WO2020110750A1 - Surface-treated steel sheet, and method for manufacturing surface-treated steel sheet - Google Patents

Surface-treated steel sheet, and method for manufacturing surface-treated steel sheet Download PDF

Info

Publication number
WO2020110750A1
WO2020110750A1 PCT/JP2019/044700 JP2019044700W WO2020110750A1 WO 2020110750 A1 WO2020110750 A1 WO 2020110750A1 JP 2019044700 W JP2019044700 W JP 2019044700W WO 2020110750 A1 WO2020110750 A1 WO 2020110750A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hydroxide
layer
deposited layer
vanadium
Prior art date
Application number
PCT/JP2019/044700
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 東新
史生 柴尾
学 大谷
卓 古良田
浩雅 莊司
森下 敦司
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020502716A priority Critical patent/JP6733846B1/en
Publication of WO2020110750A1 publication Critical patent/WO2020110750A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Definitions

  • the present invention relates to a surface-treated steel sheet, and more particularly to a surface-treated steel sheet used for automobiles, home appliances, building materials, civil engineering, machinery, furniture, containers, etc., and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2018-223492 filed in Japan on November 29, 2018, and the content thereof is incorporated herein.
  • forming an alloy plating layer in place of the zinc plating layer of an electrogalvanized steel sheet is an effective means for improving the corrosion resistance.
  • the corrosion resistance of the steel sheet is improved and the weldability is also excellent (see Non-Patent Document 1, for example).
  • Patent Documents 1 to 5 describe techniques for complex electrodeposition of Zn—V oxide on the surface of a steel plate that is a cathode.
  • the deposited layer obtained by such a technique usually contains hydroxide.
  • oxides were found on the surface of the deposited layer.
  • the ratio of the peak area of 3600 cm ⁇ 1 showing hydroxide to the peak area of 1600 to 650 cm ⁇ 1 shown was about 0.4 or more (Test No. 44 and test in Table 2-1 and Table 2-2). No. 45).
  • Vanadium or zirconium contained contributes to the plane corrosion resistance of the surface-treated steel sheet.
  • it is desired that the deposited layer does not peel off from the steel sheet when subjected to bending or other processing.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface-treated steel sheet excellent in flat surface corrosion resistance and adhesion of a processed portion, and a manufacturing method thereof.
  • the inventors of the present invention have earnestly studied in order to achieve both the plane corrosion resistance of the surface-treated steel sheet and the adhesion of the processed part, and as a result, the following new findings have been obtained.
  • the "adhesion of the processed portion” means the adhesion between the steel sheet and the deposited layer in the processed portion when the processing such as bending is applied.
  • processed portion adhesion means the adhesion between the steel sheet and the deposited layer in the processed portion when the processing such as bending is applied.
  • the present inventor has conducted diligent research by paying attention to the composition of the deposited layer, particularly the hydroxide and oxide of vanadium or zirconium.
  • the adhesion of the processed part is excellent when the ratio of hydroxide to oxide is less than a certain value, and this ratio of hydroxide and oxide affects the flat corrosion resistance. I did not find it.
  • the present invention has been made based on the above findings, and its gist is as follows.
  • the deposition layer further contains one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide, In the infrared absorption spectrum obtained by measuring the surface of the deposited layer by the reflection method of FT-IR method, the peak area S 1 at 1600 to 650 cm ⁇ 1 indicating an oxide and the peak area S 1 at 3600 cm ⁇ 1 indicating a hydroxide.
  • a surface-treated steel sheet having a ratio S 2 /S 1 with respect to a peak area S 2 of 0 or more and 0.3 or less.
  • the amount of metallic zinc contained in the deposited layer is a (g/m 2 ), and the total amount of the vanadium oxide and vanadium hydroxide contained in the deposited layer, or the zirconium oxide and the zirconium.
  • the amount of metallic zinc contained in the deposited layer is a (g/m 2 ), and the total amount of the vanadium oxide and vanadium hydroxide contained in the deposited layer, or the zirconium oxide and the zirconium.
  • the deposition layer has a first phase containing the metallic zinc and a second phase containing at least one of vanadium oxide and vanadium hydroxide, or at least one of zirconium oxide and zirconium hydroxide.
  • the first phase is a plurality of dendrite-like columnar crystal phases grown in the thickness direction of the steel sheet, and the second phase is an amorphous phase formed around the first phase.
  • [6] The surface-treated steel sheet according to any one of [1] to [5], which has one or more coatings on the surface of the deposited layer.
  • the cathodic electrolysis solution contains a zinc compound and at least one of a vanadium compound or a zirconium compound, The ratio of V ion concentration (g/l) or Zr ion concentration (g/l) to Zn ion concentration (g/l) in the cathodic electrolytic treatment solution is 0.2 to 0.9, The pH of the cathodic electrolytic treatment solution is 1.0 to 4.0, Between the start and the end of the cathodic electrolysis treatment, a non-energization time of 0.01 seconds or more is provided once or more, The flow rate of the cathodic electrolysis solution during the non-energization time of the cathodic electrolysis treatment is 0.05 m/sec or more and 5.00 m/sec or less, The maximum temperature of the deposited layer in the heat treatment is 100° C.
  • the average heating rate in the heat treatment is 40° C./sec or more
  • a non-heating time of 0.5 seconds or more and 5 seconds or less is provided between when the temperature of the deposition layer is 100° C. or higher and when the cooling of the deposition layer is started.
  • the surface-treated steel sheet of the present embodiment includes a steel sheet and a deposition layer containing zinc metal formed on one side or both sides of the steel sheet, and the deposition layer further includes vanadium oxide, vanadium hydroxide, and zirconium oxide. And 1600 to 650 cm showing an oxide in an infrared absorption spectrum obtained by measuring the surface of the deposited layer by a reflection method of FT-IR method, containing at least one selected from the group consisting of and zirconium hydroxide.
  • the surface-treated steel sheet has a ratio S 2 /S 1 of the peak area S 1 of ⁇ 1 to the peak area S 2 of 3600 cm ⁇ 1 indicating a hydroxide of 0 to 0.3.
  • the steel sheet that serves as the base for forming the precipitation layer is not particularly limited.
  • a steel sheet ultra low C type (ferrite-based structure), Al-k type (structure containing pearlite in ferrite), two-phase structure type (eg structure containing martensite in ferrite, bainite in ferrite) are used.
  • Any type of steel sheet may be used, such as a microstructure that includes retained microstructure, a microstructure that includes retained austenite in ferrite, a microstructure that includes retained austenite in ferrite, and there is no limitation on the plate thickness.
  • metal zinc on the steel plate one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide (at least one of vanadium oxide or hydroxide, Alternatively, a deposited layer containing zirconium oxide and/or hydroxide is formed.
  • metallic zinc in the deposit layer sacrificial corrosion resistance can be imparted to the deposit layer, and further, one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide. Therefore, flat corrosion resistance can be secured.
  • the ratio of hydroxide to oxide in the deposited layer is reduced to a certain value or less, between the deposited layer and the steel sheet after working without affecting the planar corrosion resistance. It was found that the adhesion (adhesion of the processed portion) can be improved. That is, in the present embodiment, the ratio of hydroxide to oxide is reduced so that the S 2 /S 1 is 0.3 or less, whereby the surface having both the adhesion of the processed portion and the flat corrosion resistance is obtained. A treated steel plate can be obtained.
  • S 2 / S 1 is set to 0.3 or less, preferably 0.2 or less
  • S 2 / S 1 may be 0, but from the viewpoint of cost increase due to stricter control conditions in the manufacturing method described later, S 2 /S 1 may be 0.1 or more.
  • the deposited layer contains zinc metal and vanadium and/or zirconium.
  • the above-mentioned “oxide” when the deposition layer contains vanadium, and “hydroxide” are vanadium oxide and vanadium hydroxide, respectively, and the above-mentioned “oxide” when the deposition layer contains zirconium.
  • the terms “and hydroxide” refer to zirconium oxide and zirconium hydroxide, respectively.
  • oxide indicates a mixture of vanadium oxide and zirconium oxide
  • “hydroxide” means vanadium hydroxide and zirconium hydroxide. Shows a mixture of.
  • the In measuring S 2 / S 1 performs a measurement in more than 10 points of the surface of the surface-treated steel sheet, intended to calculate the average value.
  • the distance between the measurement points is 1 mm or more.
  • the size of the test material is insufficient and it is difficult to perform measurement at 10 points while ensuring a sufficient measurement interval, shorten the measurement interval or reduce the number of measurement points. Is acceptable.
  • the FT-IR reflection method the surface of the deposited layer is measured in principle. Further, as a measuring method, in principle, a high-sensitivity reflection method (RAS method: Reflection Absorption Spectrometry) is used.
  • RAS method Reflection Absorption Spectrometry
  • a film such as a coating film is applied to the surface of the deposition layer, it may be difficult to remove the coating film and measure the surface of the deposition layer by the high-sensitivity reflection method.
  • a carbon-free layer derived from the coating film such as a coating film is analyzed by a generally known elemental analyzer such as EPMA. It is advisable to identify the deposited layer and measure the deposited layer by the microscopic reflection method of the FT-IR method.
  • the amount of metallic zinc (adhesion amount) contained in the deposited layer is a (g/m 2 ), and the total amount of vanadium oxide and hydroxide contained in the deposited layer or zirconium oxide.
  • the total amount (adhesion amount) of the hydroxide is b (g/m 2 ) in terms of metal
  • 100b/(a+b) is preferably 0.1 or more and 50 or less.
  • 100b/(a+b) is less than 0.1, the effect of improving planar corrosion resistance by vanadium or zirconium is not sufficiently exhibited, and the planar corrosion resistance of the deposited layer is poor.
  • 100b/(a+b) when 100b/(a+b) is more than 50, the corrosion resistance of the deposited layer on the flaws is poor.
  • 100b/(a+b) is particularly preferably 1.0 or more and 20 or less because the flat surface corrosion resistance and the flaw corrosion resistance are excellent.
  • b is the total amount of vanadium oxide, vanadium hydroxide, zirconium oxide, and zirconium hydroxide in terms of metal.
  • ICP Inductively Coupled Plasma
  • the adhesion amount of deposition layer is preferably 1.0 g / m 2 or more 50.0 g / m 2 or less.
  • the amount of deposition is preferably 1.0 g/m 2 or more 50.0 g / m 2 or less.
  • the planar corrosion resistance of the surface-treated steel sheet can be further improved.
  • the deposition amount is more preferred amount of adhesion of the deposited layer is 3.0 g / m 2 or more 40.0 g / m 2 or less.
  • the deposited amount of the deposited layer is the amount of mass change of the surface-treated steel sheet before and after removing the deposited layer from the surface-treated steel sheet by dissolving the deposited layer with hydrochloric acid containing an inhibitor so that the steel sheet does not dissolve.
  • the amount of deposition of the deposited layer can be obtained from this.
  • the deposition layer of the surface-treated steel sheet of the present embodiment includes a first phase containing metallic zinc and a second phase containing at least one of vanadium oxide or vanadium hydroxide, or at least one of zirconium oxide or zirconium hydroxide. It may have a form having a phase.
  • the first phase containing metallic zinc is a plurality of dendrite-like columnar crystal phases grown in the thickness direction of the steel sheet, and the second phase is an amorphous phase formed around this first phase. May be. In such a precipitation layer, the dendrite-like columnar crystal phase that is the first phase is first precipitated, and then the second phase is precipitated around the columnar crystal phase.
  • the dendrite-shaped columnar crystal phase of the first phase may be formed only of metallic zinc, or may contain other metallic components such as iron and nickel together with metallic zinc. It is preferable that the deposition layer contains 0.1% by mass or more and 7% by mass or less of iron as a metal element because the weldability is excellent.
  • the dendrite-like columnar crystal phase of the first phase has a structure that grows from the steel sheet side toward the precipitation layer surface side along the thickness direction of the precipitation layer and branches toward the precipitation layer surface.
  • the second phase may contain zinc oxide in addition to at least one of vanadium oxide or vanadium hydroxide, or at least one of zirconium oxide or zirconium hydroxide.
  • the second phase is formed around the dendrite-shaped first phase.
  • the first phase composed of dendrite columnar crystals is formed first, and then the second phase composed of the amorphous phase is formed around the first phase.
  • barrier properties can be imparted to the deposited layer.
  • the second phase is mainly composed of oxide or hydroxide, it is possible to secure coating adhesion when a coating film is formed on the second phase.
  • the first phase of the dendrite-like columnar crystal phase containing metallic zinc gives a diffraction pattern due to the crystal structure when electron beam diffraction is performed from the cross section of the deposited layer using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the second phase a diffraction pattern due to the crystal structure is not obtained, and it is judged that the second phase is amorphous.
  • the deposition layer as described above may be provided in only one layer, or may be provided in a state where a plurality of layers are laminated. When a plurality of deposition layers are provided, at least one of the plurality of deposition layers may be the deposition layer of the present embodiment.
  • the deposition layer of the present embodiment may be provided as the outermost layer. preferable.
  • a base layer may be provided between the steel plate and the deposit layer.
  • the underlayer is provided as necessary to improve the adhesion between the steel sheet and the deposited layer.
  • a chemical conversion treatment film, a coating film, an organic resin film, and a film containing an organosilicon compound containing a silane coupling agent may be further formed on the deposition layer of the surface-treated steel sheet of the present embodiment.
  • a coating film it is preferable to form a non-chromated film as a base layer on the surface of the deposition layer.
  • the surface-treated steel sheet of this embodiment has an L* value of 40 or less, which represents lightness, and has a black appearance. By having a black appearance, it can be used for various purposes such as a material for products having a black appearance.
  • the surface-treated steel sheet of the present embodiment has been described as an example in which a precipitation layer is formed on the steel sheet, but the present embodiment is not limited to this, and an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet.
  • the deposit layer of the present embodiment may be formed on the galvanized layer. That is, another galvanized layer may be formed between the steel plate and the deposited layer. By forming another galvanized layer, the planar corrosion resistance of the surface-treated steel sheet can be further improved.
  • the deposition layer of the surface-treated steel sheet according to the present embodiment contains both the vanadium compound (at least one of vanadium oxide and hydroxide) and the zirconium compound (at least one of zirconium oxide and hydroxide). May be included.
  • the vanadium compound and the zirconium compound have the same action and effect with respect to the corrosion resistance and the flat surface corrosion resistance of the surface-treated steel sheet.
  • the vanadium compound and the zirconium compound do not interfere with each other's action and effect. Even when the deposited layer contains both the vanadium compound and the zirconium compound, S 2 /S 1 can be measured by the procedure described above.
  • the second phase of the deposition layer contains at least one of vanadium oxide or vanadium hydroxide and at least one of zirconium oxide or zirconium hydroxide. It may be in the form.
  • the surface-treated steel sheet of the present embodiment is a method in which a zinc compound and a solution containing a vanadium compound or a zirconium compound are used to form a deposition layer by cathodic electrolysis on one or both surfaces of the steel sheet, and then the deposition layer is heat-treated.
  • the method for producing a surface-treated steel sheet according to the present embodiment by cathodic electrolysis treatment, a step of forming a deposition layer on one or both sides of the steel sheet, and a step of heat treating the deposition layer, cathodic electrolysis
  • the treatment solution contains a zinc compound and at least one of a vanadium compound and a zirconium compound, and the V ion concentration (g/l) or Zr ion concentration (g/l) and the Zn ion concentration (g /L) is 0.2 to 0.9, the pH of the cathodic electrolysis treatment solution is 1.0 to 4.0, and the pH of the cathodic electrolysis treatment is not less than 1 time.
  • a non-energization time is provided, the flow rate of the treatment liquid during the non-energization time of the cathodic electrolysis treatment is 0.05 m/sec or more and 5.00 m/sec or less, and the maximum temperature of the deposition layer in the heat treatment is 100° C. or more and 350° C. or less.
  • the average rate of temperature rise is 40° C./sec or more, and 0.5 seconds or more and 5 seconds or less between the temperature of the precipitation layer is 100° C. or more and the cooling of the precipitation layer is started. No heating time is provided.
  • cathodic electrolysis treatment solution a solution containing Zn ions and V ions and/or Zr ions can be used. Precipitation is obtained by subjecting a steel sheet to cathodic electrolysis treatment using this solution. Layers can be made.
  • the solution containing Zn ions, V ions and/or Zr ions a solution containing Zn compounds, V compounds and Zr compounds is used.
  • the cathodic electrolytic treatment solution specifically, it can be obtained by dissolving Zn sulfate, vanadyl oxide or zirconyl nitrate in an aqueous solution of an inorganic acid such as sulfuric acid.
  • the Zn compound, a metal Zn, ZnSO 4 ⁇ 7H 2 O include soluble salts such as ZnCO 3. These may be used alone or in combination of two or more.
  • the Zr compound is preferably one that forms ZrO 2+ ions in a solution, and examples thereof include soluble salts such as zirconyl nitrate, zirconyl sulfate, and zirconium oxynitride chloride. These may be used alone or in combination of two or more.
  • vanadyl oxide As the V compound, vanadyl oxide, ammonium metavanadate (V), potassium metavanadate (V), sodium metavanadate (V), VO(C 5 H 7 O 2 ) 2 (vanadyl acetylacetonate (IV)) , VOSO 4 ⁇ 5H 2 O (vanadyl sulfate (IV)) and the like.
  • vanadium compounds oxidation vanadyl, VO (C 5 H 7 O 2) 2 ( vanadyl acetylacetonate (IV)), it is preferable to use a VOSO 4 ⁇ 5H 2 O (vanadyl sulfate (IV)).
  • These vanadium compounds may be used alone or in combination of two or more.
  • Ratio of V ion concentration (g/l) and/or Zr ion concentration (g/l) and Zn ion concentration (g/l) in the solution for cathodic electrolysis ((V ion and/or Zr ion)/ Zn ion) is 0.2 to 0.9.
  • (V ions and/or Zr ions)/Zn ions are less than 0.2 or more than 0.9, V ions or Zr ions are not taken into the deposition layer, and vanadium or zirconium oxide or hydroxide in the deposition layer is not incorporated. You may not be able to secure enough items.
  • the pH of the solution for cathodic electrolysis is 1.0 to 4.0 in order to secure the amount of deposition in the deposited layer and the content of vanadium and zirconium oxides and hydroxides in the deposited layer. If the pH is less than 1.0, vanadium and/or zirconium will not be incorporated into the deposited layer, and the oxides and hydroxides of vanadium and/or zirconium in the deposited layer may not be sufficiently secured. If the pH exceeds 4.0, V ions and/or Zr ions will precipitate in the solution as oxides, and vanadium and/or zirconium oxides and hydroxides will not be incorporated in the precipitation layer.
  • the solution for the cathodic electrolysis treatment may further contain a pH adjusting agent, a Zr compound, a V compound, and another metal compound other than the Zn compound, an additive, and the like, if necessary.
  • a pH adjusting agent include H 2 SO 4 and NaOH.
  • the additive include Na 2 SO 4 which stabilizes the conductivity of the solution for cathodic electrolysis.
  • Other metal compounds include nickel compounds such as NiSO 4 .6H 2 O.
  • the solution for cathodic electrolysis may contain Na + in an amount of 0.1 mol/l or more.
  • the conductivity of the solution can be increased, and the precipitation layer of this embodiment can be easily formed.
  • the temperature of the solution for the cathodic electrolysis treatment is not particularly limited, but is preferably in the range of 40 to 60° C. in order to easily and efficiently form the deposition layer of this embodiment.
  • the a current density of 2A / dm 2 or more 150A / dm 2 or less it is preferable that the a current density of 2A / dm 2 or more 150A / dm 2 or less.
  • the current density is less than 2 A/dm 2 , it is not efficient because the electrolytic treatment speed is low.
  • the so-called hydrogen generation reaction proceeds remarkably, and it becomes difficult to obtain a plating layer having a vanadium and/or zirconium content of 50% by mass or less.
  • the time for performing the cathodic electrolysis treatment is not particularly limited, and can be appropriately set depending on the current density and the required deposition amount of the deposited layer. Furthermore, when forming the deposited layer by the cathodic electrolysis treatment, a non-energization time of 0.01 seconds or more is provided once or more between the start and the end of the cathodic electrolysis treatment.
  • the flow rate of the cathodic electrolytic treatment solution must be 0.05 m/sec or more and 5.00 m/sec or less.
  • the start of the cathodic electrolysis treatment is when the first energization of the steel sheet is started.
  • the termination of the cathodic electrolysis treatment is when the final energization of the steel sheet is terminated.
  • the non-energization time is a period during which no voltage is applied between the steel plate and the cathodic electrolytic treatment solution.
  • the cathodic electrolysis treatment including one non-energization time is a cathodic electrolysis treatment in which energization is performed twice.
  • the flow velocity of the cathodic electrolysis solution is the relative flow velocity between the cathodic electrolysis solution and the steel sheet.
  • the present inventors provided a non-energization time of 0.01 seconds or more once or more, and defined the flow rate of the cathodic electrolysis solution during the non-energization time as 0.05 m/sec or more and 5.00 m/sec or less. did.
  • the non-energization time of 0.01 seconds or more is not provided, even if the solution is flowing during the energization time, the increase in pH will not be sufficiently eliminated. Further, when the flow rate of the cathodic electrolysis solution during the non-energization time is less than 0.05 m/sec, the same result as when the non-energization time is not provided is obtained. On the other hand, if the flow rate of the cathodic electrolytic treatment solution during the non-energized time is more than 5.00 m/sec, the dissolution of the deposited layer becomes large, which is not suitable.
  • a steel plate as a raw material is electrolyzed as a cathode to form a deposition layer, and then the deposition layer is further heated in the present embodiment. It is then necessary to control the ratio of hydroxide to oxide in the deposited layer.
  • the deposit layer is heated at an average heating rate of 40° C./sec or more. Then, a period of 0.5 seconds or more and 5 seconds or less without heating is provided between the temperature of the steel sheet becoming 100° C. or more and the time of cooling.
  • heat treatment is performed at an average temperature rising rate of 40° C./sec or more. Further, a time period of 0.5 seconds or more and 5 seconds or less without heating is secured from when the temperature of the deposition layer (steel plate) reaches 100° C. or higher until cooling is started.
  • the average rate of temperature rise is less than 40° C./sec, the amount of change of the hydroxide in the precipitate layer to the oxide is small, and the peak area S 1 showing the hydroxide is different from the peak area S 1 showing the oxide in the IR spectrum. the ratio S 2 / S 1 between the 2 will not be sufficiently reduced, processability portion adhesiveness may be deteriorated. Therefore, the average heating rate in the heat treatment is 40° C./sec or more, preferably 50° C./sec or more.
  • the temperature of the precipitation layer (steel plate) reaches the ultimate temperature of 100° C. or higher, heating is stopped for a certain period of time and then held, and then cooling is started, so that the peak area S 1 showing oxides in the IR spectrum is The ratio S 2 /S 1 with respect to the peak area S 2 indicating a hydroxide is easily reduced, which is preferable.
  • the ultimate temperature 100° C. or higher, the change from hydrate to oxide can be promoted.
  • the gas mainly water vapor
  • the S 2 /S 1 may not be reduced, so the heating stop time is set to 5 seconds or less.
  • the gas mainly water vapor
  • the upper limit of the ultimate temperature of the precipitation layer is preferably 350° C. or lower. When heated to over 350°C, a part of the deposited layer may be dissolved.
  • the average heating rate is the value obtained by dividing the temperature rise range of the steel sheet from the start of heating to the stop of heating by the time required from the start of heating to the stop of heating. Further, the “time without heating” after reaching the ultimate temperature is the time from when heating is stopped to when cooling is started, during which the steel plate temperature may or may not be fixed. Although good, it is preferable to maintain the steel plate temperature at 100° C. or higher during this period.
  • High-frequency induction heating or laser heating is preferable as the above heat treatment method, and in the case of high-frequency induction heating, the precipitation layer is heated from the steel sheet side, which is more preferable.
  • the cooling after the heat treatment is preferably water cooling from the viewpoint of productivity, and may be water cooling by a spray method, for example.
  • the cathode electrolysis apparatus shown in FIG. 1 is a manufacturing apparatus that can be suitably used for carrying out one cathodic electrolysis treatment in the manufacturing method. Will be described as an example.
  • the cathodic electrolysis treatment is performed twice or more by using two or more of these devices connected to each other, and the time and the flow rate during non-energization are controlled between them.
  • FIG. 1 is a schematic diagram showing an example of a cathode electrolysis device.
  • reference numeral 1 indicates a steel plate
  • reference numeral 2 indicates an electrolytic bath
  • reference numeral 21 indicates an electrolytic bath
  • reference numeral 3 indicates an anode.
  • the electrolytic bath 2 is preferably the above-mentioned solution for cathodic electrolysis.
  • reference numerals 4a, 4b, 5a, and 5b indicate rolls for moving the steel sheet 1 in the direction of the arrow in FIG.
  • the rolls 4a and 4b arranged on the steel plate 1 are conductor rolls.
  • the steel plate 1 serves as a cathode by being electrically connected to the rolls 4a and 4b.
  • the electrolysis tank 21 has an upper tank 21 a arranged above the steel plate 1 and a lower tank 21 b arranged below the steel plate 1.
  • a plurality of anodes 3 made of platinum or the like are arranged in the upper tank 21a and the lower tank 21b adjacent to the steel plate 1 with a predetermined space between the anode 3 and the steel plate 1.
  • the surface of each anode 3 facing the steel plate 1 is arranged so as to be substantially parallel to the surface of the steel plate 1.
  • the upper bath 21a and the lower bath 21b are filled with the electrolytic bath 2.
  • a horizontally moving steel plate 1 is arranged between the upper tank 21 a and the lower tank 21 b of the electrolytic bath 21, and the steel plate 1 is immersed in the electrolytic bath 2. .. Then, by transporting the steel sheet 1, the electrolytic bath 2 becomes the electrolytic bath 2 in a fluid state in which the electrolytic bath 2 is relatively fluidized with respect to the steel sheet 1.
  • the upper tank 21a is provided with an upper supply pipe 2a for supplying the electrolytic bath 2 to the upper tank 21a so as to penetrate the upper surface of the upper tank 21a.
  • the upper supply pipe 2a is branched into a plurality of outer peripheral branch passages 2c and a plurality of intermediate branch passages 2d (only one is shown in FIG. 1) in the upper tank 21a.
  • a plurality of intermediate branch paths 2d are arranged along the width direction of the steel plate 1 between the adjacent anodes 3 in a plan view.
  • the intermediate branch 2d has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1 on both sides.
  • a plurality of outer peripheral branch paths 2c are arranged along the width direction of the steel sheet 1 between the anode 3 and the rolls 4a and 4b in a plan view.
  • the outer peripheral branch passage 2 c has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1.
  • the upper tank 21a is provided with a discharge port (not shown) for discharging the electrolytic bath 2, and is connected to the upper supply pipe 2a via a pipe (not shown) equipped with a pump. Therefore, in the upper tank 21a, the electrolytic bath 2 supplied from the upper supply pipe 2a and discharged from the outlet is supplied by the pump again from the upper supply pipe 2a and circulated. It is an electrolytic bath 2.
  • the lower tank 21b is provided with a lower supply pipe 2b for supplying the electrolytic bath 2 to the lower tank 21b so as to penetrate the lower surface of the lower tank 21b.
  • the lower supply pipe 2b is branched into a plurality of outer peripheral branch passages 2e and a plurality of intermediate branch passages 2f (only one is shown in FIG. 1) in the lower tank 21b.
  • a plurality of intermediate branch passages 2f are arranged along the width direction of the steel plate 1 between the adjacent anodes 3 in plan view.
  • the intermediate branch passage 2f has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1 on both sides.
  • a plurality of outer peripheral branch passages 2e are arranged along the width direction of the steel plate 1 between the anode 3 and the rolls 5a and 5b in a plan view.
  • the outer peripheral branch passage 2 e has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1.
  • the lower tank 21b is provided with a discharge port (not shown) for discharging the electrolytic bath 2, and is connected to the lower supply pipe 2b through a pipe (not shown) equipped with a pump. Therefore, in the lower tank 21b, the electrolytic bath 2 supplied from the lower supply pipe 2b and discharged from the outlet is supplied by the pump again from the lower supply pipe 2b and circulated. It is an electrolytic bath 2.
  • the relative flow velocity of the electrolytic bath 2 with respect to the steel plate in the electrolytic bath 21 is preferably in the range of 3 to 300 m/min, more preferably in the range of 20 to 300 m/min, or more preferably in the range of 30 to 200 m/min. ..
  • the average flow velocity of the electrolytic bath 2 is in the range of 3 to 300 m/min, it is possible to prevent the occurrence of cracks in the deposited layer and supply ions from the electrolytic bath 2 to the surface of the steel sheet 1 without any trouble. ..
  • the cathodic electrolysis apparatus shown in FIG. 1 is always energized. Two or more of these apparatuses are connected and used, and a deposition layer is formed by controlling the time and the flow rate during which there is no energization. By performing the above-mentioned heat treatment on the above, the deposition layer according to the present embodiment can be formed.
  • the surface-treated steel sheet of the present embodiment can be produced by the above production method, but both surfaces of the steel sheet may be subjected to pretreatment, if necessary, before forming the above-mentioned precipitation layer.
  • pretreatment it is preferable to perform nickel plating with a thickness of 1 to 300 nm on both surfaces of the steel sheet.
  • a chemical conversion treatment film, a coating film, an organic resin film, a film containing an organic silicon compound containing a silane coupling agent may be further formed.
  • a coating composition containing each component forming the film and curing the coating composition there is a method of applying a coating composition containing each component forming the film and curing the coating composition. Specifically, each component constituting the film is added to a solvent such as water and dissolved or dispersed to apply a coating composition on the deposition layer, and the coating film is heat dried by far infrared rays or induction heating. A method of curing by curing is preferable.
  • a solution containing Zn ions and V ions, a solution containing Zn ions and Zr ions, and some of the solutions (solutions 32 to 34) were prepared containing Fe ions. These solutions were prepared by mixing ZnSulfate and vanadyl oxide or zirconyl nitrate (for solutions 32 to 34, further iron sulfate) in sulfuric acid. The details of the solutions 1 to 34 are as shown in Table 1. In addition, the solution composition (mass (g/l) of each ion) in Table 1 was converted from the masses of Zn sulfate, vanadyl oxide, zirconyl nitrate, and iron sulfate used. The components of the deposited layer were adjusted by the amount of these solution components. The pH of the solution was adjusted by the amount of sulfuric acid and the amount of Na hydroxide.
  • the above-mentioned steel plate as a cathode is immersed in these solutions 1 to 34, a platinum anode is placed opposite to the surface of the steel plate, and the electrolytic solution can be made to flow in one direction between the steel plate and the platinum electrode.
  • Cathodic electrolysis treatment was performed using the apparatus to form a deposited layer.
  • the electrolysis conditions were: solution temperature: 50° C., electrolysis time (total): 1 to 5 seconds, current density: 80 to 120 A/dm 2 , and average flow rate of the electrolytic solution was 80 mpm (m/min).
  • the flow rate when the power was not applied was the value described in Table 2-1.
  • the number of energizations was within the range of 1 to 4 times.
  • the components of the formed precipitation layer are shown in Table 2-1.
  • the deposited layer was heat-treated by high frequency induction heating.
  • heating was performed at a predetermined average rate of temperature increase to an ultimate temperature of 100° C. or higher, and after the ultimate temperature was raised, a “non-heating time” was provided, and then cooling was performed by spray-type water cooling.
  • the heat treatment conditions are shown in Table 2-1. Regarding the heat treatment conditions shown in Table 2-1, when the average heating rate is 40° C./sec or more, “ ⁇ ” is given, and when it is less than 40° C./sec, “x” is given.
  • indicates that the heating time of 100°C or more is 0.5 seconds or more and 5 seconds or less
  • x indicates that the heating time is 100°C or more and less than 0.5 seconds or more than 5 seconds.
  • the ratio of the amount of oxide and hydroxide in the deposited layer was changed by controlling the maximum temperature and the time during which heating was not performed. In this way, various surface-treated steel plates (plate thickness t: 0.8 mm) were manufactured.
  • the ratio of the amount of oxide and hydroxide in the deposited layer was determined by a high-sensitivity reflection method using a Fourier transform infrared spectrophotometer (“FT/IR-6100” manufactured by JASCO Corporation). Specifically, in the obtained IR spectrum, the ratio S 2 / of the peak area S 2 of absorption indicating hydroxide near 3600 cm ⁇ 1 to the peak area S 1 of absorption indicating oxide at 1600 to 650 cm ⁇ 1. S 1 was determined. As shown in FIG. 2, the peak area of absorption is defined by dividing the absorption peak by the baseline of the IR spectrum, and defining the area of the region defined by the baseline (the area of the shaded area in FIG. 2) as the peak area. did.
  • FT/IR-6100 Fourier transform infrared spectrophotometer
  • the deposition amount of the deposited layer is the mass of the surface-treated steel sheet before and after removing the deposited layer by removing the deposited layer from the surface-treated steel sheet by dissolving the deposited layer with hydrochloric acid containing an inhibitor so that the steel sheet does not dissolve.
  • the amount of deposition of the deposited layer was obtained from the amount of change. Further, each component in the deposited layer was determined by measuring the amount of Zn, the amount of V and the amount of Zr in the solution after dissolving the deposited layer by ICP emission spectroscopy.
  • the amount of zinc contained in the deposited layer is a (g/m 2 ), and the total amount of vanadium oxide and vanadium hydroxide contained in the deposited layer or the total amount of zirconium oxide and zirconium hydroxide contained in the deposited layer is vanadium.
  • Table 2-2 shows 100b/(a+b) when b (g/m 2 ) is calculated in terms of zirconium metal. The "100b/(a+b)" was obtained from the analysis result of each component in the deposited layer.
  • the obtained surface-treated steel sheets (Test Nos. 1 to 49) were evaluated by the methods shown below for the following items.
  • Adhesion of processed part An evaluation sample cut out from a surface-treated steel sheet was overhanged by 9 mm with an Erichsen tester, and the outside of the overhanging convex portion that was processed was used with an adhesive tape (Nichiban Co., Ltd.: trade name Cellotape (registered trademark)). And a tape peeling test was performed. The peeling state of the deposited layer after the test was observed, the peeling rate of the deposited layer at the crown of the overhanging convex portion was determined, and the adhesion of the processed portion was evaluated according to the following criteria. In addition, the evaluation "2" or more was passed.
  • “Paint adhesion” A coating (Amillac #1000, manufactured by Kansai Paint Co., Ltd.) was applied to the evaluation sample cut out from the surface-treated steel sheet by bar coating, and baked at 140° C. for 20 minutes to form a film having a dry film thickness of 25 ⁇ m. The obtained coated plate was immersed in boiling water for 30 minutes and then left in a room at room temperature for 24 hours. After that, 100 squares of 1 mm square were cut into the sample with an NT cutter, and this was extruded with an Erichsen tester for 7 mm, and then the extruded convex portion was subjected to a peeling test with an adhesive tape, and painting was performed according to the following standards. Adhesion was evaluated and "2" or more was passed.
  • the appropriate current range was measured under a pressure of 1.96 kN and an energization time of 12 cycles/50 Hz.
  • the electrode used was Cr-Cu.
  • the lower limit value of the appropriate current range is a current value that secures a button diameter of 4 ⁇ t or more (t is the plate thickness (mm) of the surface-treated steel sheet), and the upper limit value is a current value at which dust is generated. Spot welding was performed at a current value lower than the determined appropriate current upper limit value by 0.5 kA, and the button diameter was measured at every 50 dots. The button diameter was obtained by peeling off the two welded steel plates and measuring the button diameter left on the steel plate on one side.
  • the button diameter is less than 4 ⁇ t or 50 points is subtracted from the number of points where no current has passed, and the number of points is set as the number of continuous points.
  • Weldability continuous pointability
  • a score of "2" or more is passed.
  • Test No. No. 41 had an average rate of temperature rise during heat treatment of less than 40° C./second, so vanadium oxide and vanadium hydroxide were deposited in the deposited layer, but the ratio of oxide to hydroxide in the deposited layer ( S 2 / S 1) can not be sufficiently lowered, resulting it becomes insufficient processability part adhesion and coating adhesion.
  • Test No. 45 the “non-heating time” was 0.4 seconds, which did not satisfy the lower limit of 0.5 seconds which is the lower limit of the appropriate manufacturing conditions. Therefore, the ratio of oxide to hydroxide in the deposited layer (S 2 /S 1 ) could not be sufficiently lowered, and as a result, the adhesion of the processed portion and the adhesion of the coating became insufficient.
  • Test No. Reference numeral 58 is an example in which the cathodic electrolysis treatment was performed by one energization, so that there was no non-energized time. The oxide/hydroxide ratio (S 2 /S 1 ) in the deposited layer could not be reduced sufficiently, and the adhesion of the processed part and the adhesion of the coating became insufficient.
  • Test No. No. 59 was not suitable because the flow rate of the solution during the non-energized time was too large, so that the dissolution of the plating was large and the quality control at the manufacturing stage could not be performed.
  • the pH of the solution 15 in Table 1 was too high at 4.5, so that a precipitate was generated in the solution and it was unsuitable as an electrolytic solution.
  • the obtained deposited layer was observed with a field emission transmission electron microscope (FE-TEM) (JED-2100F manufactured by JEOL Ltd.).
  • FE-TEM field emission transmission electron microscope
  • the dendrite columnar crystal phase (first phase) contains metallic zinc by elemental analysis and electron beam diffraction analysis by an energy dispersive X-ray analyzer (EDS (JED-2300T) manufactured by JEOL Ltd.), It was also found that the amorphous phase (second phase) contained vanadium oxide and/or vanadium hydroxide, or zirconium oxide and/or zirconium hydroxide.
  • EDS energy dispersive X-ray analyzer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A surface-treated steel sheet is provided, which comprises a steel sheet and a deposited layer formed on one surface or both surfaces of the steel sheet and containing metal zinc, wherein the deposited layer further contains at least one component selected from the group consisting of a vanadium oxide, a vanadium hydroxide, a zirconium oxide and a zirconium hydroxide, and the ratio of the area S2 of a peak appearing at 3600 cm-1 which attributes to a hydroxide to the area S1 of a peak appearing at 1600 to 650 cm-1 which attributes to an oxide, i.e., S2/S1, is 0 to 0.3 inclusive in an infrared absorption spectrum obtained by measuring the surface of the deposited layer by reflection method of FT-IR spectroscopy.

Description

表面処理鋼板、及び表面処理鋼板の製造方法Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
 本発明は、表面処理鋼板に関し、特に、自動車用、家電用、建材用、土木用、機械用、家具用、容器用等に使用される表面処理鋼板、及びその製造方法に関するものである。
 本願は、2018年11月29日に、日本に出願された特願2018-223492号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a surface-treated steel sheet, and more particularly to a surface-treated steel sheet used for automobiles, home appliances, building materials, civil engineering, machinery, furniture, containers, etc., and a method for producing the same.
The present application claims priority based on Japanese Patent Application No. 2018-223492 filed in Japan on November 29, 2018, and the content thereof is incorporated herein.
 従来から、家電製品や建材、自動車などの多様な分野で、電気亜鉛めっき層を有する表面処理鋼板(電気亜鉛めっき鋼板)が利用されている。近年、電気亜鉛めっき鋼板においては、より一層耐食性を向上させることが要求されている。
 電気亜鉛めっき鋼板の耐食性を向上させる方法としては、亜鉛めっき層のめっき量(目付量)を増加させることが考えられる。しかし、電気亜鉛めっき鋼板のめっき量を増大させると、加工性や溶接性が低下する。
BACKGROUND ART Conventionally, surface-treated steel sheets having electrogalvanized layers (electrogalvanized steel sheets) have been used in various fields such as home appliances, building materials, and automobiles. In recent years, it has been required to further improve the corrosion resistance of electrogalvanized steel sheets.
As a method of improving the corrosion resistance of the electrogalvanized steel sheet, it is conceivable to increase the coating amount (basis weight) of the galvanized layer. However, if the plating amount of the electrogalvanized steel sheet is increased, the workability and weldability are deteriorated.
 また、電気亜鉛めっき鋼板の亜鉛めっき層に代えて合金めっき層を形成することは、耐食性の向上を図る上で有力な手段である。合金めっき層の種類および組成いかんによっては、鋼板の耐食性が向上し、溶接性にも優れる(例えば、非特許文献1参照)。しかし、亜鉛めっき層に代えて合金めっき層を形成する場合には、製造コストの増大を回避することが難しい。このため、合金めっき層の更なる性能向上による低目付量化が求められている。 Also, forming an alloy plating layer in place of the zinc plating layer of an electrogalvanized steel sheet is an effective means for improving the corrosion resistance. Depending on the type and composition of the alloy plating layer, the corrosion resistance of the steel sheet is improved and the weldability is also excellent (see Non-Patent Document 1, for example). However, when forming an alloy plating layer instead of a zinc plating layer, it is difficult to avoid an increase in manufacturing cost. For this reason, it is required to reduce the areal weight by further improving the performance of the alloy plating layer.
 電気亜鉛めっき鋼板の亜鉛めっき層に、バナジウム元素を含有させることにより、耐食性を向上させることが検討されている。例えば、特許文献1~5には、陰極である鋼板表面に、Zn-V酸化物を複合電析させる技術が記載されている。
 このような技術によって得られた析出層には、通常、水酸化物が含まれる。例えば、特許文献5に記載の技術によって得られた表面処理鋼板の析出層の表面を、本発明者らがFT-IR法の反射法によって評価したところ、この析出層の表面において、酸化物を示す1600~650cm-1のピーク面積に対する、水酸化物を示す3600cm-1のピーク面積の比が約0.4以上であった(表2-1及び表2-2の試験No.44及び試験No.45参照)。
It has been studied to improve the corrosion resistance by adding vanadium element to the galvanized layer of the electrogalvanized steel sheet. For example, Patent Documents 1 to 5 describe techniques for complex electrodeposition of Zn—V oxide on the surface of a steel plate that is a cathode.
The deposited layer obtained by such a technique usually contains hydroxide. For example, when the inventors of the present invention evaluated the surface of the deposited layer of the surface-treated steel sheet obtained by the technique described in Patent Document 5 by the reflection method of the FT-IR method, oxides were found on the surface of the deposited layer. The ratio of the peak area of 3600 cm −1 showing hydroxide to the peak area of 1600 to 650 cm −1 shown was about 0.4 or more (Test No. 44 and test in Table 2-1 and Table 2-2). No. 45).
特許第5273316号公報Japanese Patent No. 5273316 特開2011-236471号公報JP, 2011-236471, A 特開2013-185199号公報JP, 2013-185199, A 特開2014-114503号公報JP, 2014-114503, A 特開2013-108183号公報JP, 2013-108183, A
 電気めっき法によって、鋼板表面に、亜鉛と、バナジウムの酸化物および水酸化物もしくはジルコニウムの酸化物および水酸化物とを含む層(析出層)を形成させた表面処理鋼板では、当該析出層に含まれるバナジウム又はジルコニウムが表面処理鋼板の平面耐食性に寄与する。しかしながら、従来の表面処理鋼板では、析出層と鋼板との界面の密着性の更なる向上が求められている。特に、表面処理鋼板では、曲げ等の加工を加えた際に析出層が鋼板から剥離しないことが望まれている。 In the surface-treated steel sheet on which a layer (precipitation layer) containing zinc and vanadium oxide and hydroxide or zirconium oxide and hydroxide is formed on the steel sheet surface by electroplating, Vanadium or zirconium contained contributes to the plane corrosion resistance of the surface-treated steel sheet. However, in the conventional surface-treated steel sheet, it is required to further improve the adhesiveness at the interface between the deposited layer and the steel sheet. In particular, in the case of a surface-treated steel sheet, it is desired that the deposited layer does not peel off from the steel sheet when subjected to bending or other processing.
 本発明は、このような事情に鑑みてなされたものであり、平面耐食性と加工部の密着性とに優れた表面処理鋼板、及びその製造方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface-treated steel sheet excellent in flat surface corrosion resistance and adhesion of a processed portion, and a manufacturing method thereof.
 本発明者らは、表面処理鋼板の平面耐食性と加工部の密着性とを両立させるべく鋭意検討を行った結果、以下のような新たな知見を得た。なお、「加工部の密着性」とは、曲げ等の加工を加えた際の加工部における鋼板と析出層との密着性を意味する。以下、本明細書では「加工部密着性」と表記する場合がある。 The inventors of the present invention have earnestly studied in order to achieve both the plane corrosion resistance of the surface-treated steel sheet and the adhesion of the processed part, and as a result, the following new findings have been obtained. The "adhesion of the processed portion" means the adhesion between the steel sheet and the deposited layer in the processed portion when the processing such as bending is applied. Hereinafter, in this specification, it may be referred to as "processed portion adhesion".
 例えば、析出層中の亜鉛の含有比率を多くすると、加工部密着性が良好となるが、一方で平面耐食性が低下する。そのため、亜鉛と、バナジウムもしくはジルコニウムを含む析出層を備えた従来の表面処理鋼板において、加工部密着性と平面耐食性を両立することは困難であった。
 そこで本発明者は、上記課題を解決するために、析出層の組成、特にバナジウムもしくはジルコニウムの水酸化物および酸化物に着目し鋭意研究した。その結果、驚くべきことに、加工部密着性は、酸化物に対する水酸化物の比率がある一定値以下に少ない場合に優れ、かつ、この水酸化物と酸化物の比率は平面耐食性には影響しないことを見出した。
For example, if the content ratio of zinc in the deposited layer is increased, the adhesion of the processed portion is improved, but the flat corrosion resistance is reduced. Therefore, it has been difficult to achieve both the adhesion of the machined portion and the planar corrosion resistance in the conventional surface-treated steel sheet having a precipitation layer containing zinc and vanadium or zirconium.
Therefore, in order to solve the above problems, the present inventor has conducted diligent research by paying attention to the composition of the deposited layer, particularly the hydroxide and oxide of vanadium or zirconium. As a result, surprisingly, the adhesion of the processed part is excellent when the ratio of hydroxide to oxide is less than a certain value, and this ratio of hydroxide and oxide affects the flat corrosion resistance. I did not find it.
 本発明は以上のような知見に基づいてなされたものであり、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and its gist is as follows.
[1] 鋼板と、
 前記鋼板の片面または両面に形成された金属亜鉛を含む析出層と、を備え、
 前記析出層は、さらに、バナジウム酸化物、バナジウム水酸化物、ジルコニウム酸化物及びジルコニウム水酸化物からなる群から選択される一種以上を含み、
 前記析出層の表面をFT-IR法の反射法によって測定して得られた赤外吸収スペクトルにおいて、酸化物を示す1600~650cm-1のピーク面積Sに対する水酸化物を示す3600cm-1のピーク面積Sとの比S/Sが0以上0.3以下であることを特徴とする表面処理鋼板。
[2] 前記析出層に含まれる金属亜鉛量をa(g/m)とし、前記析出層に含まれる前記バナジウム酸化物および前記バナジウム水酸化物の合計量、もしくは前記ジルコニウム酸化物および前記ジルコニウム水酸化物の合計量を金属換算でb(g/m)としたとき、100b/(a+b)が0.1以上50以下であることを特徴とする、[1]に記載の表面処理鋼板。
[3] 前記析出層に含まれる金属亜鉛量をa(g/m)とし、前記析出層に含まれる前記バナジウム酸化物および前記バナジウム水酸化物の合計量、もしくは前記ジルコニウム酸化物および前記ジルコニウム水酸化物の合計量を金属換算でb(g/m)としたとき、100b/(a+b)が1.0以上20以下であることを特徴とする、[1]に記載の表面処理鋼板。
[4] 前記析出層の付着量が1.0g/m以上50.0g/m以下であることを特徴とする、[1]~[3]の何れか一項に記載の表面処理鋼板。
[5] 前記析出層が、前記金属亜鉛を含む第1相と、バナジウム酸化物またはバナジウム水酸化物の少なくとも一方、もしくはジルコニウム酸化物またはジルコニウム水酸化物の少なくとも一方を含む第2相とを有し、
 前記第1相が、前記鋼板の厚み方向に成長した複数のデンドライト状の柱状結晶相であり、前記第2相が、前記第1相の周囲に形成された非晶質相であることを特徴とする[1]~[4]の何れか一項に記載の表面処理鋼板。
[6] 前記析出層の表面に1層以上の皮膜を有することを特徴とする[1]~[5]の何れか一項に記載の表面処理鋼板。
[7] 陰極電解処理によって、鋼板の片面または両面に析出層を形成する工程と、
 前記析出層を熱処理する工程と、
を備え、
 陰極電解処理溶液が、亜鉛化合物と、バナジウム化合物またはジルコニウム化合物の少なくとも一方とを含み、
 前記陰極電解処理溶液における、Vイオン濃度(g/l)またはZrイオン濃度(g/l)と、Znイオン濃度(g/l)との比が0.2~0.9であり、
 前記陰極電解処理溶液のpHが1.0~4.0であり、
 前記陰極電解処理の開始から終了までの間に、0.01秒以上の無通電時間を1回以上設け、
 前記陰極電解処理の前記無通電時間における前記陰極電解処理溶液の流速を0.05m/秒以上5.00m/秒以下とし、
 前記熱処理における前記析出層の最高温度を100℃以上350℃以下とし、
 前記熱処理における平均昇温速度を40℃/秒以上とし、
 前記熱処理において、前記析出層の温度が100℃以上の温度になってから前記析出層の冷却を開始するまでの間に、0.5秒以上5秒以内の無加熱時間を設ける
ことを特徴とする表面処理鋼板の製造方法。
[1] Steel plate,
A precipitation layer containing metallic zinc formed on one or both sides of the steel sheet;
The deposition layer further contains one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide,
In the infrared absorption spectrum obtained by measuring the surface of the deposited layer by the reflection method of FT-IR method, the peak area S 1 at 1600 to 650 cm −1 indicating an oxide and the peak area S 1 at 3600 cm −1 indicating a hydroxide. A surface-treated steel sheet having a ratio S 2 /S 1 with respect to a peak area S 2 of 0 or more and 0.3 or less.
[2] The amount of metallic zinc contained in the deposited layer is a (g/m 2 ), and the total amount of the vanadium oxide and vanadium hydroxide contained in the deposited layer, or the zirconium oxide and the zirconium. The surface-treated steel sheet according to [1], wherein 100b/(a+b) is 0.1 or more and 50 or less, where b (g/m 2 ) is the total amount of hydroxides in terms of metal. ..
[3] The amount of metallic zinc contained in the deposited layer is a (g/m 2 ), and the total amount of the vanadium oxide and vanadium hydroxide contained in the deposited layer, or the zirconium oxide and the zirconium. The surface-treated steel sheet according to [1], wherein 100b/(a+b) is 1.0 or more and 20 or less when the total amount of hydroxides is b (g/m 2 ) in terms of metal. ..
[4], wherein the adhered amount of the deposition layer is 1.0 g / m 2 or more 50.0 g / m 2 or less, [1] the surface treated steel sheet according to any one of - [3] ..
[5] The deposition layer has a first phase containing the metallic zinc and a second phase containing at least one of vanadium oxide and vanadium hydroxide, or at least one of zirconium oxide and zirconium hydroxide. Then
The first phase is a plurality of dendrite-like columnar crystal phases grown in the thickness direction of the steel sheet, and the second phase is an amorphous phase formed around the first phase. The surface-treated steel sheet according to any one of [1] to [4].
[6] The surface-treated steel sheet according to any one of [1] to [5], which has one or more coatings on the surface of the deposited layer.
[7] A step of forming a deposit layer on one or both surfaces of the steel sheet by cathodic electrolysis treatment,
Heat-treating the deposited layer,
Equipped with
The cathodic electrolysis solution contains a zinc compound and at least one of a vanadium compound or a zirconium compound,
The ratio of V ion concentration (g/l) or Zr ion concentration (g/l) to Zn ion concentration (g/l) in the cathodic electrolytic treatment solution is 0.2 to 0.9,
The pH of the cathodic electrolytic treatment solution is 1.0 to 4.0,
Between the start and the end of the cathodic electrolysis treatment, a non-energization time of 0.01 seconds or more is provided once or more,
The flow rate of the cathodic electrolysis solution during the non-energization time of the cathodic electrolysis treatment is 0.05 m/sec or more and 5.00 m/sec or less,
The maximum temperature of the deposited layer in the heat treatment is 100° C. or higher and 350° C. or lower,
The average heating rate in the heat treatment is 40° C./sec or more,
In the heat treatment, a non-heating time of 0.5 seconds or more and 5 seconds or less is provided between when the temperature of the deposition layer is 100° C. or higher and when the cooling of the deposition layer is started. Method for producing surface-treated steel sheet.
 本発明によれば、平面耐食性と加工部の密着性とに優れる表面処理鋼板、及びその製造方法を提供できる。 According to the present invention, it is possible to provide a surface-treated steel sheet excellent in flat surface corrosion resistance and adhesion of a processed portion, and a manufacturing method thereof.
本実施形態の表面処理鋼板を製造する際に好適に用いられる陰極電解装置の模式図である。It is a schematic diagram of the cathode electrolysis apparatus suitably used when manufacturing the surface-treated steel plate of this embodiment. 本実施形態の表面処理鋼板の析出層のIRスペクトルを説明する模式図である。It is a schematic diagram explaining the IR spectrum of the precipitation layer of the surface-treated steel plate of this embodiment.
 以下に本発明の一実施形態に係る表面処理鋼板について詳細に説明する。 The surface-treated steel sheet according to one embodiment of the present invention will be described in detail below.
 本実施形態の表面処理鋼板は、鋼板と、鋼板の片面または両面に形成された金属亜鉛を含む析出層と、を備え、析出層は、さらに、バナジウム酸化物、バナジウム水酸化物、ジルコニウム酸化物及びジルコニウム水酸化物からなる群から選択される一種以上を含み、前記析出層の表面をFT-IR法の反射法によって測定して得られた赤外吸収スペクトルにおいて、酸化物を示す1600~650cm-1のピーク面積Sに対する水酸化物を示す3600cm-1のピーク面積Sとの比S/Sが0以上0.3以下である表面処理鋼板である。 The surface-treated steel sheet of the present embodiment includes a steel sheet and a deposition layer containing zinc metal formed on one side or both sides of the steel sheet, and the deposition layer further includes vanadium oxide, vanadium hydroxide, and zirconium oxide. And 1600 to 650 cm showing an oxide in an infrared absorption spectrum obtained by measuring the surface of the deposited layer by a reflection method of FT-IR method, containing at least one selected from the group consisting of and zirconium hydroxide. The surface-treated steel sheet has a ratio S 2 /S 1 of the peak area S 1 of −1 to the peak area S 2 of 3600 cm −1 indicating a hydroxide of 0 to 0.3.
 本実施形態において、析出層を形成する下地となる鋼板は、特に限定されるものではない。例えば、鋼板として、極低C型(フェライト主体組織)、Al-k型(フェライト中にパーライトを含む組織)、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)、微細結晶型(フェライト主体組織)等、いずれの型の鋼板を用いてもよく、板厚にも制限はない。 In the present embodiment, the steel sheet that serves as the base for forming the precipitation layer is not particularly limited. For example, as a steel sheet, ultra low C type (ferrite-based structure), Al-k type (structure containing pearlite in ferrite), two-phase structure type (eg structure containing martensite in ferrite, bainite in ferrite) are used. Any type of steel sheet may be used, such as a microstructure that includes retained microstructure, a microstructure that includes retained austenite in ferrite, a microstructure that includes retained austenite in ferrite, and there is no limitation on the plate thickness.
 本実施形態では、鋼板上に金属亜鉛と、バナジウム酸化物、バナジウム水酸化物、ジルコニウム酸化物及びジルコニウム水酸化物からなる群から選択される一種以上(バナジウム酸化物または水酸化物の少なくとも一方、もしくは、ジルコニウム酸化物または水酸化物の少なくとも一方)とを含む析出層が形成されている。析出層に金属亜鉛を含むことにより、析出層に犠牲防食性を付与でき、さらに、バナジウム酸化物、バナジウム水酸化物、ジルコニウム酸化物及びジルコニウム水酸化物からなる群から選択される一種以上を含むことで平面耐食性を確保することができる。 In the present embodiment, metal zinc on the steel plate, one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide (at least one of vanadium oxide or hydroxide, Alternatively, a deposited layer containing zirconium oxide and/or hydroxide is formed. By including metallic zinc in the deposit layer, sacrificial corrosion resistance can be imparted to the deposit layer, and further, one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide. Therefore, flat corrosion resistance can be secured.
 また本実施形態では、析出層について、FT-IR法(フーリエ変換赤外分光光度法)の反射法によって前記析出層の表面を測定して得られた赤外吸収スペクトルにおいて、酸化物を示す1600~650cm-1の吸収のピーク面積Sに対する水酸化物を示す3600cm-1の吸収のピーク面積Sの比S/Sが0.3以下である。 Further, in the present embodiment, in the infrared absorption spectrum obtained by measuring the surface of the deposited layer by a reflection method of FT-IR method (Fourier transform infrared spectrophotometry), 1600 showing oxide is shown. ratio S 2 / S 1 between the peak area S 2 of the absorption of 3600 cm -1 indicating the hydroxide to the peak area S 1 of the absorption of ~ 650 cm -1 it is 0.3 or less.
 本発明者らの鋭意検討の結果、析出層において酸化物に対する水酸化物の比率をある一定値以下に低減した場合、平面耐食性に影響を及ぼすことなく加工後の析出層と鋼板との間の密着性(加工部密着性)を向上させ得ることを知見した。すなわち、本実施形態では、前記S/Sが0.3以下となるよう、酸化物に対する水酸化物の比率を下げることとし、これにより、加工部密着性と平面耐食性とを兼備した表面処理鋼板を得ることができる。S/Sが0.3超であると、加工後の加工部における析出層と鋼板との密着性が劣るため、S/Sは0.3以下とし、好ましくは0.2以下とする。なお、析出層中における水酸化物は加工部密着性の観点から少ないほうが好ましく、S/Sは0でもよいが、後述する製造方法における制御条件の厳格化に伴うコスト増大の観点から、S/Sは0.1以上としてもよい。 As a result of diligent studies by the present inventors, when the ratio of hydroxide to oxide in the deposited layer is reduced to a certain value or less, between the deposited layer and the steel sheet after working without affecting the planar corrosion resistance. It was found that the adhesion (adhesion of the processed portion) can be improved. That is, in the present embodiment, the ratio of hydroxide to oxide is reduced so that the S 2 /S 1 is 0.3 or less, whereby the surface having both the adhesion of the processed portion and the flat corrosion resistance is obtained. A treated steel plate can be obtained. When S 2 / S 1 is at greater than 0.3, the adhesion between the deposited layer and the steel sheet in the processing section after machining is poor, S 2 / S 1 is set to 0.3 or less, preferably 0.2 or less And In addition, it is preferable that the amount of hydroxide in the deposited layer is small from the viewpoint of the adhesion of the processed portion, and S 2 /S 1 may be 0, but from the viewpoint of cost increase due to stricter control conditions in the manufacturing method described later, S 2 /S 1 may be 0.1 or more.
 なお、析出層は金属亜鉛と、バナジウム及び/又はジルコニウムとを含有する。ここで、析出層にバナジウムを含む場合の前述の「酸化物」、「水酸化物」とはそれぞれバナジウム酸化物、バナジウム水酸化物であり、析出層にジルコニウムを含む場合の前述の「酸化物」、「水酸化物」とはそれぞれジルコニウム酸化物、ジルコニウム水酸化物を示す。析出層が金属亜鉛、バナジウム、及びジルコニウムを含む場合、「酸化物」とは、バナジウム酸化物及びジルコニウム酸化物の混合物を示し、「水酸化物」とは、バナジウム水酸化物及びジルコニウム水酸化物の混合物を示す。 Note that the deposited layer contains zinc metal and vanadium and/or zirconium. Here, the above-mentioned "oxide" when the deposition layer contains vanadium, and "hydroxide" are vanadium oxide and vanadium hydroxide, respectively, and the above-mentioned "oxide" when the deposition layer contains zirconium. The terms "and hydroxide" refer to zirconium oxide and zirconium hydroxide, respectively. When the deposited layer contains metallic zinc, vanadium, and zirconium, "oxide" indicates a mixture of vanadium oxide and zirconium oxide, and "hydroxide" means vanadium hydroxide and zirconium hydroxide. Shows a mixture of.
 なお、S/Sの測定にあたっては、表面処理鋼板の表面の10箇所以上において測定を行い、その平均値を算出するものとする。ここで、測定箇所同士の間隔は、1mm以上とする。ただし、供試材の大きさが不十分であり、十分な測定間隔を確保しながら10箇所での測定を行うことが困難である場合は、測定間隔を縮めたり測定箇所数を減らしたりすることが許容される。
 FT-IR法の反射法による測定は、原則的に、析出層の表面を測定する。また、測定方法としては、原則的に、高感度反射法(RAS法:Reflection Absorption Spectrometry)とする。しかし、析出層表面に塗膜などの皮膜が付与されている場合に、塗膜を除去して析出層の表面を高感度反射法によって測定することが困難な場合がある。この場合は、析出層の断面をCP(クロスセクションポリッシャ)加工などで切り出したのち、EPMAなど一般的に知られている元素分析装置により、塗膜などの皮膜に由来する炭素を含まない層を析出層として特定し、当該析出層をFT-IR法の顕微反射法によって測定するとよい。
Incidentally, the In measuring S 2 / S 1, performs a measurement in more than 10 points of the surface of the surface-treated steel sheet, intended to calculate the average value. Here, the distance between the measurement points is 1 mm or more. However, if the size of the test material is insufficient and it is difficult to perform measurement at 10 points while ensuring a sufficient measurement interval, shorten the measurement interval or reduce the number of measurement points. Is acceptable.
In the FT-IR reflection method, the surface of the deposited layer is measured in principle. Further, as a measuring method, in principle, a high-sensitivity reflection method (RAS method: Reflection Absorption Spectrometry) is used. However, when a film such as a coating film is applied to the surface of the deposition layer, it may be difficult to remove the coating film and measure the surface of the deposition layer by the high-sensitivity reflection method. In this case, after the cross section of the deposited layer is cut out by CP (cross section polisher) processing or the like, a carbon-free layer derived from the coating film such as a coating film is analyzed by a generally known elemental analyzer such as EPMA. It is advisable to identify the deposited layer and measure the deposited layer by the microscopic reflection method of the FT-IR method.
 また本実施形態では、析出層に含まれる金属亜鉛量(付着量)をa(g/m)とし、析出層に含まれるバナジウムの酸化物および水酸化物の合計量、もしくはジルコニウムの酸化物および水酸化物の合計量(付着量)を金属換算でb(g/m)としたとき、100b/(a+b)が0.1以上50以下であることが好ましい。100b/(a+b)が0.1未満であるとバナジウムやジルコニウムによる平面耐食性の向上効果が十分に発揮されず、析出層の平面耐食性が劣る。一方、100b/(a+b)が50超であると析出層の疵部耐食性に劣る。なお100b/(a+b)は、1.0以上、20以下であると平面耐食性及び疵部耐食性が優れるため特に好ましい。なお、析出層がバナジウム化合物及びジルコニウム化合物の両方を含有する場合、bはバナジウム酸化物、バナジウム水酸化物、ジルコニウム酸化物、及びジルコニウム水酸化物の金属換算での総量である。 In the present embodiment, the amount of metallic zinc (adhesion amount) contained in the deposited layer is a (g/m 2 ), and the total amount of vanadium oxide and hydroxide contained in the deposited layer or zirconium oxide. When the total amount (adhesion amount) of the hydroxide is b (g/m 2 ) in terms of metal, 100b/(a+b) is preferably 0.1 or more and 50 or less. When 100b/(a+b) is less than 0.1, the effect of improving planar corrosion resistance by vanadium or zirconium is not sufficiently exhibited, and the planar corrosion resistance of the deposited layer is poor. On the other hand, when 100b/(a+b) is more than 50, the corrosion resistance of the deposited layer on the flaws is poor. Note that 100b/(a+b) is particularly preferably 1.0 or more and 20 or less because the flat surface corrosion resistance and the flaw corrosion resistance are excellent. When the deposited layer contains both a vanadium compound and a zirconium compound, b is the total amount of vanadium oxide, vanadium hydroxide, zirconium oxide, and zirconium hydroxide in terms of metal.
 析出層に含まれる金属亜鉛量a(g/m)、バナジウムの酸化物および水酸化物の合計量、もしくはジルコニウムの酸化物および水酸化物の金属換算での合計量b(g/m)は、析出層を酸で溶解し、溶解後の溶液中のZn量、V量及びZr量をICP(Inductively Coupled Plasma)発光分光分析法によって測定することで、求めることができる。析出層を分析する場合は、鋼板が溶解しないよう塩酸等にインヒビターを添加した塩酸で析出層を溶解するとよい。 The amount of metallic zinc a (g/m 2 ) contained in the deposited layer, the total amount of vanadium oxides and hydroxides, or the total amount of zirconium oxides and hydroxides b (g/m 2 in terms of metal). ) Can be determined by dissolving the deposited layer with an acid and measuring the amount of Zn, the amount of V, and the amount of Zr in the solution after the dissolution by ICP (Inductively Coupled Plasma) emission spectroscopy. When analyzing the deposited layer, it is advisable to dissolve the deposited layer with hydrochloric acid prepared by adding an inhibitor to hydrochloric acid or the like so that the steel sheet does not dissolve.
 また、析出層の付着量は、1.0g/m以上50.0g/m以下であることが好ましい。析出量の付着量を1.0g/m以上にすることで、表面処理鋼板の平面耐食性を更に向上させることができる。また、析出量の付着量を50.0g/m以下にすることで、製造コストを抑制し、また、析出層と鋼板との密着性を向上させることができる。これらの観点から、析出層の付着量が3.0g/m以上40.0g/m以下であることがより好ましい。 Further, the adhesion amount of deposition layer is preferably 1.0 g / m 2 or more 50.0 g / m 2 or less. By setting the amount of deposition to be 1.0 g/m 2 or more, the planar corrosion resistance of the surface-treated steel sheet can be further improved. In addition, by controlling the deposition amount to be 50.0 g/m 2 or less, the manufacturing cost can be suppressed and the adhesion between the deposition layer and the steel sheet can be improved. From these viewpoints, it is more preferred amount of adhesion of the deposited layer is 3.0 g / m 2 or more 40.0 g / m 2 or less.
 析出層の付着量は、鋼板が溶解しないようインヒビターを添加した塩酸で析出層を溶解することで、表面処理鋼板から析出層を除去し、析出層の除去前後での表面処理鋼板の質量変化量から析出層の付着量を求めることができる。 The deposited amount of the deposited layer is the amount of mass change of the surface-treated steel sheet before and after removing the deposited layer from the surface-treated steel sheet by dissolving the deposited layer with hydrochloric acid containing an inhibitor so that the steel sheet does not dissolve. The amount of deposition of the deposited layer can be obtained from this.
 また本実施形態の表面処理鋼板の析出層は、金属亜鉛を含む第1相と、バナジウム酸化物またはバナジウム水酸化物の少なくとも一方、もしくはジルコニウム酸化物またはジルコニウム水酸化物の少なくとも一方を含む第2相とを有する形態であってもよい。さらに、金属亜鉛を含む第1相が鋼板の厚み方向に成長した複数のデンドライト状の柱状結晶相であり、かつ第2相が、この第1相の周囲に形成された非晶質相であってもよい。このような析出層では、第1相であるデンドライト状の柱状結晶相が先に析出され、次いで、第2相が柱状結晶相の周囲に析出された形態を有している。 In addition, the deposition layer of the surface-treated steel sheet of the present embodiment includes a first phase containing metallic zinc and a second phase containing at least one of vanadium oxide or vanadium hydroxide, or at least one of zirconium oxide or zirconium hydroxide. It may have a form having a phase. Furthermore, the first phase containing metallic zinc is a plurality of dendrite-like columnar crystal phases grown in the thickness direction of the steel sheet, and the second phase is an amorphous phase formed around this first phase. May be. In such a precipitation layer, the dendrite-like columnar crystal phase that is the first phase is first precipitated, and then the second phase is precipitated around the columnar crystal phase.
 第1相のデンドライト状の柱状結晶相は、金属亜鉛のみから形成されていてもよく、金属亜鉛とともに、鉄やニッケルなどの他の金属成分が含まれていてもよい。なお析出層は、金属元素として鉄が0.1質量%以上7質量%以下含まれると溶接性に優れるため、好適である。また、第1相のデンドライト状の柱状結晶相は、析出層の厚み方向に沿って鋼板側から析出層表面側に向けて成長し、析出層表面に向けて枝分かれした構造を有している。 The dendrite-shaped columnar crystal phase of the first phase may be formed only of metallic zinc, or may contain other metallic components such as iron and nickel together with metallic zinc. It is preferable that the deposition layer contains 0.1% by mass or more and 7% by mass or less of iron as a metal element because the weldability is excellent. The dendrite-like columnar crystal phase of the first phase has a structure that grows from the steel sheet side toward the precipitation layer surface side along the thickness direction of the precipitation layer and branches toward the precipitation layer surface.
 第2相は、バナジウム酸化物またはバナジウム水酸化物の少なくとも一方、もしくはジルコニウム酸化物またはジルコニウム水酸化物の少なくとも一方を含む他に、亜鉛酸化物を含んでいてもよい。第2相は、デンドライト状の第1相の周囲に形成されている。析出層の形成の際に、デンドライト状の柱状結晶からなる第1相が先に形成され、その後、非晶質相からなる第2相が第1相の周囲に形成される。バナジウム酸化物と水酸化物、もしくはジルコニウム酸化物と水酸化物と、亜鉛酸化物とを含むことで、析出層にバリア性を付与できる。また、第2相が酸化物または水酸化物を主体とするので、第2相に塗膜を形成した場合に、塗装密着性を確保できる。 The second phase may contain zinc oxide in addition to at least one of vanadium oxide or vanadium hydroxide, or at least one of zirconium oxide or zirconium hydroxide. The second phase is formed around the dendrite-shaped first phase. During the formation of the precipitation layer, the first phase composed of dendrite columnar crystals is formed first, and then the second phase composed of the amorphous phase is formed around the first phase. By containing vanadium oxide and hydroxide, or zirconium oxide and hydroxide, and zinc oxide, barrier properties can be imparted to the deposited layer. Further, since the second phase is mainly composed of oxide or hydroxide, it is possible to secure coating adhesion when a coating film is formed on the second phase.
 第1相の金属亜鉛を含むデンドライト状の柱状結晶相は、透過型電子顕微鏡(TEM)を用いて析出層断面から電子線回折を行った場合に、結晶構造に起因する回折パターンが得られる。一方、第2相については、結晶構造に起因する回折パターンが得られず、非晶質であると判断される。 The first phase of the dendrite-like columnar crystal phase containing metallic zinc gives a diffraction pattern due to the crystal structure when electron beam diffraction is performed from the cross section of the deposited layer using a transmission electron microscope (TEM). On the other hand, regarding the second phase, a diffraction pattern due to the crystal structure is not obtained, and it is judged that the second phase is amorphous.
 以上説明したような析出層は、1層のみ設けられていてもよいし、複数層が積層された状態で設けられていてもよい。析出層が複数層設けられている場合、複数の析出層のうち1層以上が本実施形態の析出層であればよい。 The deposition layer as described above may be provided in only one layer, or may be provided in a state where a plurality of layers are laminated. When a plurality of deposition layers are provided, at least one of the plurality of deposition layers may be the deposition layer of the present embodiment.
 また、表面処理鋼板が黒色外観を有する用途に用いられるものである場合であって、析出層が複数層設けられている場合は、本実施形態の析出層が最表層に設けられていることが好ましい。 Further, in the case where the surface-treated steel sheet is used for applications having a black appearance, and when a plurality of deposition layers are provided, the deposition layer of the present embodiment may be provided as the outermost layer. preferable.
 また、鋼板と析出層との間には、下地層が設けられていてもよい。下地層は、鋼板と析出層との密着性を向上させるために、必要に応じて設けられる。本実施形態においては、1~300nmの亜鉛とニッケルと鉄とを含む結晶からなる下地層が設けられていることが好ましい。 A base layer may be provided between the steel plate and the deposit layer. The underlayer is provided as necessary to improve the adhesion between the steel sheet and the deposited layer. In this embodiment, it is preferable to provide an underlayer made of a crystal containing zinc, nickel, and iron having a thickness of 1 to 300 nm.
 本実施形態の表面処理鋼板の析出層上には、更に、化成処理膜、塗装膜、有機樹脂皮膜、シランカップリング剤を含む有機ケイ素化合物を含む膜を形成してもよい。塗装膜を形成する場合は、析出層表面に下地層として非クロメート化成膜を形成することが好ましい。これら皮膜を析出層表面に形成することで、表面処理鋼板の平面耐食性をより向上できる。 A chemical conversion treatment film, a coating film, an organic resin film, and a film containing an organosilicon compound containing a silane coupling agent may be further formed on the deposition layer of the surface-treated steel sheet of the present embodiment. When forming a coating film, it is preferable to form a non-chromated film as a base layer on the surface of the deposition layer. By forming these coatings on the surface of the deposited layer, the planar corrosion resistance of the surface-treated steel sheet can be further improved.
 本実施形態の表面処理鋼板は、明度を表すL*値が40以下を示すものとなり、黒色の外観を有する。黒色の外観を有することで、黒色の外観を有する製品の材料など様々な用途に使用できる。 The surface-treated steel sheet of this embodiment has an L* value of 40 or less, which represents lightness, and has a black appearance. By having a black appearance, it can be used for various purposes such as a material for products having a black appearance.
 また、本実施形態の表面処理鋼板は、鋼板上に析出層を形成した例を説明したが、本実施形態はこれに限らず、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板の亜鉛めっき層上に、本実施形態の析出層を形成してもよい。すなわち、鋼板と析出層との間に、別の亜鉛めっき層が形成されていてもよい。別の亜鉛めっき層が形成されることにより、表面処理鋼板の平面耐食性をより向上できる。例えば、腐食物質が析出層を通過した場合であっても、別の亜鉛めっき層によって犠牲防食効果を発揮でき、表面処理鋼板の平面耐食性を向上できる。
 また、当然ながら、本実施形態に係る表面処理鋼板の析出層が、バナジウム化合物(バナジウム酸化物または水酸化物の少なくとも一方)及びジルコニウム化合物(ジルコニウム酸化物または水酸化物の少なくとも一方)の両方を含有してもよい。バナジウム化合物及びジルコニウム化合物は、上述のように、表面処理鋼板の加工部耐食性及び平面耐食性に関して同様の作用効果を奏する。また、バナジウム化合物及びジルコニウム化合物が互いの作用効果を阻害することはない。析出層がバナジウム化合物及びジルコニウム化合物の両方を含有する場合も、S/Sは上述の手順で測定することができる。析出層が、バナジウム化合物及びジルコニウム化合物の両方を含有する場合、析出層の第2相が、バナジウム酸化物またはバナジウム水酸化物の少なくとも一方、及びジルコニウム酸化物またはジルコニウム水酸化物の少なくとも一方を含む形態であってもよい。
Further, the surface-treated steel sheet of the present embodiment has been described as an example in which a precipitation layer is formed on the steel sheet, but the present embodiment is not limited to this, and an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet. The deposit layer of the present embodiment may be formed on the galvanized layer. That is, another galvanized layer may be formed between the steel plate and the deposited layer. By forming another galvanized layer, the planar corrosion resistance of the surface-treated steel sheet can be further improved. For example, even when the corrosive substance passes through the deposition layer, the sacrificial anticorrosion effect can be exhibited by another galvanized layer, and the planar corrosion resistance of the surface-treated steel sheet can be improved.
Further, as a matter of course, the deposition layer of the surface-treated steel sheet according to the present embodiment contains both the vanadium compound (at least one of vanadium oxide and hydroxide) and the zirconium compound (at least one of zirconium oxide and hydroxide). May be included. As described above, the vanadium compound and the zirconium compound have the same action and effect with respect to the corrosion resistance and the flat surface corrosion resistance of the surface-treated steel sheet. Further, the vanadium compound and the zirconium compound do not interfere with each other's action and effect. Even when the deposited layer contains both the vanadium compound and the zirconium compound, S 2 /S 1 can be measured by the procedure described above. When the deposition layer contains both a vanadium compound and a zirconium compound, the second phase of the deposition layer contains at least one of vanadium oxide or vanadium hydroxide and at least one of zirconium oxide or zirconium hydroxide. It may be in the form.
 次に、本実施形態の表面処理鋼板の製造方法を説明する。
 本実施形態の表面処理鋼板は、鋼板の片面または両面に、亜鉛化合物と、バナジウム化合物もしくはジルコニウム化合物を含む溶液を用いて、陰極電解処理により析出層を形成し、その後、析出層を熱処理する方法によって製造できる。具体的には、本実施形態に係る表面処理鋼板の製造方法は、陰極電解処理によって、鋼板の片面または両面に析出層を形成する工程と、析出層を熱処理する工程と、を備え、陰極電解処理溶液が、亜鉛化合物と、バナジウム化合物またはジルコニウム化合物の少なくとも一方とを含み、陰極電解処理溶液における、Vイオン濃度(g/l)またはZrイオン濃度(g/l)と、Znイオン濃度(g/l)との比が0.2~0.9であり、陰極電解処理溶液のpHが1.0~4.0であり、陰極電解処理の開始から終了までの間に、1回以上の無通電時間を設け、陰極電解処理の無通電時間における処理液の流速を0.05m/秒以上5.00m/秒以下とし、熱処理における析出層の最高温度を100℃以上350℃以下とし、熱処理における平均昇温速度を40℃/秒以上とし、熱処理において、析出層の温度が100℃以上の温度になってから析出層の冷却を開始するまでの間に、0.5秒以上5秒以内の無加熱時間を設ける。
Next, a method for manufacturing the surface-treated steel sheet of this embodiment will be described.
The surface-treated steel sheet of the present embodiment is a method in which a zinc compound and a solution containing a vanadium compound or a zirconium compound are used to form a deposition layer by cathodic electrolysis on one or both surfaces of the steel sheet, and then the deposition layer is heat-treated. Can be manufactured by Specifically, the method for producing a surface-treated steel sheet according to the present embodiment, by cathodic electrolysis treatment, a step of forming a deposition layer on one or both sides of the steel sheet, and a step of heat treating the deposition layer, cathodic electrolysis The treatment solution contains a zinc compound and at least one of a vanadium compound and a zirconium compound, and the V ion concentration (g/l) or Zr ion concentration (g/l) and the Zn ion concentration (g /L) is 0.2 to 0.9, the pH of the cathodic electrolysis treatment solution is 1.0 to 4.0, and the pH of the cathodic electrolysis treatment is not less than 1 time. A non-energization time is provided, the flow rate of the treatment liquid during the non-energization time of the cathodic electrolysis treatment is 0.05 m/sec or more and 5.00 m/sec or less, and the maximum temperature of the deposition layer in the heat treatment is 100° C. or more and 350° C. or less. In the heat treatment, the average rate of temperature rise is 40° C./sec or more, and 0.5 seconds or more and 5 seconds or less between the temperature of the precipitation layer is 100° C. or more and the cooling of the precipitation layer is started. No heating time is provided.
 陰極電解処理で用いる溶液(陰極電解処理溶液)としては、Znイオン、及びVイオン及び/又はZrイオンを含有する溶液を用いることができ、この溶液を用いて鋼板を陰極電解処理することで析出層を作製することができる。Znイオン、Vイオン及び/又はZrイオンを含む溶液は、Zn化合物、V化合物、Zr化合物を含むものが用いられる。陰極電解処理溶液の一例として、具体的には、無機酸、例えば硫酸の水溶液に、硫酸Zn、酸化バナジル又は硝酸ジルコニルを溶解することによって得ることができる。 As a solution used in the cathodic electrolysis treatment (cathodic electrolysis treatment solution), a solution containing Zn ions and V ions and/or Zr ions can be used. Precipitation is obtained by subjecting a steel sheet to cathodic electrolysis treatment using this solution. Layers can be made. As the solution containing Zn ions, V ions and/or Zr ions, a solution containing Zn compounds, V compounds and Zr compounds is used. As an example of the cathodic electrolytic treatment solution, specifically, it can be obtained by dissolving Zn sulfate, vanadyl oxide or zirconyl nitrate in an aqueous solution of an inorganic acid such as sulfuric acid.
 Zn化合物としては、金属Zn、ZnSO・7HO、ZnCOなどの可溶性の塩が挙げられる。これらは単独で用いてもよく、2種類以上を併用してもよい。 The Zn compound, a metal Zn, ZnSO 4 · 7H 2 O , include soluble salts such as ZnCO 3. These may be used alone or in combination of two or more.
 また、Zr化合物としては、溶液中でZrO2+イオンを形成するものが好ましく、例えば、硝酸ジルコニル、硫酸ジルコニル、塩化硝酸酸化ジルコニウム等の可溶性の塩を例示できる。これらは単独で用いてもよく、2種類以上を併用してもよい。 Further, the Zr compound is preferably one that forms ZrO 2+ ions in a solution, and examples thereof include soluble salts such as zirconyl nitrate, zirconyl sulfate, and zirconium oxynitride chloride. These may be used alone or in combination of two or more.
 また、V化合物としては、酸化バナジル、メタバナジン酸アンモン(V)、メタバナジン酸カリウム(V)、メタバナジン酸ソーダ(V)、VO(C(バナジルアセチルアセトネート(IV))、VOSO・5HO(硫酸バナジル(IV))などが挙げられる。これらのバナジウム化合物の中でも特に、酸化バナジル、VO(C(バナジルアセチルアセトネート(IV))、VOSO・5HO(硫酸バナジル(IV))を用いることが好ましい。これらのバナジウム化合物は単独で用いてもよいし、2種類以上を併用して用いてもよい。 As the V compound, vanadyl oxide, ammonium metavanadate (V), potassium metavanadate (V), sodium metavanadate (V), VO(C 5 H 7 O 2 ) 2 (vanadyl acetylacetonate (IV)) , VOSO 4 · 5H 2 O (vanadyl sulfate (IV)) and the like. Among these vanadium compounds, oxidation vanadyl, VO (C 5 H 7 O 2) 2 ( vanadyl acetylacetonate (IV)), it is preferable to use a VOSO 4 · 5H 2 O (vanadyl sulfate (IV)). These vanadium compounds may be used alone or in combination of two or more.
 陰極電解処理の溶液中のVイオン濃度(g/l)及び/又はZrイオン濃度(g/l)と、Znイオン濃度(g/l)との比((Vイオン及び/又はZrイオン)/Znイオン)が0.2~0.9である。(Vイオン及び/又はZrイオン)/Znイオンが0.2未満又は0.9超では、Vイオン又はZrイオンが析出層中に取り込まれず、析出層中のバナジウムやジルコニウムの酸化物、水酸化物を十分に確保できないおそれがある。 Ratio of V ion concentration (g/l) and/or Zr ion concentration (g/l) and Zn ion concentration (g/l) in the solution for cathodic electrolysis ((V ion and/or Zr ion)/ Zn ion) is 0.2 to 0.9. When (V ions and/or Zr ions)/Zn ions are less than 0.2 or more than 0.9, V ions or Zr ions are not taken into the deposition layer, and vanadium or zirconium oxide or hydroxide in the deposition layer is not incorporated. You may not be able to secure enough items.
 陰極電解処理の溶液としては、析出層の付着量、ならびに析出層中のバナジウムやジルコニウムの酸化物、水酸化物の含有量を確保するために、pHが1.0~4.0である。pHが1.0未満では、バナジウム及び/又はジルコニウムが析出層中に取り込まれず、析出層中のバナジウム及び/又はジルコニウムの酸化物、水酸化物を十分に確保できない場合がある。pHが4.0超では、溶液中にVイオン及び/又はZrイオンが酸化物として沈殿してしまい、析出層中にバナジウム及び/又はジルコニウムの酸化物、水酸化物として取り込まれなくなる。 The pH of the solution for cathodic electrolysis is 1.0 to 4.0 in order to secure the amount of deposition in the deposited layer and the content of vanadium and zirconium oxides and hydroxides in the deposited layer. If the pH is less than 1.0, vanadium and/or zirconium will not be incorporated into the deposited layer, and the oxides and hydroxides of vanadium and/or zirconium in the deposited layer may not be sufficiently secured. If the pH exceeds 4.0, V ions and/or Zr ions will precipitate in the solution as oxides, and vanadium and/or zirconium oxides and hydroxides will not be incorporated in the precipitation layer.
 なお、陰極電解処理の溶液には、Zr化合物、V化合物、Zn化合物に加えて、必要に応じて、pH調整剤、Zr化合物、V化合物、Zn化合物ではない他の金属化合物、添加剤等を添加してもよい。pH調整剤としては、HSOやNaOHなどが挙げられる。また、添加剤としては、陰極電解処理の溶液の導電性を安定させるNaSOなどが挙げられる。他の金属化合物としては、NiSO・6HOなどのニッケル化合物などが挙げられる。 In addition to the Zr compound, the V compound, and the Zn compound, the solution for the cathodic electrolysis treatment may further contain a pH adjusting agent, a Zr compound, a V compound, and another metal compound other than the Zn compound, an additive, and the like, if necessary. You may add. Examples of the pH adjusting agent include H 2 SO 4 and NaOH. Examples of the additive include Na 2 SO 4 which stabilizes the conductivity of the solution for cathodic electrolysis. Other metal compounds include nickel compounds such as NiSO 4 .6H 2 O.
 また、陰極電解処理の溶液としては、溶液中にNaを0.1mol/l以上を含めてもよい。この場合、溶液の導電性を高めることができ、本実施形態の析出層を容易に形成できる。 The solution for cathodic electrolysis may contain Na + in an amount of 0.1 mol/l or more. In this case, the conductivity of the solution can be increased, and the precipitation layer of this embodiment can be easily formed.
 陰極電解処理の溶液の温度は、特に限定されないが、本実施形態の析出層を容易に効率よく形成するために、40~60℃の範囲であることが好ましい。 The temperature of the solution for the cathodic electrolysis treatment is not particularly limited, but is preferably in the range of 40 to 60° C. in order to easily and efficiently form the deposition layer of this embodiment.
 本実施形態において、陰極電解処理により析出層を形成する際には、電流密度を2A/dm以上150A/dm以下とすることが好ましい。電流密度を上記範囲内とすることで、バナジウム及び/又はジルコニウムの酸化物、水酸化物の含有量ならびに付着量を十分に確保した本実施形態の析出層を容易に形成できる。電流密度が2A/dm未満では、電解処理の速度が小さいため効率的ではない。電流密度が150A/dmを超えると、いわゆる水素発生反応の進行が顕著となり、バナジウム及び/又はジルコニウムの含有量が50質量%以下のめっき層が得られにくくなる。なお、陰極電解処理を行う時間は特に限定されず、電流密度、及び必要とされる析出層の付着量に応じて適宜設定することができる。
 さらに、陰極電解処理により析出層を形成する際には、陰極電解処理の開始から終了までの間に、0.01秒以上の無通電時間を1回以上設け、陰極電解処理の無通電時間における陰極電解処理溶液の流速を0.05m/秒以上5.00m/秒以下とする必要がある。陰極電解処理の開始とは、鋼板への最初の通電を開始したときである。陰極電解処理の終了とは、鋼板への最後の通電を終了したときである。無通電時間とは、鋼板と陰極電解処理溶液との間に電圧を印加していない期間のことである。無通電時間を1回含む陰極電解処理とは、換言すると、通電を2回に分けて行う陰極電解処理のことである。陰極電解処理溶液の流速とは、陰極電解処理溶液と鋼板との間の相対流速のことである。
 本発明者らは、陰極電解処理溶液に無通電時間を設け、この無通電時間において溶液を所定範囲の流速で流すことにより、水酸化物の生成を一層抑制する効果が得られることを知見した。これは、析出層の形成の進展(即ちデンドライト成長)に伴い、鋼板の表面近傍において溶液のpHが上昇するからであると推定される。デンドライト成長を停止させ、この間に溶液を流動させることにより、pHの局所的な上昇が解消され、水酸化物の生成が抑制されていると推定される。
 本発明者らは、実験の結果、0.01秒以上の無通電時間を1回以上設け、無通電時間における陰極電解処理溶液の流速を0.05m/秒以上5.00m/秒以下と規定した。0.01秒以上の無通電時間を設けなかった場合、たとえ通電時間中に溶液が流れていたとしても、pH上昇が十分解消されないこととなる。また、無通電時間における陰極電解処理溶液の流速が0.05m/秒未満であった場合、無通電時間を設けなかった場合と同様の結果となる。一方、無通電時間における陰極電解処理溶液の流速が5.00m/秒超であった場合、析出層の溶解が大きくなるため不適となる。
In the present embodiment, when forming the deposited layer by cathodic electrolytic treatment, it is preferable that the a current density of 2A / dm 2 or more 150A / dm 2 or less. By setting the current density within the above range, it is possible to easily form the deposition layer of the present embodiment in which the contents and the amount of the vanadium and/or zirconium oxide and hydroxide are sufficiently secured. If the current density is less than 2 A/dm 2 , it is not efficient because the electrolytic treatment speed is low. When the current density exceeds 150 A/dm 2 , the so-called hydrogen generation reaction proceeds remarkably, and it becomes difficult to obtain a plating layer having a vanadium and/or zirconium content of 50% by mass or less. The time for performing the cathodic electrolysis treatment is not particularly limited, and can be appropriately set depending on the current density and the required deposition amount of the deposited layer.
Furthermore, when forming the deposited layer by the cathodic electrolysis treatment, a non-energization time of 0.01 seconds or more is provided once or more between the start and the end of the cathodic electrolysis treatment. The flow rate of the cathodic electrolytic treatment solution must be 0.05 m/sec or more and 5.00 m/sec or less. The start of the cathodic electrolysis treatment is when the first energization of the steel sheet is started. The termination of the cathodic electrolysis treatment is when the final energization of the steel sheet is terminated. The non-energization time is a period during which no voltage is applied between the steel plate and the cathodic electrolytic treatment solution. In other words, the cathodic electrolysis treatment including one non-energization time is a cathodic electrolysis treatment in which energization is performed twice. The flow velocity of the cathodic electrolysis solution is the relative flow velocity between the cathodic electrolysis solution and the steel sheet.
The present inventors have found that by providing the cathodic electrolysis solution with a non-energized time and flowing the solution at a flow rate within a predetermined range during this non-energized time, the effect of further suppressing the generation of hydroxide can be obtained. .. It is presumed that this is because the pH of the solution increases near the surface of the steel sheet as the formation of the deposited layer progresses (that is, dendrite growth). It is presumed that by stopping the dendrite growth and allowing the solution to flow during this period, the local increase in pH is eliminated and the generation of hydroxide is suppressed.
As a result of an experiment, the present inventors provided a non-energization time of 0.01 seconds or more once or more, and defined the flow rate of the cathodic electrolysis solution during the non-energization time as 0.05 m/sec or more and 5.00 m/sec or less. did. If the non-energization time of 0.01 seconds or more is not provided, even if the solution is flowing during the energization time, the increase in pH will not be sufficiently eliminated. Further, when the flow rate of the cathodic electrolysis solution during the non-energization time is less than 0.05 m/sec, the same result as when the non-energization time is not provided is obtained. On the other hand, if the flow rate of the cathodic electrolytic treatment solution during the non-energized time is more than 5.00 m/sec, the dissolution of the deposited layer becomes large, which is not suitable.
 上記のように、Znイオン、並びにVイオン及び/又はZrイオンを含有する溶液中で、素材となる鋼板を陰極として電解し析出層を形成したのちに、本実施形態ではさらに、析出層を加熱して、析出層における水酸化物と酸化物の比率を制御する必要がある。 As described above, in a solution containing Zn ions and V ions and/or Zr ions, a steel plate as a raw material is electrolyzed as a cathode to form a deposition layer, and then the deposition layer is further heated in the present embodiment. It is then necessary to control the ratio of hydroxide to oxide in the deposited layer.
 表面処理鋼板の製造する際に、電解条件を調整するだけでは、析出層における水酸化物と酸化物の比率を制御することは容易ではない。その理由は、電解処理に用いる溶液(浴)のpHに関係している。具体的には、電解中、浴中のバナジウムイオン及び/又はジルコニウムイオンが酸化物および/または水酸化物として析出するが、その析出物が酸化物になるか水酸化物になるかは電解中の浴の局所的なpH上昇の仕方による。そのため、電解条件を調整するだけでは、析出層における水酸化物と酸化物の比率の制御は容易ではない。そこで、析出層における水酸化物と酸化物の比率を容易に制御する方法について検討したところ、析出層形成後に、所定条件で加熱処理を施すことで当該比率を制御可能であることを見出した。 When manufacturing a surface-treated steel sheet, it is not easy to control the ratio of hydroxide to oxide in the deposited layer simply by adjusting the electrolysis conditions. The reason is related to the pH of the solution (bath) used for electrolytic treatment. Specifically, during electrolysis, vanadium ions and/or zirconium ions in the bath are precipitated as oxides and/or hydroxides. It depends on whether the precipitates are oxides or hydroxides during electrolysis. Of the local pH rise of the bath. Therefore, it is not easy to control the ratio of hydroxide to oxide in the deposited layer simply by adjusting the electrolysis conditions. Therefore, as a result of investigating a method for easily controlling the ratio of hydroxide to oxide in the deposited layer, it was found that the ratio can be controlled by performing heat treatment under a predetermined condition after forming the deposited layer.
 本実施形態では、陰極電解処理により鋼板表面に析出層を形成した後、40℃/秒以上の平均昇温速度で析出層を加熱する。そして、鋼板温度が100℃以上の温度になってから冷却するまでの間に0.5秒以上5秒以内の加熱しない時間を設ける。このような熱処理を行うことで、析出層の水酸化物を酸化物に変化させながらも、その際に発生する水蒸気が析出層中で膨張し続けることを抑制して、析出層中での空洞の発生を抑制できるようになる。 In the present embodiment, after the deposit layer is formed on the surface of the steel sheet by the cathodic electrolytic treatment, the deposit layer is heated at an average heating rate of 40° C./sec or more. Then, a period of 0.5 seconds or more and 5 seconds or less without heating is provided between the temperature of the steel sheet becoming 100° C. or more and the time of cooling. By performing such heat treatment, while changing the hydroxide of the deposition layer to an oxide, it is possible to prevent the steam generated at that time from continuing to expand in the deposition layer, and to form a cavity in the deposition layer. It becomes possible to suppress the occurrence of.
 本実施形態では、上記のように鋼板表面に析出層を形成した後、40℃/秒以上の平均昇温速度で加熱処理する。そしてさらに、析出層(鋼板)の温度が100℃以上の温度になってから冷却を開始するまでの間に0.5秒以上5秒以内の加熱しない時間を確保する。平均昇温速度が40℃/秒未満の場合、析出層中の水酸化物の酸化物への変化量が小さく、IRスペクトルにおける酸化物を示すピーク面積Sに対する水酸化物を示すピーク面積Sとの比S/Sを十分に低減できなくなり、加工部密着性が劣化するおそれがある。そのため、加熱処理における平均昇温速度は40℃/秒以上とし、好ましくは50℃/秒以上とする。 In the present embodiment, after the precipitation layer is formed on the surface of the steel sheet as described above, heat treatment is performed at an average temperature rising rate of 40° C./sec or more. Further, a time period of 0.5 seconds or more and 5 seconds or less without heating is secured from when the temperature of the deposition layer (steel plate) reaches 100° C. or higher until cooling is started. When the average rate of temperature rise is less than 40° C./sec, the amount of change of the hydroxide in the precipitate layer to the oxide is small, and the peak area S 1 showing the hydroxide is different from the peak area S 1 showing the oxide in the IR spectrum. the ratio S 2 / S 1 between the 2 will not be sufficiently reduced, processability portion adhesiveness may be deteriorated. Therefore, the average heating rate in the heat treatment is 40° C./sec or more, preferably 50° C./sec or more.
 また、析出層(鋼板)の温度が100℃以上の到達温度に達したのち、一定時間加熱を停止して保持した上で冷却を開始することで、IRスペクトルにおける酸化物を示すピーク面積Sに対する水酸化物を示すピーク面積Sとの比S/Sを十分に低減しやすく好適である。到達温度を100℃以上にすることで、水和物から酸化物への変化を進めることができる。また、加熱しない時間が長すぎると、ガス(主に水蒸気)が滞留しS/Sを低減できない可能性があるため、加熱停止時間は5秒以内とする。一方、加熱しない時間が短すぎると、ガス(主に水蒸気)が析出層中で膨張し析出層を脆くして加工部密着性が低下するおそれがあるため0.5秒以上とする。また、析出層(鋼板)の到達温度の上限は、350℃以下が好ましい。350℃超まで加熱すると、析出層の一部が溶解するおそれがある。 Moreover, after the temperature of the precipitation layer (steel plate) reaches the ultimate temperature of 100° C. or higher, heating is stopped for a certain period of time and then held, and then cooling is started, so that the peak area S 1 showing oxides in the IR spectrum is The ratio S 2 /S 1 with respect to the peak area S 2 indicating a hydroxide is easily reduced, which is preferable. By setting the ultimate temperature to 100° C. or higher, the change from hydrate to oxide can be promoted. Further, if the time during which the heating is not performed is too long, the gas (mainly water vapor) may stay and the S 2 /S 1 may not be reduced, so the heating stop time is set to 5 seconds or less. On the other hand, if the non-heating time is too short, the gas (mainly water vapor) may expand in the deposition layer, making the deposition layer brittle and lowering the adhesion of the processed part. Moreover, the upper limit of the ultimate temperature of the precipitation layer (steel plate) is preferably 350° C. or lower. When heated to over 350°C, a part of the deposited layer may be dissolved.
 「平均昇温速度」は、加熱の開始時から加熱の停止までの鋼板の温度上昇幅を、加熱の開始時から加熱の停止までの所要時間で除した値とする。また、到達温度に達した後の「加熱しない時間」とは、加熱を停止してから冷却を開始するまでの時間であり、その間は鋼板温度を保定してもよいし、保定しなくてもよいが、この間は、鋼板温度を100℃以上に維持することが好ましい。 “The average heating rate” is the value obtained by dividing the temperature rise range of the steel sheet from the start of heating to the stop of heating by the time required from the start of heating to the stop of heating. Further, the “time without heating” after reaching the ultimate temperature is the time from when heating is stopped to when cooling is started, during which the steel plate temperature may or may not be fixed. Although good, it is preferable to maintain the steel plate temperature at 100° C. or higher during this period.
 上記加熱処理の方法としては、高周波誘導加熱やレーザ加熱が好ましく、高周波誘導加熱の場合は析出層が鋼板側から加熱されることになるため、より好ましい。また、上記加熱処理後の冷却については、生産性の観点から水冷とすることが好ましく、例えば、スプレー方式により水冷すればよい。 High-frequency induction heating or laser heating is preferable as the above heat treatment method, and in the case of high-frequency induction heating, the precipitation layer is heated from the steel sheet side, which is more preferable. The cooling after the heat treatment is preferably water cooling from the viewpoint of productivity, and may be water cooling by a spray method, for example.
 以上、本実施形態に係る表面処理鋼板の製造方法について説明したが、当該製造方法における1回の陰極電解処理を実施するにあたり、好適に用いることができる製造装置として、図1に示す陰極電解装置を例に挙げて説明する。
 本発明ではこの装置を2つ以上つなげて使用する等で2回以上陰極電解処理を実施し、その間で無通電での時間と流速を制御している。
Although the method for manufacturing the surface-treated steel sheet according to the present embodiment has been described above, the cathode electrolysis apparatus shown in FIG. 1 is a manufacturing apparatus that can be suitably used for carrying out one cathodic electrolysis treatment in the manufacturing method. Will be described as an example.
In the present invention, the cathodic electrolysis treatment is performed twice or more by using two or more of these devices connected to each other, and the time and the flow rate during non-energization are controlled between them.
 図1は、陰極電解装置の一例を示した概略図である。図1において、符号1は鋼板を示し、符号2は電解浴を示し、符号21は電解槽を示し、符号3は陽極を示している。なお、電解浴2は、上述した陰極電解処理用の溶液であることが好ましい。 FIG. 1 is a schematic diagram showing an example of a cathode electrolysis device. In FIG. 1, reference numeral 1 indicates a steel plate, reference numeral 2 indicates an electrolytic bath, reference numeral 21 indicates an electrolytic bath, and reference numeral 3 indicates an anode. The electrolytic bath 2 is preferably the above-mentioned solution for cathodic electrolysis.
 図1において、符号4a、4b、5a、5bは、鋼板1を図1における矢印の方向に移動させて、電解浴2中に鋼板1を通板させるロールを示している。鋼板1の上部に配置されたロール4a、4bはコンダクタロールである。鋼板1は、ロール4a、4bに電気的に接続されることにより、陰極とされる。 In FIG. 1, reference numerals 4a, 4b, 5a, and 5b indicate rolls for moving the steel sheet 1 in the direction of the arrow in FIG. The rolls 4a and 4b arranged on the steel plate 1 are conductor rolls. The steel plate 1 serves as a cathode by being electrically connected to the rolls 4a and 4b.
 電解槽21は、鋼板1の上部に配置される上部槽21aと、鋼板1の下部に配置される下部槽21bとを有している。上部槽21a内および下部槽21b内の鋼板1に隣接する位置には、白金などからなる複数の陽極3が鋼板1との間に所定の間隔を空けて配置されている。各陽極3の鋼板1に対向する面は、鋼板1の表面と略平行となるように配置されている。 The electrolysis tank 21 has an upper tank 21 a arranged above the steel plate 1 and a lower tank 21 b arranged below the steel plate 1. A plurality of anodes 3 made of platinum or the like are arranged in the upper tank 21a and the lower tank 21b adjacent to the steel plate 1 with a predetermined space between the anode 3 and the steel plate 1. The surface of each anode 3 facing the steel plate 1 is arranged so as to be substantially parallel to the surface of the steel plate 1.
 上部槽21a内および下部槽21b内は、電解浴2で満たされている。図1に示すように、電解槽21の上部槽21aと下部槽21bとの間には、水平方向に移動する鋼板1が配置され、鋼板1は電解浴2に浸漬された状態となっている。そして、鋼板1を搬送させることで、電解浴2は鋼板1に対して相対的に流動される流動状態の電解浴2となる。 The upper bath 21a and the lower bath 21b are filled with the electrolytic bath 2. As shown in FIG. 1, a horizontally moving steel plate 1 is arranged between the upper tank 21 a and the lower tank 21 b of the electrolytic bath 21, and the steel plate 1 is immersed in the electrolytic bath 2. .. Then, by transporting the steel sheet 1, the electrolytic bath 2 becomes the electrolytic bath 2 in a fluid state in which the electrolytic bath 2 is relatively fluidized with respect to the steel sheet 1.
 上部槽21aには、上部槽21aに電解浴2を供給する上部供給用配管2aが上部槽21aの上面を貫通するように設けられている。上部供給用配管2aは、上部槽21a内において複数の外周分岐路2cと複数の中間分岐路2d(図1においては1つのみ図示)とに分岐されている。中間分岐路2dは、平面視で隣接する陽極3間に鋼板1の幅方向に沿って複数配置されている。中間分岐路2dは、両側の陽極3と鋼板1との間に向かって電解浴2を供給する開口部を備えている。外周分岐路2cは、平面視で陽極3とロール4a、4bとの間に鋼板1の幅方向に沿って複数配置されている。外周分岐路2cは、陽極3と鋼板1との間に向かって電解浴2を供給する開口部を備えている。 The upper tank 21a is provided with an upper supply pipe 2a for supplying the electrolytic bath 2 to the upper tank 21a so as to penetrate the upper surface of the upper tank 21a. The upper supply pipe 2a is branched into a plurality of outer peripheral branch passages 2c and a plurality of intermediate branch passages 2d (only one is shown in FIG. 1) in the upper tank 21a. A plurality of intermediate branch paths 2d are arranged along the width direction of the steel plate 1 between the adjacent anodes 3 in a plan view. The intermediate branch 2d has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1 on both sides. A plurality of outer peripheral branch paths 2c are arranged along the width direction of the steel sheet 1 between the anode 3 and the rolls 4a and 4b in a plan view. The outer peripheral branch passage 2 c has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1.
 また、上部槽21aには、電解浴2を排出する排出口(不図示)が設けられており、ポンプを備える配管(不図示)を介して、上部供給用配管2aと接続されている。したがって、上部槽21aでは、上部供給用配管2aから供給され、排出口から排出された電解浴2が、ポンプによって、配管を介して再び上部供給用配管2aから供給されて循環される流動状態の電解浴2となっている。 Further, the upper tank 21a is provided with a discharge port (not shown) for discharging the electrolytic bath 2, and is connected to the upper supply pipe 2a via a pipe (not shown) equipped with a pump. Therefore, in the upper tank 21a, the electrolytic bath 2 supplied from the upper supply pipe 2a and discharged from the outlet is supplied by the pump again from the upper supply pipe 2a and circulated. It is an electrolytic bath 2.
 また、下部槽21bには、下部槽21bに電解浴2を供給する下部供給用配管2bが下部槽21bの下面を貫通するように設けられている。下部供給用配管2bは、下部槽21b内において複数の外周分岐路2eと複数の中間分岐路2f(図1においては1つのみ図示)とに分岐されている。中間分岐路2fは、平面視で隣接する陽極3間に鋼板1の幅方向に沿って複数配置されている。中間分岐路2fは、両側の陽極3と鋼板1との間に向かって電解浴2を供給する開口部を備えている。外周分岐路2eは、平面視で陽極3とロール5a、5bとの間に鋼板1の幅方向に沿って複数配置されている。外周分岐路2eは、陽極3と鋼板1との間に向かって電解浴2を供給する開口部を備えている。 Further, the lower tank 21b is provided with a lower supply pipe 2b for supplying the electrolytic bath 2 to the lower tank 21b so as to penetrate the lower surface of the lower tank 21b. The lower supply pipe 2b is branched into a plurality of outer peripheral branch passages 2e and a plurality of intermediate branch passages 2f (only one is shown in FIG. 1) in the lower tank 21b. A plurality of intermediate branch passages 2f are arranged along the width direction of the steel plate 1 between the adjacent anodes 3 in plan view. The intermediate branch passage 2f has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1 on both sides. A plurality of outer peripheral branch passages 2e are arranged along the width direction of the steel plate 1 between the anode 3 and the rolls 5a and 5b in a plan view. The outer peripheral branch passage 2 e has an opening for supplying the electrolytic bath 2 between the anode 3 and the steel plate 1.
 また、下部槽21bには、電解浴2を排出する排出口(不図示)が設けられており、ポンプを備える配管(不図示)を介して、下部供給用配管2bと接続されている。したがって、下部槽21bでは、下部供給用配管2bから供給され、排出口から排出された電解浴2が、ポンプによって、配管を介して再び下部供給用配管2bから供給されて循環される流動状態の電解浴2となっている。 Further, the lower tank 21b is provided with a discharge port (not shown) for discharging the electrolytic bath 2, and is connected to the lower supply pipe 2b through a pipe (not shown) equipped with a pump. Therefore, in the lower tank 21b, the electrolytic bath 2 supplied from the lower supply pipe 2b and discharged from the outlet is supplied by the pump again from the lower supply pipe 2b and circulated. It is an electrolytic bath 2.
 電解槽21内の鋼板に対する電解浴2の相対流速は、3~300m/minの範囲であることが好ましく、20~300m/minの範囲、又は30~200m/minの範囲であることがより好ましい。電解浴2の平均流速が3~300m/minの範囲内である場合、析出層におけるクラックの発生を防止できるとともに、電解浴2から鋼板1の表面へのイオンの供給を支障なく行うことができる。 The relative flow velocity of the electrolytic bath 2 with respect to the steel plate in the electrolytic bath 21 is preferably in the range of 3 to 300 m/min, more preferably in the range of 20 to 300 m/min, or more preferably in the range of 30 to 200 m/min. .. When the average flow velocity of the electrolytic bath 2 is in the range of 3 to 300 m/min, it is possible to prevent the occurrence of cracks in the deposited layer and supply ions from the electrolytic bath 2 to the surface of the steel sheet 1 without any trouble. ..
 図1に示した陰極電解装置は常に通電されており、この装置を2つ以上つなげて使用し、その間で無通電での時間と流速を制御することによって析出層を形成したのちに、析出層に対して上述の熱処理を行うことで、本実施形態に係る析出層を形成することができる。 The cathodic electrolysis apparatus shown in FIG. 1 is always energized. Two or more of these apparatuses are connected and used, and a deposition layer is formed by controlling the time and the flow rate during which there is no energization. By performing the above-mentioned heat treatment on the above, the deposition layer according to the present embodiment can be formed.
 以上の製法によって本実施形態の表面処理鋼板を製造できるが、上記析出層を形成する前に、鋼板の両面に、必要に応じて前処理を行なってもよい。前処理としては、鋼板の両面に厚み1~300nmのニッケルめっきを行なうことが好ましい。 The surface-treated steel sheet of the present embodiment can be produced by the above production method, but both surfaces of the steel sheet may be subjected to pretreatment, if necessary, before forming the above-mentioned precipitation layer. As a pretreatment, it is preferable to perform nickel plating with a thickness of 1 to 300 nm on both surfaces of the steel sheet.
 また、析出層を形成した後、更に、化成処理膜、塗装膜、有機樹脂皮膜、シランカップリング剤を含む有機ケイ素化合物を含む膜を形成してもよい。これらのような皮膜を形成する一例としては、例えば、皮膜を形成する各成分を含む塗料組成物を塗布し、硬化させる方法が挙げられる。具体的には、皮膜を構成する各成分を水などの溶媒中に添加して溶解もしくは分散させた塗料組成物を析出層上に塗布し、塗膜を遠赤外や誘導加熱によって熱乾燥して硬化させる方法が好適である。 Also, after forming the deposited layer, a chemical conversion treatment film, a coating film, an organic resin film, a film containing an organic silicon compound containing a silane coupling agent may be further formed. As an example of forming such a film, for example, there is a method of applying a coating composition containing each component forming the film and curing the coating composition. Specifically, each component constituting the film is added to a solvent such as water and dissolved or dispersed to apply a coating composition on the deposition layer, and the coating film is heat dried by far infrared rays or induction heating. A method of curing by curing is preferable.
 以下に本発明の実施例を示すが、以下に示す実施例は本発明の一例であり、本発明は以下に説明する実施例に制限されるものではない。 Examples of the present invention will be shown below, but the examples shown below are examples of the present invention, and the present invention is not limited to the examples described below.
(1.鋼板)
 鋼板としては、JIS G 3141記載の一般冷延鋼板の絞り用であるSPCDで板厚0.8mmのものを用いた。
(1. Steel plate)
As the steel plate, SPCD for drawing a general cold rolled steel plate described in JIS G 3141 having a plate thickness of 0.8 mm was used.
(2.析出層)
 まず、ZnイオンおよびVイオンを含む溶液と、ZnイオンおよびZrイオンを含む溶液、さらに一部の溶液(溶液32~34)にはFeイオンをさらに含む溶液を作製した。これら溶液は硫酸の中に、硫酸Znと、酸化バナジルもしくは硝酸ジルコニル(溶液32~34にはさらに硫酸鉄)を混合することで作製した。溶液1~34の詳細は表1に示すとおりである。なお表1中の溶液組成(各イオンの質量(g/l))は、使用した硫酸Zn、酸化バナジル、硝酸ジルコニル、硫酸鉄の質量から換算した。また析出層の成分はこれらの溶液成分の量によって調整した。溶液のpHは硫酸の量と水酸化Naの量で調整した。
(2. Deposition layer)
First, a solution containing Zn ions and V ions, a solution containing Zn ions and Zr ions, and some of the solutions (solutions 32 to 34) were prepared containing Fe ions. These solutions were prepared by mixing ZnSulfate and vanadyl oxide or zirconyl nitrate (for solutions 32 to 34, further iron sulfate) in sulfuric acid. The details of the solutions 1 to 34 are as shown in Table 1. In addition, the solution composition (mass (g/l) of each ion) in Table 1 was converted from the masses of Zn sulfate, vanadyl oxide, zirconyl nitrate, and iron sulfate used. The components of the deposited layer were adjusted by the amount of these solution components. The pH of the solution was adjusted by the amount of sulfuric acid and the amount of Na hydroxide.
 次に、これらの溶液1~34に、陰極である上記鋼板を浸漬し、鋼板表面に白金陽極を対抗配置させ、更に、電解溶液を鋼板と白金電極との間に一方向に流すことができる装置を用いて、陰極電解処理を行って、析出層を形成した。電解条件は、溶液温度:50℃、電解時間(合計):1~5秒、電流密度:80~120A/dm、電解溶液の平均流速80mpm(m/min)とした。また、無通電時の流速は、表2-1に記載されている値とした。通電回数は1回~4回の範囲内とした。形成された析出層の成分を表2-1に記載した。 Next, the above-mentioned steel plate as a cathode is immersed in these solutions 1 to 34, a platinum anode is placed opposite to the surface of the steel plate, and the electrolytic solution can be made to flow in one direction between the steel plate and the platinum electrode. Cathodic electrolysis treatment was performed using the apparatus to form a deposited layer. The electrolysis conditions were: solution temperature: 50° C., electrolysis time (total): 1 to 5 seconds, current density: 80 to 120 A/dm 2 , and average flow rate of the electrolytic solution was 80 mpm (m/min). In addition, the flow rate when the power was not applied was the value described in Table 2-1. The number of energizations was within the range of 1 to 4 times. The components of the formed precipitation layer are shown in Table 2-1.
 その後、高周波誘導加熱によって析出層を熱処理した。熱処理は、所定の平均昇温速度で100℃以上の到達温度まで加熱し、到達温度まで昇温した後は、「加熱しない時間」を設け、その後、スプレー式の水冷によって冷却した。熱処理条件を表2-1に示す。表2-1に記載の熱処理条件については、平均昇温速度40℃/秒以上の場合を「○」、40℃/秒未満の場合を「×」とした。また、100℃以上で0.5秒以上5秒以内の加熱しない時間を設けた場合を「○」、加熱しない時間が100℃以上で0.5秒未満ないしは5秒超の場合を「×」とした。最高到達温度や加熱しない時間等を制御することによって、析出層の酸化物と水酸化物の量の比率を変化させた。このようにして、各種の表面処理鋼板(板厚t:0.8mm)を製造した。 After that, the deposited layer was heat-treated by high frequency induction heating. In the heat treatment, heating was performed at a predetermined average rate of temperature increase to an ultimate temperature of 100° C. or higher, and after the ultimate temperature was raised, a “non-heating time” was provided, and then cooling was performed by spray-type water cooling. The heat treatment conditions are shown in Table 2-1. Regarding the heat treatment conditions shown in Table 2-1, when the average heating rate is 40° C./sec or more, “◯” is given, and when it is less than 40° C./sec, “x” is given. Also, "○" indicates that the heating time of 100°C or more is 0.5 seconds or more and 5 seconds or less, and "x" indicates that the heating time is 100°C or more and less than 0.5 seconds or more than 5 seconds. And The ratio of the amount of oxide and hydroxide in the deposited layer was changed by controlling the maximum temperature and the time during which heating was not performed. In this way, various surface-treated steel plates (plate thickness t: 0.8 mm) were manufactured.
 析出層の酸化物と水酸化物の量の比率については、フーリエ変換赤外分光光度計(日本分光社製、「FT/IR-6100」)を用いて高感度反射法によって求めた。具体的には、得られたIRスペクトルにおいて、1600~650cm-1の酸化物を示す吸収のピーク面積Sに対する3600cm-1近傍の水酸化物を示す吸収のピーク面積Sの比率S/Sを求めた。吸収のピーク面積は、図2に示すように、IRスペクトルのベースラインによって吸収のピークを区画し、ベースラインによって区画された領域の面積(図2中の斜線部の面積)をピークの面積とした。 The ratio of the amount of oxide and hydroxide in the deposited layer was determined by a high-sensitivity reflection method using a Fourier transform infrared spectrophotometer (“FT/IR-6100” manufactured by JASCO Corporation). Specifically, in the obtained IR spectrum, the ratio S 2 / of the peak area S 2 of absorption indicating hydroxide near 3600 cm −1 to the peak area S 1 of absorption indicating oxide at 1600 to 650 cm −1. S 1 was determined. As shown in FIG. 2, the peak area of absorption is defined by dividing the absorption peak by the baseline of the IR spectrum, and defining the area of the region defined by the baseline (the area of the shaded area in FIG. 2) as the peak area. did.
 また、析出層の付着量は、鋼板が溶解しないようインヒビターを添加した塩酸で析出層を溶解することで、表面処理鋼板から析出層を除去し、析出層の除去前後での表面処理鋼板の質量変化量から析出層の付着量を求めた。
 更に、析出層中の各成分は、析出層を溶解後の溶液中のZn量、V量及びZr量をICP発光分光分析法によって測定することで求めた。
Further, the deposition amount of the deposited layer is the mass of the surface-treated steel sheet before and after removing the deposited layer by removing the deposited layer from the surface-treated steel sheet by dissolving the deposited layer with hydrochloric acid containing an inhibitor so that the steel sheet does not dissolve. The amount of deposition of the deposited layer was obtained from the amount of change.
Further, each component in the deposited layer was determined by measuring the amount of Zn, the amount of V and the amount of Zr in the solution after dissolving the deposited layer by ICP emission spectroscopy.
 また、析出層に含まれる亜鉛量をa(g/m)とし、析出層に含まれるバナジウム酸化物およびバナジウム水酸化物の合計量、もしくはジルコニウム酸化物およびジルコニウム水酸化物の合計量をバナジウムもしくはジルコニウムの金属換算でb(g/m)としたときの100b/(a+b)について表2-2に示す。なお、この「100b/(a+b)」は、析出層中の各成分の分析結果から求めた。 Further, the amount of zinc contained in the deposited layer is a (g/m 2 ), and the total amount of vanadium oxide and vanadium hydroxide contained in the deposited layer or the total amount of zirconium oxide and zirconium hydroxide contained in the deposited layer is vanadium. Alternatively, Table 2-2 shows 100b/(a+b) when b (g/m 2 ) is calculated in terms of zirconium metal. The "100b/(a+b)" was obtained from the analysis result of each component in the deposited layer.
 また、得られた表面処理鋼板(試験No.1~49)について、以下の項目を以下に示す方法により評価した。 Also, the obtained surface-treated steel sheets (Test Nos. 1 to 49) were evaluated by the methods shown below for the following items.
「加工部密着性」
 表面処理鋼板から切り出した評価用サンプルを、エリクセン試験機で9mm張出し加工した後、加工が施された張出し凸部の外側を粘着テープ(ニチバン(株):商品名セロテープ(登録商標))を用いてテープ剥離試験を行った。試験後の析出層の剥離状態を観察し、張出し凸部の頭頂部部分の析出層の剥離率を求め、以下の基準で加工部密着性の評価を行った。なお、評価「2」以上を合格とした。
"Adhesion of processed part"
An evaluation sample cut out from a surface-treated steel sheet was overhanged by 9 mm with an Erichsen tester, and the outside of the overhanging convex portion that was processed was used with an adhesive tape (Nichiban Co., Ltd.: trade name Cellotape (registered trademark)). And a tape peeling test was performed. The peeling state of the deposited layer after the test was observed, the peeling rate of the deposited layer at the crown of the overhanging convex portion was determined, and the adhesion of the processed portion was evaluated according to the following criteria. In addition, the evaluation "2" or more was passed.
(基準)
4:剥離なし
3:剥離率10%未満
2:剥離率10%以上50%未満
1:剥離率50%以上
(Standard)
4: No peeling 3: Peeling rate less than 10% 2: Peeling rate 10% or more and less than 50% 1: Peeling rate 50% or more
「平面耐食性」
 JIS Z 2371に記載されている塩水噴霧試験方法に準じて、雰囲気温度35℃で、5%のNaCl水溶液を、表面処理鋼板から切り出した評価用サンプル(エッジおよび裏面はテープシール)に吹き付け、12時間後の非シール部分の白錆発生面積率を目視で観察して測定し、以下の基準で評価し「2」以上を合格とした。白錆発生面積率とは、観察部位の面積に対する白錆発生部位の面積の百分率である。
"Plane corrosion resistance"
In accordance with the salt spray test method described in JIS Z 2371, a 5% NaCl aqueous solution was sprayed onto an evaluation sample (edge and backside tape-sealed) cut from a surface-treated steel sheet at an ambient temperature of 35° C., and 12 The white rust generation area ratio of the non-sealed portion after the lapse of time was visually observed and measured, and evaluated according to the following criteria, and "2" or more was determined to be acceptable. The white rust occurrence area ratio is the percentage of the area of the white rust occurrence area to the area of the observed area.
(基準)
4:白錆発生なし
3:白錆発生面積率10%未満
2:白錆発生面積率10%以上、50%未満
1:白錆発生面積率50%以上
(Standard)
4: No white rust occurred 3: White rust occurrence area ratio less than 10% 2: White rust occurrence area ratio 10% or more, less than 50% 1: White rust occurrence area ratio 50% or more
「塗装密着性」
 表面処理鋼板から切り出した評価用サンプルに塗料(関西ペイント株式会社製、アミラック♯1000)をバーコート塗布し、140℃で20分間焼付を行い、乾燥膜厚で25μmの皮膜を形成した。得られた塗装板を沸騰水に30分浸漬後、常温の室内に24時間放置した。その後、サンプルに対して1mm角100個の碁盤目をNTカッターで切り入れ、これをエリクセン試験機で7mm押し出した後、この押し出し凸部に粘着テープによる剥離テストを行い、以下の基準にて塗装密着性を評価し「2」以上を合格とした。
"Paint adhesion"
A coating (Amillac #1000, manufactured by Kansai Paint Co., Ltd.) was applied to the evaluation sample cut out from the surface-treated steel sheet by bar coating, and baked at 140° C. for 20 minutes to form a film having a dry film thickness of 25 μm. The obtained coated plate was immersed in boiling water for 30 minutes and then left in a room at room temperature for 24 hours. After that, 100 squares of 1 mm square were cut into the sample with an NT cutter, and this was extruded with an Erichsen tester for 7 mm, and then the extruded convex portion was subjected to a peeling test with an adhesive tape, and painting was performed according to the following standards. Adhesion was evaluated and "2" or more was passed.
(基準)
4:剥離無し
3:剥離個数1個以上、10個未満
2:剥離個数10個以上、50個未満
1:剥離個数50個以上
(Standard)
4: No peeling 3: Peeling number of 1 or more and less than 10 2: Peeling number of 10 or more, less than 50 1: Peeling number of 50 or more
「疵部耐食性」
 表面処理鋼板から切り出した評価用サンプル(エッジおよび裏面はテープシール)に対して、カッターナイフを用い、下地の鋼板まで達する力で「X」の形に疵をつけた上で、上記「平面耐食性」と同様の塩水噴霧試験により疵部耐食性を評価した。疵部耐食性は疵部の赤錆発生有無により以下の基準にて評価し「2」以上を合格とした。
"Defect corrosion resistance"
For the evaluation sample cut out from the surface-treated steel sheet (the edge and the back surface are tape-sealed), use a cutter knife to make a flaw in the shape of "X" with the force reaching the underlying steel sheet, and then perform the "planar corrosion resistance". The corrosion resistance of the flaws was evaluated by the salt spray test. The corrosion resistance of the scratches was evaluated according to the following criteria according to the presence or absence of red rust on the scratches, and "2" or more was regarded as passing.
3:赤錆発生なし
2:赤錆発生5%未満
1:赤錆発生5%以上
3: No red rust generation 2: Red rust generation less than 5% 1: Red rust generation 5% or more
「溶接性」
 加圧力1.96kN、通電時間12サイクル/50Hzとして、適正電流範囲を測定した。使用した電極はCr-Cuとした。適正電流範囲の下限値はボタン径が4√t(tは表面処理鋼板の板厚(mm))以上を確保する電流値とし、上限値は塵が発生する電流値とした。求めた適正電流上限値より0.5kA低い電流値でスポット溶接し、50打点毎にボタン径を測定した。ボタン径は、溶接された2枚の鋼板を引き剥がし、片側の鋼板に残ったボタン径を測定して得た。ボタン径が4√t未満または無通電が発生した打点数より50打点を差し引いた打点数を連続打点数とし、以下の基準にて溶接性(連続打点性)を評価し「2」以上を合格とした。
"Weldability"
The appropriate current range was measured under a pressure of 1.96 kN and an energization time of 12 cycles/50 Hz. The electrode used was Cr-Cu. The lower limit value of the appropriate current range is a current value that secures a button diameter of 4√t or more (t is the plate thickness (mm) of the surface-treated steel sheet), and the upper limit value is a current value at which dust is generated. Spot welding was performed at a current value lower than the determined appropriate current upper limit value by 0.5 kA, and the button diameter was measured at every 50 dots. The button diameter was obtained by peeling off the two welded steel plates and measuring the button diameter left on the steel plate on one side. The button diameter is less than 4√t or 50 points is subtracted from the number of points where no current has passed, and the number of points is set as the number of continuous points. Weldability (continuous pointability) is evaluated according to the following criteria, and a score of "2" or more is passed. And
4:連続打点数100打点以上
3:連続打点数50打点以上、100打点未満
2:連続打点数2打点以上、50打点未満
1:連続打点数1打点以下
4: 100 or more continuous RBIs: 50 or more RBIs and less than 100 RBIs: 2 or more RBIs and less than 50 RBIs: 1 or less RBIs
 表2-2に示すように、発明例の表面処理鋼板のいずれにおいても、加工部密着性、平面耐食性に優れ、さらに、塗装密着性、疵部耐食性、溶接性のいずれについても優れていた。 As shown in Table 2-2, all of the surface-treated steel sheets of the invention examples were excellent in the adhesion of the processed part and the flat surface corrosion resistance, and further were excellent in the adhesion of the coating, the corrosion resistance of the flaw part, and the weldability.
 一方、表2-1及び表2-2に示すように、試験No.7、8は、電解溶液の組成が適切でなかったため、析出層中にバナジウム酸化物およびバナジウム水酸化物が析出されず、その結果、平面耐食性及び塗装密着性が不十分となった。 On the other hand, as shown in Table 2-1 and Table 2-2, the test No. In Nos. 7 and 8, vanadium oxide and vanadium hydroxide were not deposited in the deposition layer because the composition of the electrolytic solution was not appropriate, and as a result, the flat corrosion resistance and coating adhesion were insufficient.
 試験No.12、13、18は、電解溶液の組成が適切でなかったため、析出層中にジルコニウム酸化物およびジルコニウム水酸化物が析出されず、平面耐食性及び塗装密着性が不十分となった。 Test No. In Nos. 12, 13, and 18, the composition of the electrolytic solution was not appropriate, so that zirconium oxide and zirconium hydroxide were not deposited in the deposition layer, and the flat corrosion resistance and coating adhesion were insufficient.
 試験No.41は、熱処理時の平均昇温速度が40℃/秒未満であったため、析出層中にバナジウム酸化物およびバナジウム水酸化物が析出されたものの、析出層の酸化物と水酸化物の比率(S/S)を十分に下げることができず、その結果、加工部密着性及び塗装密着性が不十分となった。 Test No. No. 41 had an average rate of temperature rise during heat treatment of less than 40° C./second, so vanadium oxide and vanadium hydroxide were deposited in the deposited layer, but the ratio of oxide to hydroxide in the deposited layer ( S 2 / S 1) can not be sufficiently lowered, resulting it becomes insufficient processability part adhesion and coating adhesion.
 試験No.44は、「加熱しない時間」が6秒となり、適切な製造条件の上限である5秒を超えたため、析出層の酸化物と水酸化物の比率(S/S)を十分に下げることができず、その結果、加工部密着性及び塗装密着性が不十分となった。 Test No. In No. 44, the “time without heating” was 6 seconds, which exceeded the upper limit of 5 seconds which is an appropriate manufacturing condition. Therefore, the ratio (S 2 /S 1 ) of oxide and hydroxide in the deposited layer should be sufficiently reduced. Was not possible, and as a result, the adhesion of the processed part and the adhesion of the coating became insufficient.
 試験No.45は、「加熱しない時間」が0.4秒となり、適切な製造条件の下限である0.5秒以上を満たさなかったため、析出層の酸化物と水酸化物の比率(S/S)を十分に下げることができず、その結果、加工部密着性及び塗装密着性が不十分となった。
 試験No.58は、1回の通電で陰極電解処理を行ったので、無通電時間が存在しなかった例である。析出層の酸化物と水酸化物の比率(S/S)を十分に下げることができず、加工部密着性及び塗装密着性が不十分となった。
 試験No.59は、無通電時間における溶液の流速が大きすぎたので、めっきの溶解が大きくなり、製造段階における品質制御ができず、不適であった。
Test No. In No. 45, the “non-heating time” was 0.4 seconds, which did not satisfy the lower limit of 0.5 seconds which is the lower limit of the appropriate manufacturing conditions. Therefore, the ratio of oxide to hydroxide in the deposited layer (S 2 /S 1 ) Could not be sufficiently lowered, and as a result, the adhesion of the processed portion and the adhesion of the coating became insufficient.
Test No. Reference numeral 58 is an example in which the cathodic electrolysis treatment was performed by one energization, so that there was no non-energized time. The oxide/hydroxide ratio (S 2 /S 1 ) in the deposited layer could not be reduced sufficiently, and the adhesion of the processed part and the adhesion of the coating became insufficient.
Test No. No. 59 was not suitable because the flow rate of the solution during the non-energized time was too large, so that the dissolution of the plating was large and the quality control at the manufacturing stage could not be performed.
 なお、表1の溶液15は、pHが4.5と高すぎたため、溶液中に沈殿が生成し、電解溶液として不適切であった。 The pH of the solution 15 in Table 1 was too high at 4.5, so that a precipitate was generated in the solution and it was unsuitable as an electrolytic solution.
 さらに、得られた析出層を電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製(JED-2100F))により観察したところ、試験No.1~59のすべてにおいて、析出層は、鋼板の厚み方向に成長した複数のデンドライト状の柱状結晶相(第1相)と、その周囲に形成された非晶質相(第2相)が形成されていることが確認した。また、デンドライト状の柱状結晶相(第1相)は、エネルギー分散型X線分析装置(EDS(日本電子社製(JED-2300T))による元素分析及び電子線回折分析により、金属亜鉛を含み、また非晶質相(第2相)は、バナジウム酸化物および/またはバナジウム水酸化物、もしくはジルコニウム酸化物および/またはジルコニウム水酸化物を含んでいることが分かった。 Further, the obtained deposited layer was observed with a field emission transmission electron microscope (FE-TEM) (JED-2100F manufactured by JEOL Ltd.). In all of Nos. 1 to 59, a plurality of dendrite-like columnar crystal phases (first phase) grown in the thickness direction of the steel sheet and an amorphous phase (second phase) formed around the precipitate layer were formed in the precipitation layer. It was confirmed that it was done. The dendrite columnar crystal phase (first phase) contains metallic zinc by elemental analysis and electron beam diffraction analysis by an energy dispersive X-ray analyzer (EDS (JED-2300T) manufactured by JEOL Ltd.), It was also found that the amorphous phase (second phase) contained vanadium oxide and/or vanadium hydroxide, or zirconium oxide and/or zirconium hydroxide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1…鋼板、2…電解浴、2a…上部供給用配管、2b…下部供給用配管、3…陽極、4a、5a、4b、5b…ロール、21…電解槽、21a…上部槽。 DESCRIPTION OF SYMBOLS 1... Steel plate, 2... Electrolyte bath, 2a... Upper supply piping, 2b... Lower supply piping, 3... Anode, 4a, 5a, 4b, 5b... Roll, 21... Electrolyzer, 21a... Upper tank.

Claims (7)

  1.  鋼板と、
     前記鋼板の片面または両面に形成された金属亜鉛を含む析出層と、を備え、
     前記析出層は、さらに、バナジウム酸化物、バナジウム水酸化物、ジルコニウム酸化物及びジルコニウム水酸化物からなる群から選択される一種以上を含み、
     前記析出層の表面をFT-IR法の反射法によって測定して得られた赤外吸収スペクトルにおいて、酸化物を示す1600~650cm-1のピーク面積Sに対する水酸化物を示す3600cm-1のピーク面積Sとの比S/Sが0以上0.3以下であることを特徴とする表面処理鋼板。
    Steel plate,
    A precipitation layer containing metallic zinc formed on one or both sides of the steel sheet;
    The deposition layer further contains one or more selected from the group consisting of vanadium oxide, vanadium hydroxide, zirconium oxide and zirconium hydroxide,
    In the infrared absorption spectrum obtained by measuring the surface of the deposited layer by the reflection method of FT-IR method, the peak area S 1 at 1600 to 650 cm −1 indicating an oxide and the peak area S 1 at 3600 cm −1 indicating a hydroxide. A surface-treated steel sheet having a ratio S 2 /S 1 with respect to a peak area S 2 of 0 or more and 0.3 or less.
  2.  前記析出層に含まれる金属亜鉛量をa(g/m)とし、前記析出層に含まれる前記バナジウム酸化物および前記バナジウム水酸化物の合計量、もしくは前記ジルコニウム酸化物および前記ジルコニウム水酸化物の合計量を金属換算でb(g/m)としたとき、100b/(a+b)が0.1以上50以下であることを特徴とする、請求項1に記載の表面処理鋼板。 The amount of metallic zinc contained in the deposited layer is a (g/m 2 ), and the total amount of the vanadium oxide and vanadium hydroxide contained in the deposited layer, or the zirconium oxide and the zirconium hydroxide. The surface-treated steel sheet according to claim 1, wherein 100b/(a+b) is 0.1 or more and 50 or less, where b (g/m 2 ) is a total amount of the above in terms of metal.
  3.  前記析出層に含まれる金属亜鉛量をa(g/m)とし、前記析出層に含まれる前記バナジウム酸化物および前記バナジウム水酸化物の合計量、もしくは前記ジルコニウム酸化物および前記ジルコニウム水酸化物の合計量を金属換算でb(g/m)としたとき、100b/(a+b)が1.0以上20以下であることを特徴とする、請求項1に記載の表面処理鋼板。 The amount of metallic zinc contained in the deposited layer is a (g/m 2 ), and the total amount of the vanadium oxide and vanadium hydroxide contained in the deposited layer, or the zirconium oxide and the zirconium hydroxide. The surface-treated steel sheet according to claim 1, wherein 100b/(a+b) is 1.0 or more and 20 or less, where b (g/m 2 ) is a total amount of the above in terms of metal.
  4.  前記析出層の付着量が1.0g/m以上50.0g/m以下であることを特徴とする、請求項1~請求項3の何れか一項に記載の表面処理鋼板。 Wherein the adhered amount of the deposition layer is 1.0 g / m 2 or more 50.0 g / m 2 or less, surface-treated steel sheet according to any one of claims 1 to 3.
  5.  前記析出層が、前記金属亜鉛を含む第1相と、バナジウム酸化物またはバナジウム水酸化物の少なくとも一方、もしくはジルコニウム酸化物またはジルコニウム水酸化物の少なくとも一方を含む第2相とを有し、
     前記第1相が、前記鋼板の厚み方向に成長した複数のデンドライト状の柱状結晶相であり、前記第2相が、前記第1相の周囲に形成された非晶質相であることを特徴とする請求項1~請求項4の何れか一項に記載の表面処理鋼板。
    The deposition layer has a first phase containing the metallic zinc and a second phase containing at least one of vanadium oxide or vanadium hydroxide, or at least one of zirconium oxide or zirconium hydroxide,
    The first phase is a plurality of dendrite-like columnar crystal phases grown in the thickness direction of the steel sheet, and the second phase is an amorphous phase formed around the first phase. The surface-treated steel sheet according to any one of claims 1 to 4.
  6.  前記析出層の表面に1層以上の皮膜を有することを特徴とする請求項1~請求項5の何れか一項に記載の表面処理鋼板。 (6) The surface-treated steel sheet according to any one of (1) to (5), wherein the surface of the deposited layer has one or more coatings.
  7.  陰極電解処理によって、鋼板の片面または両面に析出層を形成する工程と、
     前記析出層を熱処理する工程と、
    を備え、
     陰極電解処理溶液が、亜鉛化合物と、バナジウム化合物またはジルコニウム化合物の少なくとも一方とを含み、
     前記陰極電解処理溶液における、Vイオン濃度(g/l)またはZrイオン濃度(g/l)と、Znイオン濃度(g/l)との比が0.2~0.9であり、
     前記陰極電解処理溶液のpHが1.0~4.0であり、
     前記陰極電解処理の開始から終了までの間に、0.01秒以上の無通電時間を1回以上設け、
     前記陰極電解処理の前記無通電時間における前記陰極電解処理溶液の流速を0.05m/秒以上5.00m/秒以下とし、
     前記熱処理における前記析出層の最高温度を100℃以上350℃以下とし、
     前記熱処理における平均昇温速度を40℃/秒以上とし、
     前記熱処理において、前記析出層の温度が100℃以上の温度になってから前記析出層の冷却を開始するまでの間に、0.5秒以上5秒以内の無加熱時間を設ける
    ことを特徴とする表面処理鋼板の製造方法。
    By the cathodic electrolysis process, a step of forming a deposition layer on one or both sides of the steel sheet,
    Heat-treating the deposited layer,
    Equipped with
    The cathodic electrolysis solution contains a zinc compound and at least one of a vanadium compound or a zirconium compound,
    The ratio of V ion concentration (g/l) or Zr ion concentration (g/l) to Zn ion concentration (g/l) in the cathodic electrolytic treatment solution is 0.2 to 0.9,
    The pH of the cathodic electrolytic treatment solution is 1.0 to 4.0,
    Between the start and the end of the cathodic electrolysis treatment, a non-energization time of 0.01 seconds or more is provided once or more,
    The flow rate of the cathodic electrolysis solution during the non-energization time of the cathodic electrolysis treatment is 0.05 m/sec or more and 5.00 m/sec or less,
    The maximum temperature of the deposited layer in the heat treatment is 100° C. or higher and 350° C. or lower,
    The average heating rate in the heat treatment is 40° C./sec or more,
    In the heat treatment, a non-heating time of 0.5 seconds or more and 5 seconds or less is provided between when the temperature of the deposition layer is 100° C. or higher and when the cooling of the deposition layer is started. Method for producing surface-treated steel sheet.
PCT/JP2019/044700 2018-11-29 2019-11-14 Surface-treated steel sheet, and method for manufacturing surface-treated steel sheet WO2020110750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502716A JP6733846B1 (en) 2018-11-29 2019-11-14 Surface-treated steel sheet and method for producing surface-treated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223492 2018-11-29
JP2018223492 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110750A1 true WO2020110750A1 (en) 2020-06-04

Family

ID=70853145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044700 WO2020110750A1 (en) 2018-11-29 2019-11-14 Surface-treated steel sheet, and method for manufacturing surface-treated steel sheet

Country Status (2)

Country Link
JP (1) JP6733846B1 (en)
WO (1) WO2020110750A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762589A (en) * 1993-08-27 1995-03-07 Nkk Corp Production of zn-cr alloy plated steel sheet
WO2012133671A1 (en) * 2011-03-29 2012-10-04 新日本製鐵株式会社 Surface-treated steel sheet and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762589A (en) * 1993-08-27 1995-03-07 Nkk Corp Production of zn-cr alloy plated steel sheet
WO2012133671A1 (en) * 2011-03-29 2012-10-04 新日本製鐵株式会社 Surface-treated steel sheet and method for producing same

Also Published As

Publication number Publication date
JPWO2020110750A1 (en) 2021-02-15
JP6733846B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2004055237A1 (en) Treating fluid for surface treatment of metal and method for surface treatment
Karakurkchi et al. Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten
US8133594B2 (en) Steel sheet for container use
JP6855833B2 (en) Manufacturing method of Sn-plated steel sheet and Sn-plated steel sheet
CN103108988A (en) Steel plate for containers and manufacturing method for same
JP6806152B2 (en) Sn-based alloy plated steel sheet
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JP2008202149A (en) Treatment liquid for metal surface treatment, and surface treatment method
Darband et al. Zn–Ni Electrophosphating on galvanized steel using cathodic and anodic electrochemical methods
JP5334499B2 (en) Surface-treated metal plate with excellent paint adhesion and method for producing the same
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
WO2017010406A1 (en) Surface treated steel sheet
WO2013153682A1 (en) Method for chemically converting steel member, method for manufacturing coated steel member having been electrodeposition-coated, and coated steel member
JP5130080B2 (en) Phosphate-treated electrogalvanized steel sheet
KR102074773B1 (en) Fe-X Flash Electronic Plating Solution, Method for Manufacturing the Galvanized Steel Sheet and Galvanized Steel Sheet Thereof
JP6733846B1 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JPS63243299A (en) Composite plating steel sheet and its production
JP5812041B2 (en) Method for producing zinc-based electroplated steel sheet
CN105408526A (en) Steel sheet for container
WO2016125911A1 (en) Tin-plated steel sheet, chemical conversion treated steel sheet and manufacturing method therefor
JP5119864B2 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JP2006057149A (en) Phosphated galvanized-steel sheet superior in corrosion resistance and blackening resistance
JP7327718B1 (en) Surface-treated steel sheet and manufacturing method thereof
JP2011236471A (en) Composite electrogalvanized steel sheet, and method for producing the same
JP7410386B2 (en) Sn-based plated steel sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502716

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891108

Country of ref document: EP

Kind code of ref document: A1