WO2014148830A1 - Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film - Google Patents

Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film Download PDF

Info

Publication number
WO2014148830A1
WO2014148830A1 PCT/KR2014/002337 KR2014002337W WO2014148830A1 WO 2014148830 A1 WO2014148830 A1 WO 2014148830A1 KR 2014002337 W KR2014002337 W KR 2014002337W WO 2014148830 A1 WO2014148830 A1 WO 2014148830A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
zinc oxide
thin film
oxide thin
producing
Prior art date
Application number
PCT/KR2014/002337
Other languages
French (fr)
Korean (ko)
Inventor
김홍두
황재은
이민규
Original Assignee
Kim Hongdoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130164867A external-priority patent/KR101567809B1/en
Application filed by Kim Hongdoo filed Critical Kim Hongdoo
Publication of WO2014148830A1 publication Critical patent/WO2014148830A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a method for preparing a zinc oxide precursor, to a zinc oxide precursor and a zinc oxide thin film obtained therefrom, and more particularly to a method for producing zinc hydroxide, which is a kind of zinc oxide precursor, with high purity crystals and It relates to an invention for forming a zinc oxide thin film that can be used for use in oxide semiconductors and the like by low temperature firing using the prepared zinc hydroxide.
  • the next-generation display is to use the printing process in an effort to achieve a low price, in order to achieve this, the backplane by the semiconductor must also be formed by a solution process.
  • a solution process In particular, in manufacturing a semiconductor, efforts to use an oxide semiconductor capable of solution processing in a method using silicon are accelerating.
  • a target material such as indium-gallium-zinc oxide (IGZO)
  • IGZO indium-gallium-zinc oxide
  • the process of liquefying an oxide semiconductor is essential, and in order to become a semiconductor required for a flexible display, it is necessary to show certain characteristics such as electrical characteristics required in a thin film transistor (TFT) even after low temperature firing. do.
  • TFT thin film transistor
  • Zinc oxide (ZnO) has a wide optical bandgap of about 3.3 eV and is a material used for semiconductor manufacturing.
  • Zinc oxide thin films have strong piezoelectric and photoelectric effects, and have similar optical properties to GaN, which is a material of conventional ultraviolet / blue light emitting diode (LED) and laser diode (LD) devices. In particular, it has an excitation binding energy that is three times higher than GaN at room temperature, which enables high-efficiency light emission, and has a very low threshold energy when stimulated spontaneous emission by laser pumping.
  • the zinc oxide thin film has excellent transparency in the infrared and visible light region, electrical conductivity, and durability against plasma, and has a low raw material price, so that thin film transistors (TFTs), doped transparent electrodes, photocatalysts, energy-saving glazing coating materials, Acoustic optical devices, ferroelectric memories, solar cells, reducing gas detection sensors and the like have a wide range of applications.
  • TFTs thin film transistors
  • doped transparent electrodes doped transparent electrodes
  • photocatalysts photocatalysts
  • energy-saving glazing coating materials Acoustic optical devices, ferroelectric memories, solar cells, reducing gas detection sensors and the like have a wide range of applications.
  • Zinc hydroxide is a kind of zinc oxide precursor that is transformed into zinc oxide by firing. Zinc hydroxide is precipitated by dissolving zinc salt in water and adding a basic substance. This method has the advantage of obtaining zinc hydroxide by a simple process, but the basic material used in the process reacts with carbon dioxide in the air to easily form carbonates to generate impurities and precipitate anions in zinc salts together. As a possibility, zinc hydroxide obtained by this method is not suitable for use in oxide semiconductors that require high purity.
  • the present invention has been made in view of the above-described problems, and is intended to provide a method for preparing a zinc oxide precursor for an oxide semiconductor, which is easy to manufacture, has high purity, and is calcinable even at low temperatures, and a zinc oxide precursor and a zinc oxide thin film formed therefrom.
  • dissolving zinc salt in water to obtain a zinc salt solution Adding a basic substance to the zinc salt solution to form a zincate salt solution; And separating the precipitate formed from the zinc salt solution.
  • the zinc salt may be one or a mixture of two or more selected from the group consisting of zinc chloride, zinc sulfate, zinc nitrate, zinc acetate, zinc phosphate, zinc fluoride, zinc bromide, and zinc iodide.
  • the basic substance may be one selected from the group consisting of ammonia water, sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the basic substance may be added so as to have 5 to 12 moles of hydroxy ions per mole of zinc ions.
  • the basic substance may be a solution portion separated from a supersaturated basic solution.
  • a zinc oxide precursor prepared according to the method described above.
  • a method for producing a zinc oxide thin film comprising the step of heat-treating the zinc oxide precursor at a temperature range of 50 to 200 °C.
  • the heat treatment may be carried out in a temperature range of 100 to 150 °C.
  • the heat treatment may be performed for 1 to 90 minutes.
  • the heat treatment may be performed in air or Ar / H 2 .
  • a method for producing a zinc oxide thin film comprising the step of ultraviolet treatment heat treatment of the zinc oxide precursor at a temperature range of room temperature (25 °C) to 200 °C.
  • the heat treatment may be carried out in a temperature range of room temperature to 150 °C.
  • the heat treatment and ultraviolet treatment may be performed for 1 second to 30 minutes.
  • the ultraviolet light treatment may be performed in the wavelength range of 100 to 1000 nm, which may include visible light.
  • the zinc oxide thin film may be used for a transparent electrode, a solar cell, an optical sensor, a thin film transistor (TFT), zinc oxide nanowires, or a light emitting material.
  • TFT thin film transistor
  • Zinc hydroxide obtained according to the present invention is characterized by high purity and high crystalline structure.
  • the zinc hydroxide obtained in accordance with the present invention can be dissolved in a high solubility to form a zinc oxide precursor solution can be easily applied to the thin film process by the coating method.
  • the zinc oxide precursor solution applied to the substrate by the printing method may form a ZnO thin film having desirable physical properties by low temperature firing, and the ZnO thin film transistor according to an embodiment of the present invention may be further improved by passivation. .
  • the thin film transistor made of the zinc precursor solution may be manufactured to have improved quality and improved device performance within a short processing time.
  • This time reduction in the present invention is not only comparable to the microwave annealing method, but also has a simpler advantage over the microwave annealing method because it is better in saturation field effect mobility and can be adapted to actual industrial use. have.
  • the zinc oxide thin film according to the present invention is widely applicable to various applications such as not only an oxide semiconductor but also a transparent conductive thin film and a gas sensor.
  • Example 1 is a graph showing the results of TGA (Thermogravimetric Analysis) thermal analysis of zinc hydroxide obtained in Example 1-1.
  • Figure 2 is a photograph taken with zinc hydroxide obtained in Example 1-1 with a Field Emission Scanning Electron Microscope (FE-SEM).
  • FE-SEM Field Emission Scanning Electron Microscope
  • Figure 3a is an X-ray diffraction (XRD) graph (black) of zinc hydroxide obtained in Example 1-1
  • Figure 3b is an XRD graph (black) of zinc oxide obtained in Example 2-1
  • the gray graph in the field is for zinc hydroxide standard.
  • Example 4 is an XRD graph of the zinc hydroxide obtained in Example 1-1 after heat treatment at 100 ° C. for 1 hour or 3 hours.
  • Example 5 is an XRD graph of the zinc hydroxide obtained in Example 1-1 after treatment with different annealing times at 150 ° C.
  • 6a is a photograph of a solution in which zinc hydroxide prepared according to Example 1-1 was dissolved in 25% ammonia water, 1% by weight, 2% by weight, 3% by weight, 4% by weight, and 5% from left to right, respectively. Solution by weight concentration.
  • Figure 6b is a photograph for comparison with Figure 6a, shows the result of dissolving zinc hydroxide of Junsei in 25% ammonia water. From the left, a picture of 0.9% by weight and 1.2% by weight of the solution is shown and the maximum solubility is about 0.9%, showing a solubility lower than that shown in Figure 6a.
  • Example 7 is a photograph of a solution obtained by dissolving zinc oxide obtained in Example 2-1 at 150 ° C. for 3 minutes and then dissolved in 25% ammonia water, and 0.45% by weight, 0.90% by weight, and 1.35% by weight from left to right, respectively. %, 1.8% by weight solution.
  • FIG. 8 is a photograph of a solution in which commercially available zinc oxide is heat-treated at 150 ° C. for 3 minutes and then dissolved in 25% ammonia water.
  • the solution is 0.45% by weight, 0.90% by weight, and 1.35% by weight, respectively, from left to right.
  • 9A and 9B show the output curves and the transfer curves of transistors using Zn (OH) 2 and ZnO thin films obtained in this example using various conditions, respectively.
  • 10A to 10D are FE-SEMs of ZnO thin films obtained in Examples 2-1, 2-2, 2-3, and 2-6, and the thin film thicknesses are described in each of the images.
  • Example 11 is a graph showing an X-ray diffraction pattern of the ZnO thin film obtained in Example 2-1 and a graph (B) showing an X-ray diffraction pattern of the ZnO thin film obtained in each of Examples 2-3. .
  • 12A to 12C are graphs showing XPS spectra of the ZnO thin films obtained in Examples 2-1, 2-3, and 2-6.
  • dissolving zinc salt in water to obtain a zinc salt solution Adding a basic substance to the zinc salt solution to form a zincate salt solution; And separating the precipitate formed from the zinc salt solution.
  • a method for preparing a zinc oxide precursor which method is based on the following Scheme 1.
  • the zinc hydroxide thus obtained is in a pure state with almost no impurities, and may be pyrolyzed at a low temperature of 50 to 200 ° C., more preferably 100 to 150 ° C., to be changed to zinc oxide.
  • the heat treatment represents an embodiment performed without ultraviolet irradiation, the heat treatment time may be 1 minute to 90 minutes.
  • Embodiments in which the heat treatment is carried out simultaneously with ultraviolet irradiation are described below, and the zinc oxide precursor firing can be made in a shorter time at a lower temperature than the method of firing only by heat treatment.
  • Zinc containing zinc that can be used in the present invention are water-soluble zinc salts.
  • Non-limiting examples of zinc salts that can be used in the present invention include zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, zinc phosphate, zinc fluoride, zinc bromide, zinc iodide, and the like, or may be used by mixing one or two or more of them.
  • zinc salts zinc nitrate is preferred in view of thermal decomposition by low temperature firing.
  • the basic material usable in the present invention various basic materials which can be easily dissolved in water to form a basic solution may be used. Examples thereof include NaOH, KOH, LiOH, ammonia water, but are not limited thereto.
  • the basic material reacts with carbon dioxide in the air to easily form carbonate
  • the basic material in order to prevent the formation of carbonate, is supersaturated in water and separated from the solution part by focusing on the low water solubility of the carbonate. Can be used. This can minimize the incorporation of unnecessary carbonates into zinc hydroxide. In this way, the formation of zinc carbonate can also be prevented.
  • the basic substance is used in excess with respect to zinc ions. Specifically, more than theoretical hydroxy ions 5 per mol of zinc ions To 12 Basic materials are used to molar. If used less than 5 moles, the formation of ginkects is not easy and The use of more than mole is insignificant because it inhibits the formation of zinc hydroxide in proportion to it.
  • the temperature and pressure conditions of the reaction is not particularly limited as long as it meets the object of the present invention, can be carried out at room temperature and atmospheric pressure and can be heated to a temperature of 50 °C or less to increase the reaction rate, but at higher temperatures Zinc oxide may be formed.
  • the zinc hydroxide obtained by the above reaction is separated, washed and dried by conventional methods in the art.
  • Zinc hydroxide is added to distilled water, C 1 -C 3 alcohol, ammonia or a mixture thereof to form a zinc oxide precursor solution.
  • Zinc hydroxide is doped with one or more metals selected from the group consisting of aluminum (Al), tin (Sn), indium (In), gallium (Ga), iron (Fe), antimony (Sb), and lithium (Li) ( doping).
  • a doped metal may be added to the zinc oxide precursor solution in which zinc hydroxide is dissolved.
  • the zinc concentration in the zinc oxide precursor solution is preferably 0.1 to 5% by weight, but is not necessarily limited thereto.
  • concentration is lower than 0.1% by weight, the thickness of the zinc oxide thin film to be formed cannot be easily adjusted, and when higher than 5% by weight, it is difficult to obtain a transparent and uniform precursor solution.
  • the zinc oxide precursor solution of the present invention may contain no or less stabilizer or modifier because of its high solubility in solvents. Since the zinc oxide precursor through the conventional synthesis method has a low solubility in solvents, the solution can be made in a limited range (0.9% or less), but according to the present invention, even without adding a stabilizer or a modifier or a small amount, Clear and homogeneous zinc hydroxide precursor solutions can be prepared.
  • stabilizers include, but are not limited to, amine stabilizers such as monoethanolamine, diethanolamine, and triethanolamine. However, the condition of not adding a stabilizer is best because of the specificity of the semiconductor precursor.
  • the concentration in the precursor solution for zinc oxide thin film is controlled according to the zinc concentration in the precursor solution for zinc oxide thin film, but may be accompanied by a deterioration after the formation of the semiconductor, so it is preferably included 5 wt% or less based on 100 parts by weight of zinc. .
  • the coating method of the zinc oxide precursor solution on the substrate is spin coating, dip coating, roll coating, screen coating, spray coating, spin casting ( spin casting, flow coating, screen printing, ink jet, drop casting, and the like, but are not necessarily limited thereto.
  • the substrate to which the zinc oxide precursor solution is coated may be at least one selected from the group consisting of a wafer substrate, an ITO substrate, a quartz glass substrate, and a plastic substrate, but is not limited thereto.
  • the purity of the compound and the homogeneous and dense morphology of the formed thin film play a particularly important role in high performance semiconductor thin films.
  • the influence of grain morphology and thin film density on the operational parameters of the thin film transistor is a main factor due to the grain boundary effect.
  • the morphology of the coated surface should be as dense as possible at low temperature processed device performance.
  • porous agglomeration is generated on the surface of the thin film, which is the main interface state in the low temperature firing method, which not only restricts carrier mobility but also subthreshold slope and off current.
  • switching voltage switching voltage
  • a zinc oxide thin film can be formed in a short time by simultaneously treating the solution containing zinc hydroxide with heat and ultraviolet rays at 50 to 200 ° C, more preferably at 100 to 150 ° C or lower.
  • Ultraviolet treatment can be performed in the wavelength range of 100-1000 nm which may contain visible light, More preferably, it is 180-400 nm wavelength range. Rapid dehydration kinetics can occur during ultraviolet and heat treatment, followed by condensation of Zn-O-Zn bonds. At relatively low temperatures, the crystallization process is difficult mechanically and the rearrangement of Zn-O-Zn bonds is hindered.
  • Another aspect of the invention relates to an electronic component comprising a zinc oxide thin film obtained by the method according to one aspect of the invention.
  • electronic components include, but are not necessarily limited to, transparent electrodes, solar cells, optical sensors, TFTs, zinc oxide nanowires, and light emitting materials.
  • NaOH sodium hydroxide
  • KHP potassium hydrogen phthalate
  • An aqueous zinc solution was prepared by dissolving 49.8 g of zinc nitrate hexahydrate in a 5 L two-necked round flask in 900 ml of tertiary distilled water. 600 ml of a 2.4 M NaOH solution without carbonate was added to the aqueous zinc solution. The solution was slowly heated and stirred at 50 ° C. for 2 hours. Particles were formed while Zn (OH) 2 was formed during stirring heating. The produced Zn (OH) 2 was filtered under reduced pressure using a paper filter, and the filtered material was again dispersed in distilled water and washed. In the last step, the mixture was washed with methanol and dried naturally to obtain zinc hydroxide.
  • Example 1-1 In the method of Example 1-1, the heating temperature was lowered to 40 ° C. and the stirring time was about 3 hours to obtain desired zinc hydroxide.
  • Example 1-1 In the method of Example 1-1, the heating temperature was lowered to 25 ° C. and the stirring time was about 10 hours to obtain desired zinc hydroxide.
  • Example 1-1 In the method of Example 1-1, the desired heating temperature was lowered to 15 ° C. and stirring time was about 24 hours to obtain desired zinc hydroxide.
  • the desired zinc hydroxide was obtained in the same manner using zinc chloride instead of zinc nitrate in Example 1-1.
  • Example 1-1 zinc zinc was used instead of zinc nitrate to obtain desired zinc hydroxide in the same manner.
  • Example 1-1 desired zinc hydroxide was obtained in the same manner using potassium hydroxide instead of sodium hydroxide.
  • Example 1-2 desired zinc hydroxide was obtained in the same manner using potassium hydroxide instead of sodium hydroxide.
  • Example 1-1 to 1-6 desired zinc hydroxide was obtained in the same manner using 25% ammonia water instead of sodium hydroxide.
  • Zinc hydroxide (Zn (OH) 2 ) synthesized above was dissolved in aqueous NH 4 OH (Duksan, 25-30%) to prepare a 2% by weight precursor stock solution to prepare a ZnO layer.
  • the Zn (OH) 2 / NH 4 OH solution was filtered through a 0.2 ⁇ m PVDF filter and spin coated at 4000 rpm for 30 seconds on a 100 nm SiO 2 / p-doped Si substrate.
  • the coated thin film was baked to cure for 1 hour on a hot plate preheated to 150 ° C. in air.
  • a source and drain electrode was fabricated by depositing an aluminum layer on the ZnO thin film using a metal evaporator (VPC-260) having a 50 ⁇ m channel width and 40 ⁇ m length to produce a bottom-gate in the fabrication of a ZnO base thin film transistor. And top-contact thin film transistor structures.
  • VPC-260 metal evaporator
  • a zinc oxide thin film and a device were manufactured in the same manner as in Example 2-1, except that Ar / H 2 was used instead of air as the firing condition. More specifically, the coated thin film was cured at 150 ° C. while flowing Ar / H 2 at 100 cc / min in a tube furnace.
  • a zinc oxide thin film and a device were manufactured in the same manner as in Example 2-1, except that 150 ° C. heat treatment / ultraviolet light exposure was simultaneously performed in air under firing conditions.
  • a 1.1 kW medium pressure mercury UV lamp (Lichtzen, South Korea) with peak intensity at 365 nm was used and the distance from the sample to the lamp was set to 7 cm.
  • the surface temperature of the hot plate increased to 10 ° C. and then settled to the desired temperature within 5 minutes.
  • a zinc oxide thin film and a device were manufactured in the same manner as in Example 2-3, except that the zinc hydroxide coating was performed twice.
  • Example 2-3 and Al 2 O 3 gate insulator having a thickness of 100 nm were further coated by atomic layer deposition. In the same manner, zinc oxide thin films and devices were prepared.
  • a zinc oxide thin film and a device were manufactured in the same manner as in Example 2-3, except that 4 wt% zinc hydroxide solution was used.
  • Zinc oxide thin film by the method described in Example 2-3 except for using a 4% by weight zinc hydroxide solution, and proceeding to the process described in Example 2-1 to the process described in Example 2-3 And devices.
  • Thermogravimetric analysis of Zn (OH) 2 powder was carried out at 2 ° C./min heat treatment rate using a TA instrument (Q50).
  • FT-IR Fourier transform infrared spectroscopy
  • the relative oxygen vacancies in the ZnO thin films were confirmed using X-ray photoelectron spectroscopy (XPS).
  • the electrical characteristics of the device were analyzed in ambient air using a semiconductor parameter analyzer (Agilent 4155B).
  • Example 1-1 The result of heat-treating the zinc hydroxide obtained in Example 1-1 is shown in FIG. Referring to Figure 1, the zinc hydroxide obtained in Example 1-1 was changed to zinc oxide in one step at 130 °C. In this process, as shown in the following reaction formula 2, one of the water powders from the white powder Zn (OH) 2 exits and decomposes into ZnO. That's about 81.88%:
  • Example 1-1 The zinc hydroxide obtained in Example 1-1 was photographed by FE-SEM and shown in FIG. 2. Referring to FIG. 2, the zinc hydroxide obtained in Example 1-1 was obtained cleanly as crystals of one form.
  • Example 1-1 XRD of the zinc hydroxide obtained in Example 1-1 was measured, and the result is shown in FIG. 3A.
  • the XRD (black graph) of zinc hydroxide obtained in Example 1-1 is consistent with the standard sample (gray graph) of zinc hydroxide having an orthorhomic structure, and the oxidation obtained in Example 2-1 according to FIG. 3B.
  • the XRD graph of zinc (black graph) is consistent with the standard sample of zinc oxide (grey graph).
  • Example 1-1 After the zinc hydroxide obtained in Example 1-1 was heat-treated at 100 ° C. for 1 hour or 3 hours, respectively, the XRD was measured and the graph is shown in FIG. 4. From the fact that XRD after heat treatment for 1 hour and 3 hours was almost identical, it was found that the zinc hydroxide obtained in Example 1-1 changed to zinc oxide even with a short time firing within 100 hours at 100 ° C.
  • Example 1-1 After firing the zinc hydroxide obtained in Example 1-1 at 150 ° C. for 1 minute, 3 minutes, 5 minutes, and 15 minutes, the FT-IR was measured for each, and the graph is shown in FIG. 5.
  • Example 1-1 The zinc hydroxide obtained in Example 1-1 was dissolved in 25% aqueous ammonia at 1% by weight, 2% by weight, 3% by weight, 4% by weight and 5% by weight, respectively, and photographed.
  • Example 1-1 the zinc hydroxide obtained in Example 1-1 was found to be completely transparent and homogeneously dissolved to form a solution even when dissolved in 25% ammonia water at a concentration of 5% by weight.
  • Zinc oxide obtained in Example 1-1 was calcined at 150 ° C. for 3 hours to dissolve zinc oxide formed in 25% ammonia water at a concentration of 0.45% by weight, 0.90% by weight, 1.35% by weight, and 1.8% by weight. 7 is shown.
  • the zinc oxide was completely dissolved in ammonia water even at a concentration of 1.35 wt%.
  • the zinc hydroxide synthesized in Example 1-1 was dissolved in 25% ammonia water to prepare a zinc oxide precursor solution having a concentration of 1% by weight, 2% by weight, 3% by weight, 4% by weight, and 5% by weight, respectively.
  • the thickness change of the zinc oxide thin film obtained after spin coating the prepared zinc oxide precursor solution on a silicon wafer substrate and sufficiently baked at 150 ° C. was investigated using FE-SEM. As a result, the thickness of the zinc oxide thin film was found to vary almost linearly with the zinc oxide precursor concentration.
  • FIGS. 10A-10D FE-SEM images of ZnO thin films prepared from the synthesized Zn (OH) 2 solution using various firing conditions are shown in FIGS. 10A-10D.
  • Example 2-1 The thin film was 35.5 nm thick (FIG. 10A), similar to the thin film thickness (33.7 nm) of FIG. 10C, which was simultaneously treated with UV and heat for 3 minutes.
  • the size of grain boundaries in thin films is determined by firing methods such as ultraviolet or heat treatment.
  • the grain boundaries of the UV treated thin film (FIGS. 10B and 10C) were larger than the thin film grain boundaries (FIG. 10A) by heat treatment without UV treatment.
  • Example 2-6 thin film has a larger grain than the Example 2-1 thin film (Example 10a) and uses a Zn (OH) 2 solution at a concentration of at least 2 to 3 times higher than other samples. It had a thin film thickness of 48.5 nm thicker even though the coating was made once.
  • Example 1-1 The amount of impurities present in the zinc hydroxide obtained in Example 1-1 was investigated by using ICP-MS. If the purity of the starting material is more than 99.50%, all impurities of other cations contained are negligible below ppm. Therefore, the purity of the zinc hydroxide produced in Example 1-1 is very excellent.
  • Example 1-1 The zinc hydroxide obtained in Example 1-1 was dissolved in 25% ammonia water to prepare a zinc oxide precursor solution at a concentration of 2% by weight. The solution was spin coated onto a p-doped silicon wafer made of 100 nm silicon oxide and then calcined to 110 ° C. After that, the source and drain electrodes were formed by depositing aluminum, and then TFT electrical characteristics were measured. The results are summarized in Table 3 below, and the transfer curve of the oxide semiconductor is shown in FIG. 9B:
  • Table 3 shows the importance of thin film transistors such as field-effect mobility, subthreshold swing, I on / I off ratio and threshold voltage (V th ) using various firing conditions. The electrical characteristics are summarized.
  • the zinc oxide thin film of Example 2-3 exhibited substantially similar electrical characteristics to the zinc oxide thin film of Example 2-1, which is different from ZnO grain (when UV irradiation and heat treatment are performed simultaneously). This means that the semiconductor channel in grains can be effectively activated even at shorter process times.
  • Example 2-4 In the zinc oxide thin film of Example 2-4, as a result of coating the same solution twice, the channel thickness was increased to improve the mobility performance twice.
  • ZnO thin-film transistors fabricated with patterned gates were modified to meet 100 nm thick Al 2 O 3 by UV irradiation at 150 ° C. for 3 minutes and atomic layer deposition (ALD) into the gate dielectric. Improved.
  • the transfer characteristics of the ZnO-TFTs of Examples 2-5 exhibited a low off-current of less than 10 ⁇ 12 A and a higher on-off current ratio of about 10 7 (see FIG. 9B).
  • the measured saturation mobility was 1.15 cm 2 / Vs at 40V gate voltage, and the threshold voltage (V th ) and subcritical swing were 25V and 0.6V / dec, respectively.
  • the zinc oxide thin films of Examples 2-6 and 2-7 show typical field effect transistor embodiments according to FIG. 9B.
  • the I on / I off current ratio is about 10 6 and is expected to be further improved by the patterned active channel layer.
  • Threshold voltage (V th ) and subthreshold swing were 14.6 V and 0.47 V / dec, respectively.
  • the field effect mobility extracted from the saturation regime was 2.91 cm 2 / Vs at the gate voltage of 40V when irradiated with UV light at 150 ° C for 3 minutes.
  • the electrical properties of the thin film transistor are also affected by the thickness and grain size of the ZnO thin film.
  • the zinc oxide thin film of Example 2-6 has an improved field effect mobility of 2.91 cm 2 / Vs because of the large grain boundary and the thin film thickness. Indicated. Larger ZnO crystals due to simultaneous UV / heat treatment significantly improve the mobility of the ZnO thin film transistor because the migration length is reduced throughout the grain boundaries.
  • the graph of FIG. 11 shows the X-ray diffraction pattern (A curve) of the ZnO thin film heat-treated at 150 ° C. without UV treatment and the X-ray diffraction pattern (B curve) of the ZnO thin film heat-treated at 150 ° C. for 3 minutes under UV irradiation. .
  • the A curve does not show a ZnO diffraction pattern
  • the B curve is based on three diffraction peaks of polycrystalline ZnO in the (100), (002), and (101) planes as shown in FIG. Represents a pattern. It was proved that the ZnO thin film annealed under UV treatment exhibited an increased XRD pattern than the ZnO thin film annealed without UV treatment. That is, UV / thermal co-treatment increases both the deposition of the zinc precursor and the thin film crystallization and greatly reduces the overall process time.
  • FIGS. 12A-12C Another important point in the properties of oxide semiconductor materials is the bulk defect structure, and the general trend of the relative concentration of the internal ZnO thin film can be confirmed by XPS.
  • the O 1s XPS spectrum of the ZnO thin film is shown in FIGS. 12A-12C, which are determined by the firing method.
  • the zinc hydroxide thin film obtained in the present invention was converted to ZnO by heat treatment at 150 ° C. for 1 hour (see FIG. 12A).
  • These peaks represent lattice oxygen, oxygen near the oxygen vacancies and hydroxy oxygen, respectively.
  • oxygen vacancies and hydroxy peaks generated during the firing process throughout the condensation and dehydration processes, but all three XPS results appear to be very similar.
  • the oxygen vacancies are the source of charge carriers, while the hydroxy moiety slightly degrades device mobility.
  • Zn-OH-Zn is easily converted to Zn-O-Zn, and surface hydroxy groups are removed to influence other factors such as grain size and crystallinity as shown in Examples 2-6.
  • the overall mobility then increased.
  • the zinc hydroxide prepared in the present invention can be dissolved in a solvent at a high concentration, so it can be expected to make an oxide semiconductor in the printing process in the future, and in particular, it can be used as a backplane semiconductor by being changed to zinc oxide at low temperature. It is expected to contribute to the industry or the sensor industry.

Abstract

Disclosed are a method for manufacturing high-purity crystals of zinc hydroxide, which is a zinc oxide precursor used for oxide semiconductors, and an invention for manufacturing a ZnO thin film transistor device which is spin-coated using the zinc hydroxide manufactured by the method.

Description

산화아연 전구체의 제조방법, 이로부터 수득되는 산화아연 전구체 및 산화아연 박막Method for producing zinc oxide precursor, zinc oxide precursor and zinc oxide thin film obtained therefrom
본 출원은 2013년 3월 20일에 출원된 한국특허출원 제10-2013-0029569호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2013-0029569, filed March 20, 2013, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
또한, 본 출원은 2013년 12월 27일에 출원된 한국특허출원 제10-2013-0164867호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.In addition, the present application claims priority based on Korean Patent Application No. 10-2013-0164867, filed December 27, 2013, all the contents disclosed in the specification and drawings of the application are incorporated in this application.
본 발명은 산화아연 전구체의 제조방법, 이로부터 수득되는 산화아연 전구체 및 산화아연 박막에 관한 것으로, 더욱 구체적으로는 산화아연 전구체의 일종인 수산화아연을 고 순도의 결정체로 제조하는 방법 및 이러한 방법으로 제조된 수산화아연을 사용하여 저온 소성에 의해 산화물 반도체 등의 용도로 사용될 수 있는 산화아연 박막을 형성하는 발명에 관한 것이다.The present invention relates to a method for preparing a zinc oxide precursor, to a zinc oxide precursor and a zinc oxide thin film obtained therefrom, and more particularly to a method for producing zinc hydroxide, which is a kind of zinc oxide precursor, with high purity crystals and It relates to an invention for forming a zinc oxide thin film that can be used for use in oxide semiconductors and the like by low temperature firing using the prepared zinc hydroxide.
차세대 디스플레이는 저가격화를 이루기 위한 노력으로 인쇄공정을 이용하고자 하며, 이를 이루기 위해서는 반도체에 의한 백프레인도 용액 공정으로 형성되어야 한다. 특히 반도체를 제조함에 있어, 실리콘을 이용하는 방법에서 용액 공정이 가능한 산화물 반도체를 이용하고자 하는 노력이 가속화되고 있다. 이러한 방법으로는 IGZO(indium-gallium-zinc oxide)와 같은 타겟 물질을 이용하여 진공 중에서 반도체를 형성하는 방법이 있으며, 소정의 결과를 얻고 있다. 그러나, 이 방법은 여전히 진공 하에서 수행되고 있으며 미래 공정인 인쇄전자 방식과는 아직 괴리가 있다.The next-generation display is to use the printing process in an effort to achieve a low price, in order to achieve this, the backplane by the semiconductor must also be formed by a solution process. In particular, in manufacturing a semiconductor, efforts to use an oxide semiconductor capable of solution processing in a method using silicon are accelerating. As such a method, there is a method of forming a semiconductor in a vacuum by using a target material such as indium-gallium-zinc oxide (IGZO), and a predetermined result has been obtained. However, this method is still carried out under vacuum and is still a departure from the future of printed electronics.
인쇄방식의 공정을 적용하기 위해서는 산화물 반도체를 용액화하는 과정이 필수적이며 또한 플렉시블 디스플레이에 필요한 반도체가 되기 위해서는 저온 소성후에도 예컨대, 박막 트랜지스터(TFT)에서 필요로 하는 전기적 특성 등 소정의 특성을 보여 주어야 한다.In order to apply the printing method, the process of liquefying an oxide semiconductor is essential, and in order to become a semiconductor required for a flexible display, it is necessary to show certain characteristics such as electrical characteristics required in a thin film transistor (TFT) even after low temperature firing. do.
현재까지 알려진 방식으로는 용액 공정이라 하더라도 적어도 200℃가 넘는 높은 온도에서 소성하는 공정이 알려져 있으며, 현재 바람직한 방법으로 알려진 방법들도 질소분위기에서 용액을 스핀 코팅하는 공정을 채택하고 있다. As known to date, even a solution process is known to be calcined at a high temperature of at least 200 ° C., and methods known as presently preferred methods employ a process of spin coating a solution in a nitrogen atmosphere.
한편, 산화아연(ZnO)은 약 3.3eV의 넓은 광학적 밴드갭을 가지며 반도체 제조에 사용되는 물질이다. 산화아연 박막은 강한 압전성과 광전 효과를 가지고 있어서 기존의 자외선/청색 발광 다이오드(LED) 및 레이저 다이오드(LD) 소자의 재료인 GaN과 유사한 광학적 특성을 가지고 있다. 특히, 상온에서 GaN의 3배나 되는 여기 구속 에너지(excitation binding energy)를 가져서, 고효율의 발광이 가능하고, 레이저 펌핑에 의한 자발적 발광(stimulated spontaneous emission)시 문턱에너지가 매우 낮다는 좋은 특성을 갖는다. Zinc oxide (ZnO), on the other hand, has a wide optical bandgap of about 3.3 eV and is a material used for semiconductor manufacturing. Zinc oxide thin films have strong piezoelectric and photoelectric effects, and have similar optical properties to GaN, which is a material of conventional ultraviolet / blue light emitting diode (LED) and laser diode (LD) devices. In particular, it has an excitation binding energy that is three times higher than GaN at room temperature, which enables high-efficiency light emission, and has a very low threshold energy when stimulated spontaneous emission by laser pumping.
산화아연 박막은 적외선 및 가시광선 영역에서의 투과성 및 전기 전도성과 플라즈마에 대한 내구성이 우수하며, 원료 가격이 저렴하여 박막 트랜지스터(TFT), 도핑에 의한 투명 전극, 광촉매제, 에너지 절약형 창유리 코팅재료, 음향 광학 소자, 강유전체 메모리, 태양전지, 환원가스검출센서등 그 응용범위가 매우 광범위하다.The zinc oxide thin film has excellent transparency in the infrared and visible light region, electrical conductivity, and durability against plasma, and has a low raw material price, so that thin film transistors (TFTs), doped transparent electrodes, photocatalysts, energy-saving glazing coating materials, Acoustic optical devices, ferroelectric memories, solar cells, reducing gas detection sensors and the like have a wide range of applications.
수산화아연은 소성에 의해 산화아연으로 변화되는 산화아연 전구체의 일종으로, 아연염을 물에 녹이고 염기성 물질을 투입하면 수산화아연이 침전 형성된다. 이 방법은 간단한 공정에 의해 수산화아연을 수득할 수 있는 장점이 있으나, 공정에서 사용되는 염기성 물질이 공기중의 이산화탄소와 반응하여 탄산염을 쉽게 형성함으로써 불순물을 발생시키고 아연염에 있는 음이온도 함께 석출될 가능성이 있어서, 이러한 방법으로 수득된 수산화아연은 고 순도를 필요로 하는 산화물 반도체에 사용하기에는 적합하지 않다.Zinc hydroxide is a kind of zinc oxide precursor that is transformed into zinc oxide by firing. Zinc hydroxide is precipitated by dissolving zinc salt in water and adding a basic substance. This method has the advantage of obtaining zinc hydroxide by a simple process, but the basic material used in the process reacts with carbon dioxide in the air to easily form carbonates to generate impurities and precipitate anions in zinc salts together. As a possibility, zinc hydroxide obtained by this method is not suitable for use in oxide semiconductors that require high purity.
본 발명은 전술한 문제점을 해결하기 위하여 착안된 것으로, 제조가 용이하면서도 고순도를 가지며 저온에서도 소성가능한 산화물 반도체용 산화아연 전구체의 제조방법 및 이로부터 형성된 산화아연 전구체 및 산화아연 박막을 제공하고자 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and is intended to provide a method for preparing a zinc oxide precursor for an oxide semiconductor, which is easy to manufacture, has high purity, and is calcinable even at low temperatures, and a zinc oxide precursor and a zinc oxide thin film formed therefrom.
본 발명의 일 양태에 따르면, 아연염을 물에 용해시켜서 아연염 용액을 수득하는 단계; 상기 아연염 용액에 염기성 물질을 첨가하여 징케이트(zincate) 염 용액을 형성시키는 단계; 및 상기 징케이트 염 용액으로부터 형성된 침전물을 분리하는 단계를 포함하는 산화아연 전구체의 제조방법이 제공된다.According to one aspect of the invention, dissolving zinc salt in water to obtain a zinc salt solution; Adding a basic substance to the zinc salt solution to form a zincate salt solution; And separating the precipitate formed from the zinc salt solution.
상기 아연염은 염화아연, 황산아연, 질산아연, 초산아연, 인산아연, 플루오르화아연, 브롬화아연 및 요오드화아연으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합물일 수 있다.The zinc salt may be one or a mixture of two or more selected from the group consisting of zinc chloride, zinc sulfate, zinc nitrate, zinc acetate, zinc phosphate, zinc fluoride, zinc bromide, and zinc iodide.
상기 염기성 물질은 암모니아수, 수산화나트륨, 수산화칼륨 및 수산화리튬으로 이루어진 군으로부터 선택된 1종일 수 있다.The basic substance may be one selected from the group consisting of ammonia water, sodium hydroxide, potassium hydroxide and lithium hydroxide.
아연 이온 1몰에 대하여 히드록시 이온 5 내지 12 몰이 되도록 염기성 물질이 첨가될 수 있다.The basic substance may be added so as to have 5 to 12 moles of hydroxy ions per mole of zinc ions.
상기 염기성 물질은 과포화 염기성 용액으로부터 용액 부분을 분리한 것일 수 있다.The basic substance may be a solution portion separated from a supersaturated basic solution.
본 발명의 다른 양태에 따르면, 전술한 방법에 따라 제조된 산화아연 전구체가 제공된다.According to another aspect of the present invention, there is provided a zinc oxide precursor prepared according to the method described above.
본 발명의 또 다른 양태에서는 상기 산화아연 전구체를 50 내지 200 ℃ 온도 범위에서 열처리하는 단계를 포함하는 산화아연 박막의 제조방법이 제공된다.In another aspect of the invention there is provided a method for producing a zinc oxide thin film comprising the step of heat-treating the zinc oxide precursor at a temperature range of 50 to 200 ℃.
상기 열처리는 100 내지 150 ℃ 온도 범위에서 실시될 수 있다. The heat treatment may be carried out in a temperature range of 100 to 150 ℃.
상기 열처리는 1분 내지 90분동안 실시될 수 있다. The heat treatment may be performed for 1 to 90 minutes.
상기 열처리는 공기 또는 Ar/H2 중에서 실시될 수 있다.The heat treatment may be performed in air or Ar / H 2 .
본 발명의 또 다른 양태에서는 상기 산화아연 전구체를 상온(25℃) 내지 200 ℃의 온도 범위에서 열처리하면서 자외선 처리하는 단계를 포함하는 산화아연 박막의 제조방법이 제공된다.In another aspect of the present invention, there is provided a method for producing a zinc oxide thin film comprising the step of ultraviolet treatment heat treatment of the zinc oxide precursor at a temperature range of room temperature (25 ℃) to 200 ℃.
상기 열처리는 상온 내지 150℃의 온도 범위에서 실시될 수 있다.The heat treatment may be carried out in a temperature range of room temperature to 150 ℃.
상기 열처리 및 자외선 처리는 1초 내지 30분동안 실시될 수 있다.The heat treatment and ultraviolet treatment may be performed for 1 second to 30 minutes.
상기 자외선 처리는 가시광선이 포함되어도 무방한 100 내지 1000 nm 파장 범위에서 실시될 수 있다.The ultraviolet light treatment may be performed in the wavelength range of 100 to 1000 nm, which may include visible light.
본 발명의 또 다른 양태에 따르면, 상기 제조방법에 의해 수득된 산화아연 박막이 제공된다.According to another aspect of the invention, there is provided a zinc oxide thin film obtained by the above production method.
상기 산화아연 박막은 투명전극, 태양전지, 광센서, 박막 트랜지스터(TFT), 산화아연 나노와이어(nanowire) 또는 발광 재료에 사용될 수 있다.The zinc oxide thin film may be used for a transparent electrode, a solar cell, an optical sensor, a thin film transistor (TFT), zinc oxide nanowires, or a light emitting material.
본 발명에 따라 수득된 수산화아연은 고순도 및 고결정성 구조를 특징으로 한다. Zinc hydroxide obtained according to the present invention is characterized by high purity and high crystalline structure.
또한, 본 발명에 따라 수득된 수산화아연은 높은 용해도로 용해되어 산화아연 전구체 용액을 형성할 수 있어 코팅 방법에 의한 박막 공정에 용이하게 적용될 수 있다. In addition, the zinc hydroxide obtained in accordance with the present invention can be dissolved in a high solubility to form a zinc oxide precursor solution can be easily applied to the thin film process by the coating method.
기판에 인쇄방식으로 적용된 산화아연 전구체 용액은 저온 소성에 의해 바람직한 물성을 갖는 ZnO 박막을 형성할 수 있으며, 본 발명의 일 실시양태에 따른 ZnO 박막 트랜지스터는 패시베이션(passivation)에 의해 더 향상될 수 있다.The zinc oxide precursor solution applied to the substrate by the printing method may form a ZnO thin film having desirable physical properties by low temperature firing, and the ZnO thin film transistor according to an embodiment of the present invention may be further improved by passivation. .
또한, 상기 아연전구체 용액으로 제조된 박막 트랜지스터는 향상된 품질을 갖게 되고 단축된 가공 시간내에 향상된 디바이스 성능을 갖도록 제조될 수 있다.In addition, the thin film transistor made of the zinc precursor solution may be manufactured to have improved quality and improved device performance within a short processing time.
본 발명에서의 이러한 시간 단축은 마이크로웨이브 어닐링 방법에 비견할 수 있을 정도일뿐만 아니라, 포화 전계 효과 이동도에서 더 우수하고 실제 산업적 용도에 적합하게 변형할 수 있으므로 마이크로웨이브 어닐링 방법에 비해 더 단순한 장점이 있다.This time reduction in the present invention is not only comparable to the microwave annealing method, but also has a simpler advantage over the microwave annealing method because it is better in saturation field effect mobility and can be adapted to actual industrial use. have.
본 발명에 따른 산화아연 박막은 산화물 반도체뿐만 아니라, 투명전도 박막, 가스 센서와 같은 여러 가지 용도에 광범위하게 적용가능하다.The zinc oxide thin film according to the present invention is widely applicable to various applications such as not only an oxide semiconductor but also a transparent conductive thin film and a gas sensor.
도 1은 실시예 1-1에서 수득한 수산화아연의 TGA (Thermogravimetric Analysis) 열분석 결과를 나타낸 그래프이다.1 is a graph showing the results of TGA (Thermogravimetric Analysis) thermal analysis of zinc hydroxide obtained in Example 1-1.
도 2는 실시예 1-1에서 수득한 수산화아연을 FE-SEM (Field Emission Scanning Electron Microscope)로 촬영한 사진이다.Figure 2 is a photograph taken with zinc hydroxide obtained in Example 1-1 with a Field Emission Scanning Electron Microscope (FE-SEM).
도 3a은 실시예 1-1에서 수득한 수산화아연의 XRD(X-ray Diffraction) 그래프(흑색)이고, 도 3b는 실시예 2-1에서 수득한 산화아연의 XRD 그래프(흑색)이며, 상기 도면들에서 회색 그래프는 수산화아연 표준시료에 대한 것이다. Figure 3a is an X-ray diffraction (XRD) graph (black) of zinc hydroxide obtained in Example 1-1, Figure 3b is an XRD graph (black) of zinc oxide obtained in Example 2-1, the figure The gray graph in the field is for zinc hydroxide standard.
도 4는 실시예 1-1에서 수득한 수산화아연을 100℃에서 1시간 또는 3시간 열처리한 후의 XRD 그래프이다.4 is an XRD graph of the zinc hydroxide obtained in Example 1-1 after heat treatment at 100 ° C. for 1 hour or 3 hours.
도 5는 실시예 1-1에서 수득한 수산화아연을 150℃에서 어닐링 시간을 달리하여 처리한 후의 XRD 그래프이다.5 is an XRD graph of the zinc hydroxide obtained in Example 1-1 after treatment with different annealing times at 150 ° C.
도 6a는 실시예 1-1에 따라 제조된 수산화아연을 25% 암모니아수에 용해시킨 용액을 촬영한 사진으로, 왼쪽으로부터 오른쪽으로 각각 1중량%, 2중량%, 3중량%, 4중량%, 5중량% 농도의 용액이다. 6a is a photograph of a solution in which zinc hydroxide prepared according to Example 1-1 was dissolved in 25% ammonia water, 1% by weight, 2% by weight, 3% by weight, 4% by weight, and 5% from left to right, respectively. Solution by weight concentration.
도 6b는 도 6a와의 비교를 위한 사진으로, Junsei사의 수산화아연을 25% 암모니아수에 녹인 결과를 보여준다. 왼쪽부터 0.9중량%, 1.2중량%용액의 사진을 보여주고 있으며 최대 용해도는 0.9% 정도이며, 도 6a에서 보여주는 용해도보다 낮은 용해도를 보여준다. Figure 6b is a photograph for comparison with Figure 6a, shows the result of dissolving zinc hydroxide of Junsei in 25% ammonia water. From the left, a picture of 0.9% by weight and 1.2% by weight of the solution is shown and the maximum solubility is about 0.9%, showing a solubility lower than that shown in Figure 6a.
도 7은 실시예 2-1에서 수득한 산화아연을 150℃에서 3분간 열처리한 후에 25% 암모니아수에 용해시킨 용액을 촬영한 사진으로, 왼쪽으로부터 오른쪽으로 각각 0.45중량%, 0.90중량%, 1.35중량%, 1.8중량% 농도의 용액이다. 7 is a photograph of a solution obtained by dissolving zinc oxide obtained in Example 2-1 at 150 ° C. for 3 minutes and then dissolved in 25% ammonia water, and 0.45% by weight, 0.90% by weight, and 1.35% by weight from left to right, respectively. %, 1.8% by weight solution.
도 8은 시판되는 산화아연을 150℃에서 3분간 열처리한 후에 25% 암모니아수에 용해시킨 용액을 촬영한 사진으로, 왼쪽으로부터 오른쪽으로 각각 0.45중량%, 0.90중량%, 1.35중량% 농도의 용액이다. FIG. 8 is a photograph of a solution in which commercially available zinc oxide is heat-treated at 150 ° C. for 3 minutes and then dissolved in 25% ammonia water. The solution is 0.45% by weight, 0.90% by weight, and 1.35% by weight, respectively, from left to right.
도 9a 및 도 9b는 다양한 조건을 이용한 본원 실시예에서 수득된 Zn(OH)2 및 ZnO 박막을 사용한 트랜지스터의 출력(output) 곡선 및 트랜스퍼(transfer) 곡선을 각각 나타낸다.9A and 9B show the output curves and the transfer curves of transistors using Zn (OH) 2 and ZnO thin films obtained in this example using various conditions, respectively.
도 10a 내지 도 10d는 실시예 2-1, 2-2, 2-3, 2-6에서 수득된 ZnO 박막의 FE-SEM이고, 상기 이미지 각각에 박막 두께가 기재되어 있다.10A to 10D are FE-SEMs of ZnO thin films obtained in Examples 2-1, 2-2, 2-3, and 2-6, and the thin film thicknesses are described in each of the images.
도 11은 실시예 2-1에서 수득된 ZnO 박막의 X-선 회절 패턴을 나타내는 그래프(A) 및 실시예 2-3 각각에서 수득된 ZnO 박막의 X-선 회절 패턴을 나타내는 그래프(B)이다.11 is a graph showing an X-ray diffraction pattern of the ZnO thin film obtained in Example 2-1 and a graph (B) showing an X-ray diffraction pattern of the ZnO thin film obtained in each of Examples 2-3. .
도 12a 내지 12c 각각은 실시예 2-1, 2-3 및 2-6에서 수득된 ZnO 박막의 XPS 스펙트럼을 나타낸 그래프이다.12A to 12C are graphs showing XPS spectra of the ZnO thin films obtained in Examples 2-1, 2-3, and 2-6.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. Hereinafter, the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
본 발명의 일 양태에 따르면, 아연염을 물에 용해시켜서 아연염 용액을 수득하는 단계; 상기 아연염 용액에 염기성 물질을 첨가하여 징케이트(zincate) 염 용액을 형성시키는 단계; 및 상기 징케이트 염 용액으로부터 형성된 침전물을 분리하는 단계를 포함하는 산화아연 전구체의 제조방법이 제공되며, 이러한 제조방법은 하기 반응식 1을 이론적 근거로 한다.According to one aspect of the invention, dissolving zinc salt in water to obtain a zinc salt solution; Adding a basic substance to the zinc salt solution to form a zincate salt solution; And separating the precipitate formed from the zinc salt solution. Provided is a method for preparing a zinc oxide precursor, which method is based on the following Scheme 1.
반응식 1 Scheme 1
Figure PCTKR2014002337-appb-I000001
Figure PCTKR2014002337-appb-I000001
상기 반응식 1에 나타난 바와 같이, 아연염을 물에 용해시킨 후 적량의 염기성 물질을 첨가하면 불용성 수산화아연이 침전되지만, 이보다 과량의 염기성 물질을 투입하게 되면 수산화아연이 징케이트 이온(zincate ion)으로 형성되면서 용매에 용해된다. 형성된 징케이트 이온은 중간단계와 화학평형을 이루고 있으므로, 수산화아연이 형성되어 석출됨에 따라 평형은 차차 왼쪽으로 이동되고 이 과정에서 순수한 수산화아연 결정체가 형성되면서 석출된다. As shown in Scheme 1, when zinc salt is dissolved in water and an appropriate amount of basic substance is added, insoluble zinc hydroxide is precipitated. However, when an excess amount of basic substance is added, zinc hydroxide is converted into zincate ion. It forms and dissolves in the solvent. Since the formed zincate ions are in chemical equilibrium with the intermediate stage, as the zinc hydroxide is formed and precipitated, the equilibrium is gradually shifted to the left side, and pure zinc hydroxide crystals are formed in the process and precipitate.
이렇게 석출되어 수득된 수산화아연은 불순물이 거의 없는 순수한 상태이며, 50 내지 200℃, 보다 바람직하게는 100 내지 150℃의 낮은 온도에서 열분해되어 산화아연으로 변화될 수 있다. 이 때, 열처리는 자외선 조사없이 실시되는 양태를 나타내며, 열처리 시간은 1분 내지 90분일 수 있다. 열처리가 자외선 조사와 동시에 실시되는 양태는 하기에 설명되어 있으며, 열처리만으로 소성하는 방법보다 더 저온에서 더 단축된 시간내에 산화아연 전구체 소성이 이루어질 수 있다.The zinc hydroxide thus obtained is in a pure state with almost no impurities, and may be pyrolyzed at a low temperature of 50 to 200 ° C., more preferably 100 to 150 ° C., to be changed to zinc oxide. At this time, the heat treatment represents an embodiment performed without ultraviolet irradiation, the heat treatment time may be 1 minute to 90 minutes. Embodiments in which the heat treatment is carried out simultaneously with ultraviolet irradiation are described below, and the zinc oxide precursor firing can be made in a shorter time at a lower temperature than the method of firing only by heat treatment.
본 발명에서 사용가능한 아연을 포함하는 화합물은 수용성 아연염이다. 본 발명에서 사용가능한 아연염의 비제한적인 예로는 질산아연, 염화아연, 초산아연, 황산아연, 인산아연, 플루오르화 아연, 브롬화 아연, 요오드화 아연 등이 있으며, 이들을 1종 또는 2종 이상 혼합하여 사용할 수 있다. 상기 아연염 중에서, 질산아연이 저온 소성에 의한 열분해 결과 측면에서 바람직하다. Compounds containing zinc that can be used in the present invention are water-soluble zinc salts. Non-limiting examples of zinc salts that can be used in the present invention include zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, zinc phosphate, zinc fluoride, zinc bromide, zinc iodide, and the like, or may be used by mixing one or two or more of them. Can be. Among the zinc salts, zinc nitrate is preferred in view of thermal decomposition by low temperature firing.
본 발명에서 사용가능한 염기성 물질로는 물에 쉽게 녹아 염기성 용액을 형성할 수 있는 다양한 염기성 물질이 사용될 수 있다. 그 예로는 NaOH, KOH, LiOH, 암모니아수 등이 있으나, 이에 한정되는 것은 아니다.As the basic material usable in the present invention, various basic materials which can be easily dissolved in water to form a basic solution may be used. Examples thereof include NaOH, KOH, LiOH, ammonia water, but are not limited thereto.
상기 염기성 물질은 공기 중에 있는 이산화탄소와 반응하여 쉽게 탄산염을 형성하므로, 본 발명에서는 탄산염 생성을 방지하기 위해 탄산염의 수 용해도가 낮은 점에 착안하여 염기성 물질을 물에 과포화되게 투입하고 용액 부분만을 분리하여 사용할 수 있다. 이에 의해, 불필요한 탄산염이 수산화아연에 혼입되는 것을 최소화할 수 있다. 이와 같은 방식으로 탄산아연의 형성도 방지될 수 있다.Since the basic material reacts with carbon dioxide in the air to easily form carbonate, in the present invention, in order to prevent the formation of carbonate, the basic material is supersaturated in water and separated from the solution part by focusing on the low water solubility of the carbonate. Can be used. This can minimize the incorporation of unnecessary carbonates into zinc hydroxide. In this way, the formation of zinc carbonate can also be prevented.
본 발명에서 염기성 물질은 아연이온에 대하여 과량으로 사용된다. 구체적으로, 아연 이온 1몰에 대하여 이론치 보다 많은 히드록시 이온 5 내지 12 몰이 되도록 염기성 물질이 사용된다. 5 몰 미만으로 사용되면 징케이트 형성이 용이하지 않게 되고 12 몰보다 많이 사용하면 이에 비례하여 수산화아연의 형성이 저해되므로 무의미하다. In the present invention, the basic substance is used in excess with respect to zinc ions. Specifically, more than theoretical hydroxy ions 5 per mol of zinc ions To 12 Basic materials are used to molar. If used less than 5 moles, the formation of ginkects is not easy and The use of more than mole is insignificant because it inhibits the formation of zinc hydroxide in proportion to it.
상기 반응의 온도 및 압력 조건은 본 발명의 목적에 부합하는 한 특별히 제한되지 않으며, 실온 및 대기압에서 실시될 수 있으며 반응 속도를 올리기 위해서 50℃ 이하의 온도로 가열할 수 있으나, 그 이상의 온도에서는 원치 않는 산화아연이 형성될 수도 있다.The temperature and pressure conditions of the reaction is not particularly limited as long as it meets the object of the present invention, can be carried out at room temperature and atmospheric pressure and can be heated to a temperature of 50 ℃ or less to increase the reaction rate, but at higher temperatures Zinc oxide may be formed.
상기 반응에 의해 수득된 수산화아연을 당업계에서 통상적인 방법으로 분리하여 세정 및 건조시킨다.The zinc hydroxide obtained by the above reaction is separated, washed and dried by conventional methods in the art.
수산화아연은 증류수, C1 ~C3 알코올, 암모니아 또는 이들의 혼합액에 첨가되어 산화아연 전구체 용액을 형성한다.Zinc hydroxide is added to distilled water, C 1 -C 3 alcohol, ammonia or a mixture thereof to form a zinc oxide precursor solution.
수산화아연은 알루미늄(Al), 주석(Sn), 인듐(In), 갈륨 (Ga), 철(Fe), 안티몬(Sb) 및 리튬(Li)으로 이루어진 군으로부터 선택되는 1종 이상의 금속으로 도핑(doping)될 수 있다. 이를 위해, 수산화아연이 용해되어 있는 산화아연 전구체 용액에 도핑 금속을 첨가할 수 있다.Zinc hydroxide is doped with one or more metals selected from the group consisting of aluminum (Al), tin (Sn), indium (In), gallium (Ga), iron (Fe), antimony (Sb), and lithium (Li) ( doping). To this end, a doped metal may be added to the zinc oxide precursor solution in which zinc hydroxide is dissolved.
산화아연 전구체 용액 중의 아연 농도는 바람직하게는 0.1 ~ 5 중량%이나 반드시 이에 제한되는 것은 아니다. 상기 농도가 0.1 중량%보다 낮은 경우, 형성되는 산화아연 박막의 두께를 용이하게 조절할 수 없고, 5 중량%보다 높은 경우 투명하고 균일한 전구체 용액을 얻기 어렵다.The zinc concentration in the zinc oxide precursor solution is preferably 0.1 to 5% by weight, but is not necessarily limited thereto. When the concentration is lower than 0.1% by weight, the thickness of the zinc oxide thin film to be formed cannot be easily adjusted, and when higher than 5% by weight, it is difficult to obtain a transparent and uniform precursor solution.
본 발명의 산화아연 전구체 용액은 용매에 대한 용해도가 높기 때문에 안정제 또는 개질제를 포함하지 않거나 또는 보다 적게 포함할 수 있다. 기존의 합성방법을 통한 산화아연 전구체는 용매에 대한 용해도가 낮기 때문에 제한된 범위(0.9%이하)의 농도로 용액을 만들 수 있었으나, 본 발명에 의하면 안정제 또는 개질제를 첨가하지 않거나 소량 첨가하는 것만으로도 투명하고 균질한 수산화아연 전구체 용액을 제조할 수 있다.The zinc oxide precursor solution of the present invention may contain no or less stabilizer or modifier because of its high solubility in solvents. Since the zinc oxide precursor through the conventional synthesis method has a low solubility in solvents, the solution can be made in a limited range (0.9% or less), but according to the present invention, even without adding a stabilizer or a modifier or a small amount, Clear and homogeneous zinc hydroxide precursor solutions can be prepared.
안정제의 예로는 모노에탄올아민(monoethanolamine), 디에탄올아민(diethanolamine) 및 트리에탄올아민(triethanolamine) 등과 같은 아민계 안정제가 있으나 반드시 이에 제한되는 것은 아니다. 그러나, 반도체 전구체라는 특수성 때문에 안정제를 넣지 않는 조건이 최선이다.Examples of stabilizers include, but are not limited to, amine stabilizers such as monoethanolamine, diethanolamine, and triethanolamine. However, the condition of not adding a stabilizer is best because of the specificity of the semiconductor precursor.
안정제가 사용되는 경우, 이들의 농도는 산화아연 박막용 전구체 용액 중의 아연 농도에 따라서 조절되나, 반도체 형성후 특성저하를 동반할 수 있으므로 아연 100 중량부를 기준으로 5 중량% 이하로 포함되는 것이 바람직하다.When stabilizers are used, their concentration is controlled according to the zinc concentration in the precursor solution for zinc oxide thin film, but may be accompanied by a deterioration after the formation of the semiconductor, so it is preferably included 5 wt% or less based on 100 parts by weight of zinc. .
산화아연 전구체 용액을 기판에 도포하는 방법으로는 스핀코팅(spin coating), 딥코팅(dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 스핀 캐스팅(spin casting), 흐름코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯(ink jet) 또는 드롭캐스팅(drop casting) 등이 있으나, 반드시 이에 제한되는 것은 아니다.The coating method of the zinc oxide precursor solution on the substrate is spin coating, dip coating, roll coating, screen coating, spray coating, spin casting ( spin casting, flow coating, screen printing, ink jet, drop casting, and the like, but are not necessarily limited thereto.
산화아연 전구체 용액이 코팅되는 기판은 웨이퍼 기판, ITO 기판, 석영유리 기판, 플라스틱 기판으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나, 반드시 이에 제한되는 것은 아니다.The substrate to which the zinc oxide precursor solution is coated may be at least one selected from the group consisting of a wafer substrate, an ITO substrate, a quartz glass substrate, and a plastic substrate, but is not limited thereto.
본 발명의 일 실시양태에 따라 수득된 수산화아연 용액을 기판에 저온 증착하는 경우, 화합물의 순도 및 형성된 박막의 균질하고 조밀한 모폴로지(morphology)가 고성능 반도체 박막에서 특히 중요한 역할을 한다. When the zinc hydroxide solution obtained according to one embodiment of the present invention is low temperature deposited on a substrate, the purity of the compound and the homogeneous and dense morphology of the formed thin film play a particularly important role in high performance semiconductor thin films.
박막 트랜지스터의 작동 파라미터(operational parameter)에 대한 그레인 모폴리지 및 박막 밀도의 영향은 그레인 입계(grain boundary) 효과에 의해 주요 결정요인(main factor)이 된다. 따라서, 저온에서의 대규모 소결(sintering) 및 그레인 증식이 저온에서 유리하지 않은 경우에는, 저온 가공된 디바이스 성능에서, 코팅된 표면의 모폴로지가 가능한한 조밀하여야 한다. 특히, 저온 소성 방법에서 주된 계면 상태인(prodiminant interface state) 박막 표면에 다공성 응집(porous agglomeration)이 생성되어 캐리어 이동도가 제한될 뿐만 아니라 역치이하의 기울기(subthreshold slope), 누설 전류(off current) 및 스위칭 전압(switching voltage)과 같은 박막 트랜지스터의 전기적 특성에 부정적인 영향이 있다는 점을 고려할 때 200℃ 이하, 특히, 150℃ 이하의 저온 소성이 가능하게 된 점은 주목할만하다.The influence of grain morphology and thin film density on the operational parameters of the thin film transistor is a main factor due to the grain boundary effect. Thus, if large scale sintering and grain growth at low temperatures are not advantageous at low temperatures, the morphology of the coated surface should be as dense as possible at low temperature processed device performance. In particular, porous agglomeration is generated on the surface of the thin film, which is the main interface state in the low temperature firing method, which not only restricts carrier mobility but also subthreshold slope and off current. In view of the negative effect on the electrical properties of the thin film transistor, such as switching voltage (switching voltage), it is noteworthy that low-temperature firing of 200 ° C or less, in particular 150 ° C or less.
본 발명의 또 다른 실시 양태에 따르면, 수산화아연을 포함하는 용액을 50 내지 200℃, 보다 바람직하게는 100 내지 150℃ 이하에서 열 및 자외선으로 동시 처리함으로써 단시간에 산화아연 박막을 형성할 수 있다. 자외선 처리는 가시광선을 포함해도 되는 100 내지 1000 nm 파장 범위, 더욱 바람직하게는 180 내지 400 nm 파장 범위에서 실시할 수 있다. 자외선 및 열 처리동안에 신속한 탈수 역학(dehydration kinetics)이 발생할 수 있으며, 이어서 Zn-O-Zn 결합의 축합이 형성될 수 있다. 비교적 낮은 온도에서는 역학적으로 결정화 공정이 어려우며 Zn-O-Zn 결합의 재배열이 저해되므로(hindered), 장시간의 열처리가 필요하다고 알려져 있다. 본 발명에서는 자외선으로 처리하여 주위 산소의 광분해(photolysis)가 발생하여 Zn 댕글링 결합(dangling bond)과 반응하는 반응성 산소 종을 발생시켜서 금속-산소 결합을 형성시키고, 산소 빈자리(vacancy)를 채우며, Zn-O-Zn 결합을 공격한다. 비교적 저온에서의 이러한 결합-형성/변형(deforming) 공정은 자외선을 사용한 하소(calcinations)에 의해 발생하며, 보다 큰 그레인을 갖는 조밀한 박막을 생성시킨다. 따라서, 고성능 디바이스(device)에 있어, 주위 분위기(ambient atmosphere) 중에서 50 내지 200℃, 바람직하게는 100 내지 150℃에서의 열 및 자외선 동시 처리는 1초 내지 30분, 바람직하게는 3분 이내에 완료될 수 있으며, 5중량% 이하의 Zn(OH)2/NH4OH 용액을 사용하여 보다 조밀하고 큰 그레인을 갖는 ZnO 박막을 효과적이고 시간 절약적으로 형성할 수 있다.According to another embodiment of the present invention, a zinc oxide thin film can be formed in a short time by simultaneously treating the solution containing zinc hydroxide with heat and ultraviolet rays at 50 to 200 ° C, more preferably at 100 to 150 ° C or lower. Ultraviolet treatment can be performed in the wavelength range of 100-1000 nm which may contain visible light, More preferably, it is 180-400 nm wavelength range. Rapid dehydration kinetics can occur during ultraviolet and heat treatment, followed by condensation of Zn-O-Zn bonds. At relatively low temperatures, the crystallization process is difficult mechanically and the rearrangement of Zn-O-Zn bonds is hindered. In the present invention, by treating with ultraviolet light to generate photolysis of the surrounding oxygen to generate reactive oxygen species reacting with the Zn dangling bond to form a metal-oxygen bond, to fill the oxygen vacancies, Attack Zn-O-Zn bonds. This bond-forming / deforming process at relatively low temperatures is caused by calcinations using ultraviolet light, resulting in dense thin films with larger grains. Thus, for high performance devices, simultaneous heat and ultraviolet treatment at 50 to 200 ° C., preferably 100 to 150 ° C., in an ambient atmosphere is completed within 1 second to 30 minutes, preferably 3 minutes. A ZnO thin film having a denser and larger grain can be formed efficiently and time-saving by using a Zn (OH) 2 / NH 4 OH solution of 5 wt% or less.
본 발명의 다른 양태는 본 발명의 일 양태에 따른 방법에 의해 수득된 산화아연 박막을 포함하는 전자부품에 관한 것이다. 이러한 전자부품은 투명전극, 태양전지, 광센서, TFT, 산화아연 나노와이어(nanowire), 발광 재료를 포함하나, 반드시 이에 제한되는 것은 아니다.Another aspect of the invention relates to an electronic component comprising a zinc oxide thin film obtained by the method according to one aspect of the invention. Such electronic components include, but are not necessarily limited to, transparent electrodes, solar cells, optical sensors, TFTs, zinc oxide nanowires, and light emitting materials.
이하, 실시예에서는 본 발명을 보다 구체적으로 상세하게 설명하고자 하나, 하기의 실시예는 예시를 위한 것으로, 본 발명의 권리범위가 하기 실시예로 제한되는 것은 아니다.In the following Examples, the present invention will be described in more detail in detail, but the following examples are provided for illustrative purposes, and the scope of the present invention is not limited to the following examples.
실시예 1-1: 수산화아연의 합성Example 1-1: Synthesis of Zinc Hydroxide
수산화나트륨(NaOH)을 물에 용해시켜 탄산염을 포함하지 않는(carbonate-free) 50% NaOH 용액을 준비하였다. 투명한 용액 부분을 분리하여 프탈산수소칼륨(potassium hydrogen phthalate: KHP)으로 적정한 후, 탄산염을 포함하지 않는 2.4M NaOH 용액을 제조하였다.Sodium hydroxide (NaOH) was dissolved in water to prepare a carbonate-free 50% NaOH solution. The clear solution portion was separated and titrated with potassium hydrogen phthalate (KHP) to prepare a 2.4 M NaOH solution containing no carbonate.
5L 2구 둥근 플라스크에 49.8g의 질산아연 6수화물을 900ml의 3차 증류수에 용해시켜서 아연 수용액을 준비하였다. 탄산염을 포함하지 않는 2.4M NaOH 용액 600ml을 상기 아연 수용액에 넣었다. 용액을 서서히 가열하여 50℃로 2시간동안 교반하였다. 교반 가열 중에 Zn(OH)2이 형성되면서 입자가 형성되었다. 만들어진 Zn(OH)2는 종이 필터를 이용하여 감압 필터하고 필터된 물질을 다시 증류수에 분산시켜 세정하며 이를 2번 반복하였다. 마지막 단계에서는 메탄올을 이용하여 세정 후 자연 건조시켜 수산화아연을 얻었다.An aqueous zinc solution was prepared by dissolving 49.8 g of zinc nitrate hexahydrate in a 5 L two-necked round flask in 900 ml of tertiary distilled water. 600 ml of a 2.4 M NaOH solution without carbonate was added to the aqueous zinc solution. The solution was slowly heated and stirred at 50 ° C. for 2 hours. Particles were formed while Zn (OH) 2 was formed during stirring heating. The produced Zn (OH) 2 was filtered under reduced pressure using a paper filter, and the filtered material was again dispersed in distilled water and washed. In the last step, the mixture was washed with methanol and dried naturally to obtain zinc hydroxide.
실시예 1-2: 수산화아연의 합성Example 1-2 Synthesis of Zinc Hydroxide
실시예 1-1의 방법에서 가열 온도를 40℃로 낮추고 교반 시간을 3시간 정도로 하여 원하는 수산화아연을 수득하였다.In the method of Example 1-1, the heating temperature was lowered to 40 ° C. and the stirring time was about 3 hours to obtain desired zinc hydroxide.
실시예 1-3: 수산화아연의 합성Example 1-3 Synthesis of Zinc Hydroxide
실시예 1-1의 방법에서 가열 온도를 25℃로 낮추고 교반 시간을 10시간 정도로 하여 원하는 수산화아연을 수득하였다.In the method of Example 1-1, the heating temperature was lowered to 25 ° C. and the stirring time was about 10 hours to obtain desired zinc hydroxide.
실시예 1-4: 수산화아연의 합성Example 1-4: Synthesis of Zinc Hydroxide
실시예 1-1의 방법에서 가열 온도를 15℃로 낮추고 교반 시간을 24시간 정도로 하여 원하는 수산화아연을 수득하였다.In the method of Example 1-1, the desired heating temperature was lowered to 15 ° C. and stirring time was about 24 hours to obtain desired zinc hydroxide.
실시예 1-5: 수산화아연의 합성Example 1-5: Synthesis of Zinc Hydroxide
실시예 1-1에서 질산아연 대신 염화아연을 이용하여 같은 방법으로 원하는 수산화아연을 얻었다. The desired zinc hydroxide was obtained in the same manner using zinc chloride instead of zinc nitrate in Example 1-1.
실시예 1-6: 수산화아연의 합성Example 1-6 Synthesis of Zinc Hydroxide
실시예 1-1에서 질산아연 대신 초산아연을 이용하여 같은 방법으로 원하는 수산화아연을 얻었다.In Example 1-1, zinc zinc was used instead of zinc nitrate to obtain desired zinc hydroxide in the same manner.
실시예 1-7: 수산화아연의 합성Example 1-7: Synthesis of Zinc Hydroxide
실시예 1-1에서 수산화나트륨대신 수산화칼륨을 이용하여 같은 방법으로 원하는 수산화아연을 얻었다.In Example 1-1, desired zinc hydroxide was obtained in the same manner using potassium hydroxide instead of sodium hydroxide.
실시예 1-8: 수산화아연의 합성Example 1-8: Synthesis of Zinc Hydroxide
실시예 1-2에서 수산화나트륨대신 수산화칼륨을 이용하여 같은 방법으로 원하는 수산화아연을 얻었다.In Example 1-2, desired zinc hydroxide was obtained in the same manner using potassium hydroxide instead of sodium hydroxide.
실시예 1-9: 수산화아연의 합성Example 1-9: Synthesis of Zinc Hydroxide
실시예 1-1 내지 1-6에서 수산화나트륨대신 25% 암모니아수를 이용하여 같은 방법으로 원하는 수산화아연을 얻었다. In Examples 1-1 to 1-6, desired zinc hydroxide was obtained in the same manner using 25% ammonia water instead of sodium hydroxide.
실시예 2-1: 산화아연 박막 및 디바이스의 제조Example 2-1 Preparation of Zinc Oxide Thin Films and Devices
상기에서 합성된 수산화아연(Zn(OH)2)을 수성 NH4OH(Duksan, 25 내지 30%)에 용해시켜서, ZnO 층을 제조하기 위한 2중량% 전구체 스톡 용액을 제조하였다. Zn(OH)2/ NH4OH 용액을 0.2 ㎛ PVDF 필터에 여과시키고, 100nm SiO2/p-도핑된 Si 기판 상에 30초동안 4000 rpm 속도로 스핀 코팅하였다. 코팅된 박막이 공기에서 150℃로 예열 처리된 고온 플레이트 상에서 1시간동안 경화되도록 소성하였다. 이어서, 50㎛ 채널 너비 및 40㎛ 길이를 갖는 금속 증발기(VPC-260)를 사용하여 ZnO 박막 상에 알루미늄 층을 증착시켜 소스 및 드레인 전극을 제조하여서, ZnO 베이스 박막 트랜지스터의 제조시에 하부-게이트 및 상부-접촉 박막 트랜지스터 구조물이 맞추어졌다..Zinc hydroxide (Zn (OH) 2 ) synthesized above was dissolved in aqueous NH 4 OH (Duksan, 25-30%) to prepare a 2% by weight precursor stock solution to prepare a ZnO layer. The Zn (OH) 2 / NH 4 OH solution was filtered through a 0.2 μm PVDF filter and spin coated at 4000 rpm for 30 seconds on a 100 nm SiO 2 / p-doped Si substrate. The coated thin film was baked to cure for 1 hour on a hot plate preheated to 150 ° C. in air. Subsequently, a source and drain electrode was fabricated by depositing an aluminum layer on the ZnO thin film using a metal evaporator (VPC-260) having a 50 μm channel width and 40 μm length to produce a bottom-gate in the fabrication of a ZnO base thin film transistor. And top-contact thin film transistor structures.
실시예 2-2: 산화아연 박막 및 디바이스의 제조Example 2-2 Preparation of Zinc Oxide Thin Films and Devices
소성 조건으로 공기 대신 Ar/H2을 사용하는 것을 제외하고 실시예 2-1와 동일한 방법으로 산화아연 박막 및 디바이스를 제조하였다. 보다 구체적으로는, 코팅된 박막을 관상로(tube furnace)에서 Ar/H2을 100cc/min으로 흘리면서 150℃에서 경화하였다.A zinc oxide thin film and a device were manufactured in the same manner as in Example 2-1, except that Ar / H 2 was used instead of air as the firing condition. More specifically, the coated thin film was cured at 150 ° C. while flowing Ar / H 2 at 100 cc / min in a tube furnace.
실시예 2-3: 산화아연 박막 및 디바이스의 제조Example 2-3 Preparation of Zinc Oxide Thin Films and Devices
소성 조건으로 공기에서 150 ℃ 열처리/자외선 노출을 동시 처리하는 것을 제외하고 실시예 2-1와 동일한 방법으로 산화아연 박막 및 디바이스를 제조하였다. 자외선 처리를 위해, 365 nm에서 피크 강도를 갖는 1.1 kW 중압 수은 UV 램프(Lichtzen, 대한민국)를 사용하였고, 시료에서 램프까지의 거리는 7 cm로 설정하였다. 자외선 노출동안 고온 플레이트의 표면 온도는 10℃까지 증가하였으며, 이어서, 5분내에 목적하는 온도로 정착되었다.A zinc oxide thin film and a device were manufactured in the same manner as in Example 2-1, except that 150 ° C. heat treatment / ultraviolet light exposure was simultaneously performed in air under firing conditions. For ultraviolet treatment, a 1.1 kW medium pressure mercury UV lamp (Lichtzen, South Korea) with peak intensity at 365 nm was used and the distance from the sample to the lamp was set to 7 cm. During ultraviolet exposure the surface temperature of the hot plate increased to 10 ° C. and then settled to the desired temperature within 5 minutes.
실시예 2-4: 산화아연 박막 및 디바이스의 제조Example 2-4 Preparation of Zinc Oxide Thin Films and Devices
수산화아연 코팅을 2회 실시하는 것을 제외하고 실시예 2-3과 동일한 방법으로 산화아연 박막 및 디바이스를 제조하였다.A zinc oxide thin film and a device were manufactured in the same manner as in Example 2-3, except that the zinc hydroxide coating was performed twice.
실시예 2-5: 산화아연 박막 및 디바이스의 제조Example 2-5 Preparation of Zinc Oxide Thin Films and Devices
100 nm SiO2/p-도핑된 Si 기판 상에 Al 게이트 전극을 형성한 후에, 100 nm 두께를 갖는 Al2O3 게이트 절연체를 원자층 증착에 의해 더 코팅하는 것을 제외하고 실시예 2-3과 동일한 방법으로 산화아연 박막 및 디바이스를 제조하였다.After forming the Al gate electrode on a 100 nm SiO 2 / p-doped Si substrate, Example 2-3 and Al 2 O 3 gate insulator having a thickness of 100 nm were further coated by atomic layer deposition. In the same manner, zinc oxide thin films and devices were prepared.
실시예 2-6: 산화아연 박막 및 디바이스의 제조Example 2-6 Preparation of Zinc Oxide Thin Films and Devices
4중량%의 수산화아연 용액을 사용하는 것을 제외하고 실시예 2-3과 동일한 방법으로 산화아연 박막 및 디바이스를 제조하였다.A zinc oxide thin film and a device were manufactured in the same manner as in Example 2-3, except that 4 wt% zinc hydroxide solution was used.
실시예 2-7: 산화아연 박막 및 디바이스의 제조Example 2-7 Preparation of Zinc Oxide Thin Films and Devices
4중량%의 수산화아연 용액을 사용하는 점, 실시예 2-1에 기재된 공정으로 진행하다가 실시예 2-3에 기재된 공정으로 진행하는 점을 제외하고 실시예 2-3에 기재된 방법으로 산화아연 박막 및 디바이스를 제조하였다.Zinc oxide thin film by the method described in Example 2-3 except for using a 4% by weight zinc hydroxide solution, and proceeding to the process described in Example 2-1 to the process described in Example 2-3 And devices.
분석/평가 방법Analysis / evaluation method
열처리 또는 자외선 처리 이후의 Zn(OH)2 분말 또는 ZnO 박막을 XRD로 측정하였다. Zn (OH) 2 powder or ZnO thin film after heat treatment or ultraviolet treatment was measured by XRD.
XRD 데이터는 Bruker D8 Advance를 사용하여 모았다. XRD data were collected using Bruker D8 Advance.
Zn(OH)2 분말의 열중량 분석은 TA 인스트루먼트(Q50)를 사용하여 2℃/min 열처리 속도로 실시하였다. Thermogravimetric analysis of Zn (OH) 2 powder was carried out at 2 ° C./min heat treatment rate using a TA instrument (Q50).
푸리에르 전환 적외선 분광기(FT-IR) 스펙트럼은 JASCO FT/IR 6100에서 수득하였다. Fourier transform infrared spectroscopy (FT-IR) spectra were obtained on JASCO FT / IR 6100.
필드 방사주사 전자 현미경(FE-SEM) 이미지는 Carl Zeiss LEO SUPRA 55로 얻었다. Field emission scanning electron microscopy (FE-SEM) images were obtained with Carl Zeiss LEO SUPRA 55.
ZnO 박막에서 상대적인 산소 빈자리는 X-선 광전자 분광법(XPS)을 사용하여 확인하였다. The relative oxygen vacancies in the ZnO thin films were confirmed using X-ray photoelectron spectroscopy (XPS).
상기 디바이스의 전기적 특징은 반도체 파라미터 분석기(Agilent 4155B)를 사용하여 주위 공기에서 분석하였다.The electrical characteristics of the device were analyzed in ambient air using a semiconductor parameter analyzer (Agilent 4155B).
평가예 1: TGA 측정Evaluation Example 1: TGA Measurement
실시예 1-1에서 수득한 수산화아연을 열처리한 결과를 도 1에 나타내었다. 도 1을 보면, 실시예 1-1에서 수득한 수산화아연은 130℃에서 한 단계만에 산화아연으로 변화되었다. 이 과정에서, 하기 반응식 2와 같이 하얀색의 분말 Zn(OH)2로부터 물분자 하나가 빠져 나가며 ZnO로 분해되는데, 물분자 하나가 빠져나가며 약 18.12%의 무게 손실이 발생하여 이론적으로 남은 무게량비는 약 81.88%이 된다:The result of heat-treating the zinc hydroxide obtained in Example 1-1 is shown in FIG. Referring to Figure 1, the zinc hydroxide obtained in Example 1-1 was changed to zinc oxide in one step at 130 ℃. In this process, as shown in the following reaction formula 2, one of the water powders from the white powder Zn (OH) 2 exits and decomposes into ZnO. That's about 81.88%:
반응식 2 Scheme 2
Zn(OH)2 -> ZnO + H2OZn (OH) 2- > ZnO + H 2 O
시료의 양, TGA 스캔 속도에 따라 수산화아연이 산화아연으로 최종 변화하는 온도에 약간의 편차가 있었지만 100℃에서 시작하여 약 150℃에서 이론치에 근접한 83%의 무게 함량을 보여주고 있다. 열분해 반응은 실제로 이보다 낮은 온도에서도 진행되는데, 이는 동력학적으로 속도가 결정되기 때문이다.Depending on the amount of sample and the TGA scan rate, there was a slight variation in the final temperature of zinc hydroxide to zinc oxide, but it showed a weight content of 83% close to theory at about 150 ° C starting at 100 ° C. The pyrolysis reaction actually proceeds at lower temperatures because the rate is determined dynamically.
평가예 2: 수산화아연의 SEM 사진Evaluation Example 2: SEM Photograph of Zinc Hydroxide
실시예 1-1에서 수득한 수산화아연을 FE-SEM으로 촬영하여 도 2에 나타내었다. 도 2를 보면, 실시예 1-1에서 수득한 수산화아연은 하나의 성상인 결정체로 깨끗이 얻어졌다.The zinc hydroxide obtained in Example 1-1 was photographed by FE-SEM and shown in FIG. 2. Referring to FIG. 2, the zinc hydroxide obtained in Example 1-1 was obtained cleanly as crystals of one form.
평가예 3: 수산화아연 및 산화아연의 XRD 결과Evaluation Example 3 XRD Results of Zinc Hydroxide and Zinc Oxide
실시예 1-1에서 수득한 수산화아연의 XRD를 측정하고, 그 결과를 도 3a에 나타내었다. XRD of the zinc hydroxide obtained in Example 1-1 was measured, and the result is shown in FIG. 3A.
도 3a에 따르면 실시예 1-1에서 수득한 수산화아연의 XRD(흑색 그래프)는 orthorhomic 구조의 수산화아연의 표준시료(회색 그래프)와 일치하고, 도 3b에 따르면 실시예 2-1에서 수득한 산화아연의 XRD 그래프(흑색 그래프)는 산화아연의 표준 시료(회색 그래프)와 일치한다. According to FIG. 3A, the XRD (black graph) of zinc hydroxide obtained in Example 1-1 is consistent with the standard sample (gray graph) of zinc hydroxide having an orthorhomic structure, and the oxidation obtained in Example 2-1 according to FIG. 3B. The XRD graph of zinc (black graph) is consistent with the standard sample of zinc oxide (grey graph).
실시예 1-1에서 수득한 수산화아연을 각각 100℃에서 1시간 또는 3시간 열처리한 후에 XRD를 측정하고, 그 결과 그래프를 도 4에 나타내었다. 1시간 및 3시간 열처리후의 XRD가 거의 일치하는 사실로부터, 실시예 1-1에서 수득한 수산화아연은 100℃에서 1시간이내의 짧은 시간의 소성으로도 산화아연으로 변화함을 알 수 있다.After the zinc hydroxide obtained in Example 1-1 was heat-treated at 100 ° C. for 1 hour or 3 hours, respectively, the XRD was measured and the graph is shown in FIG. 4. From the fact that XRD after heat treatment for 1 hour and 3 hours was almost identical, it was found that the zinc hydroxide obtained in Example 1-1 changed to zinc oxide even with a short time firing within 100 hours at 100 ° C.
평가예 4: FT-IR에 의한 수산화아연의 열변화특성Evaluation Example 4: Thermal Change Characteristics of Zinc Hydroxide by FT-IR
실시예 1-1에서 수득한 수산화아연의 150℃에서 1분, 3분, 5분 및 15분 소성한 후에 각각에 대한 FT-IR을 측정하고, 그 결과 그래프를 도 5에 나타내었다. After firing the zinc hydroxide obtained in Example 1-1 at 150 ° C. for 1 minute, 3 minutes, 5 minutes, and 15 minutes, the FT-IR was measured for each, and the graph is shown in FIG. 5.
도 5로부터, 150℃에서 3분 소성시에 수산화아연의 OH기(약 3500cm-1 피크)가 사라짐을 알 수 있다. 이는 본 발명에 따른 수산화아연이 소성에 의해 쉽게 산화아연으로 변화될 수 있어서 반도체로의 특성을 얻을 수 있음을 의미한다. It can be seen from FIG. 5 that the OH group (about 3500 cm −1 peak) of zinc hydroxide disappears upon firing at 150 ° C. for 3 minutes. This means that the zinc hydroxide according to the present invention can be easily changed to zinc oxide by firing, thereby obtaining the characteristics of the semiconductor.
평가예 5: 수산화아연의 암모니아수 용해도Evaluation Example 5 Solubility of Ammonia Water in Zinc Hydroxide
실시예 1-1에서 수득한 수산화아연을 25% 암모니아수에 각각 1중량%, 2중량%, 3중량%, 4중량% 및 5중량% 농도로 용해시킨 후 이를 사진 촬영하여 도 6a에 나타내었다. The zinc hydroxide obtained in Example 1-1 was dissolved in 25% aqueous ammonia at 1% by weight, 2% by weight, 3% by weight, 4% by weight and 5% by weight, respectively, and photographed.
도 6a에 따르면, 실시예 1-1에서 수득된 수산화아연은 25% 암모니아수에서 5중량% 농도로 용해되는 경우에도 완전히 투명하고 균질하게 용해되어 용액을 형성하는 것으로 나타났다.According to FIG. 6A, the zinc hydroxide obtained in Example 1-1 was found to be completely transparent and homogeneously dissolved to form a solution even when dissolved in 25% ammonia water at a concentration of 5% by weight.
상기 실험예 5와의 비교를 위해, 시중에서 유통되는 수산화아연(Junsei 사)을 25% 암모니아수에 용해시키고, 이를 사진 촬영하여 도 6b에 나타내었다. 도 6b에 따르면 시중에서 유통되는 상기 수산화아연은 0.9%의 용해도를 갖는 것으로 나타났다. For comparison with Experimental Example 5, commercially available zinc hydroxide (Junsei) was dissolved in 25% ammonia water and photographed and shown in FIG. 6B. According to FIG. 6B, the zinc hydroxide in the market was found to have a solubility of 0.9%.
평가예 6: 소성된 산화아연의 암모니아수 용해도Evaluation Example 6: Solubility of Ammonia in Calcined Zinc Oxide
실시예 1-1에서 수득한 수산화아연을 150℃에서 3시간 소성하여 형성된 산화아연을 25% 암모니아수에서 0.45중량%, 0.90중량%, 1.35중량%, 1.8중량% 농도로 용해시키고, 이를 사진 촬영하여 도 7에 나타내었다. Zinc oxide obtained in Example 1-1 was calcined at 150 ° C. for 3 hours to dissolve zinc oxide formed in 25% ammonia water at a concentration of 0.45% by weight, 0.90% by weight, 1.35% by weight, and 1.8% by weight. 7 is shown.
도 7에 따르면, 상기 산화아연은 1.35중량% 농도에서도 암모니아수에 완전히 용해되는 것으로 나타났다. According to FIG. 7, the zinc oxide was completely dissolved in ammonia water even at a concentration of 1.35 wt%.
비교를 위해, 시중에서 구매한 산화아연(Aldrich사, 99.9중량%)을 25% 암모니아수에 0.45중량%, 0.90중량%, 1.35중량% 농도로 용해시키고, 이를 촬영하여 도 8에 나타내었다. 도 8에 의하면, 시중에서 구매한 산화아연이 25% 암모니아수에서 투명한 용액을 형성하며 용해되는 농도는 0.9%이었다.For comparison, commercially available zinc oxide (Aldrich, 99.9% by weight) was dissolved in 25% aqueous ammonia at 0.45% by weight, 0.90% by weight, and 1.35% by weight, and photographed and shown in FIG. 8. According to FIG. 8, the concentration of zinc oxide purchased on the market was 0.9%, in which a transparent solution was dissolved in 25% ammonia water.
평가예 7: 산화아연 박막의 두께 및 그레인 입계 평가Evaluation Example 7 Evaluation of Thickness and Grain Boundary of the Zinc Oxide Thin Film
실시예 1-1에서 합성한 수산화아연을 25% 암모니아수에 용해시켜서 각각 1중량%, 2중량%, 3중량%, 4중량%, 5중량% 농도의 산화아연 전구체 용액을 제조하였다. 제조된 산화아연 전구체 용액을 실리콘 웨이퍼 기판에 스핀 코팅하고 150℃로 충분히 소성한 후 얻은 산화아연 박막의 두께 변화를 FE-SEM을 이용하여 조사하였다. 그 결과, 산화아연 박막의 두께는 산화아연 전구체 농도에 따라 거의 직선적으로 변하는 것으로 나타났다.The zinc hydroxide synthesized in Example 1-1 was dissolved in 25% ammonia water to prepare a zinc oxide precursor solution having a concentration of 1% by weight, 2% by weight, 3% by weight, 4% by weight, and 5% by weight, respectively. The thickness change of the zinc oxide thin film obtained after spin coating the prepared zinc oxide precursor solution on a silicon wafer substrate and sufficiently baked at 150 ° C. was investigated using FE-SEM. As a result, the thickness of the zinc oxide thin film was found to vary almost linearly with the zinc oxide precursor concentration.
표 1
산화아연 전구체 농도 ZnO 박막 두께
1중량% 12.7nm
2중량% 17.6nm
3중량% 27.4nm
4중량% 36.7nm
Table 1
Zinc Oxide Precursor Concentration ZnO Thin Film Thickness
1 wt% 12.7 nm
2 wt% 17.6nm
3 wt% 27.4nm
4 wt% 36.7 nm
또한, 합성된 Zn(OH)2 용액으로부터 다양한 소성 조건을 사용하여 제조된 ZnO 박막의 FE-SEM 이미지가 도 10a 내지 10d에 도시되어 있다. In addition, FE-SEM images of ZnO thin films prepared from the synthesized Zn (OH) 2 solution using various firing conditions are shown in FIGS. 10A-10D.
실시예 2-1 박막은 35.5 nm 두께를 가져서(도 10a), 자외선과 열을 3분동안 동시 처리한 도 10c의 박막 두께(33.7nm)와 유사하였다. Example 2-1 The thin film was 35.5 nm thick (FIG. 10A), similar to the thin film thickness (33.7 nm) of FIG. 10C, which was simultaneously treated with UV and heat for 3 minutes.
박막에서 그레인 입계의 크기는 자외선 또는 열 처리와 같은 소성 방법에 따라 결정된다. 자외선 처리한 박막의 그레인 입계(도 10b와 도 10c)는 자외선 처리없이 열처리에 의한 박막 그레인 입계(도 10a)보다 더 컸다. The size of grain boundaries in thin films is determined by firing methods such as ultraviolet or heat treatment. The grain boundaries of the UV treated thin film (FIGS. 10B and 10C) were larger than the thin film grain boundaries (FIG. 10A) by heat treatment without UV treatment.
특히, 실시예 2-6 박막(도 10d)은 실시예 2-1 박막(실시예 10a)보다 더 큰 그레인을 갖고, 다른 시료보다 적어도 2 내지 3배 높은 농도의 Zn(OH)2 용액을 사용하였기 때문에 1회 코팅이 이루어졌음에도 불구하고 보다 두꺼운 48.5nm의 박막 두께를 가졌다. In particular, the Example 2-6 thin film (FIG. 10D) has a larger grain than the Example 2-1 thin film (Example 10a) and uses a Zn (OH) 2 solution at a concentration of at least 2 to 3 times higher than other samples. It had a thin film thickness of 48.5 nm thicker even though the coating was made once.
평가예 8: 수산화아연의 ICP-MS 분석Evaluation Example 8: ICP-MS Analysis of Zinc Hydroxide
실시예 1-1에서 수득한 수산화아연에 존재하는 불순물의 양을 ICP-MS를 이용하여 조사하였다. 출발물질의 순도가 99.50% 이상이면 들어있는 다른 양이온의 불순물은 전부 ppm 이하로 무시해도 좋은 수준이다. 따라서, 본 실시예 1-1에서 만든 수산화아연의 순도는 아주 우수하다. The amount of impurities present in the zinc hydroxide obtained in Example 1-1 was investigated by using ICP-MS. If the purity of the starting material is more than 99.50%, all impurities of other cations contained are negligible below ppm. Therefore, the purity of the zinc hydroxide produced in Example 1-1 is very excellent.
표 2
Impurity Impurity in Zn(OH)2 / ppb
Zn(NO3)2 99.50% Zn(NO3)2 99.999%
Na 201.1 320.9
Mg 23.3 48
Al 47.5 52.2
K 156.8 276.7
Ca 22 41.2
Fe 134.4 110.1
Pb 1.6 4.8
TABLE 2
Impurity Impurity in Zn (OH) 2 / ppb
Zn (NO 3 ) 2 99.50% Zn (NO 3 ) 2 99.999%
Na 201.1 320.9
Mg 23.3 48
Al 47.5 52.2
K 156.8 276.7
Ca 22 41.2
Fe 134.4 110.1
Pb 1.6 4.8
평가예 9: 산화물 반도체의 특성 분석Evaluation Example 9: Characterization of Oxide Semiconductors
실시예 1-1에서 수득한 수산화아연을 25% 암모니아수에 용해시켜 2중량% 농도의 산화아연 전구체 용액을 제조하였다. 상기 용액을 100nm의 산화실리콘으로 만들어진 p-도핑된 실리콘 웨이퍼에 스핀 코팅한 후 110℃로 소성하였다. 그 후, 소스와 드레인 전극을 알루미늄으로 증착하여 형성시킨 후 TFT 전기적 특성을 측정하였다. 그 결과를 하기 표 3에 요약하였고, 산화물 반도체의 transfer 곡선을 도 9b에 나타내었다: The zinc hydroxide obtained in Example 1-1 was dissolved in 25% ammonia water to prepare a zinc oxide precursor solution at a concentration of 2% by weight. The solution was spin coated onto a p-doped silicon wafer made of 100 nm silicon oxide and then calcined to 110 ° C. After that, the source and drain electrodes were formed by depositing aluminum, and then TFT electrical characteristics were measured. The results are summarized in Table 3 below, and the transfer curve of the oxide semiconductor is shown in FIG. 9B:
하기 표 3은 다양한 소성 조건을 이용하여 전계효과 이동도(field-effect mobility), 임계이하 스윙(subthreshold swing), Ion/Ioff 비 및 임계 전압(threshold, Vth)과 같은 박막 트랜지스터의 중요한 전기적 특징을 요약한 것이다.Table 3 below shows the importance of thin film transistors such as field-effect mobility, subthreshold swing, I on / I off ratio and threshold voltage (V th ) using various firing conditions. The electrical characteristics are summarized.
표 3
실시예 수산화아연농도 소성 조건 이동도cm2/V·s 임계이하 스윙V/decade Ion/Ioff Vth(V)
2-1 2중량% 150℃, 1h, 공기(air) 0.6 1.1 약 105 8
2-2 2중량% 150℃, 1h, Ar/H2 0.5 0.92 약 106 17
2-3 2중량% 150℃, 3분, UV 0.63 0.76 약 106 18
2-4 2중량% 150℃, 3분, UV, 2개층 1.07 0.45 약 106 17
2-5 2중량% 150℃, 3분, UV, Al2O3 (유전체) 1.15 0.6 약 107 25
2-6 4중량% 150℃, 3분, UV 2.91 0.47 약 106 15
2-7 4중량% 150℃, 1h, 공기->150℃, 3분, UV 1.17 0.8 약 106 2
TABLE 3
Example Zinc hydroxide concentration Firing conditions Mobility cm 2 / Vs Subcritical Swing V / decade I on / I off V th (V)
2-1 2 wt% 150 ° C, 1h, air 0.6 1.1 About 10 5 8
2-2 2 wt% 150 ° C., 1 h, Ar / H 2 0.5 0.92 About 10 6 17
2-3 2 wt% 150 ° C., 3 minutes, UV 0.63 0.76 About 10 6 18
2-4 2 wt% 150 ° C, 3 minutes, UV, 2 layers 1.07 0.45 About 10 6 17
2-5 2 wt% 150 ° C., 3 minutes, UV, Al 2 O 3 (dielectric) 1.15 0.6 About 10 7 25
2-6 4 wt% 150 ° C., 3 minutes, UV 2.91 0.47 About 10 6 15
2-7 4 wt% 150 ° C, 1h, air-> 150 ° C, 3 minutes, UV 1.17 0.8 About 10 6 2
실시예 2-3의 산화아연 박막은 실시예 2-1의 산화아연 박막과 실질적으로 유사한 전기적 특징을 나타내었으며, 이는 자외선 조사와 열처리를 동시 실시하는 경우, 열처리만을 실시하는 경우에 비해 ZnO 그레인(grain)의 반도체 채널이 단축된 공정 시간에서도 효과적으로 활성화될 수 있음을 의미한다.The zinc oxide thin film of Example 2-3 exhibited substantially similar electrical characteristics to the zinc oxide thin film of Example 2-1, which is different from ZnO grain (when UV irradiation and heat treatment are performed simultaneously). This means that the semiconductor channel in grains can be effectively activated even at shorter process times.
반면, 실시예 2-2의 산화아연 박막의 전기적 특성은 그다지 변화하지 않았다.On the other hand, the electrical properties of the zinc oxide thin film of Example 2-2 did not change much.
실시예 2-4의 산화아연 박막에서는 동일한 용액을 2배로 코팅한 결과, 채널 두께가 증가하여 이동도 성능이 2배 향상되었다. In the zinc oxide thin film of Example 2-4, as a result of coating the same solution twice, the channel thickness was increased to improve the mobility performance twice.
패턴화된 게이트를 갖도록 제작된 ZnO 박막 트랜지스터는 3분동안 150℃에서 자외선 조사하고 게이트 유전체로 원자층 증착(ALD)에 의해 100 nm 두께의 Al2O3에 맞도록 변형된 것으로, 디바이스 성능이 향상되었다. ZnO thin-film transistors fabricated with patterned gates were modified to meet 100 nm thick Al 2 O 3 by UV irradiation at 150 ° C. for 3 minutes and atomic layer deposition (ALD) into the gate dielectric. Improved.
실시예 2-5의 ZnO-TFT의 트랜스퍼 특징은 10-12 A 미만의 낮은 누설 전류(off-current) 및 약 107의 보다 높은 on-off current ratio를 나타내었다(도 9b 참조). 측정된 포화 이동도는 40V 게이트 전압에서 1.15 cm2/Vs이었고, 임계 전압(Vth) 및 임계이하 스윙은 각각 25V 및 0.6V/dec 이었다. The transfer characteristics of the ZnO-TFTs of Examples 2-5 exhibited a low off-current of less than 10 −12 A and a higher on-off current ratio of about 10 7 (see FIG. 9B). The measured saturation mobility was 1.15 cm 2 / Vs at 40V gate voltage, and the threshold voltage (V th ) and subcritical swing were 25V and 0.6V / dec, respectively.
실시예 2-6 및 2-7의 산화아연 박막은, 도 9b에 따르면, 전형적인 전계 효과 트랜지스터 양태를 나타낸다. 도 9b에서 Ion/Ioff current ratio는 약 106이고, 패턴화된 활성 채널층에 의해 더 향상될 것으로 예측된다. 임계 전압(Vth) 및 임계이하 스윙은 각각 14.6V 및 0.47V/dec 이었다. 포화 regime에서 extracted 전계 효과 이동도는 150℃에서 3분동안 자외선 조사하는 경우에 게이트 전압 40V에서 2.91 cm2/V.s이었다. The zinc oxide thin films of Examples 2-6 and 2-7 show typical field effect transistor embodiments according to FIG. 9B. In FIG. 9B the I on / I off current ratio is about 10 6 and is expected to be further improved by the patterned active channel layer. Threshold voltage (V th ) and subthreshold swing were 14.6 V and 0.47 V / dec, respectively. The field effect mobility extracted from the saturation regime was 2.91 cm 2 / Vs at the gate voltage of 40V when irradiated with UV light at 150 ° C for 3 minutes.
박막 트랜지스터의 전기적 특성은 ZnO 박막의 두께 및 그레인 크기에 의해서도 영향을 받는데, 실시예 2-6의 산화아연 박막은 그레인 입계가 크고 박막 두께가 두꺼우므로 2.91 cm2/V.s라는 향상된 전계 효과 이동도를 나타내었다. 자외선/열 처리가 동시에 이루어져서 더 커진 ZnO 결정은 그레인 입계 전체에서 이동 길이(migration length)가 감소되기 때문에 ZnO 박막 트랜지스터의 이동도를 유의하게 향상시킨다.The electrical properties of the thin film transistor are also affected by the thickness and grain size of the ZnO thin film. The zinc oxide thin film of Example 2-6 has an improved field effect mobility of 2.91 cm 2 / Vs because of the large grain boundary and the thin film thickness. Indicated. Larger ZnO crystals due to simultaneous UV / heat treatment significantly improve the mobility of the ZnO thin film transistor because the migration length is reduced throughout the grain boundaries.
도 11의 그래프는 자외선 처리없이 150℃로 열처리한 ZnO 박막의 X선 회절 패턴(A 곡선) 및 자외선 조사하면서 3분동안 150℃로 열처리한 ZnO 박막의 X선 회절 패턴(B 곡선)을 나타낸 것이다. The graph of FIG. 11 shows the X-ray diffraction pattern (A curve) of the ZnO thin film heat-treated at 150 ° C. without UV treatment and the X-ray diffraction pattern (B curve) of the ZnO thin film heat-treated at 150 ° C. for 3 minutes under UV irradiation. .
도 11에서 A 곡선은 ZnO 회절 패턴을 나타내지 않는 반면, B 곡선은 도 4에 도시된 바와 같이 (100), (002), (101) 플레인(plane)에서 다결정질 ZnO의 3개 회절 피크에 따른 패턴을 나타낸다. 자외선 처리없이 열처리한 ZnO 박막보다 자외선 처리하에 열처리한 ZnO 박막에서 결정화도가 증가된 XRD 패턴을 나타내는 것으로 증명되었다. 즉, 자외선/열 동시 처리는 아연 전구체의 증착 및 박막 결정화 둘다를 증가시키고, 전체적인 공정 시간을 크게 감소시킨다. In FIG. 11, the A curve does not show a ZnO diffraction pattern, while the B curve is based on three diffraction peaks of polycrystalline ZnO in the (100), (002), and (101) planes as shown in FIG. Represents a pattern. It was proved that the ZnO thin film annealed under UV treatment exhibited an increased XRD pattern than the ZnO thin film annealed without UV treatment. That is, UV / thermal co-treatment increases both the deposition of the zinc precursor and the thin film crystallization and greatly reduces the overall process time.
산화물 반도체 물질의 특성에 있어서 또 다른 중요한 포인트는 벌크 결함 구조(bulk defect structure)이고, 내부 ZnO 박막의 상대적 농도의 일반적인 경향은 XPS에 의해 확인될 수 있다. ZnO 박막의 O 1s XPS 스펙트럼이 도 12a 내지 12c에 도시되어 있으며, 이는 소성 방법에 따라 결정된다. Another important point in the properties of oxide semiconductor materials is the bulk defect structure, and the general trend of the relative concentration of the internal ZnO thin film can be confirmed by XPS. The O 1s XPS spectrum of the ZnO thin film is shown in FIGS. 12A-12C, which are determined by the firing method.
도 12a 내지 12c를 살펴보면, 본 발명에서 수득된 수산화아연 박막이 150℃에서 1시간 열처리하여 ZnO로 변환되었다(도 12a 참조). O 1s XPS 스펙트럼에는 530.8 eV 및 531.6 eV 에서 넓은 숄더 피크(broad shoulder peak)를 따라 529.2 eV 에서 인텐시브 피크(intensive peak)가 존재한다. 이들 피크는 격자 산소(lattice oxygen), 산소 빈자리 근처의 산소 및 히드록시 산소를 각각 나타낸다. 축합 및 탈수 공정 전반에 걸친 소성 공정동안에 생성되는 산소 빈자리 및 히드록시 피크에는 경미한(minor) 차이가 있으나, 3개의 XPS 결과 모두는 매우 유사한 것으로 보인다. 또한, 산소 빈자리는 전하 캐리어의 소스(source)인 반면, 히드록시 부분은 디바이스 이동도(mobility)를 다소 저하시킨다. 또한, 수산화아연 박막을 150℃에서 3분 자외선 노출시키는 방법은 1시간동안의 열처리에 상응하고 XPS 결과가 매우 유사하므로(도 12a와 도 12b 참조), 자외선 및 열 동시 처리는 ZnO 박막 트랜지스터 디바이스를 제조하기에 효과적인 방법임을 알 수 있다. 마찬가지로, 수산화아연의 농도를 예컨대, 4중량%로 증가시켜 열/자외선 처리하는 방법도 ZnO 박막 트랜지스터 디바이스를 제조하기에 효과적인 방법임을 알 수 있다(도 12c 참조). 자외선/열 동시 처리의 경우, Zn-OH-Zn 이 Zn-O-Zn 으로 용이하게 변환되며, 표면 히드록시 기가 제거되어 실시예 2-6에 도시된 바와 같이 그레인 크기 및 결정화도와 같은 다른 인자에 이어 전체적인 이동도가 증가하였다.12A to 12C, the zinc hydroxide thin film obtained in the present invention was converted to ZnO by heat treatment at 150 ° C. for 1 hour (see FIG. 12A). There is an intensive peak at 529.2 eV along the broad shoulder peak at 530.8 eV and 531.6 eV in the O 1s XPS spectrum. These peaks represent lattice oxygen, oxygen near the oxygen vacancies and hydroxy oxygen, respectively. There are minor differences in oxygen vacancies and hydroxy peaks generated during the firing process throughout the condensation and dehydration processes, but all three XPS results appear to be very similar. In addition, the oxygen vacancies are the source of charge carriers, while the hydroxy moiety slightly degrades device mobility. In addition, since the method of exposing the zinc hydroxide thin film to UV light at 150 ° C. for 3 minutes corresponds to 1 hour of heat treatment and the XPS results are very similar (see FIGS. 12A and 12B), simultaneous UV and thermal treatment is performed on a ZnO thin film transistor device. It can be seen that it is an effective method to prepare. Likewise, it can be seen that the method of heat / ultraviolet treatment by increasing the concentration of zinc hydroxide, for example, to 4% by weight, is an effective method for manufacturing a ZnO thin film transistor device (see FIG. 12C). In the case of UV / thermal co-treatment, Zn-OH-Zn is easily converted to Zn-O-Zn, and surface hydroxy groups are removed to influence other factors such as grain size and crystallinity as shown in Examples 2-6. The overall mobility then increased.
본 발명에서 제조된 수산화아연은 고 농도로 용매에 용해될 수 있어서 미래 산화물 반도체를 인쇄공정으로 만들 수 있는 장점을 기대할 수 있으며, 특히 저온 에서 산화아연으로 변화되어 백프레인 반도체로 활용할 수 있어서 플렉시블 디스플레이 산업이나 센서 산업에 기여할 것으로 예측된다.The zinc hydroxide prepared in the present invention can be dissolved in a solvent at a high concentration, so it can be expected to make an oxide semiconductor in the printing process in the future, and in particular, it can be used as a backplane semiconductor by being changed to zinc oxide at low temperature. It is expected to contribute to the industry or the sensor industry.

Claims (16)

  1. 아연염을 물에 용해시켜서 아연염 용액을 수득하는 단계;Dissolving the zinc salt in water to obtain a zinc salt solution;
    상기 아연염 용액에 염기성 물질을 첨가하여 징케이트(zincate) 염 용액을 형성시키는 단계; 및Adding a basic substance to the zinc salt solution to form a zincate salt solution; And
    상기 징케이트 염 용액으로부터 형성된 침전물을 분리하는 단계를 포함하는Separating the precipitate formed from the zinc salt solution
    산화아연 전구체의 제조방법.Method for producing a zinc oxide precursor.
  2. 제1항에 있어서,The method of claim 1,
    상기 아연염이 염화아연, 황산아연, 질산아연, 초산아연, 인산아연, 플루오르화아연, 브롬화아연 및 요오드화아연으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 산화아연 전구체의 제조방법.Zinc oxide, zinc sulfate, zinc nitrate, zinc nitrate, zinc acetate, zinc phosphate, zinc fluoride, zinc bromide and zinc iodide selected from the group consisting of one or two or more mixtures of zinc oxide precursors Manufacturing method.
  3. 제1항에 있어서,The method of claim 1,
    상기 염기성 물질이 암모니아수, 수산화나트륨, 수산화칼륨 및 수산화리튬로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 산화아연 전구체의 제조방법.And the basic substance is one selected from the group consisting of ammonia water, sodium hydroxide, potassium hydroxide and lithium hydroxide.
  4. 제1항에 있어서,The method of claim 1,
    아연 이온 1몰에 대하여 히드록시 이온 5 내지 12몰이 되도록 염기성 물질이 첨가되는 것을 특징으로 하는 산화아연 전구체의 제조방법.A method for producing a zinc oxide precursor, characterized in that a basic substance is added so as to have 5 to 12 moles of hydroxy ions per mole of zinc ions.
  5. 제1항에 있어서,The method of claim 1,
    상기 염기성 물질이 과포화 염기성 용액으로부터 용액 부분을 분리한 것임을 특징으로 하는 산화아연 전구체의 제조방법.The basic material is a method for producing a zinc oxide precursor, characterized in that the solution portion is separated from the supersaturated basic solution.
  6. 제1항 내지 제5항중 어느 한 항에 따라 제조된 것을 특징으로 하는 산화아연 전구체.Zinc oxide precursor, characterized in that prepared according to any one of claims 1 to 5.
  7. 제6항의 산화아연 전구체를 50 내지 200 ℃ 온도 범위에서 열처리하는 단계를 포함하는 산화아연 박막의 제조방법.A method of manufacturing a zinc oxide thin film comprising the step of heat-treating the zinc oxide precursor of claim 6 in a temperature range of 50 to 200 ℃.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 열처리가 100 내지 150 ℃ 온도 범위에서 실시되는 것을 특징으로 하는 산화아연 박막의 제조방법.The heat treatment is a method for producing a zinc oxide thin film, characterized in that carried out at a temperature range of 100 to 150 ℃.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 열처리가 1분 내지 90분동안 실시되는 것을 특징으로 하는 산화아연 박막의 제조방법.The heat treatment is performed for 1 minute to 90 minutes, the method for producing a zinc oxide thin film.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 열처리가 공기 또는 Ar/H2 중에서 실시되는 것을 특징으로 하는 산화아연 박막의 제조방법.The heat treatment is carried out in air or Ar / H 2 method for producing a zinc oxide thin film.
  11. 제6항의 산화아연 전구체를 상온 내지 200 ℃ 온도 범위에서 열처리하면서 자외선 처리하는 단계를 포함하는 산화아연 박막의 제조방법.A method of manufacturing a zinc oxide thin film comprising the step of ultraviolet treatment while heat-treating the zinc oxide precursor of claim 6 at room temperature to 200 ℃ temperature range.
  12. 제11항에 있어서,The method of claim 11,
    상기 열처리가 상온 내지 150℃ 온도 범위에서 실시되는 것을 특징으로 하는 산화아연 박막의 제조방법.The heat treatment is a method of producing a zinc oxide thin film, characterized in that carried out in a temperature range from room temperature to 150 ℃.
  13. 제11항에 있어서,The method of claim 11,
    상기 열처리 및 자외선 처리가 1초 내지 30분동안 실시되는 것을 특징으로 하는 산화아연 박막의 제조방법.The heat treatment and ultraviolet treatment is a method for producing a zinc oxide thin film, characterized in that performed for 1 second to 30 minutes.
  14. 제11항에 있어서, The method of claim 11,
    상기 자외선 처리가 100 내지 1000 nm 파장 범위에서 실시되는 것을 특징으로 하는 산화아연 박막의 제조방법.The method of manufacturing a zinc oxide thin film, characterized in that the ultraviolet treatment is carried out in the 100 to 1000 nm wavelength range.
  15. 제7항 내지 제14항중 어느 한 항에 따른 제조방법에 의해 수득되는 것을 특징으로 하는 산화아연 박막.Zinc oxide thin film obtained by the manufacturing method of any one of Claims 7-14.
  16. 제15항에 있어서,The method of claim 15,
    투명전극, 태양전지, 광센서, 박막 트랜지스터(TFT), 산화아연 나노와이어(nanowire) 또는 발광 재료에 사용되는 것을 특징으로 하는 산화아연 박막.Zinc oxide thin film, characterized in that it is used in a transparent electrode, a solar cell, an optical sensor, a thin film transistor (TFT), zinc oxide nanowire (nanowire) or a light emitting material.
PCT/KR2014/002337 2013-03-20 2014-03-20 Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film WO2014148830A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0029569 2013-03-20
KR20130029569 2013-03-20
KR10-2013-0164867 2013-12-27
KR1020130164867A KR101567809B1 (en) 2013-03-20 2013-12-27 A method of making zinc oxide precursor, zinc oxide precursor obtained therefrom and zinc oxide film formed using the zinc oxide precursor

Publications (1)

Publication Number Publication Date
WO2014148830A1 true WO2014148830A1 (en) 2014-09-25

Family

ID=51580426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002337 WO2014148830A1 (en) 2013-03-20 2014-03-20 Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film

Country Status (1)

Country Link
WO (1) WO2014148830A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221552A (en) * 2017-05-25 2017-09-29 深圳市华星光电技术有限公司 The preparation method and TOC type OLED displays of TOC type OLED displays
CN112456541A (en) * 2020-12-22 2021-03-09 南京航空航天大学 Method for improving irradiation stability of zinc oxide material
WO2022143833A1 (en) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 Method for regulating electron mobility of zinc oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289024A1 (en) * 2005-03-11 2006-12-28 Philip Morris Usa Inc. Catalysts for low temperature oxidation of carbon monoxide
KR20090012782A (en) * 2007-07-31 2009-02-04 삼성전자주식회사 Method for fabricating zno thin films
KR100936281B1 (en) * 2009-08-25 2010-01-13 한국지질자원연구원 Fabrication method of zno nano-particle and fabrication method of zno nano-fluid using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289024A1 (en) * 2005-03-11 2006-12-28 Philip Morris Usa Inc. Catalysts for low temperature oxidation of carbon monoxide
KR20090012782A (en) * 2007-07-31 2009-02-04 삼성전자주식회사 Method for fabricating zno thin films
KR100936281B1 (en) * 2009-08-25 2010-01-13 한국지질자원연구원 Fabrication method of zno nano-particle and fabrication method of zno nano-fluid using thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEYERS. S.T. ET AL.: "Aqueous Inorganic Inks for Low-Temperature Fabrication of ZnO TFTs", J. AM. CHEM. SOC., vol. 130, no. 51, 3 December 2008 (2008-12-03), pages 17603 - 17609 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221552A (en) * 2017-05-25 2017-09-29 深圳市华星光电技术有限公司 The preparation method and TOC type OLED displays of TOC type OLED displays
CN112456541A (en) * 2020-12-22 2021-03-09 南京航空航天大学 Method for improving irradiation stability of zinc oxide material
WO2022143833A1 (en) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 Method for regulating electron mobility of zinc oxide

Similar Documents

Publication Publication Date Title
WO2013157715A1 (en) Method for producing an oxide film using a low temperature process, an oxide film and an electronic device thereof
US7507618B2 (en) Method for making electronic devices using metal oxide nanoparticles
KR101719853B1 (en) Method for producing layers containing indium oxide, layers containing indium oxide produced according to said method and the use thereof
JP5215158B2 (en) Inorganic crystalline alignment film, method for manufacturing the same, and semiconductor device
Kim et al. Stable and high-performance indium oxide thin-film transistor by Ga doping
JP6161764B2 (en) Method for producing indium oxide-containing layer
JP6192646B2 (en) Method for producing high performance electrically stable semiconductive metal oxide layer, layer produced by the method and use of the layer
KR20120039638A (en) Thermally labile precursor compounds for improving the interparticulate contact sites and for filling the interstices in semiconductive metal oxide particle layers
Mezan et al. Synthesis and Characterization of Zinc Sulphide (ZnS) Thin Film Nanoparticle for Optical Properties
WO2014148830A1 (en) Method for manufacturing zinc oxide precursor, zinc oxide precursor obtained thereby, and zinc oxide thin film
Chang et al. Water induced zinc oxide thin film formation and its transistor performance
WO2010137838A2 (en) Composition for a liquid process, electronic device using same, and method for manufacturing same
KR20120123343A (en) Metal oxide field effect transistors on a mechanically flexible polymer substrate having dielectric that can be processed from solution at low temperatures
KR101017494B1 (en) InZnO THIN FILM AND FABRICATION METHOD THEREOF
KR101567809B1 (en) A method of making zinc oxide precursor, zinc oxide precursor obtained therefrom and zinc oxide film formed using the zinc oxide precursor
Kim et al. Investigation of crystallized ZnSnO3 nanoparticles for ultraviolet photodetectors
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
WO2012141535A2 (en) Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same
JP2015157280A (en) Amorphous compound gel, production method for amorphous compound gel, production method for oxide crystal, production method for metal crystal, oxide crystal, and metal crystal
WO2021206262A1 (en) Precursor for perovskite compound and method for producing perovskite compound by using same
US9969896B2 (en) Indium-zinc-oxide semiconductor ink composition in which a spontaneous combustion reaction occurs, and inorganic semiconductor thin film produced thereby
TWI694526B (en) Composition for forming metal oxide semiconductor layer and method for manufacturing metal oxide semiconductor layer using the same
Gao et al. Low-temperature, high-mobility, solution-processed metal oxide semiconductors fabricated with oxygen radical assisted perchlorate aqueous precursors
Huang et al. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors
WO2023038251A1 (en) Method for crystallization of metal oxide thin film by using thermal dissipation annealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769946

Country of ref document: EP

Kind code of ref document: A1