultraviolet rays after coating the photocurable composition.
  • a photoinitiator one or more types of photoinitiators can be selected and used. Examples of photoinitiators include Irgacure 369 (Ciba-geigy), Irgacure 184 (Ciba-geigy), and Darocur 1173 (Ciba-geigy), which are readily available on the market. Etc.
  • the manufacturing method may further include forming a gate electrode on the substrate before coating the inorganic semiconductor ink composition in step 1.
  • the gate electrode may be formed by coating a general gate electrode material known to those skilled in the art on a substrate, and the method of forming the gate electrode may be performed through a coating process such as spin coating or dip coating. It is not.
  • Zinc acetate dihydrate (Zn (CH 3 COO) 2 ⁇ H 2 O)) and potassium hydroxide (KOH) were used as starting materials, and methanol was used as a solvent.
  • the zinc acetate concentration was 0.1 mol / L and the potassium hydroxide concentration was 0.4 mol / L, respectively, dissolved in methanol, and stirred at a temperature of 60 ° C. for 1 hour to obtain a homogeneous and transparent solution.
  • the zinc acetate solution and potassium hydroxide solution dissolved in methanol were mixed in a volume ratio of 2: 1 in a round flask container to which a reflux condenser was connected, followed by stirring at a temperature of 60 ° C. for 3 hours. It was. After stirring, the mixture was cooled to room temperature, and the white precipitate except for the solvent was recovered to prepare zinc oxide nanoparticles.
  • Step 1 The zinc oxide nanoparticle solution was prepared by dispersing 36.6 mg of zinc oxide nanoparticles prepared in Preparation Example 1 in 10 ml of ethanol.
  • Step 2 Zinc nitrate dihydrate (Zn (NO 3 ) 2 H 2 O), starting material, at a concentration of 0.5 mol / L and sodium hydroxide (NaOH) at a concentration of 2.5 mol / L
  • 10 mL of the aqueous sodium hydroxide solution was added to 15 mL of the zinc nitrate dihydrate solution dropwise for 5 minutes, followed by stirring.
  • the white hydroxide compound generated after the reaction was dispersed, washed, and centrifuged in 20 mL of distilled water, and was recovered by minimizing impurities such as Na + and NO 3 ⁇ .
  • the recovered white hydroxide compound was dissolved in 50 mL of an aqueous solution of ammonia (NH 3 ) at a concentration of 6.6 mol / L to prepare a zinc oxide precursor solution, and the concentration of zinc in the prepared precursor solution was 0.15 mol / L.
  • NH 3 ammonia
  • Step 3 An inorganic semiconductor ink composition was prepared by mixing the zinc oxide nanoparticle solution of step 1 with 10 ml of zinc oxide precursor solution.
  • An inorganic semiconductor ink composition was prepared by mixing 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1.
  • An inorganic semiconductor ink composition was prepared by dispersing 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 in 10 ml of an ammonium hydroxide solution, and then mixing it with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1.
  • An inorganic semiconductor ink composition was prepared using only 10 ml of the zinc oxide precursor solution prepared in step 2 of Example 1.
  • the inorganic semiconductor ink compositions of Examples and Comparative Examples were coated onto the glass substrate by spin coating or inkjet printing, and then heat-treated at 250 ° C. in a hotplate for 1 hour to prepare a semiconductor thin film.
  • An inorganic thin film transistor was manufactured by depositing a source / drain electrode having a width / length of 3000 ⁇ m / 50 ⁇ m in a thickness of 150 nm by using an evaporator on the semiconductor thin film.
  • a protective film is coated on the source and drain electrodes of the inorganic thin film transistor, and then heated at a temperature of 100 ° C. on a hot plate for 30 minutes. Was dried.
  • Acrylic photocurable composition A mixture of methyl methacrylate (MMA), methacrylic acid (MAA), epoxy acrylate and di-penta-erythrol-penta-acrylate (DPEPA)
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • DPEPA di-penta-erythrol-penta-acrylate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

The present invention relates to an inorganic semiconductor ink composition and an inorganic semiconductor thin film manufactured by using same. Particularly, the inorganic semiconductor ink composition includes a zinc oxide precursor solution, zinc oxide nano particles and a dispersing solvent, and is characterized in that the amount of the zinc oxide nano particles is in a range of from 0.1 wt% to 50 wt% based on the zinc oxide precursor solution. The inorganic semiconductor ink composition can be used as a channel material of a transistor device and so an inorganic thin film transistor having improved performance can be obtained. In addition, since the composition is appropriately applied in a liquid process, manufacturing into the thin film is easy and a low temperature process is possible. Since the zinc oxide precursor solution and the zinc oxide nano particles are mixed, a compact and homogeneous thin film can be manufactured. Accordingly, an inorganic thin film transistor having good reliability can be obtained.

Description

무기 반도체 잉크 조성물 및 이를 통해 제조되는 무기 반도체 박막Inorganic Semiconductor Ink Compositions and Inorganic Semiconductor Thin Films Prepared Through the Invention
본 발명은 무기 반도체 잉크 조성물 및 이를 통해 제조되는 무기 반도체 박막에 관한 것이다.The present invention relates to an inorganic semiconductor ink composition and an inorganic semiconductor thin film produced through the same.
무기 산화물 반도체 박막은 여러 가지 물성을 가지고 있으며, 이에 따라 다양한 목적으로 사용된다. 특히 산화아연(ZnO) 박막은 밴드갭이 약 3.4 eV 이고, 저온에서 성막이 가능하며, 높은 이동도를 나타낸다. 또한 나노입자 형태 또는 전구체(precursor)형태로 쉽게 제조할 수 있으며, 저비용으로 용액공정이 가능하여 최근 박막 트랜지스터로의 응용에 큰 관심을 끌고 있다. The inorganic oxide semiconductor thin film has various properties, and thus is used for various purposes. In particular, the zinc oxide (ZnO) thin film has a band gap of about 3.4 eV, can be formed at low temperatures, and exhibits high mobility. In addition, it can be easily prepared in the form of nanoparticles or precursors (precursor), the solution process is possible at a low cost has recently attracted great interest in the application to thin film transistors.
박막 트랜지스터 소자는 디스플레이 정보기기에서 하나의 픽셀(pixel)을 스위칭하는 중요한 핵심 소자로서 현재의 디스플레이에 관련된 전자제품들의 성능을 좌우하며, 전자 정보 산업에서 큰 시장을 형성하고 있다. 최근 디스플레이(display) 장치 등의 전자제품들이 저렴한 가격대를 형성함에 따라, 전자 정보 산업은 초저가 및 대면적 공정과 대량생산이 중요하다. 따라서 높은 공정비용을 수반하는 노광 또는 진공 증착 공정을 대체하기 위하여, 용액 기반의 공정을 개발할 필요가 있다. 이러한 용액 기반의 공정을 이용한 박막 트랜지스터 소자 제조는 유기 반도체를 기반으로 한 연구가 많으나, 유기 박막 트랜지스터는 이동도, 점멸비, 전류밀도와 같은 박막 트랜지스터의 기본적 특성뿐만 아니라 오랜 수명을 유지할 수 있는 내구성 및 전기적 신뢰성의 관점에서 해결해야할 많은 난제들을 가지고 있다. The thin film transistor device is an important key device for switching one pixel in a display information device, and determines the performance of electronic products related to the current display, and forms a large market in the electronic information industry. In recent years, as electronic products such as display devices form a low price point, the electronic information industry has an extremely low cost, large area processes, and mass production. Thus, there is a need to develop a solution based process to replace the exposure or vacuum deposition process with high process costs. Thin film transistor device manufacturing using such a solution-based process has many researches based on organic semiconductors, but organic thin film transistors have not only basic characteristics such as mobility, flicker ratio, and current density, but also durability to maintain long life. And many challenges to be solved in terms of electrical reliability.
최근 종래의 무기 소재를 용액공정으로 인쇄하고자 하는 새로운 경향이 나타나고 있으며, 은, 구리와 같은 금속막, ITO 투명전도막, 산화아연 막과 같은 다양한 재료를 대상으로 저온 용액 공정을 개발하기 위한 연구가 활발히 이루어지고 있다. 특히 무기 반도체 재료를 이용한 용액공정의 소재는 유기 반도체 재료에 비해서 높은 이동도를 나타내며, 용액공정의 소재는 크게 나노입자 형태로 되어있는 잉크와 전구체(precursor)형태로 되어 있는 졸-겔 소재로 분류할 수 있다. 무기 반도체 잉크는 CdSe와 같은 화합물 반도체 나노입자 또는 ZnO와 같은 금속 산화물 나노입자 등이 보고된 바 있으며, 이와 같은 무기물 반도체 나노입자는 우선 무기반도체 소재를 전구체 등을 통해서 나노입자 형태로 제조하고, 나노입자가 용매에 잘 분산되도록 나노입자의 표면에 다양한 분산제를 화학적으로 부착한 후 잉크화하여 제조한다. 하지만 무기 나노입자는 낮은 분산도를 가지고 나노입자를 분산시키기 위해 분산제를 사용해야 하며, 나노입자의 결정 성장을 위해 고온의 공정온도를 사용해야하는 단점이 있다.Recently, a new tendency to print conventional inorganic materials by solution process has emerged, and research for developing low temperature solution process for various materials such as metal film such as silver, copper, ITO transparent conductive film and zinc oxide film has been conducted. Actively done. In particular, the solution process material using inorganic semiconductor material shows higher mobility than the organic semiconductor material, and the solution process material is classified into ink in the form of nanoparticles and sol-gel material in the form of precursors. can do. Inorganic semiconductor ink has been reported compound semiconductor nanoparticles, such as CdSe or metal oxide nanoparticles, such as ZnO, such inorganic semiconductor nanoparticles are first prepared in the form of nanoparticles of inorganic semiconductor material through a precursor, etc. It is prepared by chemically attaching various dispersants to the surface of the nanoparticles so that the particles are well dispersed in a solvent and then ink. However, inorganic nanoparticles have a low dispersity and a dispersant must be used to disperse the nanoparticles, and a high temperature of a process temperature must be used for crystal growth of the nanoparticles.
무기 반도체 재료를 이용한 용액공정 소재의 또 다른 형태는 졸-겔 형태로 제조하여 전구체 형태이다. 졸-겔 소재는 화학적 합성으로 제작된 전구체를 다양한 용액 공정으로 박막을 형성시킨 후, 공기 중의 수분이 존재하는 상태에서 열처리하는 졸-겔 과정을 통해 무기 산화물로 변형시킴으로써 원하는 반도체 물성을 얻게 된다. 그러나, 졸-겔 공정을 통한 방법 또한 무기 산화물 박막의 결정화를 위해서 높은 공정 온도가 요구되고, 매우 빠른 반응 속도로 인하여 용액공정을 통해서 박막의 성분 조성 또는 결점 조절 등을 균일하게 제어하기 어려운 문제가 있으며, 이에 따라 제조된 박막의 전기적 물성 재현이 어려운 것으로 알려져 있다.Another form of a solution process material using an inorganic semiconductor material is prepared in the form of a sol-gel and is in the form of a precursor. The sol-gel material obtains desired semiconductor properties by transforming a precursor prepared by chemical synthesis into an inorganic oxide through a sol-gel process in which a thin film is formed by various solution processes and heat-treated in the presence of moisture in the air. However, the method through the sol-gel process also requires a high process temperature for crystallization of the inorganic oxide thin film, and due to the very fast reaction rate, it is difficult to uniformly control the composition or defect control of the thin film through the solution process. In addition, it is known that it is difficult to reproduce the electrical properties of the prepared thin film.
이러한 무기 반도체 재료의 공정상 단점을 해결하기 위한 많은 연구가 보고되고 있다. 초미세 나노입자는 나노입자의 특성상 105 ℃에서 열처리가 가능하다고 보고된 바 있으며, 3 nm 급의 ZnO 나노입자를 이용하여 ZnO 기반 트랜지스터를 제작한 바 있다. 그러나, 제작된 트랜지스터가 400 ℃ 열처리를 통하여 0.1 cm2/V·s 수준의 이동도를 나타내었으나, 공정온도가 높은 문제가 있다(IEDM Tech. Dig., 2004, pp. 769, IEEE Transactionson electron devices, 2007, 54(6), 1301). Many studies have been reported to solve the process shortcomings of such inorganic semiconductor materials. Ultrafine nanoparticles have been reported to be heat-treated at 105 ° C. due to the nature of nanoparticles, and ZnO-based transistors have been fabricated using 3 nm-class ZnO nanoparticles. However, although the fabricated transistor exhibited a mobility of 0.1 cm 2 / V · s through 400 ° C. heat treatment, there was a problem of high process temperature (IEDM Tech. Dig., 2004, pp. 769, IEEE Transactionson electron devices , 2007, 54 (6), 1301).
또한, 미국 오레곤 대학교의 Keszler 등은 기존에 알려져 있는 Zn(OH)2가 암모니아 수용액에 용해되는 것을 이용하여 Zn(OH)2가 용해된 암모니아 수용액을 스핀코팅하여 우수한 전하 이동도를 나타내는 트랜지스터를 제조한 바 있다. 이때, 6 cm2/V·s의 전하 이동도를 나타내는 트랜지스터는 500 ℃ 이상의 고온에서 제조가능하였고, 150 ℃ 정도의 저온에서는 1 cm2/V·s 정도의 전하 이동도를 나타내는 트랜지스터가 제조되었다. 그러나, 40 nm 내외의 얇은 박막으로 제조하기에 수용액의 농도가 낮아 공정상 수용액의 점도를 조절하는 것이 어려운 문제가 있다. 즉, 150 ℃의 저온에서 소결하는 동안 박막의 균열 또는 코팅이 되지 않은 부분들이 발생하는 문제가 있다(J. Am. Chem. Soc., 2010, 130, pp. 17603).Also, Keszler et al, US University of Oregon are producing the transistor 2 is Zn (OH) is known in the conventional indicating Zn (OH) excellent charge transfer and divalent spin coating the dissolved aqueous ammonia be used to be dissolved in an aqueous ammonia solution I've done it. At this time, a transistor exhibiting a charge mobility of 6 cm 2 / V · s may be manufactured at a high temperature of 500 ° C. or higher, and a transistor exhibiting a charge mobility of about 1 cm 2 / V · s was manufactured at a low temperature of about 150 ° C. . However, there is a problem that it is difficult to control the viscosity of the aqueous solution due to the low concentration of the aqueous solution in order to produce a thin film of about 40 nm. That is, there is a problem that cracks or uncoated portions of the thin film occur during sintering at a low temperature of 150 ° C. (J. Am. Chem. Soc., 2010, 130, pp. 17603).
캐나다의 제록스 연구소는 초산 아연을 전구체로 이용한 소결을 통해 ZnO 트랜지스터를 제조한 바 있다. 소결 온도에 따른 ZnO 트랜지스터의 전하 이동도는 각각 350 ℃에서 0.40, 400 ℃에서 2.65, 500 ℃에서 5.25, 600 ℃에서 5.09 cm2/V·s를 나타내었으며, 350 ℃ 이하의 온도에서는 트랜지스터의 전하 이동도가 급격하게 저하되는 문제가 있다(J. Am. Chem. Soc., 2007, 129, pp. 2750).Xerox Laboratories in Canada have fabricated ZnO transistors by sintering with zinc acetate as a precursor. The charge mobility of ZnO transistor with sintering temperature was 0.40 at 350 ° C, 2.65 at 400 ° C, 5.25 at 500 ° C, and 5.09 cm 2 / V · s at 600 ° C, respectively. There is a problem that the mobility is sharply reduced (J. Am. Chem. Soc., 2007, 129, pp. 2750).
일반적으로 디스플레이에서 사용되는 유리 기판 또는 기타 코팅재료의 내열 온도가 400 ℃ 이하, 바람직하게는 350 ℃ 이하이므로 저온에서 소결이 가능하며 우수한 특성을 갖는 산화아연(ZnO) 박막의 제조 방법이 요구되고 있다.Generally, since the heat resistance temperature of the glass substrate or other coating material used in the display is 400 ° C. or lower, preferably 350 ° C. or lower, sintering is possible at low temperatures and a method of manufacturing a zinc oxide (ZnO) thin film having excellent characteristics is required. .
이에 본 발명자들은 우수한 특성을 나타내는 산화아연 전도막의 제조방법을 연구하던 중 산화아연 나노입자를 산화아연 전구체에 분산시킴으로써, 전하 이동도 및 점멸비 특성이 향상된 산화아연 전도막을 제조할 수 있는 무기 반도체 잉크 조성물을 개발하고, 본 발명을 완성하였다.The inventors of the present invention, while studying a method for producing a zinc oxide conductive film showing excellent properties, by dispersing the zinc oxide nanoparticles in the zinc oxide precursor, an inorganic semiconductor ink capable of producing a zinc oxide conductive film with improved charge mobility and flashing ratio characteristics The composition was developed and the present invention was completed.
본 발명의 목적은 무기 반도체 잉크 조성물 및 이를 통해 제조되는 무기 반도체 박막을 제공하는 데 있다.It is an object of the present invention to provide an inorganic semiconductor ink composition and an inorganic semiconductor thin film prepared through the same.
상기 목적을 달성하기 위하여, 본 발명은 산화아연 전구체 용액, 산화아연 나노입자 및 분산용매를 포함하고, 산화아연 전구체 용액에 대하여 산화아연 나노입자는 0.1 내지 50 중량%인 것을 특징으로 하는 무기 반도체 잉크 조성물을 제공한다.In order to achieve the above object, the present invention comprises a zinc oxide precursor solution, zinc oxide nanoparticles and a dispersion solvent, the inorganic oxide ink, characterized in that the zinc oxide nanoparticles are 0.1 to 50% by weight relative to the zinc oxide precursor solution To provide a composition.
본 발명에 따른 무기 반도체 잉크 조성물 및 이를 통해 제조되는 무기 반도체 박막은 트랜지스터 소자의 채널 재료로 이용될 수 있고, 이에 따라 전기적 성능이 향상된 무기 박막 트랜지스터를 제조할 수 있다. 또한, 용액공정에 적합하여 박막으로의 제조가 용이하고 저온공정이 가능하며, 산화아연 전구체 용액 및 산화아연 나노입자가 혼합되어 조밀하고 균일한 박막을 제조할 수 있고, 이에 따라 신뢰도가 우수한 무기 박막 트랜지스터를 제조할 수 있다.The inorganic semiconductor ink composition and the inorganic semiconductor thin film manufactured by the same according to the present invention can be used as a channel material of the transistor device, thereby manufacturing an inorganic thin film transistor with improved electrical performance. In addition, it is suitable for the solution process, it is easy to manufacture a thin film, low temperature process is possible, and the zinc oxide precursor solution and the zinc oxide nanoparticles can be mixed to produce a dense and uniform thin film, and thus an excellent inorganic thin film The transistor can be manufactured.
도 1은 본 발명에 따라 제조된 무기 박막 트랜지스터를 나타낸 개략도이고;1 is a schematic view showing an inorganic thin film transistor manufactured according to the present invention;
도 2는 본 발명에 따라 제조된 무기 박막 트랜지스터의 전류 전달 특성을 나타낸 그래프이다.2 is a graph showing current transfer characteristics of an inorganic thin film transistor manufactured according to the present invention.
본 발명은 산화아연 전구체 용액, 산화아연 나노입자 및 분산용매를 포함하고, 산화아연 전구체 용액에 대하여 산화아연 나노입자는 0.1 내지 50 중량%인 것을 특징으로 하는 무기 반도체 잉크 조성물을 제공한다.The present invention provides an inorganic semiconductor ink composition comprising a zinc oxide precursor solution, zinc oxide nanoparticles and a dispersion solvent, wherein the zinc oxide nanoparticles are 0.1 to 50% by weight relative to the zinc oxide precursor solution.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 무기 반도체 잉크 조성물은 산화아연 전구체 용액; 산화아연 나노입자를 포함한다. 산화아연은 결정 성장 과정에서 비화학양론적 구조로 성장되고 침입형 아연 원자 또는 산소 공공(oxygen vacancies)과 같은 진성 결함들의 이온화 과정으로 인하여 생성된 전자를 주 캐리어(carrier)원으로 사용하기 때문에 전형적인 n-형 반도체 특성을 나타낸다. 또한, 상기 산화아연은 넓은 밴드갭을 가지고 있어 빛의 투과율이 우수하고, 기존의 비정질 실리콘에 비해서 우수한 전계효과를 나타내며, 높은 전하 이동도를 나타낸다. 또한, 노광 또는 진공 증착 공정을 이용하여 상기 산화아연을 박막으로 증착하는 경우 높은 공정비용이 발생하므로 용액공정을 이용하여 산화아연 박막을 제조함으로써 공정비용을 절감시킬 수 있다. The inorganic semiconductor ink composition according to the present invention comprises a zinc oxide precursor solution; Zinc oxide nanoparticles. Zinc oxide is typically grown because it grows into a non-stoichiometric structure during crystal growth and uses electrons generated as a primary carrier source due to ionization of intrinsic defects such as invasive zinc atoms or oxygen vacancies. n-type semiconductor characteristics. In addition, the zinc oxide has a wide bandgap, excellent light transmittance, excellent electric field effect compared to conventional amorphous silicon, and high charge mobility. In addition, when the zinc oxide is deposited as a thin film using an exposure or vacuum deposition process, a high process cost is generated, thereby reducing the process cost by manufacturing a zinc oxide thin film using a solution process.
또한, 본 발명에 따른 무기 반도체 잉크 조성물은 산화아연 나노입자를 포함하여 산화아연 박막의 제조 시 저온의 열처리 온도에서도 공극이 없는 조밀한 산화아연 박막을 제조할 수 있고, 이에 따라 제조된 산화아연 박막의 전하 이동도가 향상되는 특징이 있다. 이때, 본 발명에 따른 무기 반도체 잉크 조성물은 산화아연 전구체 용액에 대하여 산화아연 나노입자를 0.1 내지 50 중량%로 혼합 및 분산시킨다. 만약 산화아연 나노입자가 상기 범위를 벗어나는 양으로 산화아연 전구체 용액에 혼합 및 분산되는 경우, 전하 이동도가 저하되는 문제가 있다.In addition, the inorganic semiconductor ink composition according to the present invention can produce a compact zinc oxide thin film having no pores even at a low heat treatment temperature during the production of a zinc oxide thin film including zinc oxide nanoparticles, zinc oxide thin film prepared accordingly Has a characteristic of improving charge mobility. At this time, the inorganic semiconductor ink composition according to the present invention is mixed and dispersed in 0.1 to 50% by weight of zinc oxide nanoparticles relative to the zinc oxide precursor solution. If the zinc oxide nanoparticles are mixed and dispersed in the zinc oxide precursor solution in an amount outside the above range, there is a problem that the charge mobility decreases.
상기 산화아연 나노입자는 5 내지 20 nm 크기인 것이 바람직하다. 산화아연 나노입자의 크기가 5 nm 미만인 경우에는 응집에 따른 분산이 어려운 문제가 있고, 산화아연 나노입자의 크기가 20 nm를 초과하는 경우에는 나노 입자의 크기가 박막의 두께보다 크기 때문에 박막의 표면 형상이 거칠게 형성되며, 나노입자들이 전자 이동을 방해하는 장벽(barrier)역할을 하여 박막의 반도체 특성이 저하되는 문제가 있다.The zinc oxide nanoparticles are preferably 5 to 20 nm in size. If the size of the zinc oxide nanoparticles is less than 5 nm, there is a problem that dispersion due to aggregation is difficult, and if the size of the zinc oxide nanoparticles exceeds 20 nm, the size of the nanoparticles is larger than the thickness of the thin film surface The shape is rough, and there is a problem in that the semiconductor characteristics of the thin film are deteriorated by the nanoparticles acting as a barrier to prevent electron movement.
본 발명에 따른 무기 반도체 잉크 조성물에 있어서, 상기 산화아연 나노입자는 미세한 입자 크기로 인하여 산화아연 전구체 용액에 직접 혼합시키는 경우, 분산이 잘되지 않고 응집되는 문제가 있다. 이에 산화아연 나노입자를 분산용매에 먼저 분산시켜 산화아연 나노입자 용액을 제조하고, 제조된 산화아연 나노입자 용액을 산화아연 전구체 용액과 혼합하여 무기 반도체 잉크 조성물을 제조한다. 이때, 상기 산화아연 나노입자는 분산용매에 대하여 0.1 내지 10 중량%로 분산되는 것이 바람직하다. 만약, 산화아연 나노입자가 0.1 중량% 미만으로 분산되는 경우, 산화아연 나노입자의 첨가로 인한 전하 이동도의 향상 효과가 나타나지 않는 문제가 있고, 산화아연 나노입자가 10 중량%를 초과하여 분산되는 경우 과도한 산화아연 나노입자의 첨가로 인하여 응집에 따른 분산이 되지 않는 문제가 있다. In the inorganic semiconductor ink composition according to the present invention, when the zinc oxide nanoparticles are directly mixed in the zinc oxide precursor solution due to the fine particle size, there is a problem that the zinc oxide nanoparticles are not well dispersed and aggregated. The zinc oxide nanoparticles are first dispersed in a dispersion solvent to prepare a zinc oxide nanoparticle solution, and the prepared zinc oxide nanoparticle solution is mixed with a zinc oxide precursor solution to prepare an inorganic semiconductor ink composition. At this time, the zinc oxide nanoparticles are preferably dispersed in 0.1 to 10% by weight relative to the dispersion solvent. If the zinc oxide nanoparticles are dispersed in less than 0.1% by weight, there is a problem that the improvement of charge mobility due to the addition of the zinc oxide nanoparticles does not appear, and the zinc oxide nanoparticles are dispersed in excess of 10% by weight. In this case, due to the addition of excessive zinc oxide nanoparticles there is a problem that is not dispersed due to aggregation.
상기 분산용매는 수산화암모늄, 이소프로필알코올, 클로로벤젠, N-메틸 피롤리돈, 에탄올 아민, 에탄올, 메탄올 등을 단독으로 사용하거나 2종 이상을 혼합하여 사용할 수 있고, 특히 시중에서 저렴하게 구할 수 있는 에탄올을 사용할 수 있다.The dispersion solvent may be used alone or in combination of two or more kinds of ammonium hydroxide, isopropyl alcohol, chlorobenzene, N-methyl pyrrolidone, ethanol amine, ethanol, methanol, etc. Ethanol can be used.
본 발명에 따른 무기 반도체 잉크 조성물에 있어서, 상기 산화아연 전구체 용액은 코팅 또는 인쇄를 통해 무기 반도체 박막을 제조할 수 있게 한다. 이때, 상기 산화아연 전구체 용액은 수산화 아연 (zinc hydroxide), 초산 아연(zinc acetate), 아연 포름산염(zinc formate), 옥산산 아연(zinc oxalate), 질산 아연(zinc nitrate), 프로피온산아연 (zinc propionate), 아연 아세틸아세토네이트(zinc acetylacetonate), 아연 아크릴레이트(zinc acrylate), 메타크릴산 아연(zinc methacrylate), 황산 아연(zinc sulfite), 염화 아연(zinc chloride)과 이들의 수화물(hydrate) 및 혼합물로 이루어지는 군으로부터 선택되는 화합물을 출발물질로 하는 것이 바람직하나, 이에 제한되는 것은 아니며 아연을 포함하는 화합물이라면 산화아연 전구체 용액의 출발물질로 이용될 수 있다.In the inorganic semiconductor ink composition according to the present invention, the zinc oxide precursor solution makes it possible to produce an inorganic semiconductor thin film through coating or printing. In this case, the zinc oxide precursor solution is zinc hydroxide, zinc acetate, zinc formate, zinc oxalate, zinc nitrate, zinc propionate, and zinc propionate. ), Zinc acetylacetonate, zinc acrylate, zinc methacrylate, zinc sulfate, zinc chloride and their hydrates and mixtures thereof It is preferable to use a compound selected from the group consisting of as a starting material, but is not limited thereto. Any compound containing zinc may be used as a starting material of a zinc oxide precursor solution.
상기 산화아연 전구체 용액은 상기 출발물질들에 따라 다양한 제조방법이 이용될 수 있다. 일례로서, 산화아연 전구체 용액의 출발물질이 질산 아연 2수화물(zinc nitrate dyhydrate)인 경우, 수산화나트륨과 질산 아연 2수화물을 증류수에 용해하여 반응시킨 후 발생되는 흰색 수산화 화합물을 수득하고, 상기 수산화 화합물을 세척하여 불순물을 최소화한 후, 이를 암모니아 수용액에 용해하여 산화아연 전구체를 제조할 수 있고, 출발물질에 따라 적절한 제조방법을 선택하여 산화아연 전구체 용액을 제조할 수 있다.The zinc oxide precursor solution may be used in various manufacturing methods depending on the starting materials. As an example, when the starting material of the zinc oxide precursor solution is zinc nitrate dyhydrate, a white hydroxide compound produced after dissolving and reacting sodium hydroxide and zinc nitrate dihydrate in distilled water is obtained, and the hydroxide compound After washing to minimize impurities, it may be dissolved in an aqueous ammonia solution to prepare a zinc oxide precursor, and a zinc oxide precursor solution may be prepared by selecting an appropriate preparation method according to the starting material.
본 발명에 따른 무기 반도체 잉크 조성물은 산화아연 나노입자가 분산된 용액과 상기 산화아연 전구체 용액을 혼합하여 제조되고, 이때, 상기 나노입자가 분산된 용액은 산화아연 나노입자가 용매에 균질하게 분산된 상태로써, 산화아연 전구체 용액에 산화아연 나노입자를 분산시키는 것이 용이하고, 상기 산화아연 전구체 용액은 용액공정에 적합하도록 액상으로 존재한다. 상기 나노입자가 분산된 용액과 산화아연 전구체 용액을 혼합함으로써 공정단가가 저렴한 용액공정에 사용할 수 있고, 산화아연 나노입자가 균질하게 분산된 무기 반도체 잉크 조성물을 제조할 수 있다.The inorganic semiconductor ink composition according to the present invention is prepared by mixing the zinc oxide nanoparticles dispersed solution and the zinc oxide precursor solution, wherein the nanoparticles are dispersed solution is homogeneously dispersed zinc oxide nanoparticles in a solvent As a state, it is easy to disperse the zinc oxide nanoparticles in the zinc oxide precursor solution, and the zinc oxide precursor solution is present in the liquid phase to be suitable for the solution process. By mixing the solution in which the nanoparticles are dispersed and the zinc oxide precursor solution, it can be used in a solution process having a low process cost, and an inorganic semiconductor ink composition in which the zinc oxide nanoparticles are homogeneously dispersed can be prepared.
이때, 상기 나노입자가 분산된 용액과 산화아연 전구체 용액의 혼합은 1:1의 부피비로 수행되는 것이 바람직하다. 상기 범위 미만으로 산화아연 나노입자 용액이 혼합되는 경우에는 제조되는 잉크 조성물에 충분한 산화아연 나노입자를 제공할 수 없어 산화아연 박막 제조 시 전하 이동도 등의 전기적 특성이 오히려 저하되는 문제가 있다. 상기 범위를 초과하여 산화아연 나노입자가 혼합되는 경우 또한 전하 이동도가 저하되는 문제가 있다.In this case, the mixing of the solution in which the nanoparticles are dispersed and the zinc oxide precursor solution is preferably performed in a volume ratio of 1: 1. When the zinc oxide nanoparticle solution is mixed below the above range, sufficient zinc oxide nanoparticles cannot be provided to the ink composition to be prepared, so that electrical characteristics such as charge mobility during the production of the zinc oxide thin film are deteriorated. When the zinc oxide nanoparticles are mixed beyond the above range, there is also a problem that the charge mobility is lowered.
본 발명에 따른 무기 반도체 잉크 조성물은 용액공정에 적합하여 낮은 공정비용으로 산화아연 박막을 제조할 수 있고, 산화아연 전구체 용액 및 산화아연 나노입자가 혼합됨으로써 저온공정을 통해 조밀하고 균일한 산화아연 박막을 제조할 수 있다.The inorganic semiconductor ink composition according to the present invention is suitable for a solution process to produce a zinc oxide thin film at a low process cost, and the zinc oxide thin film is dense and uniform through a low temperature process by mixing the zinc oxide precursor solution and zinc oxide nanoparticles Can be prepared.
본 발명은 The present invention
상기 무기반도체 잉크 조성물을 기판 상부로 인쇄 또는 코팅하여 막을 제조하는 단계(단계 1); 및Printing or coating the inorganic semiconductor ink composition on a substrate to prepare a film (step 1); And
상기 단계 1에서 제조된 막을 열처리하는 단계(단계 2)를 포함하는 산화아연 나노입자가 분산된 산화아연 반도체 박막의 제조방법을 제공한다.It provides a method for producing a zinc oxide semiconductor thin film dispersed with zinc oxide nanoparticles comprising the step (step 2) of heat-treating the film prepared in step 1.
본 발명에 따른 산화아연 반도체 박막의 제조방법에 있어서, 단계 1은 상기 무기반도체 잉크 조성물을 기판 상부로 인쇄 또는 코팅하여 막을 제조하는 단계이다. 이때, 상기 단계 1의 인쇄는 잉크젯 프린팅, 롤 프린팅, 그라비아 프린팅, 에어로졸 프린팅, 스크린 프린팅 등을 사용할 수 있고, 상기 코팅은 롤(roll) 코팅, 스핀 코팅, 바(bar) 코팅, 스프레이 코팅, 딥(dip) 코팅 등을 사용할 수 있다. In the method for manufacturing a zinc oxide semiconductor thin film according to the present invention, step 1 is a step of preparing a film by printing or coating the inorganic semiconductor ink composition on the substrate. In this case, the printing of step 1 may use inkjet printing, roll printing, gravure printing, aerosol printing, screen printing, and the like, and the coating may be roll coating, spin coating, bar coating, spray coating, dip, or the like. (dip) coating or the like can be used.
본 발명에 따른 산화아연 반도체 박막은 상기 인쇄 및 코팅 방법들 중 용이한 방법을 선택하여 제조될 수 있고, 스핀 코팅을 이용하는 것이 바람직하지만, 이에 제한되는 것은 아니다.The zinc oxide semiconductor thin film according to the present invention may be manufactured by selecting an easy method among the printing and coating methods, and it is preferable to use spin coating, but is not limited thereto.
본 발명에 따른 산화아연 반도체 박막의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조된 막을 열처리하는 단계이다. 상기 단계 2는 상기 단계 1에서 기판 상부로 코팅된 박막을 열처리하여 산화아연 반도체 박막을 제조하고, 제조된 산화아연 반도체 박막 내부에 산화아연 나노입자가 균질하게 분산되어 우수한 전하 이동도 등의 전기적 특성을 나타낸다. In the method for producing a zinc oxide semiconductor thin film according to the present invention, step 2 is a step of heat-treating the film prepared in step 1. In step 2, the zinc oxide semiconductor thin film is manufactured by heat-treating the thin film coated on the substrate in step 1, and the zinc oxide nanoparticles are homogeneously dispersed in the prepared zinc oxide semiconductor thin film, thereby providing excellent electrical properties such as excellent charge mobility. Indicates.
본 발명에 따른 제조방법으로 제조되는 산화아연 반도체 박막은 무기 박막 트랜지스터의 N-형 반도체 박막으로 이용될 수 있으며, 이에 따라 무기 박막 트랜지스터의 전하 이동도, 점멸비 등의 전기적 특성을 향상시킬 수 있다.The zinc oxide semiconductor thin film manufactured by the manufacturing method according to the present invention may be used as an N-type semiconductor thin film of an inorganic thin film transistor, thereby improving electrical characteristics such as charge mobility and blink rate of the inorganic thin film transistor. .
또한, 본 발명은 기판 및 상기 제조방법으로 제조되는 산화아연 반도체 박막이 순차적으로 적층되고, 상기 산화아연 반도체 박막 상부에 소스(source)와 드레인(drain) 전극이 적층되되, 상기 소스와 드레인 전극은 일정간격으로 이격되어 있는 것을 특징으로 하는 무기 박막 트랜지스터을 제공한다. 본 발명에 따른 무기 박막 트랜지스터의 개략도는 도 1에 나타내었다.In addition, in the present invention, a substrate and a zinc oxide semiconductor thin film manufactured by the manufacturing method are sequentially stacked, and a source and a drain electrode are stacked on the zinc oxide semiconductor thin film. Provided are inorganic thin film transistors, which are spaced at regular intervals. A schematic diagram of an inorganic thin film transistor according to the present invention is shown in FIG.
본 발명에 따른 무기 박막 트랜지스터는 막 내부에 산화아연 나노입자가 분산된 산화아연 반도체 박막을 포함함으로써, 전하 이동도, 점멸비 등의 전기적 특성이 우수하다. 또한 메모리, 디스플레이 등 여러 전자소자에 적용될 수 있고, 특히 산화아연 박막의 높은 투과도로 인하여 디스플레이 소자에 적용시킬 수 있다.The inorganic thin film transistor according to the present invention includes a zinc oxide semiconductor thin film in which zinc oxide nanoparticles are dispersed in the film, thereby excellent in electrical properties such as charge mobility and flashing ratio. In addition, the present invention can be applied to various electronic devices such as a memory and a display, and in particular, it can be applied to a display device due to the high transmittance of a zinc oxide thin film.
이때, 상기 기판은 실리콘(Si) 웨이퍼, 유리기판, 플라스틱 기판 등이 이용될 수 있으며, 무기 박막 트랜지스터를 적용할 제품에 맞추어 기판을 선택한다. 예를 들어, 상기 기판이 실리콘(Si) 웨이퍼 기판인 경우 무기 박막 트랜지스터를 메모리 소자에 적용할 수 있고, 유리기판인 경우 디스플레이 소자에 적용할 수 있으며, 플라스틱 기판인 경우 플렉서블(flexible)한 특성이 요구되는 전자소자에 적용할 수 있다.In this case, a silicon (Si) wafer, a glass substrate, a plastic substrate, or the like may be used, and the substrate is selected according to a product to which the inorganic thin film transistor is to be applied. For example, when the substrate is a silicon (Si) wafer substrate, an inorganic thin film transistor may be applied to a memory device, and in the case of a glass substrate, it may be applied to a display device. In the case of a plastic substrate, a flexible characteristic may be applied. Applicable to the required electronic device.
또한, 상기 무기 박막 트랜지스터는 소스(source)와 드레인(drain) 전극 상부로 적층된 보호막을 더 포함할 수 있다. 상기 보호막으로 인하여 소스(source)와 드레인(drain) 전극을 보호하여, 무기 박막 트랜지스터의 수명을 향상시킬 수 있다.In addition, the inorganic thin film transistor may further include a passivation layer stacked over the source and drain electrodes. The passivation layer protects the source and drain electrodes, thereby improving the lifetime of the inorganic thin film transistor.
나아가, 상기 무기 박막 트랜지스터는 기판과 산화아연 반도체 박막 사이에 게이트 전극을 더 포함할 수 있다. 예를 들어, 상기 기판이 실리콘(Si) 웨이퍼인 경우, 기판의 자체가 게이트 전극으로써 작용할 수 있다. 그러나, 기판의 재질이 게이트 전극으로 작용할 수 없는 재질인 경우 상기 무기 박막 트랜지스터는 게이트 전극을 더 포함할 수 있으며, 상기 게이트 전극은 일반적인 실리콘 계열의 게이트 전극일 수 있으나, 이에 제한되는 것은 아니며 당업자에게 알려진 일반적인 게이트 전극 소재로 형성될 수 있다. 이때, 본 출원에 있어서 상기 게이트 전극은 게이트 절연체가 포함되어 있는 것을 의미한다. Furthermore, the inorganic thin film transistor may further include a gate electrode between the substrate and the zinc oxide semiconductor thin film. For example, when the substrate is a silicon (Si) wafer, the substrate itself may act as a gate electrode. However, when the material of the substrate is a material that cannot act as a gate electrode, the inorganic thin film transistor may further include a gate electrode, and the gate electrode may be a general silicon-based gate electrode, but is not limited thereto. It may be formed of a known general gate electrode material. In this case, the gate electrode in the present application means that the gate insulator is included.
본 발명은 기판 상부로 산화아연 나노 입자가 분산된 무기 반도체 잉크 조성물을 코팅하고 열처리하여 산화아연 반도체 박막을 제조하는 단계(단계 1);The present invention comprises the steps of coating the inorganic semiconductor ink composition in which zinc oxide nanoparticles are dispersed on the substrate and heat treatment to produce a zinc oxide semiconductor thin film (step 1);
상기 단계 1에서 제조된 산화아연 반도체 박막 상부에 소스(source)와 드레인(drain) 전극을 증착시키는 단계(단계 2); 및 Depositing a source and a drain electrode on the zinc oxide semiconductor thin film prepared in step 1 (step 2); And
상기 단계 2에서 증착된 소스(source)와 드레인(drain) 전극 상부로 보호막을 코팅하는 단계(단계 3)를 포함하는 무기 박막 트랜지스터의 제조방법을 제공한다.It provides a method of manufacturing an inorganic thin film transistor comprising the step (step 3) of coating a protective film on the source and drain electrodes deposited in step 2 above.
본 발명에 따른 무기 박막 트랜지스터의 제조방법에 있어서, 단계 1은 기판(게이트 전극) 상부로 산화아연 나노 입자가 분산된 무기 반도체 잉크 조성물을 코팅하고 열처리하여 산화아연 반도체 박막을 제조하는 단계이다.In the method of manufacturing an inorganic thin film transistor according to the present invention, step 1 is a step of coating an inorganic semiconductor ink composition in which zinc oxide nanoparticles are dispersed on a substrate (gate electrode) and heat treating to prepare a zinc oxide semiconductor thin film.
상기 단계 1의 산화아연 반도체 박막은 산화아연 나노 입자가 분산된 무기 반도체 잉크 조성물로 제조되어, 박막 내부에 산화아연 나노 입자가 고르게 분산되어 있다. 이에 따라, 산화아연 반도체 박막의 전하이동도, 점멸비 등과 같은 전기적 특성이 향상된다.The zinc oxide semiconductor thin film of Step 1 is made of an inorganic semiconductor ink composition in which zinc oxide nanoparticles are dispersed, and the zinc oxide nanoparticles are evenly dispersed in the thin film. Accordingly, electrical characteristics such as charge mobility, blink rate, and the like of the zinc oxide semiconductor thin film are improved.
본 발명에 따른 무기 박막 트랜지스터의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조된 산화아연 반도체 박막 상부에 소스(source)와 드레인(drain) 전극을 증착시키는 단계이다. 이때, 상기 소스(source)와 드레인(drain) 전극은 서로 이격되어 증착되고, 상기 소스(source)와 드레인(drain) 전극의 증착은 증발 증착기(evaporator)를 이용하여 수행되는 것이 바람직하나, 이에 제한되는 것은 아니다. In the method of manufacturing an inorganic thin film transistor according to the present invention, step 2 is a step of depositing a source (drain) and drain (drain) electrode on the zinc oxide semiconductor thin film prepared in step 1. In this case, the source and drain electrodes are spaced apart from each other, and the deposition of the source and drain electrodes is preferably performed using an evaporator, but is not limited thereto. It doesn't happen.
본 발명에 따른 무기 박막 트랜지스터의 제조방법에 있어서, 단계 3은 상기 단계 2에서 증착된 소스(source)와 드레인(drain) 전극 상부로 보호막을 코팅하는 단계이다. 상기 단계 3의 보호막을 코팅함으로써, 소스(source)와 드레인(drain) 전극을 보호할 수 있고, 이에 따라, 무기 박막 트랜지스터의 수명을 향상시킬 수 있다. 상기 보호막의 두께는 500 내지 2000 nm인 것이 바람직하며, 보호막이 상기 두께 범위로 형성됨으로써 무기 박막 트랜지스터의 공기(air)중 안정성과 후공정 진행시 외부로부터의 손상을 방지할 수 있다. In the method of manufacturing an inorganic thin film transistor according to the present invention, step 3 is a step of coating a protective film on the source and drain electrodes deposited in step 2. By coating the passivation layer of step 3, the source and drain electrodes can be protected, thereby improving the lifetime of the inorganic thin film transistor. The thickness of the passivation layer is preferably 500 to 2000 nm, and the passivation layer is formed in the thickness range, thereby preventing stability of the inorganic thin film transistor in air and preventing damage from the outside during the post process.
이때, 상기 단계 3의 보호막은 폴리메틸메타크릴레이트(Poly methylmethacrylate, PMMA), 폴리이미드(Polyimide) 또는 폴리벤족사졸(Polybenzoxazole)인 고분자를 코팅하여 형성될 수 있고,In this case, the protective layer of step 3 may be formed by coating a polymer that is polymethylmethacrylate (Poly methylmethacrylate, PMMA), polyimide (Polyimide) or polybenzoxazole (Polybenzoxazole),
상기 보호막은 메틸메타크릴레이트(MMA), 부틸메타크릴레이트(BMA), 불소치환된 아크릴레이트 등과 같은 고분자를 포함하는 아크릴계 광경화 조성물, 또는 하기 구조식 1과 같은 카도계 광경화 조성물을 자외선 등으로 조사하여 광경화반응을 통해 형성될 수 있으며, 일례로써 상기 아크릴계 광경화 조성물은 대한민국 등록특허 제10-0140905호 개시된 바 있는 조성물을 사용할 수 있고, 상기 카도계 광경화 조성물은 일본등록특허 제3,148,429B호에 개시된 바 있는 조성물을 사용할 수 있다. 상기 보호막이 광경화 조성물로 형성되는 경우, 상기 광경화 조성물은 1 내지 5 중량%의 광개시제를 포함하고, 상기 광경화 조성물을 코팅한 후 자외선과 같은 광 조사에 의해 경화될 수 있다. 광개시제로는 일반적인 광 중합개시제 중 1종 이상을 선택하여 사용할 수 있고, 광개시제의 예로는 시중에서 쉽게 구매가능한 Irgacure 369(Ciba-geigy), Irgacure 184(Ciba-geigy), Darocur 1173(Ciba-geigy) 등이 있다.The protective layer is an acrylic photocurable composition comprising a polymer such as methyl methacrylate (MMA), butyl methacrylate (BMA), fluorine-substituted acrylate, or the like, or a cardo-based photocurable composition such as Structural Formula 1 below UV light. Irradiation may be formed through a photocuring reaction, for example, the acrylic photocurable composition may be a composition disclosed in the Republic of Korea Patent No. 10-0140905, the cardo-based photocurable composition is Japanese Patent No. 3,148,429B The compositions as disclosed in the call may be used. When the protective film is formed of a photocurable composition, the photocurable composition may include 1 to 5% by weight of a photoinitiator, and may be cured by light irradiation such as ultraviolet rays after coating the photocurable composition. As a photoinitiator, one or more types of photoinitiators can be selected and used. Examples of photoinitiators include Irgacure 369 (Ciba-geigy), Irgacure 184 (Ciba-geigy), and Darocur 1173 (Ciba-geigy), which are readily available on the market. Etc.
<구조식 1> 카도계 광경화 조성물<Formula 1> Cardo-based photocurable composition
Figure PCTKR2012002831-appb-I000001
Figure PCTKR2012002831-appb-I000001
한편, 상기 제조방법은 단계 1에서 무기 반도체 잉크 조성물을 코팅하기 전, 기판상에 게이트 전극을 형성시키는 단계를 더 포함할 수 있다. 이때, 상기 게이트 전극은 당업자에게 알려진 일반적인 게이트 전극 소재를 기판상에 코팅함으로써 형성될 수 있으며, 상기 게이트 전극의 형성방법은 스핀코팅, 딥코팅 등의 코팅공정을 통해 수행될 수 있으나, 이에 제한되는 것은 아니다.Meanwhile, the manufacturing method may further include forming a gate electrode on the substrate before coating the inorganic semiconductor ink composition in step 1. In this case, the gate electrode may be formed by coating a general gate electrode material known to those skilled in the art on a substrate, and the method of forming the gate electrode may be performed through a coating process such as spin coating or dip coating. It is not.
이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 설명하기 위한 것일 뿐, 하기 실시예에 의하여 본 발명의 권리범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited by the following examples.
<제조예 1> 산화아연 나노입자의 제조Preparation Example 1 Preparation of Zinc Oxide Nanoparticles
출발물질로 초산 아연 2수화물(Zinc acetate dihydrate, (Zn(CH3COO)2·H2O))과 수산화 칼륨(KOH)을 사용하였으며, 용매는 메탄올을 사용하였다. 초산 아연(Zinc acetate)의 농도는 0.1 mol/L, 수산화 칼륨의 농도는 0.4 mol/L로 각각 메탄올에 용해하고, 균질하고 투명한 용액을 얻기 위하여 각각 60 ℃의 온도에서 1시간 동안 교반하였다. 교반 후 환류 응축기(reflux condenser)가 연결된 둥근 플라스크 용기에 메탄올에 용해된 초산 아연(Zinc acetate) 용액과 수산화 칼륨 용액을 부피비 2:1의 양으로 혼합하고, 다시 60 ℃의 온도에서 3시간 동안 교반하였다. 교반 후 상온에서 냉각시키고, 용매를 제외한 나머지 흰색 침전물을 회수하여 산화아연 나노입자를 제조하였다. Zinc acetate dihydrate (Zn (CH 3 COO) 2 · H 2 O)) and potassium hydroxide (KOH) were used as starting materials, and methanol was used as a solvent. The zinc acetate concentration was 0.1 mol / L and the potassium hydroxide concentration was 0.4 mol / L, respectively, dissolved in methanol, and stirred at a temperature of 60 ° C. for 1 hour to obtain a homogeneous and transparent solution. After stirring, the zinc acetate solution and potassium hydroxide solution dissolved in methanol were mixed in a volume ratio of 2: 1 in a round flask container to which a reflux condenser was connected, followed by stirring at a temperature of 60 ° C. for 3 hours. It was. After stirring, the mixture was cooled to room temperature, and the white precipitate except for the solvent was recovered to prepare zinc oxide nanoparticles.
<실시예 1> 무기 반도체 잉크 조성물의 제조Example 1 Preparation of Inorganic Semiconductor Ink Composition
단계 1: 상기 제조예 1에서 제조된 산화아연 나노입자 36.6 mg을 에탄올 10 ml에 분산시켜 산화아연 나노입자 용액을 제조하였다.Step 1: The zinc oxide nanoparticle solution was prepared by dispersing 36.6 mg of zinc oxide nanoparticles prepared in Preparation Example 1 in 10 ml of ethanol.
단계 2: 출발 물질인 질산 아연 2수화물(Zinc nitrate dihydrate, (Zn(NO3)2·H2O))을 0.5 mol/L의 농도로, 수산화 나트륨(NaOH)을 2.5 mol/L의 농도로 증류수에 용해한 후, 상기 수산화 나트륨 수용액 10 mL를 상기 질산 아연 2수화물 용액 15 mL에 5분 동안 한 방울씩 첨가하며 교반하여 반응시켰다. 반응 후 발생한 흰색 수산화 화합물을 20 mL 증류수에 분산, 세척, 원심분리의 과정을 반복하여 Na+, NO3 -와 같은 불순물을 최소화하여 회수하였다. 회수된 흰색 수산화 화합물은 6.6 mol/L 농도의 암모니아(NH3) 수용액 50 mL에 용해하여 산화아연 전구체 용액을 제조하였으며, 최종 제조된 전구체 용액에서 아연의 농도는 0.15 mol/L였다. Step 2: Zinc nitrate dihydrate (Zn (NO 3 ) 2 H 2 O), starting material, at a concentration of 0.5 mol / L and sodium hydroxide (NaOH) at a concentration of 2.5 mol / L After dissolving in distilled water, 10 mL of the aqueous sodium hydroxide solution was added to 15 mL of the zinc nitrate dihydrate solution dropwise for 5 minutes, followed by stirring. The white hydroxide compound generated after the reaction was dispersed, washed, and centrifuged in 20 mL of distilled water, and was recovered by minimizing impurities such as Na + and NO 3 . The recovered white hydroxide compound was dissolved in 50 mL of an aqueous solution of ammonia (NH 3 ) at a concentration of 6.6 mol / L to prepare a zinc oxide precursor solution, and the concentration of zinc in the prepared precursor solution was 0.15 mol / L.
단계 3: 상기 단계 1의 산화아연 나노입자 용액과 10 ml의 산화아연 전구체 용액을 혼합하여 무기 반도체 잉크 조성물을 제조하였다.Step 3: An inorganic semiconductor ink composition was prepared by mixing the zinc oxide nanoparticle solution of step 1 with 10 ml of zinc oxide precursor solution.
<실시예 2><Example 2>
상기 제조예 1에서 제조된 산화아연 나노입자 12.2 mg을 에탄올 10 mL에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10mL와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in 10 mL of ethanol, and then mixed with 10 mL of the zinc oxide precursor solution prepared in Step 2 of Example 1 to prepare an inorganic semiconductor ink composition.
<실시예 3><Example 3>
상기 제조예 1에서 제조된 산화아연 나노입자 61.0 mg을 에탄올 10 mL에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10mL와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 61.0 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in 10 mL of ethanol, and then mixed with 10 mL of the zinc oxide precursor solution prepared in Step 2 of Example 1 to prepare an inorganic semiconductor ink composition.
<실시예 4> <Example 4>
상기 제조예 1에서 제조된 산화아연 나노입자 12.2 mg을 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10 ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. An inorganic semiconductor ink composition was prepared by mixing 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1.
<실시예 5>Example 5
상기 제조예 1에서 제조된 산화아연 나노입자 12.2 mg을 수산화암모늄 용액 10 ml에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. An inorganic semiconductor ink composition was prepared by dispersing 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 in 10 ml of an ammonium hydroxide solution, and then mixing it with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1.
<실시예 6><Example 6>
상기 제조예 1에서 제조된 산화아연 나노입자 36.6 mg을 수산화암모늄 용액 10 ml에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 36.6 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in 10 ml of ammonium hydroxide solution, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1 to prepare an inorganic semiconductor ink composition.
<실시예 7><Example 7>
상기 제조예 1에서 제조된 산화아연 나노입자 12.2 mg을 이소프로필알코올 2 ml에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in 2 ml of isopropyl alcohol, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1 to prepare an inorganic semiconductor ink composition.
<실시예 8><Example 8>
상기 제조예 1에서 제조된 산화아연 나노입자 36.6 mg을 이소프로필알코올 2 ml에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 36.6 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in 2 ml of isopropyl alcohol, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1 to prepare an inorganic semiconductor ink composition.
<실시예 9>Example 9
상기 제조예 1에서 제조된 산화아연 나노입자 12.2 mg을 수산화암모늄 용액 8 ml와 이소프로필알코올 2 ml가 혼합된 용매에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in a solvent in which 8 ml of ammonium hydroxide solution and 2 ml of isopropyl alcohol were mixed, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1. To prepare an inorganic semiconductor ink composition.
<실시예 10><Example 10>
상기 제조예 1에서 제조된 산화아연 나노입자 36.6 mg을 수산화암모늄 용액 8 ml와 이소프로필알코올 2 ml가 혼합된 용매에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 36.6 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in a solvent in which 8 ml of ammonium hydroxide solution and 2 ml of isopropyl alcohol were mixed, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1. To prepare an inorganic semiconductor ink composition.
<실시예 11><Example 11>
상기 제조예 1에서 제조된 산화아연 나노입자 61.0 mg을 수산화암모늄 용액 8 ml와 이소프로필알코올 2 ml가 혼합된 용매에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 61.0 mg of zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in a solvent in which 8 ml of ammonium hydroxide solution and 2 ml of isopropyl alcohol were mixed, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1. To prepare an inorganic semiconductor ink composition.
<실시예 12><Example 12>
상기 제조예 1에서 제조된 산화아연 나노입자 12.2 mg을 수산화암모늄 용액 8 ml와 에탄올 2 ml가 혼합된 용매에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 12.2 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in a solvent in which 8 ml of ammonium hydroxide solution and 2 ml of ethanol were mixed, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1 to obtain inorganic. A semiconductor ink composition was prepared.
<실시예 13>Example 13
상기 제조예 1에서 제조된 산화아연 나노입자 36.6 mg을 수산화암모늄 용액 8 ml와 에탄올 2 ml가 혼합된 용매에 분산시킨 후 상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 혼합하여 무기 반도체 잉크 조성물을 제조하였다. 36.6 mg of the zinc oxide nanoparticles prepared in Preparation Example 1 were dispersed in a solvent in which 8 ml of ammonium hydroxide solution and 2 ml of ethanol were mixed, and then mixed with 10 ml of the zinc oxide precursor solution prepared in Step 2 of Example 1 to obtain inorganic. A semiconductor ink composition was prepared.
<비교예 1>Comparative Example 1
상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 산화아연 나노입자의 분산 용매로 에탄올 10 ml를 혼합하되, 산화아연 나노입자를 첨가하지 않고 무기 반도체 잉크 조성물을 제조하였다. 10 ml of zinc oxide precursor solution prepared in step 2 of Example 1 and 10 ml of ethanol were mixed with a dispersion solvent of zinc oxide nanoparticles, but an inorganic semiconductor ink composition was prepared without adding zinc oxide nanoparticles.
<비교예 2> Comparative Example 2
상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10 ml만을 이용하여 무기 반도체 잉크 조성물을 제조하였다.An inorganic semiconductor ink composition was prepared using only 10 ml of the zinc oxide precursor solution prepared in step 2 of Example 1.
<비교예 3>Comparative Example 3
상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 산화아연 나노입자의 분산 용매로 수산화암모늄 용액 10 ml를 혼합하되, 산화아연 나노입자를 첨가하지 않고 무기 반도체 잉크 조성물을 제조하였다. 10 ml of the zinc oxide precursor solution prepared in step 2 of Example 1 and 10 ml of the ammonium hydroxide solution were mixed with the dispersion solvent of the zinc oxide nanoparticles, but an inorganic semiconductor ink composition was prepared without adding the zinc oxide nanoparticles.
<비교예 4><Comparative Example 4>
상기 실시예 1의 단계 2에서 제조된 산화아연 전구체 용액 10ml와 산화아연 나노입자의 분산 용매로 이소프로필알코올 2 ml를 혼합하되, 산화아연 나노입자를 첨가하지 않고 무기 반도체 잉크 조성물을 제조하였다. 10 ml of the zinc oxide precursor solution prepared in step 2 of Example 1 and 2 ml of isopropyl alcohol were mixed with a dispersion solvent of zinc oxide nanoparticles, but an inorganic semiconductor ink composition was prepared without adding zinc oxide nanoparticles.
<실험예 1> 무기 박막 트랜지스터의 전기적 특성 분석Experimental Example 1 Electrical Characteristics Analysis of Inorganic Thin Film Transistor
상기 실시예 및 비교예들의 무기 반도체 잉크 조성물을 스핀코팅 또는 잉크젯 프린팅을 통하여 유리 기판 상부로 코팅한 후 핫플레이트(hotplate)에서 250 ℃의 온도로 1시간 동안 열처리하여 반도체 박막을 제조하였다. 상기 반도체 박막 상부로 증발 증착기(evaporator)를 이용하여 폭(width)/길이(length)가 3000 μm / 50 μm크기의 소스와 드레인 전극을 150 nm 두께로 증착하여 무기 박막 트랜지스터를 제조하였다. 또한, 무기 박막 트랜지스터의 공기 중 안정성과 후공정 진행시 손상을 방지하기 위하여, 무기 박막 트랜지스터의 소스와 드레인 전극 상부에 보호막을 코팅한 후 핫플레이트에서 100 ℃의 온도로 30분 동안 가열하여 유기 용매를 건조하였다. The inorganic semiconductor ink compositions of Examples and Comparative Examples were coated onto the glass substrate by spin coating or inkjet printing, and then heat-treated at 250 ° C. in a hotplate for 1 hour to prepare a semiconductor thin film. An inorganic thin film transistor was manufactured by depositing a source / drain electrode having a width / length of 3000 μm / 50 μm in a thickness of 150 nm by using an evaporator on the semiconductor thin film. In addition, in order to stabilize the inorganic thin film transistor in the air and to prevent damage during the post-process, a protective film is coated on the source and drain electrodes of the inorganic thin film transistor, and then heated at a temperature of 100 ° C. on a hot plate for 30 minutes. Was dried.
제조된 무기 박막 트랜지스터의 전하 이동도 및 점멸비를 측정하였으며, 그 결과는 하기 표 1, 2 및 도 2에 나타내었다.The charge mobility and the flashing ratio of the prepared inorganic thin film transistor were measured, and the results are shown in Tables 1, 2, and FIG. 2.
표 1 무기 박막 트랜지스터의 전기적 특성(스핀코팅)
구분 구성 성분 및 중량 전하 이동도(cm2/V·s) 점멸비 보호막
산화아연전구체중량/부피(mg)/(ml) 산화아연나노입자중량(mg) 산화아연 나노입자 분산 용매 (ml)
수산화 암모늄 이소프로필 알코올 에탄올
실시예 1 122/10 36.6 - - 10 1.36 ~107 PMMA
실시예 2 122/10 12.2 - - 10 6.08 ×10 ~107 PMMA
실시예 3 122/10 61.0 - - 10 4.83 ×10 ~107 PMMA
실시예 4 122/10 12.2 - - - 2.69 ×10-1 ~106 MMA/광개시제
실시예 5 122/10 12.2 10 - - 2.11 ×10-1 ~106 폴리이미드
실시예 6 122/10 36.3 10 - - 2.28 ×10-1 ~106 폴리이미드
실시예 7 122/10 12.2 - 2 - 2.50 ×10-1 ~107 아크릴계 광경화 조성물/광개시제
실시예 8 122/10 36.6 - 2 - 3.35 ×10-1 ~107 아크릴계 광경화 조성물/광개시제
실시예 9 122/10 12.2 8 2 - 4.74 ×10-1 ~107 아크릴계 광경화 조성물/광개시제
실시예 10 122/10 36.6 8 2 - 5.61 ×10-1 ~107 카도계 광경화 조성물/광개시제
실시예 11 122/10 61.0 8 2 - 3.31 ×10-1 ~107 카도계 광경화 조성물/광개시제
실시예 11 122/10 12.2 8 - 2 7.55 ×10-1 ~107 PMMA
실시예 13 122/10 36.6 8 - 2 4.27 ×10-1 ~107 PMMA
비교예 1 122/10 0 - - 10 4.44 ×10-1 ~107 PMMA
비교예 2 122/10 0 - - - 2.02 ×10-1 ~106 PMMA
비교예 3 122/10 0 10 - - 1.91 ×10-1 ~106 폴리이미드
비교예 4 122/10 0 - 2 - 2.06 ×10-1 ~107 카도계 광경화 조성물/광개시제
Table 1 Electrical Characteristics of Inorganic Thin Film Transistors (Spin Coating)
division Components and Weights Charge mobility (cm 2 / Vs) Flashing rain Shield
Zinc oxide precursor weight / volume (mg) / (ml) Zinc Oxide Nanoparticles Weight (mg) Zinc Oxide Nanoparticle Dispersion Solvent (ml)
Ammonium hydroxide Isopropyl Alcohol ethanol
Example 1 122/10 36.6 - - 10 1.36 To 10 7 PMMA
Example 2 122/10 12.2 - - 10 6.08 × 10 To 10 7 PMMA
Example 3 122/10 61.0 - - 10 4.83 × 10 To 10 7 PMMA
Example 4 122/10 12.2 - - - 2.69 × 10 -1 To 10 6 MMA / photoinitiators
Example 5 122/10 12.2 10 - - 2.11 × 10 -1 To 10 6 Polyimide
Example 6 122/10 36.3 10 - - 2.28 × 10 -1 To 10 6 Polyimide
Example 7 122/10 12.2 - 2 - 2.50 × 10 -1 To 10 7 Acrylic Photocuring Composition / Photoinitiator
Example 8 122/10 36.6 - 2 - 3.35 × 10 -1 To 10 7 Acrylic Photocuring Composition / Photoinitiator
Example 9 122/10 12.2 8 2 - 4.74 × 10 -1 To 10 7 Acrylic Photocuring Composition / Photoinitiator
Example 10 122/10 36.6 8 2 - 5.61 × 10 -1 To 10 7 Cardo-based photocuring composition / photoinitiator
Example 11 122/10 61.0 8 2 - 3.31 × 10 -1 To 10 7 Cardo-based photocuring composition / photoinitiator
Example 11 122/10 12.2 8 - 2 7.55 × 10 -1 To 10 7 PMMA
Example 13 122/10 36.6 8 - 2 4.27 × 10 -1 To 10 7 PMMA
Comparative Example 1 122/10 0 - - 10 4.44 × 10 -1 To 10 7 PMMA
Comparative Example 2 122/10 0 - - - 2.02 × 10 -1 To 10 6 PMMA
Comparative Example 3 122/10 0 10 - - 1.91 × 10 -1 To 10 6 Polyimide
Comparative Example 4 122/10 0 - 2 - 2.06 × 10 -1 To 10 7 Cardo-based photocuring composition / photoinitiator
아크릴계 광경화 조성물 : 메틸메타크릴레이트(MMA), 메타크릴산(MAA), 에폭시아크릴레이트 및 디-펜타-에리쓰리올-펜타-아크릴레이트(DPEPA)를 혼합한 혼합물Acrylic photocurable composition: A mixture of methyl methacrylate (MMA), methacrylic acid (MAA), epoxy acrylate and di-penta-erythrol-penta-acrylate (DPEPA)
카도계 광경화 조성물 : 구조식 1 참조Cardo-based photocurable composition: see Structural Formula 1
광개시제 : Irgacure 369 Photoinitiator: Irgacure 369
표 2 무기 박막 트랜지스터의 전기적 특성(잉크젯 프린팅)
구분 구성 성분 및 중량 전하 이동도(cm2/V·s) 점멸비 보호막
산화아연전구체중량/부피(mg)/(ml) 산화아연나노입자중량(mg) 산화아연 나노입자 분산 용매 (ml)
에틸 알코올
실시예 1 122/10 36.6 10 1.04x10-1 ~106 PMMA
비교예 1 122/10 0 10 3.90x10-2 ~106 PMMA
비교예 2 122/10 0 - 2.60x10-2 ~106 PMMA
TABLE 2 Electrical Characteristics of Inorganic Thin Film Transistors (Inkjet Printing)
division Components and Weights Charge mobility (cm 2 / Vs) Flashing rain Shield
Zinc oxide precursor weight / volume (mg) / (ml) Zinc Oxide Nanoparticles Weight (mg) Zinc Oxide Nanoparticle Dispersion Solvent (ml)
ethyl alcohol
Example 1 122/10 36.6 10 1.04 x 10 -1 To 10 6 PMMA
Comparative Example 1 122/10 0 10 3.90 x 10 -2 To 10 6 PMMA
Comparative Example 2 122/10 0 - 2.60x10 -2 To 10 6 PMMA
표 1, 2 및 도 2에 나타낸 바와 같이, 본 발명에 따른 무기 반도체 잉크 조성물로 무기 박막 트랜지스터를 제조하였을 때, 전하 이동도가 최대 1.36 cm2/V·s 및 1.04x10-1 cm2/V·s의 값을 나타내었다. 반면, 비교예 1 내지 4의 산화아연 나노입자가 첨가되지 않은 무기 반도체 잉크 조성물로 무기 박막 트랜지스터를 제조하는 경우 전하 이동도가 상대적으로 낮은 것을 알 수 있으며, 이에 따라 산화아연 나노입자의 첨가에 따라 전하 이동도를 향상시킬 수 있음을 알 수 있다. 이를 통하여 본 발명에 따른 무기 반도체 잉크 조성물을 이용하여 전기적 특성이 향상된 무기 박막 트랜지스터를 제조할 수 있음을 확인하였다.As shown in Tables 1, 2, and 2, when an inorganic thin film transistor was prepared with the inorganic semiconductor ink composition according to the present invention, the charge mobility was 1.36 cm 2 / V · s and 1.04 × 10 −1 cm 2 / V The value of s is shown. On the other hand, when the inorganic thin film transistor is manufactured from the inorganic semiconductor ink composition to which the zinc oxide nanoparticles of Comparative Examples 1 to 4 are not added, it can be seen that the charge mobility is relatively low, and according to the addition of the zinc oxide nanoparticles, It can be seen that the charge mobility can be improved. Through this, it was confirmed that the inorganic thin film transistor having improved electrical characteristics using the inorganic semiconductor ink composition according to the present invention.
<부호의 설명><Description of the code>
1 : 기판1: substrate
2 : 무기 반도체 박막2: inorganic semiconductor thin film
3 : 소스(source) 전극3 source electrode
4 : 드레인(drain) 전극4 drain electrode
5 : 보호막(passivation)5: passivation

Claims (15)

  1. 산화아연 전구체 용액, 산화아연 나노입자 및 분산용매를 포함하고, 산화아연 전구체 용액에 대하여 산화아연 나노입자는 0.1 내지 50 중량%인 것을 특징으로 하는 무기 반도체 잉크 조성물.An inorganic semiconductor ink composition comprising a zinc oxide precursor solution, zinc oxide nanoparticles and a dispersion solvent, wherein the zinc oxide nanoparticles are 0.1 to 50% by weight relative to the zinc oxide precursor solution.
  2. 제1항에 있어서, 상기 산화아연 나노입자의 크기는 5 내지 20 nm인 것을 특징으로 하는 무기 반도체 잉크 조성물.The inorganic semiconductor ink composition of claim 1, wherein the zinc oxide nanoparticles have a size of 5 to 20 nm.
  3. 제1항에 있어서, 상기 산화아연 나노입자는 분산용매에 대하여 0.1 내지 10 중량%로 분산되는 것을 특징으로 하는 무기 반도체 잉크 조성물.The inorganic semiconductor ink composition of claim 1, wherein the zinc oxide nanoparticles are dispersed at 0.1 to 10 wt% with respect to the dispersion solvent.
  4. 제1항에 있어서, 상기 분산용매는 수산화암모늄, 이소프로필알코올, 클로로벤젠, N-메틸 피롤리돈, 에탄올 아민, 에탄올 및 메탄올로 이루어지는 군으로부터 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 무기 반도체 잉크 조성물.The method of claim 1, wherein the dispersion solvent is one or a mixture of two or more selected from the group consisting of ammonium hydroxide, isopropyl alcohol, chlorobenzene, N-methyl pyrrolidone, ethanol amine, ethanol and methanol An inorganic semiconductor ink composition.
  5. 제1항에 있어서, 상기 산화아연 전구체 용액은 수산화 아연 (zinc hydroxide), 초산 아연(zinc acetate), 아연 포름산염(zinc formate), 옥산산 아연(zinc oxalate), 질산 아연(zinc nitrate), 프로피온산아연 (zinc propionate), 아연 아세틸아세토네이트(zinc acetylacetonate), 아연 아크릴레이트(zinc acrylate), 메타크릴산 아연(zinc methacrylate), 황산 아연(zinc sulfite), 염화 아연(zinc chloride), 이들의 수화물(hydrate) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 화합물을 출발물질로 하는 것을 특징으로 하는 무기 반도체 잉크 조성물.The method of claim 1, wherein the zinc oxide precursor solution is zinc hydroxide, zinc acetate, zinc formate, zinc oxalate, zinc nitrate, propionic acid Zinc propionate, zinc acetylacetonate, zinc acrylate, zinc methacrylate, zinc sulfite, zinc chloride, hydrates thereof Inorganic semiconductor ink composition comprising a compound selected from the group consisting of hydrate) and mixtures thereof as a starting material.
  6. 제1항에 있어서, 상기 무기 반도체 잉크 조성물은 산화아연 나노입자가 분산된 분산용매와 산화아연 전구체 용액을 1:1의 부피비로 혼합하여 제조되는 것을 특징으로 하는 무기 반도체 잉크 조성물.The inorganic semiconductor ink composition of claim 1, wherein the inorganic semiconductor ink composition is prepared by mixing a dispersion solvent in which zinc oxide nanoparticles are dispersed and a zinc oxide precursor solution in a volume ratio of 1: 1.
  7. 제1항의 무기반도체 잉크 조성물을 기판 상부로 인쇄 또는 코팅하여 막을 제조하는 단계(단계 1); 및A method of preparing a film by printing or coating the inorganic semiconductor ink composition of claim 1 on a substrate (Step 1); And
    상기 단계 1에서 제조된 막을 열처리하는 단계(단계 2)를 포함하는 산화아연 나노입자가 분산된 산화아연 반도체 박막의 제조방법.A method of manufacturing a zinc oxide semiconductor thin film in which zinc oxide nanoparticles are dispersed, comprising the step (step 2) of heat treating the film prepared in step 1.
  8. 제7항에 있어서, 상기 단계 1의 인쇄 또는 코팅은 잉크젯 프린팅, 롤 프린팅, 그라비아 프린팅, 에어로졸 프린팅, 스크린 프린팅, 롤(roll) 코팅, 스핀 코팅, 바(bar) 코팅, 스프레이 코팅 및 딥(dip) 코팅으로 이루어지는 군으로부터 선택되는 방법인 것을 특징으로 하는 산화아연 나노입자가 분산된 산화아연 반도체 박막의 제조방법.The method of claim 7, wherein the printing or coating of step 1 is inkjet printing, roll printing, gravure printing, aerosol printing, screen printing, roll coating, spin coating, bar coating, spray coating and dip A method for producing a zinc oxide semiconductor thin film dispersed with zinc oxide nanoparticles, characterized in that the method is selected from the group consisting of).
  9. 기판 및 제7항의 제조방법으로 제조되는 산화아연 반도체 박막이 순차적으로 적층되고, 상기 산화아연 반도체 박막 상부에 소스(source)와 드레인(drain) 전극이 적층되되, 상기 소스와 드레인 전극은 일정간격으로 이격되어 있는 것을 특징으로 하는 무기 박막 트랜지스터.The substrate and the zinc oxide semiconductor thin film manufactured by the manufacturing method of claim 7 are sequentially stacked, and source and drain electrodes are stacked on the zinc oxide semiconductor thin film, and the source and drain electrodes are spaced at regular intervals. An inorganic thin film transistor, characterized in that spaced apart.
  10. 제9항에 있어서, 상기 무기 박막 트랜지스터는 소스(source)와 드레인(drain) 전극 상부로 적층된 보호막을 더 포함하는 것을 특징으로 하는 무기 박막 트랜지스터.10. The inorganic thin film transistor of claim 9, wherein the inorganic thin film transistor further comprises a passivation layer stacked over the source and drain electrodes.
  11. 제9항에 있어서, 상기 무기 박막 트랜지스터는 기판과 산화아연 반도체 박막 사이에 게이트 전극을 더 포함하는 것을 특징으로 하는 무기 박막 트랜지스터.The inorganic thin film transistor of claim 9, wherein the inorganic thin film transistor further comprises a gate electrode between the substrate and the zinc oxide semiconductor thin film.
  12. 기판 상부로 산화아연 나노 입자가 분산된 무기 반도체 잉크 조성물을 코팅하고 열처리하여 산화아연 반도체 박막을 제조하는 단계(단계 1);Preparing an zinc oxide semiconductor thin film by coating and thermally treating an inorganic semiconductor ink composition having zinc oxide nanoparticles dispersed thereon (step 1);
    상기 단계 1에서 제조된 산화아연 반도체 박막 상부에 소스(source)와 드레인(drain) 전극을 증착시키는 단계(단계 2); 및 Depositing a source and a drain electrode on the zinc oxide semiconductor thin film manufactured in step 1 (step 2); And
    상기 단계 2에서 증착된 소스(source)와 드레인(drain) 전극 상부로 보호막을 코팅하는 단계(단계 3)를 포함하는 무기 박막 트랜지스터의 제조방법.A method of manufacturing an inorganic thin film transistor comprising the step (step 3) of coating a protective film on the source and drain electrodes deposited in step 2.
  13. 제12항에 있어서, 상기 단계 3의 보호막은 폴리메틸메타크릴레이트(Poly methylmethacrylate, PMMA), 폴리이미드(Poluimide) 또는 폴리벤족사졸(Polybenzoxazole)인 고분자로 형성되는 것을 특징으로 하는 무기 박막 트랜지스터의 제조방법.The method of claim 12, wherein the protective film of step 3 is made of a polymethyl methacrylate (Poly methylmethacrylate, PMMA), polyimide (Poluimide) or polybenzoxazole (Polybenzoxazole) of the manufacture of an inorganic thin film transistor, characterized in that Way.
  14. 제12항에 있어서, 상기 단계 3의 보호막은 아크릴 계통의 광경화 조성물 또는 카도계 광경화 조성물을 코팅하고 광경화시켜 형성되는 것을 특징으로 하는 무기 박막 트랜지스터의 제조방법.The method of claim 12, wherein the protective film of Step 3 is formed by coating and photocuring an acrylic photocurable composition or cardo-based photocurable composition.
  15. 제12항에 있어서, 상기 단계 1에서 무기 반도체 잉크 조성물을 코팅하기 전, 기판상에 게이트 전극을 형성시키는 단계를 더 포함하는 것을 특징으로 하는 무기 박막 트랜지스터의 제조방법.The method of claim 12, further comprising forming a gate electrode on the substrate before coating the inorganic semiconductor ink composition in step 1.
PCT/KR2012/002831 2011-04-15 2012-04-13 Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same WO2012141535A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0035119 2011-04-15
KR1020110035119A KR101165717B1 (en) 2011-04-15 2011-04-15 Inorganic semiconductor ink composition and the inorganic semiconductor thin film same

Publications (2)

Publication Number Publication Date
WO2012141535A2 true WO2012141535A2 (en) 2012-10-18
WO2012141535A3 WO2012141535A3 (en) 2012-12-13

Family

ID=46716836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002831 WO2012141535A2 (en) 2011-04-15 2012-04-13 Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same

Country Status (2)

Country Link
KR (1) KR101165717B1 (en)
WO (1) WO2012141535A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346264A (en) * 2013-06-08 2013-10-09 苏州方昇光电装备技术有限公司 Nano-zinc oxide film preparation method and organic solar cell preparation method
EP2858099A4 (en) * 2012-06-01 2015-05-20 Mitsubishi Chem Corp Method for producing metal oxide-containing semiconductor layer and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365800B1 (en) 2013-03-25 2014-02-20 부산대학교 산학협력단 Methods of manufacturing indium zinc oxide semiconductor thin film transistor and indium zinc oxide semiconductor thin film transistor manufactured by the methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033127A (en) * 2006-10-12 2008-04-16 제록스 코포레이션 Thin film transistor
KR20080101734A (en) * 2007-05-16 2008-11-21 제록스 코포레이션 Semiconductor layer for thin film transistor
KR20090012782A (en) * 2007-07-31 2009-02-04 삼성전자주식회사 Method for fabricating zno thin films
KR20100011167A (en) * 2008-07-24 2010-02-03 한국전자통신연구원 Method for preparation of metal oxide nanoparticle, metal oxide nanoparticle prepared by the method, method for preparation of metal oxide thin film and electric device comprising metal oxide thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033127A (en) * 2006-10-12 2008-04-16 제록스 코포레이션 Thin film transistor
KR20080101734A (en) * 2007-05-16 2008-11-21 제록스 코포레이션 Semiconductor layer for thin film transistor
KR20090012782A (en) * 2007-07-31 2009-02-04 삼성전자주식회사 Method for fabricating zno thin films
KR20100011167A (en) * 2008-07-24 2010-02-03 한국전자통신연구원 Method for preparation of metal oxide nanoparticle, metal oxide nanoparticle prepared by the method, method for preparation of metal oxide thin film and electric device comprising metal oxide thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858099A4 (en) * 2012-06-01 2015-05-20 Mitsubishi Chem Corp Method for producing metal oxide-containing semiconductor layer and electronic device
CN103346264A (en) * 2013-06-08 2013-10-09 苏州方昇光电装备技术有限公司 Nano-zinc oxide film preparation method and organic solar cell preparation method

Also Published As

Publication number Publication date
WO2012141535A3 (en) 2012-12-13
KR101165717B1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2015030297A1 (en) Hybrid organic/inorganic thin films and method of manufacturing same
US8513646B2 (en) Solution-processed high mobility inorganic thin-film transistors
KR101738175B1 (en) Method for producing semiconducting indium oxide layers, indium oxide layers produced according to said method and their use
KR101719853B1 (en) Method for producing layers containing indium oxide, layers containing indium oxide produced according to said method and the use thereof
KR101252005B1 (en) Thin Film Containing Nanocrystal Particles and Method for Preparing the Same
WO2010098372A1 (en) Field effect transistor
KR101801431B1 (en) Process for producing indium oxide-containing layers
WO2018143611A1 (en) Method for manufacturing large-area metal chalcogenide thin film, and method for manufacturing electronic device comprising metal chalcogenide thin film manufactured thereby
WO2010056061A2 (en) A single-crystalline germanium cobalt nanowire, a germanium cobalt nanowire structure, and a fabrication method thereof
WO2011065709A2 (en) Conductive ink composition that does not form particles, and method for manufacturing same
WO2018124390A1 (en) Perovskite solar cell using graphene electrode, and manufacturing method therefor
WO2012141535A2 (en) Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same
WO2016129813A1 (en) Indium phosphide based quantum dot and preparation method therefor
WO2015009090A1 (en) Core-shell nanoparticles for transparent electrically-conductive thin film formation, and production method for transparent electrically-conductive thin film using same
WO2013042863A1 (en) Nano particle complex and method of fabricating the same
WO2016039585A1 (en) Organic light emitting diode using p-type oxide semiconductor containing gallium, and preparation method therefor
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2023195761A1 (en) Oxide sintered body and thin film transistor including same
WO2015034155A1 (en) Nanocomposite-based non-volatile memory device and method for manufacturing same
KR101017494B1 (en) InZnO THIN FILM AND FABRICATION METHOD THEREOF
WO2014148830A1 (en) Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film
WO2017122985A1 (en) Method for preparing oxide thin film, oxide thin film, and electronic device manufactured therewith
WO2016027925A1 (en) Tunneling diode using graphene-silicon quantum dot hybrid structure and method for preparing same
WO2013042861A1 (en) Nano particle, nano particle complex having the same and method of fabricating the same
US20160141177A1 (en) Formulations for producing indium oxide-containing layers, process for producing them and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771235

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771235

Country of ref document: EP

Kind code of ref document: A2