JP2000272909A - Production of iron nitride and iron - Google Patents

Production of iron nitride and iron

Info

Publication number
JP2000272909A
JP2000272909A JP11078943A JP7894399A JP2000272909A JP 2000272909 A JP2000272909 A JP 2000272909A JP 11078943 A JP11078943 A JP 11078943A JP 7894399 A JP7894399 A JP 7894399A JP 2000272909 A JP2000272909 A JP 2000272909A
Authority
JP
Japan
Prior art keywords
powder
iron
oxalate
iron oxalate
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11078943A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hiratsuka
信之 平塚
Hiroshi Fujii
浩 藤井
Minoru Fujita
実 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Printing Co Ltd
Original Assignee
Kyodo Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Printing Co Ltd filed Critical Kyodo Printing Co Ltd
Priority to JP11078943A priority Critical patent/JP2000272909A/en
Publication of JP2000272909A publication Critical patent/JP2000272909A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a single phase Fe2N powder, Fe3N powder, Fe4N powder and Fe powder by firing iron oxalate obtained by a precipitation reaction of ferrous chloride with ammonium oxalate in a liquid phase, in ammonia atmosphere at a specific temperature. SOLUTION: Ferrous chloride and ammonium oxalate are subjected to a precipitation reaction in a solution, preferably aqueous solution for 1-3 hr to provide iron oxalate powder. The obtained iron oxalate is fired in an ammonia atmosphere at 425-475 deg.C for >=30 min to provide,a single phase Fe2N powder. The iron oxalate is fired in the ammonia atmosphere at 475-525 deg.C for <=1.5 hr to provide a single phase Fe3N powder. Further, the iron oxalate is fired in the ammonia atmosphere at 525-575 deg.C for <=1 hr to provide Fe4N powder. When the iron oxalate is fired at >=700 deg.C, Fe powder can be obtained. The obtained iron nitride powders have each <=1 nm primary particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化鉄及び鉄の製
造方法に関する。更に詳しくは、Fe2N、Fe3N、F
4N、Fe粉末の製造方法に関する。
The present invention relates to iron nitride and a method for producing iron. More specifically, Fe 2 N, Fe 3 N, F
The present invention relates to a method for producing e 4 N, Fe powder.

【0002】[0002]

【従来の技術】窒化鉄のバルク材料は過去にも合成さ
れ、磁気記録や磁性流体など様々なものが実用化に向け
て研究されてきた。窒化物として主にFe162,Fe4
N,Fe3N及びFe2Nの4つが知られている。この中
でもFe162及びFe4Nは強磁性体であり、実用的に
も磁気特性に優れているため合成及び評価など多くの研
究結果が報告されている。しかし、Fe3NおよびFe2
Nは構造的に不安定であるため作製が困難であり、報告
例が少ない。
2. Description of the Related Art Iron nitride bulk materials have been synthesized in the past, and various materials such as magnetic recording and magnetic fluid have been studied for practical use. Fe 16 N 2 , Fe 4
Four of N, Fe 3 N and Fe 2 N are known. Among them, Fe 16 N 2 and Fe 4 N are ferromagnetic substances and have practically excellent magnetic properties, so that many research results such as synthesis and evaluation have been reported. However, Fe 3 N and Fe 2
N is structurally unstable and therefore difficult to produce, and there are few reports.

【0003】従来、これらの窒化鉄は、還元雰囲気下で
の鉄粉末と窒素またはアンモニアとの反応等により製造
されていたが、これらの反応では、Fe2N、Fe3N、
Fe4Nの結晶相の混合物しか得られず、しかもその生
成物から各結晶相を単相で分離することは非常に困難で
あった。
Conventionally, these iron nitrides have been produced by a reaction between iron powder and nitrogen or ammonia in a reducing atmosphere, but in these reactions, Fe 2 N, Fe 3 N,
Only a mixture of Fe 4 N crystal phases was obtained, and it was very difficult to separate each crystal phase from the product in a single phase.

【0004】また、蒸着により窒化鉄を製造する方法も
あるが、この方法によっては膜状の生成物しか得ること
ができず、粉末状の生成物を得ることはできなかった。
[0004] There is also a method of producing iron nitride by vapor deposition, but only a film-like product can be obtained by this method, and a powdery product cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
問題に鑑み、単相の窒化鉄粉末を得ることができる製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a single-phase iron nitride powder in view of the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の窒化鉄の
製造方法は、アンモニア雰囲気中でシュウ酸鉄を425
℃以上475℃未満、好ましくは440℃以上460℃
以下で焼成してFe2N粉末を得ることを特徴とする。
That is, according to the method for producing iron nitride of the present invention, iron oxalate is reduced to 425 in an ammonia atmosphere.
° C or more and less than 475 ° C, preferably 440 ° C or more and 460 ° C
It is characterized in that it is calcined below to obtain Fe 2 N powder.

【0007】また、アンモニア雰囲気中でシュウ酸鉄を
475℃以上525℃未満、好ましくは490℃以上5
10℃以下で焼成してFe3N粉末を得ることを特徴と
する。
Further, iron oxalate is heated to 475 ° C. or more and less than 525 ° C., preferably 490 ° C. or more in an ammonia atmosphere.
It is characterized by firing at 10 ° C. or lower to obtain Fe 3 N powder.

【0008】また、アンモニア雰囲気中でシュウ酸鉄を
525℃以上575℃未満、好ましくは540℃以上5
60℃以下で焼成してFe4N粉末を得ることを特徴と
する。
In an ammonia atmosphere, iron oxalate is heated to 525 ° C. or higher and lower than 575 ° C., preferably 540 ° C. or higher.
It is characterized in that Fe 4 N powder is obtained by firing at 60 ° C. or lower.

【0009】更に、本発明の鉄の製造方法は、アンモニ
ア雰囲気中でシュウ酸鉄を700℃以上で焼成してFe
粉末を得ることを特徴とする。
Further, in the method for producing iron of the present invention, iron oxalate is calcined at a temperature of 700 ° C. or more in an ammonia atmosphere, and
It is characterized by obtaining a powder.

【0010】上記製造方法において、出発原料となるシ
ュウ酸鉄は、塩化第一鉄とシュウ酸アンモニウムとの液
相中での沈殿反応により得られたものであることが好ま
しい。
In the above-mentioned production method, it is preferable that iron oxalate as a starting material is obtained by a precipitation reaction of ferrous chloride and ammonium oxalate in a liquid phase.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0012】本発明は、アンモニア雰囲気中でシュウ酸
鉄を焼成して窒化鉄、及び鉄粉末を得ることを特徴とす
る。
The present invention is characterized in that iron oxalate is fired in an ammonia atmosphere to obtain iron nitride and iron powder.

【0013】シュウ酸鉄を窒化させるためには雰囲気制
御された系内での熱分解を行わなくてはならない。その
ため、系内に一定量のガスを流し続けることで雰囲気を
制御する。焼成雰囲気としては熱分解の他に、酸素に対
する還元性があり酸素の脱離と窒素の侵入を可能にする
NH3雰囲気を用いる。
In order to nitride iron oxalate, it is necessary to perform thermal decomposition in an atmosphere-controlled system. Therefore, the atmosphere is controlled by continuously flowing a certain amount of gas in the system. In addition to the thermal decomposition, an NH 3 atmosphere is used as the firing atmosphere, which has a reducing property to oxygen and enables desorption of oxygen and intrusion of nitrogen.

【0014】従来の製法である鉄粉末の窒化の場合には
Fe→Fe4N→Fe3N→Fe2Nの順に反応が進行す
るが、本発明の方法では、Fe2N→Fe3N→Fe4
→Feの順に反応が進行する。これは、窒化鉄は鉄金属
の結晶格子中に窒素が侵入する侵入型合金のため、鉄粉
末を窒化させる場合は窒素が徐々に侵入し窒素不足から
窒素過剰な窒化鉄へと変化する。しかし、本発明の方法
の場合は、中間体にFe34が存在するために最初に窒
素過剰な窒化鉄が生成する。また窒素不足へと変化する
過程は、NH3の流量が一定であれば、焼成温度の上昇
に伴い系内のNH3ガスの膨張により窒素濃度が低下
し、窒素の侵入量が少なくなるためと考えられる。
In the conventional method of nitriding iron powder, the reaction proceeds in the order of Fe → Fe 4 N → Fe 3 N → Fe 2 N, but in the method of the present invention, Fe 2 N → Fe 3 N → Fe 4 N
→ The reaction proceeds in the order of Fe. This is because iron nitride is an interstitial alloy in which nitrogen penetrates into the crystal lattice of iron metal. When nitriding iron powder, nitrogen gradually penetrates and changes from nitrogen deficiency to nitrogen-excess iron nitride. However, in the case of the method of the present invention, the presence of Fe 3 O 4 in the intermediate first produces nitrogen-rich iron nitride. The process of changing to nitrogen deficiency is because if the flow rate of NH 3 is constant, the nitrogen concentration decreases due to the expansion of the NH 3 gas in the system as the firing temperature increases, and the amount of nitrogen intrusion decreases. Conceivable.

【0015】本発明においては、シュウ酸鉄は300℃
付近で分解しFe34とFeOを生成し、350〜40
0℃では、Fe34とFe2Nが生成する。さらに、焼
成温度を450℃に上昇させるとシュウ酸鉄は完全に還
元され、窒化鉄として最大限に窒素が侵入できるFe2
N単相が生成する。また、500℃ではFe3Nが、5
50℃ではFe44がそれぞれ、ほぼ単相の状態で生成
する。焼成温度が600℃を超えるとFe4NとFeを
生成し、700℃以上ではFe相のみとなる。
In the present invention, the temperature of iron oxalate is 300 ° C.
Decompose in the vicinity to produce Fe 3 O 4 and FeO,
At 0 ° C., Fe 3 O 4 and Fe 2 N are formed. Further, when the sintering temperature is increased to 450 ° C., iron oxalate is completely reduced, and Fe 2, which allows nitrogen to penetrate as much as iron nitride, is used.
N single phases are formed. At 500 ° C., Fe 3 N is 5
In 50 ° C. Fe 4 4 respectively, produced in substantially single-phase state. When the firing temperature exceeds 600 ° C., Fe 4 N and Fe are generated, and when the firing temperature is 700 ° C. or more, only the Fe phase is formed.

【0016】従って、Fe2N粉末を得るための焼成温
度は、425℃以上475℃未満、好ましくは440℃
以上460℃以下であり、Fe3N粉末を得るための焼
成温度は、475℃以上525℃未満、好ましくは49
0℃以上510℃以下であり、Fe4N粉末を得るため
の焼成温度は、525℃以上575℃未満、好ましくは
540℃以上560℃以下であり、Fe粉末を得るため
の焼成温度は700℃以上である。
Therefore, the sintering temperature for obtaining the Fe 2 N powder is 425 ° C. or more and less than 475 ° C., preferably 440 ° C.
460 ° C. or lower and calcination temperature for obtaining Fe 3 N powder is 475 ° C. or higher and lower than 525 ° C., preferably 49 ° C. or lower.
0 ° C. or higher and 510 ° C. or lower, and the firing temperature for obtaining Fe 4 N powder is 525 ° C. or higher and lower than 575 ° C., preferably 540 ° C. or higher and 560 ° C. or lower, and the firing temperature for obtaining Fe powder is 700 ° C. That is all.

【0017】また、焼成時間、即ち上記焼成温度を保持
する時間は、Fe2N粉末を得るためには、特に制限は
ないが、あまりに短いと異相としてFe34が残存する
ため、30分以上とするのが好ましい。
The firing time, that is, the time for maintaining the above firing temperature, is not particularly limited in order to obtain Fe 2 N powder, but if it is too short, Fe 3 O 4 remains as a heterogeneous phase, so that it is 30 minutes. It is preferable to make the above.

【0018】Fe3N粉末を得るためには、特に制限は
ないが、あまりに長いとFe3N中の窒素が脱離し、F
4Nとの混相となり、しかも保持時間が長くなるに従
いFe4Nの生成率が増加する傾向にあるため、1.5
時間以下とするのが好ましい。
There is no particular limitation for obtaining Fe 3 N powder, but if it is too long, nitrogen in Fe 3 N is desorbed and F 3 N
It becomes mixed phase of the e 4 N, and since there is a tendency that generation rate of Fe 4 N is increased in accordance with the retention time becomes longer, 1.5
It is preferable to set the time to not more than the time.

【0019】Fe4N粉末を得るためには、特に制限は
ないが、あまりに長いと、Fe4NとFeの混相状態と
なるため、1時間以下とするのが好ましい。
There is no particular limitation for obtaining Fe 4 N powder, but if it is too long, a mixed phase state of Fe 4 N and Fe will occur, so it is preferable that the time be 1 hour or less.

【0020】出発原料であるシュウ酸鉄粉末としては、
公知の方法により製造されたものを用いることができる
が、熱分解過程で形骸化を起こさず、良質な窒化鉄を得
るためには、微粒子、かつ各々の粒子が均一なものを使
用することが好ましい。
As the starting material, iron oxalate powder,
Although it is possible to use those produced by a known method, in order to obtain good quality iron nitride without causing morphology during the thermal decomposition process, it is necessary to use fine particles and those in which each particle is uniform. preferable.

【0021】そのようなシュウ酸鉄粉末を得る方法とし
ては、塩化第一鉄とシュウ酸アンモニウムとの液相中、
好ましくは水溶液中での沈殿反応が好ましくい。この
際、沈殿時間は、沈殿粒子の微粒子化と粒子の均一性を
達成するために、1時間〜3時間が好ましい。沈殿時間
が1時間未満では、粒子成長がまだ完全でなく、長方形
粒子の角がすこしかけている粒子と完成された長方形粒
子との2つの粒子が混在する傾向がある。また、沈殿時
間を3時間を越えると粒子サイズが増大する傾向があ
る。
As a method for obtaining such iron oxalate powder, there is a method in which a liquid phase of ferrous chloride and ammonium oxalate is used.
Preferably, a precipitation reaction in an aqueous solution is preferable. At this time, the precipitation time is preferably 1 hour to 3 hours in order to attain fine particles and uniformity of the particles. If the settling time is less than 1 hour, the particle growth is not yet complete, and there is a tendency for the rectangular particles to have a mixture of two particles, that is, particles having slightly corners and finished rectangular particles. If the precipitation time exceeds 3 hours, the particle size tends to increase.

【0022】上記、本発明によれば、一次粒子の大きさ
が1μm以下の窒化鉄微粉末を得ることができる。
According to the present invention, it is possible to obtain an iron nitride fine powder having a primary particle size of 1 μm or less.

【0023】[0023]

【実施例】以下、本発明を実施例により更に詳細に説明
する。尚、実施例における評価方法は以下の通りであ
る。
The present invention will be described in more detail with reference to the following examples. In addition, the evaluation method in an Example is as follows.

【0024】(1)結晶相の同定 X線回折装置(XRD、理学電機社製RAD−B,RA
D−C)を用い、各相のメインピークの面積をピーク強
度、半価幅より算出し、生成率αとした。
(1) Identification of Crystal Phase X-ray diffractometer (XRD, RAD-B, RA manufactured by Rigaku Corporation)
Using DC), the area of the main peak of each phase was calculated from the peak intensity and the half width, and was defined as the production rate α.

【0025】(2)磁気特性の測定 振動試料型磁力計(VSM、玉川製作所製)を用いた。(2) Measurement of Magnetic Properties A vibrating sample magnetometer (VSM, manufactured by Tamagawa Seisakusho) was used.

【0026】(3)粒子形態の観察 走査線電子顕微鏡(SEM、日立製S2400,S41
00)を用いた。
(3) Observation of particle morphology Scanning electron microscope (SEM, Hitachi S2400, S41
00) was used.

【0027】(4)化学組成分析 エネルギー分散型蛍光X線分析装置(EDS,keve
x社製)を用いた。
(4) Chemical composition analysis An energy dispersive X-ray fluorescence analyzer (EDS, keve)
x company).

【0028】(実施例1) <シュウ酸鉄粉末の製造>シュウ酸鉄粉末の調製には、
シュウ酸アンモニウム一水和物(NH42242
(高純度化学研究所製99%以上)と塩化第一鉄(Fe
Cl2)(高純度化学研究所製99.9%以上)を用い
た。
(Example 1) <Production of iron oxalate powder>
Ammonium oxalate monohydrate (NH 4 ) 2 C 2 O 4 H 2 O
(99% or more manufactured by Kojundo Chemical Laboratory) and ferrous chloride (Fe
Cl 2 ) (99.9% or more, manufactured by Kojundo Chemical Laboratory).

【0029】シュウ酸アンモニウム一水和物、塩化第一
鉄をそれぞれ0.11mol/l,0.1mol/lの
濃度で沈殿反応させる為に、下記の様な手順で製造し
た。
In order to cause ammonium oxalate monohydrate and ferrous chloride to undergo precipitation reactions at concentrations of 0.11 mol / l and 0.1 mol / l, respectively, they were produced by the following procedure.

【0030】(1)シュウ酸アンモニウム一水和物3.
91gを量り取り、250mlメスフラスコヘ入れ純水
250mlでメスアップする。
(1) Ammonium oxalate monohydrate
91 g is weighed, put into a 250 ml volumetric flask, and made up with 250 ml of pure water.

【0031】(2)溶液をカパフラスコに入れさらに塩
化第一鉄用の純水250mlを加える。
(2) The solution is put into a Kapha flask, and 250 ml of pure water for ferrous chloride is further added.

【0032】(3)カパフラスコに撹拌機をセットし撹
拌する。撹拌速度は300rpm/minとした。
(3) A stirrer is set in the Kapha flask and stirred. The stirring speed was 300 rpm / min.

【0033】(4)カパフラスコに塩化第一鉄を1〜2
分かけて投入する。
(4) Ferrous chloride is added to the flask in an amount of 1 to 2
Charge over a minute.

【0034】(5)沈殿粒子どうしの凝集を抑えるため
に溶液を2h撹絆し沈殿させる。撹拌速度は300rp
m/minとした。
(5) The solution is stirred for 2 hours to precipitate the particles in order to suppress aggregation of the precipitated particles. The stirring speed is 300 rpm
m / min.

【0035】(6)撹絆後、溶液と沈殿生成物を分離す
るために沈殿溶液をA4、110サイズの濾紙を用い吸
引濾過する。
(6) After stirring, the precipitate solution is subjected to suction filtration using a filter paper of A4, 110 size to separate the solution from the precipitate product.

【0036】(7)濾紙に付着した沈殿生成物をエタノ
ールでなす型フラスコ中に洗い流す。
(7) The precipitated product adhering to the filter paper is washed out into a flask made of ethanol.

【0037】(8)減圧エバポレーターで若干の水分と
エタノールを沈殿生成物より分離除去する。
(8) A small amount of water and ethanol are separated and removed from the precipitated product by a reduced-pressure evaporator.

【0038】(9)除去後、得られた沈殿生成物を回収
し完全に水分を蒸発させる為に80℃の乾燥機中で1h
以上乾燥させる。その結果、粒径2μmの均一な粒子が
得られた。
(9) After the removal, the obtained precipitate product is recovered and is dried for 1 hour in a dryer at 80 ° C. in order to completely evaporate the water.
Dry above. As a result, uniform particles having a particle size of 2 μm were obtained.

【0039】(10)吸湿を防ぐ為、得られた粉末は減
圧デシケーター中で保管する。
(10) In order to prevent moisture absorption, the obtained powder is stored in a vacuum desiccator.

【0040】<シュウ酸鉄粉末の熱分解>図1に示す装
置を用いて、下記の様な手順で、NH3雰囲気下の系で
シュウ酸鉄粉末を焼成した。
<Thermal Decomposition of Iron Oxalate Powder> Using the apparatus shown in FIG. 1, the iron oxalate powder was fired in a system under an NH 3 atmosphere according to the following procedure.

【0041】(1)0.5gのシュウ酸鉄をアルミナボ
ートに充填し、これを石英製反応管内に入れる。
(1) An alumina boat is charged with 0.5 g of iron oxalate, and this is put into a quartz reaction tube.

【0042】(2)まず系内のairを除去する為にN
2ガスで置換し、次にNH3ガスを200ml/minで
流しN2ガスを追い出す。
(2) First, in order to remove air in the system, N
The gas is replaced with 2 gases, and then NH 3 gas is flowed at 200 ml / min to drive out N 2 gas.

【0043】(3)焼成条件は、昇温速度10K/mi
nで300〜700℃まで昇温し保持時間を1hとし
た。
(3) The sintering conditions are as follows: a heating rate of 10 K / mi.
The temperature was raised to 300 to 700 ° C. with n, and the holding time was set to 1 hour.

【0044】(4)焼成終了後、反応管に水をかけ急冷
し反応を終了させた。
(4) After the calcination was completed, the reaction tube was quenched with water to terminate the reaction.

【0045】図2に、焼成温度と各相の生成率の関係を
示す。
FIG. 2 shows the relationship between the firing temperature and the production rate of each phase.

【0046】図2に示すように、シュウ酸鉄は300℃
付近で分解しFe34とFeOを生成し、350〜40
0℃では、Fe34とFe2Nが生成する。
As shown in FIG. 2, iron oxalate is at 300 ° C.
Decompose in the vicinity to produce Fe 3 O 4 and FeO,
At 0 ° C., Fe 3 O 4 and Fe 2 N are formed.

【0047】さらに、焼成温度を450℃に上昇させる
とシュウ酸鉄は完全に還元され、窒化鉄として最大限に
窒素が侵入できるFe2N単相が生成する。また、50
0℃ではFe3Nが、550℃ではFe4Nがそれぞれ、
ほぼ単相の状態で生成した。
Further, when the firing temperature is raised to 450 ° C., iron oxalate is completely reduced, and a Fe 2 N single phase is formed as iron nitride, into which nitrogen can enter as much as possible. Also, 50
At 0 ° C., Fe 3 N, and at 550 ° C., Fe 4 N,
Produced almost in a single phase.

【0048】また、焼成温度が600℃を超えるとFe
4NとFeを生成し、700℃以上ではFe相のみとな
る。
When the firing temperature exceeds 600 ° C.,
4 generates N and Fe, the Fe phase only at 700 ° C. or higher.

【0049】図3はシュウ酸鉄を熱分解して作製した試
料の飽和磁化値の焼成温度依存性を示す。400℃以下
で作製した試料の磁気測定は試料が大気中で不安定(燃
焼してしまう)なため不可能であった。
FIG. 3 shows the firing temperature dependence of the saturation magnetization value of a sample prepared by thermally decomposing iron oxalate. Magnetic measurement of a sample manufactured at 400 ° C. or lower was impossible because the sample was unstable (burned) in the atmosphere.

【0050】図3に示すように、450℃で飽和磁化値
は0emu/gであり、Fe2Nが磁性を持たないこと
がわかる。450℃以上では磁化値は急激に増加し70
0℃ではほぼFeの磁化値と一致する。500℃,55
0℃ではFe3N,Fe4Nが生成しており磁化値も文献
値と一致する。
As shown in FIG. 3, the saturation magnetization at 450 ° C. was 0 emu / g, indicating that Fe 2 N has no magnetism. Above 450 ° C., the magnetization increased sharply to 70
At 0 ° C., it almost coincides with the magnetization value of Fe. 500 ° C, 55
At 0 ° C., Fe 3 N and Fe 4 N are generated, and the magnetization value is also in agreement with the literature value.

【0051】得られた窒化鉄粉末をSEMにより観察し
たところ、焼成温度の上昇に伴い焼結が進行し、また一
次粒子は角が丸くなっていることがわかった。また、一
次粒子の大きさは1μm以下と、塗布型媒体として適切
であった。
Observation of the obtained iron nitride powder by SEM showed that sintering progressed with an increase in the firing temperature, and that the primary particles had rounded corners. The size of the primary particles was 1 μm or less, which was suitable as a coating medium.

【0052】(実施例2)焼成温度を450℃,500
℃,550℃とし、その保持時間を0.5〜4hに変化
させた以外は、実施例1と同様にして窒化鉄を製造し
た。
Example 2 The firing temperature was 450 ° C. and 500 ° C.
° C and 550 ° C, and iron nitride was produced in the same manner as in Example 1 except that the holding time was changed to 0.5 to 4 hours.

【0053】図4はシュウ酸鉄粉末を450℃で熱分解
して得られた生成相の焼成時間依存性を示す。この場
合、保持時間によらずFe2Nの単相が生成する。この
ことから、本実施例の条件(200ml/min.のN
3ガス流量と450℃の焼成温度)が、Fe2Nを合成
する適切な条件であることがわかる。しかし、保持時間
が1h以下の短時間では得られる試料の再現性が低く合
成が困難な傾向がある。1h以下の短時間では完全な単
相の生成率は、試料の量、NH3ガスの散布状態にもよ
るが、異相としてFe34が残存する。
FIG. 4 shows the firing time dependence of the product phase obtained by pyrolyzing iron oxalate powder at 450 ° C. In this case, a single phase of Fe 2 N is generated regardless of the retention time. From this, the conditions of this example (200 ml / min.
It can be seen that the flow rate of H 3 gas and the firing temperature of 450 ° C.) are suitable conditions for synthesizing Fe 2 N. However, if the holding time is as short as 1 hour or less, the reproducibility of the obtained sample is low and the synthesis tends to be difficult. In a short time of 1 h or less, the generation rate of a complete single phase depends on the amount of the sample and the state of dispersion of the NH 3 gas, but Fe 3 O 4 remains as a different phase.

【0054】これらの試料の飽和磁化値を測定したとこ
ろ、磁化値はすべての保持時間において0emu/gで
あり、Fe2Nの単相が出来ていることを示す。
When the saturation magnetization values of these samples were measured, the magnetization values were 0 emu / g at all holding times, indicating that a single phase of Fe 2 N was formed.

【0055】図5はシュウ酸鉄粉末を500℃で熱分解
して得られた生成相の焼成時間依存性を示す。保持時間
1h迄はFe3Nは単相のまま変化はないが、保持時間
がそれ以上長くなるとFe3N中の窒素が脱離し、Fe4
Nとの混相となる。またFe4Nの生成率は保持時間が
長くなるに従い、増加する傾向である。
FIG. 5 shows the firing time dependency of the product phase obtained by pyrolyzing iron oxalate powder at 500 ° C. Up to the retention time of 1 h, Fe 3 N remains in a single phase and does not change, but if the retention time is longer than that, nitrogen in Fe 3 N is desorbed and Fe 4 N
It becomes a mixed phase with N. Further, the generation rate of Fe 4 N tends to increase as the retention time becomes longer.

【0056】これは、本発明の場合、最初に中間体とし
てFe34を経由し、450℃ではFe2Nが生成する
だけの窒素が存在するが、500℃ではFe3Nが生成
するだけの窒素しかなく、しかもその窒素はNH3ガス
流通量200ml/minでは平衡状態を保てないため
に、保持時間の延長と伴に窒素が蒸発するためである。
つまり、この温度域ではシュウ酸鉄→Fe3Nの酸素還
元、窒素侵入過程、およびFe3N→Fe4Nの加熱処理
による窒素蒸発過程とに分けられることになる。
This is because, in the case of the present invention, nitrogen is initially generated via Fe 3 O 4 as an intermediate, and at 450 ° C. there is nitrogen enough to generate Fe 2 N, but at 500 ° C., Fe 3 N is generated. This is because the nitrogen cannot be kept in an equilibrium state at a NH 3 gas flow rate of 200 ml / min, and the nitrogen evaporates with the extension of the retention time.
In other words, in this temperature range, the process is divided into an iron oxalate → Fe 3 N oxygen reduction process, a nitrogen intrusion process, and a Fe 3 N → Fe 4 N heat treatment nitrogen evaporation process.

【0057】これらの試料の飽和磁化値を測定したとこ
ろ、保持時間が1h以上ではFe4NとFe3Nの混相と
なるため、両者の生成率により飽和磁化値が変化した。
When the saturation magnetization values of these samples were measured, when the holding time was 1 hour or longer, a mixed phase of Fe 4 N and Fe 3 N was formed.

【0058】図6はシュウ酸鉄粉末を550℃で熱分解
して得られた試料の生成相の焼成時間依存性を示す。こ
の図によると保持時間が1h.以下では500℃での焼
成と同様の反応結果によりFe4Nの単相が得られる。
しかし、保持時間の延長に伴い、平衡状態がFe4Nか
らFeへと移行する。つまりFe4NとFeの混相状態
となる。
FIG. 6 shows the firing time dependence of the formed phase of the sample obtained by pyrolyzing iron oxalate powder at 550 ° C. According to this figure, the holding time is 1 h. In the following, a single phase of Fe 4 N is obtained according to the same reaction result as the calcination at 500 ° C.
However, the equilibrium state shifts from Fe 4 N to Fe with the extension of the retention time. That is, a mixed phase state of Fe 4 N and Fe is obtained.

【0059】これらの試料の飽和磁化値を測定したとこ
ろ、保持時間1h.においては、Fe4N単相であるた
め、文献値とほぼ同様の183emu/gの磁化値を示
す。一方、保持時間を1h.以上にすることにより、F
4N相とFe相の混相となり図6に示した生成割合に
比例した磁化値が得られた。
When the saturation magnetization values of these samples were measured, the retention time was 1 h. Has a magnetization value of 183 emu / g, which is almost the same as the literature value, because it is a single phase of Fe 4 N. On the other hand, the holding time is 1 h. By doing the above, F
A mixed phase of e 4 N phase and Fe phase was obtained, and a magnetization value proportional to the generation ratio shown in FIG. 6 was obtained.

【0060】[0060]

【発明の効果】以上説明のように、本発明によれば、単
相のFe2N、Fe3N、Fe4N、Fe粉末を、容易に
得ることができる。
As described above, according to the present invention, single-phase Fe 2 N, Fe 3 N, Fe 4 N, and Fe powder can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における製造装置を示す概略図である。FIG. 1 is a schematic view showing a manufacturing apparatus in an embodiment.

【図2】焼成温度と生成率の関係を示すグラフである。FIG. 2 is a graph showing a relationship between a firing temperature and a production rate.

【図3】焼成温度と飽和磁化値の関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between a firing temperature and a saturation magnetization value.

【図4】焼成温度450℃の保持時間と生成率の関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between a retention time at a firing temperature of 450 ° C. and a generation rate.

【図5】焼成温度500℃の保持時間と生成率の関係を
示すグラフである。
FIG. 5 is a graph showing a relationship between a holding time at a firing temperature of 500 ° C. and a generation rate.

【図6】焼成温度550℃の保持時間と生成率の関係を
示すグラフである。
FIG. 6 is a graph showing a relationship between a retention time at a firing temperature of 550 ° C. and a production rate.

フロントページの続き (72)発明者 藤田 実 東京都文京区小石川4丁目14番12号 共同 印刷株式会社内 Fターム(参考) 4K017 AA03 AA04 BA09 BB06 DA02 EH20 FA01 FB03 FB05 Continued on the front page (72) Inventor Minoru Fujita 4-14-12 Koishikawa, Bunkyo-ku, Tokyo Kyodo Printing Co., Ltd. F-term (reference) 4K017 AA03 AA04 BA09 BB06 DA02 EH20 FA01 FB03 FB05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア雰囲気中でシュウ酸鉄を42
5℃以上475℃未満で焼成してFe2N粉末を得るこ
とを特徴とする窒化鉄の製造方法。
1. The method according to claim 1, wherein iron oxalate is added in an ammonia atmosphere.
A method for producing iron nitride, comprising sintering at 5 ° C. or more and less than 475 ° C. to obtain Fe 2 N powder.
【請求項2】 アンモニア雰囲気中でシュウ酸鉄を47
5℃以上525℃未満で焼成してFe3N粉末を得るこ
とを特徴とする窒化鉄の製造方法。
2. The method according to claim 2, wherein iron oxalate is added in an ammonia atmosphere.
A method for producing iron nitride, characterized in that Fe 3 N powder is obtained by firing at 5 ° C. or more and less than 525 ° C.
【請求項3】 アンモニア雰囲気中でシュウ酸鉄を52
5℃以上575℃未満で焼成してFe4N粉末を得るこ
とを特徴とする窒化鉄の製造方法。
3. The method according to claim 3, wherein iron oxalate is added in an ammonia atmosphere.
A method for producing iron nitride, comprising sintering at 5 ° C. or more and less than 575 ° C. to obtain Fe 4 N powder.
【請求項4】 シュウ酸鉄が、塩化第一鉄とシュウ酸ア
ンモニウムとの液相中での沈殿反応により得られたもの
であることを特徴とする請求項1〜3に記載の窒化鉄の
製造方法。
4. The iron nitride according to claim 1, wherein the iron oxalate is obtained by a precipitation reaction between ferrous chloride and ammonium oxalate in a liquid phase. Production method.
【請求項5】 アンモニア雰囲気中でシュウ酸鉄を70
0℃以上で焼成してFe粉末を得ることを特徴とする鉄
の製造方法。
5. An iron oxalate in an ammonia atmosphere at 70
A method for producing iron, which comprises sintering at 0 ° C. or higher to obtain Fe powder.
【請求項6】 シュウ酸鉄が、塩化第一鉄とシュウ酸ア
ンモニウムとの液相中での沈殿反応により得られたもの
であることを特徴とする請求項5に記載の鉄の製造方
法。
6. The method for producing iron according to claim 5, wherein the iron oxalate is obtained by a precipitation reaction between ferrous chloride and ammonium oxalate in a liquid phase.
JP11078943A 1999-03-24 1999-03-24 Production of iron nitride and iron Withdrawn JP2000272909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11078943A JP2000272909A (en) 1999-03-24 1999-03-24 Production of iron nitride and iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11078943A JP2000272909A (en) 1999-03-24 1999-03-24 Production of iron nitride and iron

Publications (1)

Publication Number Publication Date
JP2000272909A true JP2000272909A (en) 2000-10-03

Family

ID=13675980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11078943A Withdrawn JP2000272909A (en) 1999-03-24 1999-03-24 Production of iron nitride and iron

Country Status (1)

Country Link
JP (1) JP2000272909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524529B1 (en) * 2002-11-30 2005-10-31 김진권 Preparation Method of Nano-sized Metal Nitride Particle
CN105858625A (en) * 2016-06-26 2016-08-17 彭晓领 Iron nitride nanowire and production method thereof
WO2020111386A1 (en) * 2018-11-30 2020-06-04 한양대학교 에리카산학협력단 Iron nitride magnetic wire and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524529B1 (en) * 2002-11-30 2005-10-31 김진권 Preparation Method of Nano-sized Metal Nitride Particle
CN105858625A (en) * 2016-06-26 2016-08-17 彭晓领 Iron nitride nanowire and production method thereof
CN105858625B (en) * 2016-06-26 2018-01-30 中国计量大学 One kind nitridation Fe nanowire and preparation method thereof
WO2020111386A1 (en) * 2018-11-30 2020-06-04 한양대학교 에리카산학협력단 Iron nitride magnetic wire and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Li et al. Preparation of YAG: Nd nano-sized powder by co-precipitation method
Sivakumar et al. Sonochemical synthesis of nanocrystalline LaFeO 3
Deki et al. Preparation and characterization of iron oxyhydroxide and ironoxide thin films by liquid-phase deposition
Goudarzi et al. Synthesis, characterization and degradation of organic dye over Co 3 O 4 nanoparticles prepared from new binuclear complex precursors
Kępiński et al. Hydrothermal synthesis of precursors of neodymium oxide nanoparticles
Hwang et al. Preparation and characteristics of ferrite catalysts for reduction of CO2
US5151260A (en) Process for preparing fine powders of aluminum nitride
Albadi et al. Synthesis of superparamagnetic GdFeO 3 nanoparticles using a free impinging-jets microreactor
CN106103343B (en) High density binding shape carbon nanotube and preparation method thereof
Koltypin et al. Sonochemical synthesis of iron nitride nanoparticles
Bartłomiej et al. Investigation of nitriding and reduction processes in a nanocrystalline iron–ammonia–hydrogen system at 350 C
Zhang et al. Controlled synthesis of mesocrystal magnesium oxide parallelogram and its catalytic performance
US7307033B2 (en) Method for producing α-alumina particulate
Tajima et al. Synthesis and magnetic properties of Fe7C3 particles with high saturation magnetization
Raja et al. Microwave combustion method: effect of starch, urea and glycine as processing fuels in the Co3O4 nanostructures
Vasylkiv et al. Nonisothermal Synthesis of Yttria‐Stabilized Zirconia Nanopowder through Oxalate Processing: II, Morphology Manipulation
JP2000272909A (en) Production of iron nitride and iron
JPH11292548A (en) Tricobalt tetroxide and its production
JP2007039301A (en) Method for manufacturing ferrite powder
Zhang et al. Synthesis and characterization of single-crystalline PrCO3OH dodecahedral microrods and its thermal conversion to Pr6O11
Jung et al. Preparation of aluminium nitride powder from a (hydroxo)(succinato) aluminium (III) complex
SU1766495A1 (en) Method of magnetic sorbent production
KR20000026019A (en) Process for synthesizing iron oxide powder regulated shape and size.
Cao et al. A facile strategy for synthesis of spinel ferrite nano-granules and their potential applications
KR20080055485A (en) Synthesis method of barium ferite and zinc ferite nanocomposite powders

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606