JP5119864B2 - Phosphate-treated galvanized steel sheet and method for producing the same - Google Patents

Phosphate-treated galvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP5119864B2
JP5119864B2 JP2007284032A JP2007284032A JP5119864B2 JP 5119864 B2 JP5119864 B2 JP 5119864B2 JP 2007284032 A JP2007284032 A JP 2007284032A JP 2007284032 A JP2007284032 A JP 2007284032A JP 5119864 B2 JP5119864 B2 JP 5119864B2
Authority
JP
Japan
Prior art keywords
phosphate
steel sheet
zinc
film
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007284032A
Other languages
Japanese (ja)
Other versions
JP2008133540A (en
Inventor
聡 安藤
千代子 多田
裕樹 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007284032A priority Critical patent/JP5119864B2/en
Publication of JP2008133540A publication Critical patent/JP2008133540A/en
Application granted granted Critical
Publication of JP5119864B2 publication Critical patent/JP5119864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

本発明は、主に建材用や家電用等に用いられる表面処理鋼板であり、特に、塗装用下地鋼板として好適なリン酸塩処理亜鉛系めっき鋼板及びその製造方法に関するものである。   The present invention is a surface-treated steel sheet mainly used for building materials, home appliances, and the like, and particularly relates to a phosphate-treated zinc-based plated steel sheet suitable as a base steel sheet for coating and a method for producing the same.

建材、家電製品等の使途で耐食性を要求される部位には、亜鉛めっきや亜鉛合金めっき等の表面処理が施された、亜鉛系めっき鋼板が用いられている。これら亜鉛系めっき鋼板はそのままで使用されることは少なく、通常は亜鉛系めっき層の上に塗膜を施して使用されている。また一般的に、塗膜を施す前処理として、リン酸塩処理またはクロメート処理等の化成処理をめっき層上に施している。   Zinc-based plated steel sheets that have been subjected to surface treatment such as galvanization or zinc alloy plating are used in parts that require corrosion resistance in the use of building materials, home appliances, and the like. These zinc-based plated steel sheets are rarely used as they are, and are usually used by applying a coating film on a zinc-based plated layer. In general, as a pretreatment for applying a coating film, a chemical conversion treatment such as a phosphate treatment or a chromate treatment is performed on the plating layer.

前記リン酸塩処理は、リン酸イオンを含有した酸性溶液と亜鉛系めっき鋼板とを接触させ、反応させることにより、リン酸亜鉛を主成分とする結晶性皮膜をめっき表面に形成させる処理であり、前記塗膜との密着性を向上させ、各種塗膜に対して安定した塗膜下地性能を有する。このため、リン酸塩処理を施された亜鉛系めっき鋼板は、建材用、家電用等の塗膜用下地鋼板として幅広く使用され、その中でも、リン酸塩皮膜の耐食性を向上させることを目的とした、リン酸亜鉛皮膜にMgを含有させる技術が公知技術として多くの特許文献に示されている。   The phosphate treatment is a treatment for forming a crystalline film mainly composed of zinc phosphate on the plating surface by bringing an acidic solution containing phosphate ions into contact with a zinc-based plated steel sheet and reacting them. The adhesion with the coating film is improved, and the coating film base performance is stable for various coating films. For this reason, galvanized steel sheets that have been subjected to phosphate treatment are widely used as base steel sheets for coatings for building materials, home appliances, etc., and among them, the purpose is to improve the corrosion resistance of phosphate films. In addition, a technique for adding Mg to a zinc phosphate coating is disclosed in many patent documents as a known technique.

例えば、特許文献1に示すように、Mgを2.0%以上、Ni、Co、Cuから選ばれた1種以上の元素を0.01〜1%含有するリン酸亜鉛皮膜を、付着量が0.7g/m2以上となるように形成する、耐食性および色調に優れたリン酸亜鉛処理亜鉛系めっき鋼板が開示されている。 For example, as shown in Patent Document 1, a zinc phosphate film containing Mg of 2.0% or more and one or more elements selected from Ni, Co, and Cu of 0.01 to 1% has an adhesion amount of 0.7 g / m. A zinc phosphate-treated zinc-based plated steel sheet excellent in corrosion resistance and color tone that is formed to be 2 or more is disclosed.

また、特許文献2に示すように、Znを0.4〜2.0g/L、Mgを0.4〜5.0g/L、Niを0.05〜2.0g/L、P2O5を8.0〜20.0g/L含有し、溶液中の遊離酸と全酸の比率(遊離酸度/全酸度)が、0.02〜0.15であるリン酸亜鉛マグネシウム系水溶液を用いて、亜鉛めっき鋼、またはアルミニウム及び亜鉛めっき鋼を処理することで、リン酸塩結晶の斑点状の欠陥を抑制する技術が開示されている。 Moreover, as shown in Patent Document 2, Zn is contained in an amount of 0.4 to 2.0 g / L, Mg is contained in an amount of 0.4 to 5.0 g / L, Ni is contained in an amount of 0.05 to 2.0 g / L, and P 2 O 5 is contained in an amount of 8.0 to 20.0 g / L. By treating zinc-plated steel, or aluminum and galvanized steel, using a zinc-magnesium phosphate aqueous solution with a ratio of free acid to total acid in the solution (free acidity / total acidity) of 0.02 to 0.15 A technique for suppressing spotted defects in phosphate crystals is disclosed.

さらに、特許文献3には、Znを0.5〜5.0g/L、Mgを0.3〜3.0g/L、P2O5を3.0〜20.0g/L含有し、リン酸塩処理液中の遊離酸と全酸の比率(遊離酸度/全酸度)が0.1〜0.4であるリン酸塩水溶液を用いて処理することで、リン酸塩皮膜の色調を白色化させ、短時間で処理する技術が開示されている。 Further, Patent Document 3 contains 0.5 to 5.0 g / L of Zn, 0.3 to 3.0 g / L of Mg, 3.0 to 20.0 g / L of P 2 O 5 , and free acid in the phosphate treatment solution. Disclosed is a technique for whitening a phosphate coating color tone by treating with a phosphate aqueous solution having a total acid ratio (free acidity / total acidity) of 0.1 to 0.4 and processing in a short time. Yes.

しかし、特許文献1の技術では、リン酸亜鉛皮膜中にMgを多量に含有するため、高温多湿環境下では表面が黒く変色するといった、耐黒変性が劣化する恐れがあり、また、リン酸亜鉛皮膜中にNi、Co、Cuを高濃度に含有することで該リン酸亜鉛皮膜の色調が暗くなるという問題もあった。 However, in the technique of Patent Document 1, since the zinc phosphate film contains a large amount of Mg, there is a risk that the blackening resistance may deteriorate such that the surface turns black in a high-temperature and high-humidity environment. There was also a problem that the color tone of the zinc phosphate coating was darkened by containing Ni, Co, and Cu in a high concentration in the coating.

また、特許文献2の技術では、リン酸塩結晶を緻密に形成させるために20秒〜10分の比較的長時間の処理を必要とするが、電気めっき等の後処理設備で引き続き処理を行う場合等、処理時間を出来るだけ短くすることが生産効率上望ましく、数秒レベルの短時間処理を行った場合、リン酸塩結晶の形成が不完全になりやすく、局部的に「スケ」と呼ばれるリン酸塩結晶が生成しない部分が生じることがある。   Moreover, in the technique of Patent Document 2, a relatively long treatment time of 20 seconds to 10 minutes is required in order to form the phosphate crystals densely, but the treatment is continued in post-treatment equipment such as electroplating. In some cases, it is desirable to shorten the processing time as much as possible from the viewpoint of production efficiency. When a short processing time of several seconds is performed, the formation of phosphate crystals is likely to be incomplete, and a phosphorous locally called “ske”. There may be a portion where acid salt crystals are not formed.

また、特許文献3の技術では、遊離酸濃度を高くすることで亜鉛めっき鋼板の亜鉛に対するエッチング性を高めているが、鋼板への連続処理の場合、亜鉛めっき鋼板の表面状態に起因するスジ状のムラが生じやすくなるという問題がある。これは、亜鉛表層の局所的な反応性の違いが、エッチング性の高い処理により顕在化し、結果的にマクロなムラとなって現れることが原因であると考えられる。
特開2002−285346号公報 特許第2680618号公報 特許第2770860号公報
Moreover, in the technique of patent document 3, although the etching property with respect to zinc of a galvanized steel plate is improved by making free acid concentration high, in the case of continuous processing to a steel plate, the streak shape resulting from the surface state of a galvanized steel plate There is a problem that non-uniformity is likely to occur. This is considered to be caused by the fact that the difference in local reactivity of the zinc surface layer is manifested by a process with high etching properties, resulting in macro unevenness.
JP 2002-285346 A Japanese Patent No. 2680618 Japanese Patent No. 2770860

本発明の目的は、均一なリン酸塩皮膜を短時間の処理で形成することができるリン酸塩処理亜鉛系めっき鋼板の製造方法、及びその製造方法によって製造される耐食性と耐黒変性に優れたリン酸塩処理亜鉛系めっき鋼板を提供することにある。   The object of the present invention is to produce a phosphate-treated galvanized steel sheet capable of forming a uniform phosphate film in a short time, and to be excellent in corrosion resistance and blackening resistance produced by the production method. Another object of the present invention is to provide a phosphate-treated galvanized steel sheet.

本発明者らは、上記の課題を解決するため検討を重ねた結果、亜鉛イオン濃度、マグネシウムイオン濃度を規定し、かつ、前記亜鉛イオンに対するマグネシウムイオンの濃度の割合及び処理液中における遊離酸度の全酸度に対する割合を特定の範囲としたリン酸塩処理液を用いると、均一なリン酸塩皮膜を短時間の処理で形成することができることを見出した。また、得られたリン酸塩処理亜鉛系めっき鋼板は、優れた耐食性と耐黒変性を有することが判明した。   As a result of repeated studies to solve the above problems, the present inventors have prescribed the zinc ion concentration and the magnesium ion concentration, and the ratio of the magnesium ion concentration to the zinc ion and the free acidity in the treatment liquid. It has been found that a uniform phosphate film can be formed in a short time by using a phosphating solution whose ratio to the total acidity is in a specific range. The obtained phosphate-treated zinc-based plated steel sheet was found to have excellent corrosion resistance and blackening resistance.

本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)亜鉛系めっき鋼板をリン酸塩処理液で処理して、亜鉛系めっき鋼板の表面にリン酸塩皮膜を形成するリン酸塩処理亜鉛系めっき鋼板の製造方法であって、
前記リン酸塩処理液が、Zn2+:2.0g/L超え5.0g/L以下、Mg2+:2.0〜5.0g/Lを含有し、かつ、前記Zn2+に対するMg2+の濃度の割合Mg2+/Zn2+が0.4〜2.5の範囲であり、前記処理液中における遊離酸度の全酸度に対する割合が0.020以上0.10未満であり、
前記処理液中のMgイオン源が硝酸マグネシウムであり、
前記亜鉛系めっき鋼板を、前記処理液に3〜15秒接触させることを特徴とするリン酸塩処理亜鉛系めっき鋼板の製造方法。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) A method for producing a phosphating galvanized steel sheet by treating a galvanized steel sheet with a phosphating solution and forming a phosphate film on the surface of the galvanized steel sheet,
The phosphating solution, Zn 2+: 2.0 g / L more than 5.0 g / L or less, Mg 2+: containing 2.0~5.0g / L, and the concentration of Mg 2+ with respect to the Zn 2+ ratio Mg 2+ / Zn 2+ is in the range of 0.4 to 2.5, Ri 0.10 less der ratio 0.020 or more to the total acidity of the free acidity in the treatment solution,
Mg ion source in the treatment liquid is magnesium nitrate,
A method for producing a phosphating galvanized steel sheet, wherein the galvanized steel sheet is brought into contact with the treatment liquid for 3 to 15 seconds .

(2)亜鉛系めっき鋼板の表面に、Mg:0.2質量%以上2.0質量%未満を含有し、付着量が0.2〜3.0g/m2であるリン酸塩皮膜を有することを特徴とする上記(1)記載のリン酸塩処理亜鉛系めっき鋼板の製造方法により製造したリン酸塩処理亜鉛系めっき鋼板。 (2) The above characterized in that the surface of the zinc-based plated steel sheet has a phosphate film containing Mg: 0.2% by mass or more and less than 2.0% by mass and having an adhesion amount of 0.2 to 3.0 g / m 2 ( 1) A phosphate-treated zinc-based plated steel sheet produced by the method for producing a phosphate-treated zinc-based plated steel sheet according to 1) .

本発明によれば、亜鉛系めっき鋼板を、Zn2+:2.0g/L超え5.0g/L以下、Mg2+:2.0〜5.0g/Lを含有し、かつ、前記Zn2+に対するMg2+の濃度の割合Mg2+/Zn2+が0.4〜2.5の範囲であり、前記処理液中における遊離酸度の全酸度に対する割合が0.020以上0.10未満であるリン酸塩処理液で処理することにより、均一なリン酸塩皮膜を短時間の処理で形成することができるリン酸塩処理亜鉛系めっき鋼板の製造方法を提供することが可能となった。また、リン酸塩処理液との接触時間は、好ましくは3〜15秒接触である。さらに、得られたリン酸塩処理亜鉛系めっき鋼板は、付着量が0.2〜3.0g/m2の、Mg:0.2質量%以上2.0質量%未満を含有するリン酸塩皮膜を有し、耐食性と耐黒変性に優れる。 According to the present invention, the zinc-based plated steel sheet contains Zn 2+ : more than 2.0 g / L and 5.0 g / L or less, Mg 2+ : 2.0 to 5.0 g / L, and Mg 2 with respect to Zn 2+ . in the range of ratio Mg 2+ / Zn 2+ is 0.4 to 2.5 of the density of +, by percentage of the total acidity of the free acidity in the treatment solution is treated with phosphate treatment solution is less than 0.020 to 0.10 Thus, it has become possible to provide a method for producing a phosphate-treated galvanized steel sheet that can form a uniform phosphate film in a short time. The contact time with the phosphating solution is preferably 3 to 15 seconds. Further, the obtained phosphate-treated zinc-based plated steel sheet has a phosphate film containing Mg: 0.2 mass% or more and less than 2.0 mass%, with an adhesion amount of 0.2 to 3.0 g / m 2 , and has corrosion resistance. Excellent blackening resistance.

以下、本発明の構成と限定理由を説明する。
本発明のリン酸塩処理亜鉛系めっき鋼板は、亜鉛系めっき鋼板の表面に、Mg:0.2質量%以上2.0質量%未満を含有し、付着量が0.2〜3.0g/m2であるリン酸塩皮膜を有することを特徴とする、後述する製造方法により製造したリン酸塩処理亜鉛系めっき鋼板である。
Hereinafter, the configuration of the present invention and the reasons for limitation will be described.
The phosphate-treated zinc-based plated steel sheet of the present invention contains Mg: 0.2% by mass or more and less than 2.0% by mass on the surface of the zinc-based plated steel sheet, and the adhesion amount is 0.2 to 3.0 g / m 2. A phosphate-treated galvanized steel sheet produced by a production method described later, characterized by having a film.

(亜鉛系めっき)
本発明の鋼板の下地鋼板となる亜鉛系めっき鋼板としては、例えば、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、アルミニウム−亜鉛合金めっき鋼板(例えば、溶融亜鉛−55質量%アルミニウム合金めっき鋼板、溶融亜鉛−5質量%アルミニウム合金めっき鋼板)、鉄−亜鉛合金めっき鋼板、ニッケル−亜鉛合金めっき鋼板、黒色化処理後のニッケル-亜鉛合金めっき鋼板などの各種亜鉛系めっき鋼板等を用いることができる。また、基板である素地鋼板は、亜鉛系めっき鋼板として適用できる鋼板であれば特に限定はなく、用途に応じ適宜選択できる。さらにまた、亜鉛めっき層の付着量は、用途に応じて適宜選択できるが、1〜100g/m2以上とすることが好ましい。付着量が1 g/m2未満では耐食性が十分でなく、100 g/m2を超えると耐めっき剥離性が低下するためである。なお、より好適な付着量は5 〜70g/mである。
(Zinc-based plating)
Examples of the zinc-based plated steel sheet to be the base steel sheet of the steel sheet of the present invention include a hot-dip galvanized steel sheet, an electrogalvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and an aluminum-zinc alloy-plated steel sheet (for example, hot-dip zinc-55% by mass). Aluminum alloy-plated steel sheet, hot-dip zinc-5 mass% aluminum alloy-plated steel sheet), iron-zinc alloy-plated steel sheet, nickel-zinc alloy-plated steel sheet, various zinc-based plated steel sheets such as nickel-zinc alloy-plated steel sheet after blackening treatment, etc. Can be used. Moreover, the base steel plate which is a board | substrate will not be specifically limited if it is a steel plate which can be applied as a zinc-plated steel plate, and can be suitably selected according to a use. Furthermore, although the adhesion amount of a galvanization layer can be suitably selected according to a use, it is preferable to set it as 1-100 g / m < 2 > or more. This is because if the adhesion amount is less than 1 g / m 2 , the corrosion resistance is not sufficient, and if it exceeds 100 g / m 2 , the plating peel resistance decreases. A more preferable adhesion amount is 5 to 70 g / m 2 .

(リン酸塩皮膜)
前記亜鉛系めっき鋼板の少なくとも一方の表面に、Mg:0.2質量%以上2.0質量%未満を含有し、付着量が0.2〜3.0g/m2であるリン酸塩皮膜を有する。
(Phosphate coating)
At least one surface of the galvanized steel sheet has a phosphate film containing Mg: 0.2% by mass or more and less than 2.0% by mass and having an adhesion amount of 0.2 to 3.0 g / m 2 .

リン酸塩皮膜は、主として前記亜鉛めっき層と塗膜との密着性向上のために形成されるが、密着性だけでなく耐食性を向上できるものがより好ましい。また、前記リン酸塩皮膜中のMgの含有量は、0.2質量%以上2.0質量%未満であることが好ましい。0.2質量%以上であれば、耐食性が十分であり、2.0質量%未満であれば、優れた耐黒変性が得られるためである。なお、Mgのより好適な含有量は、0.5〜1.0質量%である。また、前記リン酸塩皮膜中には、Ni、Mn、Co等が0.01〜0.4質量%であれば、不可避的不純物として含有することができる。   The phosphate film is formed mainly for improving the adhesion between the galvanized layer and the coating film, and more preferably one that can improve not only the adhesion but also the corrosion resistance. Further, the content of Mg in the phosphate film is preferably 0.2% by mass or more and less than 2.0% by mass. If the content is 0.2% by mass or more, the corrosion resistance is sufficient, and if it is less than 2.0% by mass, excellent blackening resistance is obtained. A more preferable content of Mg is 0.5 to 1.0% by mass. Moreover, in the said phosphate membrane | film | coat, if Ni, Mn, Co, etc. are 0.01-0.4 mass%, it can contain as an unavoidable impurity.

なお、前記リン酸塩皮膜の付着量は、0.2〜3.0g/m2であることが好ましい。0.2g/m2以上であれば、耐食性は十分であり、3.0g/m2以下とすれば、リン酸塩皮膜中のリン酸塩結晶が粗大化し難いため、塗膜密着性が向上するからである。また、前記リン酸塩皮膜の形成は、前記亜鉛めっき層と後述するリン酸塩処理液とを、例えばスプレーまたは浸漬等の常法により接触させて形成させる。さらに、前記リン酸塩処理液と、前記亜鉛系めっき鋼板との接触時間は、3〜15秒である3秒以上とすると、リン酸塩皮膜を十分に形成することができ、15秒以下とすると、リン酸塩処理液によるエッチングが起き難くなり、マクロなムラが生じ難くなるため、リン酸塩皮膜の形成がより均一となるからである。 In addition, it is preferable that the adhesion amount of the said phosphate membrane | film | coat is 0.2-3.0 g / m < 2 >. If it is 0.2 g / m 2 or more, the corrosion resistance is sufficient, and if it is 3.0 g / m 2 or less, the phosphate crystals in the phosphate film are difficult to coarsen, so the coating film adhesion is improved. It is. The phosphate film is formed by bringing the galvanized layer and a phosphating solution described later into contact with each other by a conventional method such as spraying or dipping. Furthermore, the contact time between the phosphating solution and the galvanized steel sheet is 3 to 15 seconds . If it is 3 seconds or more, a phosphate film can be sufficiently formed, and if it is 15 seconds or less, etching with a phosphating solution does not easily occur, and macro unevenness hardly occurs. This is because the formation of is more uniform.

なお、リン酸塩皮膜形成に先立ち、チタンコロイド系活性処理剤を用いて、亜鉛めっき層の表面調整処理を行うことが好ましい。チタンコロイド系活性処理剤としては、例えば、日本パーカライジング(株)製の商品名「プレバレンZN」が挙げられ、該処理剤を亜鉛めっき層の表面にスプレーすることにより行うことができる。   Prior to the formation of the phosphate film, it is preferable to perform a surface adjustment treatment of the galvanized layer using a titanium colloidal active treatment agent. As a titanium colloid type active treating agent, for example, trade name “Prevalene ZN” manufactured by Nippon Parkerizing Co., Ltd. can be mentioned, and can be performed by spraying the treating agent on the surface of the galvanized layer.

本発明に従うリン酸塩処理亜鉛系めっき鋼板の製造方法は、亜鉛系めっき鋼板をリン酸塩処理液で処理して、亜鉛系めっき鋼板の表面にリン酸塩皮膜を形成するリン酸塩処理亜鉛系めっき鋼板の製造方法であって、前記リン酸塩処理液が、Zn2+:2.0g/L超え5.0g/L以下、Mg2+:2.0〜5.0g/Lを含有し、かつ、前記Zn2+に対するMg2+の濃度の割合Mg2+/Zn2+が0.4〜2.5の範囲であり、前記処理液中における遊離酸度の全酸度に対する割合が0.020以上0.10未満であることを特徴とするリン酸塩処理亜鉛系めっき鋼板の製造方法である。 The method for producing a phosphate-treated zinc-based plated steel sheet according to the present invention comprises treating a zinc-based plated steel sheet with a phosphate treatment liquid to form a phosphate coating on the surface of the zinc-based plated steel sheet. A method for producing a galvanized steel sheet, wherein the phosphate treatment liquid contains Zn 2+ : more than 2.0 g / L and 5.0 g / L or less, Mg 2+ : 2.0 to 5.0 g / L, and ratio Mg 2+ / Zn 2+ concentration of Mg 2+ for Zn 2+ is in the range of 0.4 to 2.5, and wherein the percentage of the total acidity of the free acidity in the treatment solution is less than 0.020 to 0.10 It is a manufacturing method of the phosphating zinc-plated steel plate which carries out.

・Zn2+:2.0g/L超え5.0g/L以下
Zn2+は、リン酸塩結晶を形成するには必須の成分であるため、リン酸塩処理液中のZn2+濃度を2.0g/L超え5.0g/L以下に制御する必要がある。より好ましくは3.0〜5.0g/Lの範囲に制御する。2.0g/L以下ではリン酸塩が析出しにくく、局所的にリン酸塩結晶が生成されていない不均一なリン酸塩皮膜を形成するためであり、5.0g/L超えでは、リン酸塩結晶が粗大化するため、リン酸塩皮膜による耐食性の十分な効果が得られなくなるためである。
・ Zn 2+ : More than 2.0g / L and less than 5.0g / L
Since Zn 2+ is an essential component for forming phosphate crystals, it is necessary to control the Zn 2+ concentration in the phosphating solution to be more than 2.0 g / L and not more than 5.0 g / L. More preferably, it is controlled in the range of 3.0 to 5.0 g / L. This is because phosphate is difficult to precipitate at 2.0 g / L or less and forms a non-uniform phosphate film in which phosphate crystals are not locally formed. At 5.0 g / L or more, phosphate is formed. This is because the crystals are coarsened, so that a sufficient effect of corrosion resistance by the phosphate film cannot be obtained.

・Mg2+:2.0〜5.0g/L
Mg2+は、リン酸塩皮膜の耐食性を向上させるために必須の成分であるため、リン酸塩処理液中のMg2+濃度を2.0〜5.0g/Lに制御する必要がある。より好ましくは2.5〜5.0g/Lの範囲に制御する。2.0g/L未満ではマグネシウム成分の取りこみが少ないために前記リン酸亜鉛皮膜の耐食性が低下し、5.0g/L超えでは、マグネシウム成分の含有量が多すぎるために、前記リン酸亜鉛皮膜の耐黒変性が低下するためである。また、Mg2+の濃度は、後述するリン酸塩水溶液中のZn2+に対するMg2+の濃度の割合(Mg2+/Zn2+)によっても異なるため、Mg2+/Zn2+の適正範囲内において濃度を調整する必要がある。
・ Mg 2+ : 2.0 ~ 5.0g / L
Since Mg 2+ is an essential component for improving the corrosion resistance of the phosphate film, it is necessary to control the Mg 2+ concentration in the phosphating solution to 2.0 to 5.0 g / L. More preferably, it is controlled in the range of 2.5 to 5.0 g / L. If the amount is less than 2.0 g / L, the corrosion resistance of the zinc phosphate coating is reduced due to less uptake of the magnesium component, and if it exceeds 5.0 g / L, the content of the magnesium component is too high, so the resistance of the zinc phosphate coating is reduced. This is because blackening is reduced. In addition, since the Mg 2+ concentration differs depending on the Mg 2+ concentration ratio (Mg 2+ / Zn 2+ ) to Zn 2+ in the phosphate aqueous solution described later, Mg 2+ / Zn 2+ It is necessary to adjust the concentration within an appropriate range.

・Zn2+に対するMg2+の濃度の割合(Mg2+/Zn2+):0.4〜2.5
前記リン酸塩皮膜に適量のMgを含有させるために、本発明では、前記リン酸塩処理液中の亜鉛イオン濃度に対するマグネシウムイオン濃度の割合Mg2+/Zn2+ を0.4〜2.5に規定する。より好適には0.8〜1.2である。Mg2+/Zn2+ が0.4未満では、処理液中のMg2+濃度は2.0g/L未満となるため、Zn2+が優先的に前記リン酸塩皮膜に取り込まれ、リン酸塩皮膜中のZnに対するMgの比率が低くなり、リン酸亜鉛皮膜の耐食性が低下する。また、Mg2+/Zn2+ が2.5を超えると、処理液中のMg2+濃度は5.0g/L超えとなるため、リン酸塩皮膜中のZnに対するMgの比率が適正範囲を外れ、リン酸亜鉛皮膜の耐黒変性が低下するからである。
· Zn ratio of the concentration of Mg 2+ for 2+ (Mg 2+ / Zn 2+) : 0.4~2.5
In order to contain an appropriate amount of Mg in the phosphate film, in the present invention, the ratio Mg 2+ / Zn 2+ of the magnesium ion concentration to the zinc ion concentration in the phosphating solution is regulated to 0.4 to 2.5. More preferably, it is 0.8 to 1.2. When Mg 2+ / Zn 2+ is less than 0.4, the Mg 2+ concentration in the treatment liquid is less than 2.0 g / L. Therefore, Zn 2+ is preferentially taken into the phosphate film, and Zn in the phosphate film The ratio of Mg to the lower the corrosion resistance of the zinc phosphate coating. If Mg 2+ / Zn 2+ exceeds 2.5, the Mg 2+ concentration in the treatment solution exceeds 5.0 g / L, so the ratio of Mg to Zn in the phosphate film is outside the proper range, and phosphoric acid This is because the blackening resistance of the zinc film is lowered.

また、前記リン酸塩処理液は、上記条件の他に、リン酸塩処理液中のMg2+濃度が上記範囲となるようにMg塩を溶解させるため、前記処理液の液温を30〜70℃、pHを1.0〜2.5の範囲とすることが好ましい。また、次に示す理由のためでもある。液温が30℃以上の場合、リン酸塩処理の液の反応性が高くなり、短時間で均一な皮膜形成がし易くなる。一方、液温が70℃以下の場合、処理液によるめっき面のエッチングが適度に生じ、リン酸塩が析出し易くなり、処理時間の制御が非常に容易となる。また、pH1.0以上の場合、エッチング性が適度であり、皮膜が析出し易いため、同様に処理時間の制御が容易となる。一方、pHが2.5以下の場合には、処理液の安定性が高く、沈殿が生じにくい。 In addition to the above conditions, the phosphating treatment solution dissolves Mg salt so that the Mg 2+ concentration in the phosphating treatment solution falls within the above range. It is preferable that the temperature and the pH are in the range of 1.0 to 2.5. It is also for the following reason. When the liquid temperature is 30 ° C. or higher, the reactivity of the phosphating liquid increases, and a uniform film can be easily formed in a short time. On the other hand, when the liquid temperature is 70 ° C. or lower, the plating surface is appropriately etched by the treatment liquid, the phosphate is easily precipitated, and the treatment time is very easily controlled. Further, when the pH is 1.0 or more, the etching property is moderate and the film is likely to be deposited, so that the treatment time can be easily controlled. On the other hand, when the pH is 2.5 or less, the stability of the treatment liquid is high and precipitation is unlikely to occur.

さらに、前記処理液中のMg2+と対になる陰イオンの選択が重要となる。ここで、水酸化イオン、炭酸イオン、硫酸イオンなどを用いた場合には、Mg塩の十分な溶解度が得られない傾向があり、塩化イオンを用いた場合には、溶解度は十分であるもののMg2+と同時に高濃度の塩素イオンがリン酸塩処理液中に混入するため、リン酸塩皮膜の形成に悪影響を及ぼすことになる。一方、硝酸イオンは酸化作用を有するとともに、塩素イオンや硫酸イオンなどの他のアニオンと比較し皮膜成分中に残留しにくいため、形成した皮膜に可溶性の成分をミニマム化でき、リン酸塩皮膜の性能を向上させる作用がある。したがって、陰イオンとしては、硝酸イオンが好適であり、処理液中のMgイオン源としては、硝酸マグネシウムを用いる本発明で使用するリン酸塩処理液としては、亜鉛イオン、リン酸イオンを含有し、さらに促進剤等を含有する市販の処理液、例えば、日本パーカライジング(株)製の商品名「PB3312M」等に、上記した硝酸イオンを所定量添加したものが好適に用いられる。 Furthermore, it is important to select an anion that is paired with Mg 2+ in the treatment solution. Here, when hydroxide ion, carbonate ion, sulfate ion, etc. are used, there is a tendency that sufficient solubility of Mg salt cannot be obtained, and when chloride ion is used, the solubility is sufficient, but Mg At the same time as 2+, a high concentration of chlorine ions is mixed into the phosphating solution, which adversely affects the formation of the phosphate film. On the other hand, nitrate ions have an oxidizing action and are less likely to remain in the film components compared to other anions such as chloride ions and sulfate ions, so that the components soluble in the formed film can be minimized, and the phosphate film It has the effect of improving performance. Accordingly, nitrate ions are suitable as the anions, and magnesium nitrate is used as the Mg ion source in the treatment liquid . As the phosphate treatment liquid used in the present invention, a commercial treatment liquid containing zinc ions, phosphate ions, and further containing an accelerator, for example, trade name “PB3312M” manufactured by Nippon Parkerizing Co., Ltd. In addition, the above-mentioned nitrate ion is preferably used.

・遊離酸度の全酸度に対する割合:0.020以上0.10未満
前記リン酸塩皮膜の形成は、処理液の遊離オルトリン酸(遊離酸)のめっき面へのエッチング作用によって、処理液の固液界面のpHが上昇し、処理液中の第一リン酸亜鉛(Zn(H2PO4)2)とオルトリン酸(H3PO4)の濃度平衡に差異が生じるため、前記第一リン酸亜鉛がマグネシウムを含有するリン酸亜鉛結晶となって析出することにより行われる。したがって、前記リン酸塩皮膜の形成において、遊離酸は非常に重要な役割を担っている。そのため、本発明者らは、遊離酸のエッチング作用に着目し、均一な前記リン酸塩皮膜を、短時間(3〜15秒)の処理で形成することができる方法について鋭意検討を重ねた。
-Ratio of free acidity to total acidity: 0.020 or more and less than 0.10 The formation of the phosphate film is due to the etching action of the free orthophosphoric acid (free acid) of the treatment liquid on the plating surface, and the pH of the solid-liquid interface of the treatment liquid is The concentration of the primary zinc phosphate (Zn (H 2 PO 4 ) 2 ) and orthophosphoric acid (H 3 PO 4 ) in the treatment solution is different, so the primary zinc phosphate contains magnesium. It is performed by depositing as zinc phosphate crystals. Therefore, the free acid plays a very important role in the formation of the phosphate film. Therefore, the present inventors paid attention to the etching action of free acid, and conducted extensive studies on a method that can form a uniform phosphate film by a short time ( 3 to 15 seconds).

その結果、遊離酸濃度を高くすると、亜鉛めっきへのエッチング性が高くなり、リン酸塩処理の前処理である脱脂・表調の工程において表面状態が不均一となるため、リン酸塩皮膜がムラとなって形成すること、及び遊離酸濃度が上昇するとリン酸亜鉛結晶は析出しにくくなるため、数秒レベルの短時間処理の場合には、局部的にリン酸塩皮膜が形成されない部分が生じることを見出した。そしてさらに検討を重ねた結果、遊離酸度の全酸度に対する割合を従来よりも低い範囲で、適正化することで、エッチング性を抑制しつつも、従来技術と同等のリン酸塩結晶の析出を可能とし、均一なリン酸塩皮膜を短時間で形成することができることを見出した。
なお、遊離酸(オルトリン酸)濃度としては、遊離酸度にして0.5〜3.4の範囲にすることが好ましい。さらに好ましくは、1.0〜3.0の範囲である。また、全酸度は20〜26の範囲とすることが好ましいが、後述する遊離酸度との割合となるようにする必要がある。
As a result, when the free acid concentration is increased, the etching property to galvanization increases, and the surface condition becomes non-uniform in the degreasing and surface finishing process that is a pretreatment of the phosphate treatment. When the free acid concentration is increased and the free acid concentration is increased, the zinc phosphate crystals are less likely to precipitate. Therefore, in the case of a short time treatment of several seconds, a portion where a phosphate film is not locally formed occurs. I found out. As a result of further investigation, by optimizing the ratio of free acidity to total acidity in a range lower than conventional, it is possible to deposit phosphate crystals equivalent to the conventional technology while suppressing etching property. And found that a uniform phosphate film can be formed in a short time.
The free acid (orthophosphoric acid) concentration is preferably in the range of 0.5 to 3.4 in terms of free acidity. More preferably, it is the range of 1.0-3.0. The total acidity is preferably in the range of 20 to 26, but it is necessary to have a ratio with the free acidity described later.

なお、前記遊離酸度の全酸度に対する割合(遊離酸度/全酸度)は0.020以上0.10未満に制御する必要がある。さらに好ましくは、0.035〜0.096に制御する。0.020未満では、遊離酸濃度が低すぎるため、亜鉛へのエッチング性に乏しく、リン酸塩結晶の析出に必要な反応が生じにくくなり、十分なリン酸塩皮膜が形成されないからであり、さらに、リン酸塩処理液の安定性が低下し、処理液中に亜鉛及び不純物として存在する鉄を含むリン酸化合物と考えられる固形分が析出し、分散するからである。一方、0.10以上では、数秒レベルの短時間処理を施した場合に、亜鉛の表面状態の不均一性に起因したリン酸塩皮膜のムラが生じる恐れがあるからである。   The ratio of the free acidity to the total acidity (free acidity / total acidity) must be controlled to 0.020 or more and less than 0.10. More preferably, it is controlled to 0.035 to 0.096. If it is less than 0.020, the free acid concentration is too low, so the etching property to zinc is poor, the reaction necessary for precipitation of phosphate crystals is less likely to occur, and a sufficient phosphate film is not formed. This is because the stability of the phosphating solution is lowered, and a solid content that is considered to be a phosphate compound containing zinc and iron present as impurities is precipitated and dispersed in the processing solution. On the other hand, if it is 0.10 or more, there is a possibility that unevenness of the phosphate film due to non-uniformity of the surface state of zinc may occur when a short time treatment of several seconds level is performed.

ここで、遊離酸度とは、リン酸塩処理液10mlに対し、指示薬としてブロムフェノールブルーを数滴加え、0.1規定の苛性ソーダで滴定し、中和に要した0.1規定の苛性ソーダ量(ml)をポイントとして表す。さらに全酸度は、同じく、リン酸塩処理液10mlに対し、指示薬としてフェノールフタレインを数滴加え、0.1規定の苛性ソーダで滴定し、中和に要した0.1規定の苛性ソーダ量(ml)をポイントとして表す。   Here, the free acidity refers to the amount of 0.1N caustic soda (ml) required for neutralization by adding several drops of bromophenol blue as an indicator to 10ml of phosphating solution and titrating with 0.1N caustic soda. Represent as Furthermore, the total acidity is the same with the addition of a few drops of phenolphthalein as an indicator for 10 ml of the phosphate treatment solution, titration with 0.1 normal caustic soda, and the amount of 0.1 normal caustic soda (ml) required for neutralization as a point. To express.

上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

本発明の実施例について説明する。   Examples of the present invention will be described.

(実施例1〜16及び比較例1〜9)
板厚1.0mmの冷延鋼板を、前処理として、オルソ珪酸ソーダ(60g/L)添加のアルカリ脱脂液(液温:70℃)中で、対極をステンレス板として電流密度:5A/dmで30秒間の電解脱脂を施した後、水洗し、30g/Lの硫酸水溶液(液温:30℃)中に5秒間浸漬して酸洗したのち、水洗した。前処理後、前記鋼板に電気亜鉛めっき処理を施し、前記鋼板片面に、付着量:20g/mの亜鉛めっき層を形成した。電気亜鉛めっき処理は、440g/Lの硫酸亜鉛7水和物を添加した亜鉛めっき液を用いて亜鉛めっき浴とした。亜鉛めっき液は硫酸を添加してpH:1.5に調整した。なお、亜鉛めっき浴の浴温は50℃とし、電気亜鉛めっき浴中で、酸化イリジウム被覆Ti板電極を対極とし、試験板と極間距離10mmで平行に配置し、極間に流速1.5m/sでめっき液を循環させながら、電流密度70A/dm2で通電した。
このようにして鋼板表面に亜鉛めっき層を形成したのち、水洗し、ついでリン酸塩処理を施した。
(Examples 1-16 and Comparative Examples 1-9)
The cold-rolled steel sheet having a thickness of 1.0 mm, as a pretreatment, ortho sodium silicate (60 g / L) added alkaline degreasing solution (liquid temperature: 70 ° C.) in a current density of the counter electrode as a stainless steel plate: at 5A / dm 2 After electrolytic degreasing for 30 seconds, it was washed with water, immersed in a 30 g / L sulfuric acid aqueous solution (liquid temperature: 30 ° C.) for 5 seconds, pickled, and then washed with water. After the pretreatment, the steel sheet was subjected to electrogalvanizing treatment, and a zinc plating layer having an adhesion amount of 20 g / m 2 was formed on one surface of the steel sheet. In the electrogalvanizing treatment, a zinc plating solution to which 440 g / L of zinc sulfate heptahydrate was added was used as a zinc plating bath. The zinc plating solution was adjusted to pH 1.5 by adding sulfuric acid. The bath temperature of the galvanizing bath is 50 ° C. In the electrogalvanizing bath, an iridium oxide-coated Ti plate electrode is used as a counter electrode, and the test plate is placed in parallel with a distance of 10 mm between the electrodes, and a flow rate of 1.5 m / The current was supplied at a current density of 70 A / dm 2 while circulating the plating solution in s.
After forming a galvanized layer on the surface of the steel plate in this way, it was washed with water and then subjected to phosphate treatment.

リン酸塩処理の前処理として、亜鉛めっき層表面に、表面調整剤(日本パーカライジング(株)製:商品名「プレンパレンZ」)による表面調整処理を施し、前記亜鉛めっき層に、リン酸塩処理液((日本パーカライジング(株)製:商品名「PB3312M」)に硝酸マグネシウムを添加したもの)を、時間を変えてスプレー処理し、水洗、乾燥して、リン酸塩皮膜を形成させた。なお、リン酸塩処理液の液温は60℃、pHは各実施例あるいは各比較例によって異なるが、いずれも2.1〜2.7の範囲であり、いずれの処理液にも0.1〜0.4g/Lの範囲のNiを含有している。   As a pretreatment for phosphating, the surface of the galvanized layer is surface-treated with a surface conditioner (manufactured by Nihon Parkerizing Co., Ltd .: trade name “Plenpalen Z”). The liquid (Nippon Parkerizing Co., Ltd .: trade name “PB3312M”) added with magnesium nitrate was sprayed at different times, washed with water, and dried to form a phosphate film. In addition, although the liquid temperature of a phosphating liquid is 60 degreeC and pH changes with each Example or each comparative example, all are the range of 2.1-2.7, and 0.1-0.4 g / L is in any processing liquid. Contains Ni in the range.

なお、前記リン酸塩処理液中のZn2+濃度、Mg2+濃度、遊離酸度及び全酸度の値は、前記「PB3312M」の濃度並びに水酸化ナトリウム水溶液、オルトリン酸、硝酸を適宜添加することによって、各実施例及び比較例ごとに変化させた。Zn2+濃度は、前記、「PB3312M」の初期濃度により変化させ、Mg2+濃度は硝酸マグネシウム添加量を変化させることで変化させた。また、前記リン酸塩皮膜中のMg含有量は、リン酸塩処理層を重クロム酸アンモニウム水溶液で溶解し、該溶解液をICP分析(誘起結合プラズマ発光分析)により計測し、リン酸塩皮膜の付着量は、リン酸塩処理液との接触時間を変えることで変化させた。また、前記リン酸塩皮膜の付着量は、重クロム酸アンモニウム水溶液で溶解して重量法で計測した。
実施例及び比較例に用いたリン酸塩処理液中のZn2+濃度、Mg2+濃度、Mg2+/Zn2+比、遊離酸度、全酸度、遊離酸度/全酸度比及びリン酸塩処理液のスプレー処理時間(処理液の接触時間)、ならびに作製したリン酸塩処理亜鉛系めっき鋼板のリン酸塩皮膜のMg含有量及び付着量を表1に示す。
The Zn 2+ concentration, Mg 2+ concentration, free acidity and total acidity in the phosphating solution should be appropriately added with the concentration of the “PB3312M” and aqueous sodium hydroxide, orthophosphoric acid and nitric acid. Thus, each example and the comparative example were changed. The Zn 2+ concentration was changed by the initial concentration of “PB3312M”, and the Mg 2+ concentration was changed by changing the amount of magnesium nitrate added. In addition, the Mg content in the phosphate film was measured by dissolving the phosphate-treated layer with an aqueous ammonium dichromate solution and measuring the dissolved solution by ICP analysis (inductively coupled plasma emission analysis). The adhesion amount of was changed by changing the contact time with the phosphating solution. Further, the amount of the phosphate coating adhered was measured by a gravimetric method after being dissolved in an ammonium dichromate aqueous solution.
Zn 2+ concentration, Mg 2+ concentration, Mg 2+ / Zn 2+ ratio, free acidity, total acidity, free acidity / total acidity ratio and phosphate in the phosphating solution used in Examples and Comparative Examples Table 1 shows the spray treatment time of the treatment liquid (contact time of the treatment liquid), and the Mg content and the adhesion amount of the phosphate coating of the prepared phosphate-treated zinc-based plated steel sheet.

以上のようにして得られたリン酸塩処理亜鉛系めっき鋼板について各種試験を行った。本実施例で行った試験の評価方法を以下に示す。   Various tests were performed on the phosphate-treated zinc-plated steel sheet obtained as described above. The evaluation method of the test conducted in this example is shown below.

(評価方法)
(1)外観均一性
リン酸塩処理後の表面外観を目視して、リン酸塩皮膜の均一性を以下の評価基準に従って評価した。
○:外観均一
×:外観不均一
(Evaluation method)
(1) Appearance uniformity The appearance of the surface after the phosphate treatment was visually observed, and the uniformity of the phosphate film was evaluated according to the following evaluation criteria.
○: Appearance uniform ×: Appearance unevenness

(2)結晶形成状態
結晶形成状態は、リン酸塩皮膜を走査型電子顕微鏡(SEM)により観察し、リン酸塩結晶が局所的に形成されていない箇所の有無を評価した。観察は、150×70mm2の試験片の端部から20mmの外縁範囲を除いた中央部分を、1000倍のSEMにより観察した。任意の10視野(視野面積:100μm×100μm)について、直径20μm以上の領域でリン酸塩結晶が形成されていない箇所の数を視野ごとにカウントした。10視野でカウントされた個数から算出される、1視野あたりの平均個数をもとに、以下の評価基準に従って評価した。
○:3箇所未満
△:3箇所以上10箇所未満
×:10箇所以上
(2) Crystal formation state In the crystal formation state, the phosphate film was observed with a scanning electron microscope (SEM), and the presence or absence of a portion where a phosphate crystal was not locally formed was evaluated. In the observation, the central portion excluding the outer edge range of 20 mm from the end of the 150 × 70 mm 2 test piece was observed with a 1000 times SEM. For any 10 fields of view (field area: 100 μm × 100 μm), the number of locations where phosphate crystals were not formed in a region having a diameter of 20 μm or more was counted for each field. Based on the average number per field of view calculated from the number counted in 10 fields of view, evaluation was performed according to the following evaluation criteria.
○: Less than 3 locations Δ: 3 or more locations and less than 10 locations ×: 10 locations or more

(3)耐食性
耐食性は、作製したリン酸塩処理亜鉛系めっき鋼板から、試験片(大きさ:100×50mm)を切り出し、試験片の端部及び裏面をテープシールした後、JIS Z 2371-2000の規定に準拠して塩水噴霧試験を実施した。定期的に試験片表面を観察し、試験片の全評価面積に対し白錆発生面積が5%になるまでの時間(白錆発生時間)を調べ、以下の評価基準に従って評価した。
◎:24時間以上
○:8時間以上24時間未満
△:4時間以上8時間未満
×:4時間未満
(3) Corrosion resistance Corrosion resistance was determined by cutting out a test piece (size: 100 x 50 mm) from the prepared phosphate-treated zinc-plated steel sheet, tape-sealing the end and back of the test piece, and then JIS Z 2371-2000. The salt spray test was conducted in accordance with the provisions of The surface of the test piece was regularly observed, the time until the white rust generation area became 5% of the total evaluation area of the test piece (white rust generation time) was examined, and evaluated according to the following evaluation criteria.
◎: 24 hours or more ○: 8 hours or more but less than 24 hours △: 4 hours or more but less than 8 hours ×: Less than 4 hours

(4)耐黒変性
耐黒変性は、作製したリン酸塩処理亜鉛系めっき鋼板から、試験片(大きさ:100×50mm)を切り出し、分光式色差計SQ2000(日本電色工業(株)製)を用いて、試験片の初期のL値(明度)を測定した。ついで、試験片を、温度80℃、相対湿度95%の恒温恒湿槽中に24時間放置後、試験片のL値を同様に測定し、初期のL値からの変化量ΔL(放置後のL値−初期のL値)を求め、以下の評価基準に従って評価した。
◎:ΔL≧−1
○:−1>ΔL≧−2
△:−2>ΔL≧−4
×:ΔL<−4
(4) Blackening resistance Blackening resistance is obtained by cutting out a test piece (size: 100 x 50 mm) from the prepared phosphate-treated galvanized steel sheet and using a spectroscopic color difference meter SQ2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). ) Was used to measure the initial L value (lightness) of the test piece. Next, after leaving the test piece in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 95% for 24 hours, the L value of the test piece was measured in the same manner, and the amount of change ΔL (from the initial L value) L value-initial L value) was determined and evaluated according to the following evaluation criteria.
A: ΔL ≧ −1
○: −1> ΔL ≧ −2
Δ: −2> ΔL ≧ −4
×: ΔL <−4

(5)塗膜密着性
塗膜密着性は、試験片(70×150mm)に脱脂などの前処理なしで、アルキドメラミン系の塗装(大日本塗料(株)製,デリコン#700、乾燥130℃×30分、膜厚28±5μm)を施し、カッターで碁盤目(10×10個、1mm間隔)のカットを入れた後、エリクセン押し出し加工(高さ5mm)を行った。その後、碁盤目を入れてエリクセン押し出し加工を施した箇所に、ニチバン(株)製セロハン粘着テープ(タイプC LP−18)を貼り付け、ヘラで密着させた後、引き剥がし、塗膜残存率を計測し、以下の評価基準に従って評価した。
○:塗膜残存率100%
△:塗膜残存率90%以上100%未満
×:塗膜残存率90%未満
(5) Coating film adhesion Coating film adhesion was achieved by applying alkydmelamine-based paint (Daikon Paint Co., Ltd., Delicon # 700, dry 130 ° C, without pretreatment such as degreasing to the test piece (70 x 150 mm). × 30 minutes, film thickness 28 ± 5 μm) was applied, and a cross cut (10 × 10 pieces, 1 mm interval) was cut with a cutter, followed by Erichsen extrusion (height 5 mm). After that, a cellophane adhesive tape (type C LP-18) made by Nichiban Co., Ltd. was applied to the place where the Eriksen extrusion process was performed with a grid pattern, and after sticking it with a spatula, it was peeled off and the coating film remaining rate was determined. Measured and evaluated according to the following evaluation criteria.
○: Residual film remaining rate 100%
Δ: Paint film remaining rate 90% or more and less than 100% ×: Paint film remaining rate 90%

上記各試験の評価結果を表1に示す。
これによれば、実施例1〜16のリン酸塩処理亜鉛系めっき鋼板は、いずれも良好な外観均一性、結晶状態、耐食性、耐黒変性及び塗膜密着性を有している。また、短時間でリン酸塩皮膜を形成した場合でも十分な性能が得られていることがわかった。
Table 1 shows the evaluation results of the above tests.
According to this, the phosphate-treated zinc-based plated steel sheets of Examples 1 to 16 all have good appearance uniformity, crystal state, corrosion resistance, blackening resistance and coating film adhesion. It was also found that sufficient performance was obtained even when the phosphate film was formed in a short time.

Figure 0005119864
Figure 0005119864

本発明の製造方法により、均一なリン酸塩皮膜を短時間の処理で形成することができ、耐食性と耐黒変性に優れたリン酸塩処理亜鉛系めっき鋼板が得られる。このリン酸塩処理亜鉛系めっき鋼板は、建材用、家電製品用等の塗装用下地鋼板として幅広く使用されるので、産業に大きく寄与できる。   By the production method of the present invention, a uniform phosphate film can be formed in a short time, and a phosphate-treated zinc-based plated steel sheet excellent in corrosion resistance and blackening resistance can be obtained. Since this phosphate-treated zinc-based plated steel sheet is widely used as a base steel sheet for coating for building materials, home appliances, etc., it can greatly contribute to the industry.

Claims (2)

亜鉛系めっき鋼板をリン酸塩処理液で処理して、亜鉛系めっき鋼板の表面にリン酸塩皮膜を形成するリン酸塩処理亜鉛系めっき鋼板の製造方法であって、
前記リン酸塩処理液が、Zn2+:2.0g/L超え5.0g/L以下、Mg2+:2.0〜5.0g/Lを含有し、かつ、前記Zn2+に対するMg2+の濃度の割合Mg2+/Zn2+が0.4〜2.5の範囲であり、前記処理液中における遊離酸度の全酸度に対する割合が0.020以上0.10未満であり、
前記処理液中のMgイオン源が硝酸マグネシウムであり、
前記亜鉛系めっき鋼板を、前記処理液に3〜15秒接触させることを特徴とするリン酸塩処理亜鉛系めっき鋼板の製造方法。
A method for producing a phosphating galvanized steel sheet by treating a galvanized steel sheet with a phosphating solution and forming a phosphate film on the surface of the galvanized steel sheet,
The phosphating solution, Zn 2+: 2.0 g / L more than 5.0 g / L or less, Mg 2+: containing 2.0~5.0g / L, and the concentration of Mg 2+ with respect to the Zn 2+ ratio Mg 2+ / Zn 2+ is in the range of 0.4 to 2.5, Ri 0.10 less der ratio 0.020 or more to the total acidity of the free acidity in the treatment solution,
Mg ion source in the treatment liquid is magnesium nitrate,
A method for producing a phosphating galvanized steel sheet, wherein the galvanized steel sheet is brought into contact with the treatment liquid for 3 to 15 seconds .
亜鉛系めっき鋼板の表面に、Mg:0.2質量%以上2.0質量%未満を含有し、付着量が0.2〜3.0g/m2であるリン酸塩皮膜を有することを特徴とする請求項に記載のリン酸塩処理亜鉛系めっき鋼板の製造方法により製造したリン酸塩処理亜鉛系めっき鋼板。 On the surface of the galvanized steel sheet, Mg: contain less than 0.2 wt% to 2.0 wt%, according to claim 1, the amount of deposition is characterized by having a phosphate film is 0.2 to 3.0 g / m 2 Phosphate-treated zinc-based plated steel sheet produced by the method for producing a phosphate-treated zinc-based plated steel sheet.
JP2007284032A 2006-10-31 2007-10-31 Phosphate-treated galvanized steel sheet and method for producing the same Active JP5119864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284032A JP5119864B2 (en) 2006-10-31 2007-10-31 Phosphate-treated galvanized steel sheet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006295589 2006-10-31
JP2006295589 2006-10-31
JP2007284032A JP5119864B2 (en) 2006-10-31 2007-10-31 Phosphate-treated galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008133540A JP2008133540A (en) 2008-06-12
JP5119864B2 true JP5119864B2 (en) 2013-01-16

Family

ID=39558579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284032A Active JP5119864B2 (en) 2006-10-31 2007-10-31 Phosphate-treated galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5119864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830508B1 (en) * 2016-06-24 2018-02-21 주식회사 포스코 Phosphate-treated zinc-based plated steel sheet having excellent discoloration resistance and film adhesiveness

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063590A (en) * 2015-04-17 2015-11-18 思维福特南通精密机械有限公司 Locking nut surface anticorrosion process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3871031D1 (en) * 1987-08-19 1992-06-17 Metallgesellschaft Ag METHOD FOR PHOSPHATING METALS.
DE3828676A1 (en) * 1988-08-24 1990-03-01 Metallgesellschaft Ag PHOSPHATING PROCESS
JP3204823B2 (en) * 1993-11-11 2001-09-04 日本パーカライジング株式会社 Method of forming zinc phosphate composite coating layer with excellent high-speed press formability on zinc-containing metal plated steel sheet
DE19808755A1 (en) * 1998-03-02 1999-09-09 Henkel Kgaa Layer weight control for strip phosphating
JP4267213B2 (en) * 2001-03-27 2009-05-27 新日本製鐵株式会社 Zinc phosphate-treated zinc-coated steel sheet with excellent corrosion resistance and color tone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830508B1 (en) * 2016-06-24 2018-02-21 주식회사 포스코 Phosphate-treated zinc-based plated steel sheet having excellent discoloration resistance and film adhesiveness

Also Published As

Publication number Publication date
JP2008133540A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
KR20190002504A (en) Improved method of treating metal surfaces with nickel-free phosphate
US9157165B2 (en) Method of production of chemically treated steel sheet
JP2010106334A (en) Chemical conversion treatment liquid and chemical conversion treatment method for metal material
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JP5334499B2 (en) Surface-treated metal plate with excellent paint adhesion and method for producing the same
TWI287050B (en) Phosphate treated zinc-coated steel sheet
JP5119864B2 (en) Phosphate-treated galvanized steel sheet and method for producing the same
KR101106516B1 (en) Phosphate-treated galvanized steel sheet and method for producing the same
KR20040038635A (en) Surface treating composition, surface treating solution, surface treating method and product with metallic material
JPH055899B2 (en)
JP4992385B2 (en) Organic resin-coated phosphate-treated zinc-based plated steel sheet and method for producing the same
JP4635638B2 (en) Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance
JP4862484B2 (en) Method for producing electrogalvanized steel sheet
JP2011236471A (en) Composite electrogalvanized steel sheet, and method for producing the same
US11124880B2 (en) Method for nickel-free phosphating metal surfaces
KR0146884B1 (en) Phosphating solution of zn electric-plated steel sheet
JP3072262B2 (en) Method for producing Zn-Ni plated steel sheet excellent in chemical conversion property and water-resistant secondary adhesion
JPH11323569A (en) Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method
JPH10158885A (en) Production of phosphated and galvanized steel sheet
JPH101798A (en) Electrolytic chromate treating method
JPH0790610A (en) Production of glavanized steel sheet excellent in resistance to blackening and corrosion and coating film adhesion
JPH08325751A (en) Production of electrolytically chromated galvanized steel sheet excellent in resistance to corrosion, fingerprinting and chromium elution and in continuous productivity and electrolytic chromating bath used in that case
JPH08325793A (en) Production of electrolytically chromated galvanized steel sheet excellent in resistance to corrosion, fingerprinting and chromate elution and in continuous productivity and to provide electrolytic chromating bath used in that case
JPH1018053A (en) Production of zn-ni alloy plated steel sheet excellent in water resisting secondary adhesion and bare corrosion ersistance
JPS6075584A (en) Method for modifying surface of zinc alloy plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5119864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250