JPH11323569A - Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method - Google Patents

Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method

Info

Publication number
JPH11323569A
JPH11323569A JP10096164A JP9616498A JPH11323569A JP H11323569 A JPH11323569 A JP H11323569A JP 10096164 A JP10096164 A JP 10096164A JP 9616498 A JP9616498 A JP 9616498A JP H11323569 A JPH11323569 A JP H11323569A
Authority
JP
Japan
Prior art keywords
phosphate
steel sheet
galvanized steel
value
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10096164A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
高橋  彰
Katsutoshi Maruyama
勝俊 圓山
Yujiro Miyauchi
優二郎 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10096164A priority Critical patent/JPH11323569A/en
Publication of JPH11323569A publication Critical patent/JPH11323569A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/17Orthophosphates containing zinc cations containing also organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphate solution for treating a galvanized steel sheet capable of forming a film having good post-coating corrosion resistance and whiteness and a phosphate treated steel sheet of whiteness (L value) of >=70 using the treating liquid. SOLUTION: This phosphate solution for treating the galvanized steel sheet contains 4 to 10 g/L NO3 , 0.01 to 0.14 g/L Ni<2+> , 4 to 7 g/L Zn<2+> and 0.1 to 10 g/L at least >=1 kind among malic acid, citric acid, gluconic acid and their slat or phosphate per 1 L soln. in the phosphate solution in the method for subjecting the galvanized steel sheet to the phosphate treatment. The whiteness (L value) of the appearance of the galvanized steel sheet after the phosphate treatment is >=70. The phosphate treated galvanized steel sheet is formed by using the phosphate solution described above. Its Zn coating weight is 0.1 to 200 g/m<2> , its phosphate coating weight thereof is 0.1 to 5 g/m<2> , the whiteness (L value) of its plating appearance is >=70 and the grain size of the phosphate crystal is <=40 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家電製品、建材、
自動車用鋼板及びOA機器等の工業製品に用いられる白
色度の優れた亜鉛系めっき鋼板のりん酸塩処理液及び処
理鋼板並びにその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to home appliances, building materials,
The present invention relates to a phosphating solution and zinc-plated steel sheet having excellent whiteness and used for industrial products such as steel sheets for automobiles and OA equipment, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、電気亜鉛めっき鋼板の後処理
は、めっき鋼板の耐食性や塗料密着性、塗装後の耐食性
を向上させる目的で行うもので、クロメ−ト処理、りん
酸塩処理等が代表される。このうち、りん酸塩処理は、
第1りん酸亜鉛、りん酸を主成分とする処理液を用い
て、りん酸塩処理皮膜を亜鉛めっき層の上に形成させ
る。ここで、このりん酸塩処理液は、第1りん酸亜鉛,
りん酸が主成分であり、それに塗装性能を良くするため
に微量のNi2+が添加され、また、皮膜形成を促進する
目的で少量のNO3 - 、微量のフッ素イオンが添加され
ている。このような処理液から得られるりん酸塩処理皮
膜は、亜鉛めっき上の場合、Zn3 (PO4 5・4H
2 O(ホパイト)を主成分として、他にZn2 Ni( P
4 5 ・4H2O(フォスフォニコライト)やアモル
ファス状金属Ni等からなり、良好な塗装後耐食性を有
している。
2. Description of the Related Art In general, post-treatment of an electrogalvanized steel sheet is performed for the purpose of improving the corrosion resistance, paint adhesion, and corrosion resistance after coating of a coated steel sheet, and typically includes chromate treatment and phosphate treatment. Is done. Of these, phosphate treatment
A phosphate treatment film is formed on the galvanized layer using a first zinc phosphate and a treatment solution containing phosphoric acid as a main component. Here, this phosphating solution is made of zinc phosphate 1
Phosphoric acid is a main component, and a small amount of Ni 2+ is added to improve coating performance, and a small amount of NO 3 and a small amount of fluorine ion are added for the purpose of promoting film formation. Such treatment liquid phosphate conversion coating derived from the case of the zinc-plated, Zn 3 (PO 4) 5 · 4H
2 O (hopite) as the main component and Zn 2 Ni (P
O 4) 5 · 4H 2 O ( phosphosilicate Nico light), or made amorphous metal such as Ni, has good corrosion resistance after painting.

【0003】しかしながら、このりん酸塩処理皮膜の色
調は亜鉛めっきに比べて暗灰色を呈している。皮膜の色
調は、特に、白色系の塗装を施した場合に仕上げの外観
や、必要膜厚に影響を与えるため、できるだけ白色であ
ることがユ−ザ−側から望まれている。白色度の指標と
してL値で70程度が望まれている。このような要求に
応えるために、例えば特開昭59−107084号公報
のように、NO3 - 濃度の高い処理液を用いることによ
り白色度の高い鋼板を得る方法や、特開昭62−474
88号公報のように、電気亜鉛めっき鋼板を連続してり
ん酸塩処理するに際し、Zn/Ni重量比が10〜20
となるりん酸塩処理補給液を用いて、これにより処理浴
中の亜鉛とニッケルの濃度を一定範囲に保持して白色度
(L値60以上程度)の処理鋼板を安定して得る電気亜
鉛めっき鋼板のりん酸塩処理方法が提案されている。
[0003] However, the color tone of the phosphatized film is dark gray as compared with zinc plating. Since the color tone of the film affects the appearance of the finish and the required film thickness particularly when a white paint is applied, it is desired from the user side to be as white as possible. As an index of whiteness, an L value of about 70 is desired. To meet such requirements, for example, as in JP 59-107084 JP, NO 3 - a method of obtaining a high degree of whiteness steel sheet by using a high concentration of the treatment liquid, JP 62-474
No. 88, when continuously subjecting an electrogalvanized steel sheet to phosphate treatment, the Zn / Ni weight ratio is 10 to 20.
Galvanizing to obtain a treated steel sheet having whiteness (L value of about 60 or more) stably by maintaining the concentration of zinc and nickel in the treatment bath within a certain range by using a phosphating treatment replenishing solution A method for phosphating steel sheets has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た特開昭59−107084号公報の方法は、処理液中
のNO3 - 濃度を2.5〜5.0g/L以上にすること
により白色度60以上の処理鋼板が得られるものである
が、NO3 - 濃度を高めたことで処理液の反応性が向上
し、巨大なりん酸塩結晶や、過剰な付着量の結晶が析出
してしまい、塗装後の耐食性に劣るりん酸塩処理皮膜に
なってしまう。また、特開昭62−47488号公報の
方法では、電気亜鉛めっき鋼板では白色度がL値で60
程度しか得られず不十分である。すなわち、処理液中の
Ni2+濃度を低減するだけではL値を70程度の値まで
高めることは出来ないのが実情である。つまり、NO3
- 濃度の増大や、Ni2+濃度の低減といった浴濃度の変
更では、要求されるL値を正常な処理皮膜として得るこ
とが到底不可能であった。このような実情を鑑みて本発
明者らは、従来技術の抱えるこれらの問題点、若しくは
課題に対して、特に電気めっき鋼板の白色度の高いりん
酸塩処理鋼板について鋭意研究を重ねた結果、良好な塗
装後耐食性と白色度の高い皮膜を形成することができる
電気亜鉛めっき鋼板のりん酸塩処理液及び処理鋼板並び
にその製造方法を提案するに至った。
However, the method disclosed in Japanese Patent Application Laid-Open No. Sho 59-107084 described above is intended to reduce the whiteness by increasing the NO 3 - concentration in the processing solution to 2.5 to 5.0 g / L or more. Although a treated steel sheet of 60 or more can be obtained, the reactivity of the treatment solution is improved by increasing the NO 3 - concentration, and giant phosphate crystals and crystals with an excessive amount of deposition are deposited. This results in a phosphate treated film having poor corrosion resistance after painting. According to the method disclosed in Japanese Patent Application Laid-Open No. Sho 62-47488, the whiteness of an electrogalvanized steel sheet is 60
It is inadequate as it can only be obtained. In other words, the fact is that the L value cannot be increased to a value of about 70 simply by reducing the concentration of Ni 2+ in the processing solution. That is, NO 3
With a change in bath concentration such as an increase in concentration or a decrease in Ni 2+ concentration, it was almost impossible to obtain the required L value as a normal treated film. In view of such a situation, the present inventors, for these problems or problems of the prior art, as a result of intensive research on phosphate-treated steel sheets, particularly high whiteness of electroplated steel sheets, The present inventors have proposed a phosphating solution and a treated steel sheet for an electrogalvanized steel sheet capable of forming a film having good corrosion resistance and high whiteness after painting, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】その発明の要旨とすると
ころは、 (1)亜鉛系めっき鋼板のりん酸塩処理において、りん
酸塩処理液中のNO3 -:4〜10g/L、Ni2+
0.01〜0.14g/L、Zn2+:4〜7g/L及び
リンゴ酸、クエン酸、グルコン酸及びその塩またはリン
酸エステルの少なくとも1種以上を溶液1L当り0.1
〜10g/L含有し、りん酸塩処理した後の亜鉛系めっ
き鋼板の外観の白色度(L値)が70以上になることを
特徴とする亜鉛系めっき鋼板のりん酸塩処理液。 (2)前記(1)記載のりん酸塩処理液を使用し、Zn
めっき付着量が0.1〜200g/m2 、リン酸塩付着
量が0.1〜5g/m2 でめっき外観の白色度(L値)
が70以上、リン酸塩結晶の粒径が40μm以下である
ことを特徴とするりん酸塩処理亜鉛系めっき鋼板。
It is a gist of the SUMMARY OF THE INVENTION its invention, (1) In the phosphating of galvanized steel sheet, NO in phosphate treatment solution 3 -: 4~10g / L, Ni 2+ :
0.01 to 0.14 g / L, Zn 2+ : 4 to 7 g / L and at least one or more of malic acid, citric acid, gluconic acid and salts or phosphates thereof in an amount of 0.1 to 1 L per solution.
A phosphating solution for a galvanized steel sheet, comprising 10 to 10 g / L and having a whiteness (L value) of 70 or more in appearance of the galvanized steel sheet after phosphating. (2) Using the phosphating solution described in (1) above,
Whiteness (L value) of plating appearance with plating weight of 0.1 to 200 g / m 2 and phosphate weight of 0.1 to 5 g / m 2
A phosphate-treated galvanized steel sheet having a particle size of not less than 70 and a particle size of phosphate crystals of not more than 40 μm.

【0006】(3)前記(2)記載の処理鋼板におい
て、冷延鋼板および熱延鋼板上にNiまたはNi−Pを
0.001〜1.0g/m2 付着させたことを特徴とす
るりん酸塩処理亜鉛系めっき鋼板。 (4)前記(1)記載のりん酸塩処理液を用いてりん酸
塩処理することを特徴とする亜鉛系めっき鋼板のりん酸
塩処理方法である。
(3) The treated steel sheet according to (2), wherein Ni or Ni-P is deposited on the cold-rolled steel sheet and the hot-rolled steel sheet in an amount of 0.001 to 1.0 g / m 2. Zinc-based galvanized steel sheet. (4) A method for phosphating a galvanized steel sheet, wherein the phosphating treatment is performed using the phosphating solution described in (1).

【0007】[0007]

【発明の実施の形態】以下、本発明について図面に従っ
て詳細に説明する。図1は、本発明に係るりん酸塩処理
工程を示すブロック図であり、入側コイラ−1より巻戻
された鋼帯2は亜鉛めっき槽3を出てから水洗槽4によ
り水洗された後、りん酸塩前処理槽5でりん酸亜鉛懸濁
液あるいはチタン酸コロイド水溶液をスプレ−あるいは
ディップ処理された後、りん酸塩処理槽6でスプレ−あ
るいはディップ処理されてりん酸塩処理された後、水洗
槽7で水洗され、乾燥されてりん酸塩処理亜鉛めっき鋼
板が製造される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a phosphate treatment step according to the present invention. After a steel strip 2 unwound from an inlet coiler 1 exits a galvanizing tank 3, it is washed with a washing tank 4 and then washed. After the zinc phosphate suspension or the aqueous colloid titanate solution was sprayed or dipped in the phosphate pretreatment tank 5, it was sprayed or dipped in the phosphating tank 6 and phosphated. Thereafter, the substrate is washed with water in the washing tank 7 and dried to produce a phosphate-treated galvanized steel sheet.

【0008】しかしながら、電気亜鉛めっき鋼板は、一
般にりん酸塩処理により暗灰色になり、表面の白色度か
低下する。この理由は、処理液中にNiが存在するため
に、白色のホパイト(Zn3(PO4 5 ・4H2 O)が
析出するのと同時に、暗灰色のフォスフォニコライト
(Zn2 Ni( PO4 5 ・4H2 O)及び黒色のアモ
ルファス状Niの共析により、りん酸塩皮膜は暗灰色化
するためである。従って、この暗灰色化による白色度の
低下を防止するためには、りん酸塩皮膜中へのNiの析
出を抑制するための浴組成にする必要がある。しかしり
ん酸塩処理液中のNiは塗料の密着性を確保する上で必
須であり、ゼロにする事は好ましくない。
However, the electrogalvanized steel sheet generally becomes dark gray due to the phosphate treatment, and the surface whiteness is reduced. This is because, in order Ni is present in the processing solution, a white hopeite (Zn 3 (PO 4) 5 · 4H 2 O) simultaneously with the deposition, dark gray phosphotransferase Nico Light (Zn 2 Ni ( This is because the phosphate film becomes dark gray due to the co-deposition of PO 4 ) 5 .4H 2 O) and black amorphous Ni. Therefore, in order to prevent a decrease in whiteness due to the dark graying, it is necessary to use a bath composition for suppressing the precipitation of Ni in the phosphate film. However, Ni in the phosphating solution is indispensable for securing the adhesion of the paint, and it is not preferable to make it zero.

【0009】図2は、塗料密着性に及ぼすりん酸塩処理
液中のNi2+濃度の影響を示したものである。ここで、
塗料密着性の評価は関西ペイント社製アミラック♯10
00をバ−コ−タ−で20μm塗布・焼き付け後に10
0℃蒸留水に30分浸漬し、1mmゴバン目のテ−プ剥
離測定をし、○:剥離数0個、△:剥離数1〜10個、
×:剥離数10個以上で評価した。図より、浴中のNi
2+濃度が0.01g/Lより小さいと塗料密着性の評点
は△または×であり塗料密着性は不十分である。一方、
浴中のNi2+濃度が0.01g/L以上ではすべて評点
が○であり、このことから浴中のNi2+濃度は0.01
g/L以上が必要である。
FIG. 2 shows the effect of Ni 2+ concentration in the phosphating solution on paint adhesion. here,
Paint adhesion was evaluated by Amirac # 10 manufactured by Kansai Paint Co.
00 after coating and baking 20 μm with a bar coater.
The sample was immersed in distilled water at 0 ° C. for 30 minutes, and the tape peeling of a 1 mm goban was measured. ○: No peeling, Δ: 1 to 10 peeling,
X: The number of peeling was 10 or more. From the figure, Ni in the bath
If the 2+ concentration is less than 0.01 g / L, the paint adhesion rating is Δ or ×, and the paint adhesion is insufficient. on the other hand,
When the Ni 2+ concentration in the bath was 0.01 g / L or more, all the marks were ○, indicating that the Ni 2+ concentration in the bath was 0.01 g / L.
g / L or more is required.

【0010】通常、電気めっきラインにおいては、純亜
鉛めっきと亜鉛−ニッケル合金めっきを交互に製造する
場合があり、純亜鉛めっき液中に亜鉛−ニッケルめっき
液が微量混入し、得られた純亜鉛めっき層中にも微量の
Niが共析する場合がある。このような亜鉛めっき鋼板
は、Niの作用によりめっき層の耐食性は向上するもの
の、りん酸塩処理時にめっき層が溶解するために、処理
液中のNi2+濃度か増大してしまう問題が生じる。処理
液中のNi2+濃度は、りん酸塩処理皮膜のL値を低下さ
せてしまうことは前述した。従って、処理液中のNi2+
濃度は、りん酸塩処理皮膜への共析や、処理槽外への液
流出による消費速度と亜鉛めっき層中のNiの溶解や、
補給剤中のNi2+の添加による供給速度とのバランスに
より決定されるため、一義的には決まらない。
Normally, in an electroplating line, pure zinc plating and zinc-nickel alloy plating may be alternately manufactured, and a slight amount of zinc-nickel plating solution is mixed into pure zinc plating solution. A trace amount of Ni may be eutectoid in the plating layer. In such a galvanized steel sheet, although the corrosion resistance of the plated layer is improved by the action of Ni, the problem arises that the concentration of Ni 2+ in the treatment solution increases because the plated layer is dissolved during the phosphate treatment. . As described above, the Ni 2+ concentration in the treatment liquid decreases the L value of the phosphate treatment film. Therefore, Ni 2+
The concentration depends on the eutectoid deposition on the phosphate treatment film, the consumption rate due to the liquid flowing out of the treatment tank and the dissolution of Ni in the galvanized layer,
Since it is determined by the balance with the supply rate due to the addition of Ni 2+ in the replenisher, it cannot be determined uniquely.

【0011】本発明者らは、りん酸塩処理液中のNi2+
濃度と得られるりん酸塩処理皮膜のL値との関係を硝酸
濃度を種々変化させて検討した結果、図3に示すような
結果を得た。図3から、りん酸塩処理液中のNO3 -
度の影響についてみてみると、Ni2+濃度が同じ場合は
NO3 - 濃度を高くする程L値は向上するが、NO3 -
濃度が10g/Lを超えるとその効果は飽和するように
なる。また、NO3 -濃度が4g/L未満ではNi2+
度が0.01g/L以下でもL値を70以上確保するこ
とは出来ない。従って、NO3 - 濃度は4〜10g/L
とした。また、Ni2+濃度についてみてみると、0.1
4g/Lを超えるとNO3 - 濃度を10g/L以上にし
てもL値を70以上確保出来ないので、前述のNi添加
による塗料密着性向上効果も考慮してNi2+濃度は0.
01〜0.14g/Lとする。
[0011] The present inventors have proposed that Ni in the phosphating solution is2+
The relationship between the concentration and the L value of the resulting phosphated coating
As a result of various changes in the concentration, as shown in FIG.
The result was obtained. FIG. 3 shows that NO in the phosphating solutionThree -Dark
Looking at the effect of the degree, Ni2+If the concentration is the same
NOThree -As the concentration increases, the L value increases, but NOThree -
When the concentration exceeds 10 g / L, the effect is saturated.
Become. NOThree -If the concentration is less than 4 g / L, Ni2+Dark
Even if the degree is 0.01 g / L or less, ensure that the L value is 70 or more.
Can not be. Therefore, NOThree -The concentration is 4 to 10 g / L
And Also, Ni2+Looking at the concentration, 0.1
NO when exceeding 4 g / LThree -Increase the concentration to 10 g / L or more
Even if the L value cannot be secured 70 or more, the above-mentioned Ni addition
Considering the effect of improving paint adhesion by2+The concentration is 0.
01 to 0.14 g / L.

【0012】また、図4はりん酸塩処理液中のNO3 -
濃度とZn2+濃度の関係を示す図である。NO3 - はZ
n(NO3 2 を主に残りをHNO3 の薬剤として添加
するのが処理液の水素イオン濃度のバランス上好まし
い。従って、りん酸塩処理液中のZn2+濃度はNO3 -
の添加により上昇し、ある一定範囲で浴中のZn2+濃度
とNO3 - 濃度はバランスするもので、その範囲はZn
2+濃度が4〜7g/Lの範囲で管理する必要のあること
が判明した。
Further, NO in FIG. 4 is phosphate treatment solution 3 -
FIG. 4 is a diagram illustrating a relationship between a concentration and a Zn 2+ concentration. NO 3 - is Z
It is preferable to add n (NO 3 ) 2 mainly as a residual HNO 3 agent in view of the balance of the hydrogen ion concentration of the processing liquid. Therefore, the concentration of Zn 2+ in the phosphating solution was NO 3
And the concentration of Zn 2+ and NO 3 in the bath is balanced in a certain range, and the range is Zn
It was found that it was necessary to control the 2+ concentration in the range of 4 to 7 g / L.

【0013】本発明においては、更にりん酸塩処理液に
リンゴ酸、クエン酸、グルコン酸、及びその塩やリン酸
エステル(以下単に有機酸と称する)の少なくとも1種
以上を添加する必要がある。有機酸塩としては、アルカ
リ土類金属塩、アルカリ金属塩、アンモニウム塩、重金
属塩が考えられる。該有機酸は、りん酸塩皮膜促進作用
のあるNO3 - を多量に添加させた場合においても緻密
で微細なりん酸塩皮膜を形成して白色度と塗装後耐食性
を向上させる働きを有する。その作用機構は不明なが
ら、皮膜形成に対するある種のインヒビターとして作用
するものと考えられる。
In the present invention, it is necessary to add at least one or more of malic acid, citric acid, gluconic acid, a salt thereof, and a phosphoric acid ester (hereinafter, simply referred to as an organic acid) to the phosphating solution. . Examples of the organic acid salt include alkaline earth metal salts, alkali metal salts, ammonium salts, and heavy metal salts. The organic acid has a function of forming a dense and fine phosphate film and improving whiteness and corrosion resistance after coating even when a large amount of NO 3 - having a phosphate film promoting action is added. Although its mechanism of action is unknown, it is thought to act as a certain inhibitor of film formation.

【0014】図5に該有機酸濃度とりん酸塩皮膜付着量
の関係を示す。その際、Ni2+濃度は0.10g/L、
NO3 - 濃度は5.2g/Lとした。本発明のりん酸塩
結晶は結晶粒径が40μmを越えると結晶が脆化したり
スケが生じたりするため皮膜性能が悪化した。従って、
りん酸塩結晶粒径を40μm以下を合格範囲とした。図
5よりNO3 - 多量添加処理液においても良好なりん酸
塩結晶を得るためには、少なくともりん酸塩処理液1L
当たり0.1g/Lを必要とし、10g/Lを超えると
その効果は飽和するうえに塗料密着性への悪影響も懸念
されることから0.1〜10g/Lとする。
FIG. 5 shows the relationship between the concentration of the organic acid and the amount of the phosphate film deposited. At this time, the Ni 2+ concentration was 0.10 g / L,
The NO 3 - concentration was set to 5.2 g / L. When the crystal grain size of the phosphate crystal of the present invention exceeds 40 μm, the crystal performance becomes poor due to embrittlement or skewing of the crystal. Therefore,
The acceptable range was a phosphate crystal grain size of 40 μm or less. NO from 5 3 - in order to obtain a good phosphate crystals in a large amount addition treatment solution is at least phosphating solution 1L
0.1 g / L is required, and if it exceeds 10 g / L, the effect is saturated and the adverse effect on the paint adhesion is feared.

【0015】素地鋼板は冷延鋼板、熱延鋼板等を適用す
ることができ、Znめっきは電気亜鉛めっきや溶融亜鉛
めっきのいずれでも良い。また、亜鉛めっき層中に合金
化金属が含有していても良く、Zn−Fe、Zn−N
i、Zn−Co、Zn−Cr、Zn−Fe−Ni、Zn
−Fe−Co、Zn−Fe−Ni−Co等の合金めっき
が適用できる。さらには、Znめっきと素地鉄の間にN
iめっきやNi−Pめっき等の下地めっきを施すことに
よりZnめっきの結晶が微細・均質化しL値がさらに向
上する効果を期待できる。下地めっきとしては、めっき
付着量が0.001g/m2 〜1g/m2 程度の付着量
でよく電気めっき法や無電解めっき法等でめっきするこ
とができる。
As the base steel sheet, a cold-rolled steel sheet, a hot-rolled steel sheet or the like can be used, and the Zn plating may be either electrogalvanizing or hot-dip galvanizing. Further, an alloying metal may be contained in the galvanized layer, and Zn-Fe, Zn-N
i, Zn-Co, Zn-Cr, Zn-Fe-Ni, Zn
-Alloy plating of Fe-Co, Zn-Fe-Ni-Co, etc. can be applied. Furthermore, N between the Zn plating and the base iron
By applying a base plating such as i-plating or Ni-P plating, it is expected that Zn plating crystals will be fine and homogenous, and the L value will be further improved. The primary plating, it is possible to weight the plating deposition is well plated with an electroplating method or an electroless plating method, or the like at a coverage of about 0.001g / m 2 ~1g / m 2 .

【0016】[0016]

【実施例】以下に本発明を実施例によりさらに具体的に
説明する。図1に示す装置により、冷間圧延鋼板を電気
亜鉛めっきにより、20g/m2 の両面電気亜鉛めっき
鋼板を得た。引き続き水洗後、りん酸塩前処理として表
面調整液{プロパレンZ(日本パ−カライジング社
製)}にて常温で10秒間スプレ−処理した。次いで、
りん酸塩処理槽中で、りん酸濃度:7g/L、フッソ濃
度:0.5g/L、温度:55℃、処理時間:8秒で表
1に示すようなりん酸塩処理液中のNi2+濃度、NO3
- 濃度、及びZn2+濃度及び有機酸濃度を変化させてり
ん酸塩処理を行い、乾燥機で乾燥させてりん酸塩処理皮
膜を得た。
The present invention will be described more specifically with reference to the following examples. Using a device shown in FIG. 1, a cold rolled steel sheet was electrogalvanized to obtain a 20 g / m 2 double-sided electrogalvanized steel sheet. Subsequently, after washing with water, a spray treatment was carried out at room temperature for 10 seconds with a surface conditioning liquid {Proparen Z (manufactured by Nippon Parkerizing Co.)} as a phosphate pretreatment. Then
In a phosphating tank, the phosphoric acid concentration: 7 g / L, the fluorine concentration: 0.5 g / L, the temperature: 55 ° C., the treatment time: 8 seconds, and the Ni in the phosphating solution as shown in Table 1 2+ concentration, NO 3
The phosphate treatment was performed by changing the-concentration, the Zn2 + concentration and the organic acid concentration, followed by drying in a drier to obtain a phosphate treatment film.

【0017】このりん酸塩処理皮膜の白色度(L値)等
の性能を表1〜表3に示す。ここで、白色度(L値)
は、スガ試験機(株)製カラーコンピューターで測定し
たL値であり、りん酸塩皮膜重量は、りん酸塩処理鋼板
の皮膜を無水クロム酸45g/L水溶液で剥離して、処
理前後のりん酸塩処理鋼板の重量差で算出した。また、
皮膜外観の評価は、1000倍の電子顕微鏡観察により
皮膜の結晶粒径を同定すると同時に皮膜が緻密でスケの
ない均一なりん酸塩皮膜であるものを○、巨大結晶や不
均一・スケのある化成不良のりん酸塩皮膜を×とした。
Tables 1 to 3 show the properties of this phosphatized film such as whiteness (L value). Here, whiteness (L value)
Is the L value measured by a color computer manufactured by Suga Test Instruments Co., Ltd., and the phosphate film weight is obtained by peeling the film of a phosphate-treated steel sheet with a 45 g / L aqueous solution of chromic anhydride to obtain phosphorous before and after the treatment. It was calculated from the weight difference of the acid-treated steel sheet. Also,
The appearance of the coating was evaluated by observing the crystal grain size of the coating by observation with an electron microscope at a magnification of 1000 times, and at the same time, if the coating was a dense and uniform non-scaling phosphate coating, there was a large crystal, non-uniformity, and scaling. Poorly formed phosphate film was evaluated as x.

【0018】りん酸塩皮膜の塗装後耐食性の評価は、塗
装面を鋭利なカッタ−で傷つけ、JIS Z2371に
準じた塩水噴霧法により240時間腐食させた後、カッ
ト部を粘着テ−プで剥離し、最大剥離幅で評価した。剥
離幅が1mm未満は◎,1mm以上5mm未満は△,5
mm以上は×とした.塗料密着性は、前述したように関
西ペイント社製アミラック♯1000をバ−コ−タ−で
20μm塗布、焼き付け後,100℃蒸留水に30分浸
漬後、1mmゴバン目のテ−プ剥離測定をし、○:剥離
数0個、△:剥離数1〜10個、×:剥離数10個以上
で評価した。
The corrosion resistance of the phosphate film after coating was evaluated by scratching the coated surface with a sharp cutter, corroding the coated surface with a salt spray method according to JIS Z2371 for 240 hours, and peeling off the cut portion with an adhesive tape. Then, the maximum peel width was evaluated. When the peeling width is less than 1 mm, ,, and when 1 mm or more and less than 5 mm, Δ, 5
x was set to mm or more. As described above, the coating adhesion was measured by applying Amilac # 1000 manufactured by Kansai Paint Co., Ltd. with a bar coater to a thickness of 20 μm, baking it, immersing it in distilled water at 100 ° C. for 30 minutes, and measuring the tape peeling of a 1 mm goban. ○: Number of peels: 0, Δ: Number of peels: 1 to 10, ×: Number of peels: 10 or more.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】表1〜表3において、実施例No1〜18
はりん酸塩処理液中にリンゴ酸を添加した例である。実
施例No1、およびNo5はNi2+濃度が本発明範囲外
である比較例であり、No1は塗装後耐食性,塗料密着
性が不良となり、No5はL値が65と低い値となって
いる。実施例No6はNO3 - 濃度が本発明範囲外であ
る比較例であり,L値が65と不十分な値となってい
る.実施例No11、およびNo12はZn2+濃度が本
発明範囲外である比較例で、L値は60〜65と低い値
で、皮膜の結晶粒径が45〜46μmと肥大化してお
り、外観にもスケなどの不良がみられ塗装後の耐食性、
塗料密着性も劣った例である。
In Tables 1 to 3, Examples Nos. 1 to 18
Is an example in which malic acid is added to the phosphating solution. Examples No. 1 and No. 5 are comparative examples in which the Ni 2+ concentration is out of the range of the present invention. No. 1 has poor corrosion resistance after coating and poor paint adhesion, and No. 5 has a low L value of 65. Example No. 6 is a comparative example in which the NO 3 - concentration is out of the range of the present invention, and the L value is an insufficient value of 65. Examples No11 and No12 are comparative examples in which the Zn 2+ concentration is out of the range of the present invention, the L value is as low as 60 to 65, and the crystal grain size of the film is 45 to 46 μm, which is enlarged, and the appearance is large. Defects such as invisibility are seen, corrosion resistance after painting,
This is an example in which paint adhesion is also poor.

【0023】実施例No13は有機酸が添加されていな
い本発明の範囲外の例で、L値は69とやや低く、皮膜
の過剰付着が生じて結晶粒径が50μmと肥大化してお
り外観にも化成不良がみられ塗装後の耐食性、塗料密着
性も劣っている。実施例No18はリンゴ酸を本発明範
囲よりも高く設定した比較例であり、L値は良好である
が皮膜重量が小さく結晶粒径も小さくなっている。その
結果、スケが発生し、皮膜外観が不良であると同時に塗
装後耐食性と塗料密着性に劣る結果となっている.
Example No. 13 is an example out of the range of the present invention in which an organic acid was not added. The L value was slightly low at 69, the film was excessively adhered, and the crystal grain size was enlarged to 50 μm. In addition, poor chemical formation was observed, and the corrosion resistance after coating and the paint adhesion were also poor. Example No. 18 is a comparative example in which malic acid was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. As a result, scum was generated and the film appearance was poor, and at the same time, the corrosion resistance after painting and the paint adhesion were poor.

【0024】実施例No19〜23はりん酸塩処理液中
にクエン酸を添加した例である。実施例No23はクエ
ン酸を本発明範囲よりも高く設定した例であり、L値は
良好であるが皮膜重量が小さく結晶粒径も小さくなって
いる.その結果、スケが発生し、皮膜外観が不良である
と同時に塗装後耐食性と塗料密着性に劣る結果となって
いる。実施例No24〜28はりん酸塩処理液中にグル
コン酸を添加した例である。実施例No28はグルコン
酸を本発明範囲よりも高く設定した例であり、L値は良
好であるが皮膜重量が小さく結晶粒径も小さくなってい
る。その結果、スケが発生し、皮膜外観が不良であると
同時に塗装後耐食性と塗料密着性に劣る結果となってい
る。
Examples Nos. 19 to 23 are examples in which citric acid was added to the phosphating solution. Example No. 23 is an example in which citric acid was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor. Examples Nos. 24 to 28 are examples in which gluconic acid was added to the phosphating solution. Example No. 28 is an example in which gluconic acid was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor.

【0025】実施例No29〜33はりん酸塩処理液中
にリンゴ酸ナトリウムを添加した例である。実施例No
33はリンゴ酸ナトリウムを本発明範囲よりも高く設定
した例であり、L値は良好であるが皮膜重量が小さく結
晶粒径も小さくなっている。その結果、スケが発生し、
皮膜外観が不良であると同時に塗装後耐食性と塗料密着
性に劣る結果となっている。実施例No34〜38はり
ん酸塩処理液中にクエン酸ナトリウムを添加した例であ
る。実施例No38はクエン酸ナトリウムを本発明範囲
よりも高く設定した例であり、L値は良好であるが皮膜
重量が小さく結晶粒径も小さくなっている。その結果、
スケが発生し、皮膜外観が不良であると同時に塗装後耐
食性と塗料密着性に劣る結果となっている。
Examples Nos. 29 to 33 are examples in which sodium malate was added to the phosphating solution. Example No
Reference numeral 33 is an example in which sodium malate was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. As a result, invisibility occurs,
The film appearance was poor, and at the same time, the corrosion resistance after coating and the paint adhesion were poor. Examples Nos. 34 to 38 are examples in which sodium citrate was added to the phosphating solution. Example No. 38 is an example in which sodium citrate was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. as a result,
As a result, the film has poor appearance and has poor corrosion resistance and poor paint adhesion after coating.

【0026】実施例No39〜43はりん酸塩処理液中
にグルコン酸ナトリウムを添加した例である。実施例N
o43はグルコン酸ナトリウムを本発明範囲よりも高く
設定した例であり、L値は良好であるが皮膜重量が小さ
く結晶粒径も小さくなっている。その結果、スケが発生
し、皮膜外観が不良であると同時に塗装後耐食性と塗料
密着性に劣る結果となっている。実施例No44〜48
はりん酸処理液中にリンゴ酸リン酸エステルを添加した
例である。実施例No48はりんご酸リン酸エステルを
本発明範囲よりも高く設定した例であり、L値は良好で
あるが皮膜重量が小さく結晶粒径も小さくなっている。
その結果、スケが発生し、皮膜外観が不良であると同時
に塗装後耐食性と塗料密着性に劣る結果となっている。
Examples Nos. 39 to 43 are examples in which sodium gluconate was added to the phosphating solution. Example N
o43 is an example in which sodium gluconate was set higher than the range of the present invention, and although the L value was good, the film weight was small and the crystal grain size was small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor. Example No. 44-48
Is an example in which malic acid phosphate was added to the phosphating solution. Example No. 48 is an example in which the malic acid phosphate was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small.
As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor.

【0027】実施例No49〜53はりん酸処理液中に
クエン酸リン酸エステルを添加した例である。実施例N
o53はクエン酸リン酸エステルを本発明範囲よりも高
く設定した例であり、L値は良好であるが皮膜重量が小
さく結晶粒径も小さくなっている。その結果、スケが発
生し、皮膜外観が不良であると同時に塗装後耐食性と塗
料密着性に劣る結果となっている。実施例No49〜5
3はりん酸処理液中にクエン酸リン酸エステルを添加し
た例である。実施例No53はクエン酸リン酸エステル
を本発明範囲よりも高く設定した例であり、L値は良好
であるが皮膜重量が小さく結晶粒径も小さくなってい
る。その結果、スケが発生し、皮膜外観が不良であると
同時に塗装後耐食性と塗料密着性に劣る結果となってい
る。
Examples Nos. 49 to 53 are examples in which a citrate phosphate was added to a phosphating solution. Example N
o53 is an example in which the citrate phosphate was set higher than the range of the present invention, and although the L value was good, the film weight was small and the crystal grain size was small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor. Example No. 49-5
3 is an example in which a citrate phosphate was added to the phosphating solution. Example No. 53 is an example in which the citrate phosphate was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor.

【0028】実施例No54〜58はりん酸処理液中に
グルコン酸リン酸エステルを添加した例である。実施例
No58はグルコン酸リン酸エステルを本発明範囲より
も高く設定した例であり、L値は良好であるが皮膜重量
が小さく結晶粒径も小さくなっている。その結果、スケ
が発生し、皮膜外観が不良であると同時に塗装後耐食性
と塗料密着性に劣る結果となっている。実施例No59
〜No62、No64〜67、No69〜72は有機
酸、有機酸ナトリウム、有機酸りん酸エステルを複数組
み合わせて使用した例で、いづれも良好なりん酸塩皮膜
性能をゆうしている。一方、実施例63、68、73は
有機添加剤を本発明範囲よりも高く設定した例であり、
L値は良好であるが皮膜重量が小さく結晶粒径も小さく
なっている。その結果、スケが発生し、皮膜外観が不良
であると同時に塗装後耐食性と塗料密着性に劣る結果と
なっている。
Examples Nos. 54 to 58 are examples in which a gluconic acid phosphate was added to a phosphating solution. Example No. 58 is an example in which the gluconic acid phosphate was set higher than the range of the present invention. The L value was good, but the film weight was small and the crystal grain size was small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor. Example No. 59
No. 62, No. 64 to 67, and No. 69 to 72 are examples in which a plurality of organic acids, organic acid sodium salts, and organic acid phosphates are used in combination, all of which have good phosphate film performance. On the other hand, Examples 63, 68, and 73 are examples in which the organic additive was set higher than the range of the present invention,
The L value is good, but the film weight is small and the crystal grain size is small. As a result, scum is generated and the film appearance is poor, and at the same time, the corrosion resistance after coating and the paint adhesion are poor.

【0029】実施例No2〜4、No7〜10、No1
4〜17、No19〜22、No24〜27、No29
〜32、No34〜37、No39〜42、No44〜
47、No49〜52、No54〜57、No59〜6
2、No64〜67、及びNo69〜72は本発明の実
施例であり、いづれの場合も、L値は70〜73という
非常に高い値を示し、また皮膜の外観及び塗装後耐食
性、塗料密着性共に良好で優れた皮膜性能が得られてい
る。
Examples Nos. 2 to 4, Nos. 7 to 10, No. 1
4-17, No19-22, No24-27, No29
~ 32, No34 ~ 37, No39 ~ 42, No44 ~
47, No49-52, No54-57, No59-6
2, Nos. 64 to 67 and Nos. 69 to 72 are examples of the present invention. In each case, the L value shows a very high value of 70 to 73, and the appearance of the film, corrosion resistance after painting, paint adhesion. Both have good and excellent film performance.

【0030】[0030]

【発明の効果】以上述べたように、本発明によりりん酸
塩処理鋼板の性能である塗装密着性等を劣化させること
なく、白色度(L値)の高いりん酸塩処理鋼板を安定し
て得ることができ、工業的に極めて優れた効果を奏する
ものである。
As described above, according to the present invention, a phosphate-treated steel sheet having a high whiteness (L value) can be stably produced without deteriorating the paint adhesion, which is the performance of the phosphate-treated steel sheet. It can be obtained and has an industrially excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るりん酸塩処理工程を示すブロック
図、
FIG. 1 is a block diagram showing a phosphate treatment step according to the present invention;

【図2】りん酸塩処理液中のNi2+濃度と塗装密着性の
関係を示した図、
FIG. 2 is a diagram showing a relationship between Ni 2+ concentration in a phosphating solution and coating adhesion.

【図3】りん酸塩処理液中のNi2+濃度と白色度(L
値)の関係を示した図、
FIG. 3 shows the Ni 2+ concentration and whiteness (L
Values),

【図4】りん酸塩処理液中のNO3 - 濃度とZn2+濃度
の関係を示した図、
FIG. 4 is a diagram showing the relationship between the NO 3 concentration and the Zn 2+ concentration in the phosphating solution;

【図5】りん酸塩処理液中の有機酸(リンゴ酸、クエン
酸、グルコン酸)濃度とりん酸塩結晶粒径の関係を示し
た図である。
FIG. 5 is a graph showing the relationship between the concentration of organic acids (malic acid, citric acid, and gluconic acid) in the phosphating solution and the phosphate crystal particle diameter.

【符号の説明】[Explanation of symbols]

1 入側コイラ− 2 鋼帯 3 亜鉛めっき槽 4 水洗槽 5 りん酸塩前処理 6 りん酸塩処理槽 7 シ−リング槽 8 出側コイラ− DESCRIPTION OF SYMBOLS 1 Inlet-side coiler 2 Steel strip 3 Galvanizing tank 4 Rinse tank 5 Phosphate pretreatment 6 Phosphate treatment tank 7 Sealing tank 8 Outlet coiler

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛系めっき鋼板のりん酸塩処理におい
て、りん酸塩処理液中のNO3 - :4〜10g/L、N
2+:0.01〜0.14g/L、Zn2+:4〜7g/
L及びリンゴ酸、クエン酸、グルコン酸及びその塩また
はリン酸エステルの少なくとも1種以上を溶液1L当り
0.1〜10g/L含有し、りん酸塩処理した後の亜鉛
系めっき鋼板の外観の白色度(L値)が70以上になる
ことを特徴とする亜鉛系めっき鋼板のりん酸塩処理液。
In a phosphating treatment of a galvanized steel sheet, NO 3 in a phosphating solution is from 4 to 10 g / L,
i2 + : 0.01 to 0.14 g / L, Zn2 + : 4 to 7 g / L
L and at least one or more of malic acid, citric acid, gluconic acid and salts or phosphoric esters thereof are contained in an amount of 0.1 to 10 g / L per 1 L of the solution, and the appearance of the galvanized steel sheet after the phosphate treatment. A phosphating solution for a galvanized steel sheet having a whiteness (L value) of 70 or more.
【請求項2】 請求項1記載のりん酸塩処理液を使用
し、Znめっき付着量が0.1〜200g/m2 、リン
酸塩付着量が0.1〜5g/m2 でめっき外観の白色度
(L値)が70以上、リン酸塩結晶の粒径が40μm以
下であることを特徴とするりん酸塩処理亜鉛系めっき鋼
板。
2. The plating appearance using the phosphating solution according to claim 1 with a Zn plating coating weight of 0.1 to 200 g / m 2 and a phosphate coating weight of 0.1 to 5 g / m 2 . A phosphate-treated zinc-based plated steel sheet, characterized in that the whiteness (L value) is 70 or more and the particle size of phosphate crystals is 40 μm or less.
【請求項3】 請求項2記載の処理鋼板において、冷延
鋼板および熱延鋼板上にNiまたはNi−Pを0.00
1〜1.0g/m2 付着させたことを特徴とするりん酸
塩処理亜鉛系めっき鋼板。
3. The treated steel sheet according to claim 2, wherein Ni or Ni—P is present on the cold-rolled steel sheet and the hot-rolled steel sheet in an amount of 0.00%.
A phosphate-treated galvanized steel sheet having 1 to 1.0 g / m 2 deposited thereon.
【請求項4】 請求項1記載のりん酸塩処理液を用いて
りん酸塩処理することを特徴とする亜鉛系めっき鋼板の
りん酸塩処理方法。
4. A method for phosphating a galvanized steel sheet, comprising phosphating with the phosphating solution according to claim 1.
JP10096164A 1998-03-13 1998-04-08 Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method Pending JPH11323569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10096164A JPH11323569A (en) 1998-03-13 1998-04-08 Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6349598 1998-03-13
JP10-63495 1998-03-13
JP10096164A JPH11323569A (en) 1998-03-13 1998-04-08 Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method

Publications (1)

Publication Number Publication Date
JPH11323569A true JPH11323569A (en) 1999-11-26

Family

ID=26404621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10096164A Pending JPH11323569A (en) 1998-03-13 1998-04-08 Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method

Country Status (1)

Country Link
JP (1) JPH11323569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588801B2 (en) 2005-01-24 2009-09-15 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Chromium-free rust inhibitive treatment method for metal products having zinc surface and metal products treated thereby
JP2018059204A (en) * 2016-10-07 2018-04-12 グッドリッチ コーポレイション Method of disposing corrosion resistant system to substrate, corrosion inhibition system, and chemical conversion coating solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588801B2 (en) 2005-01-24 2009-09-15 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Chromium-free rust inhibitive treatment method for metal products having zinc surface and metal products treated thereby
JP2018059204A (en) * 2016-10-07 2018-04-12 グッドリッチ コーポレイション Method of disposing corrosion resistant system to substrate, corrosion inhibition system, and chemical conversion coating solution
US11149353B2 (en) 2016-10-07 2021-10-19 Goodrich Corporation Anti-corrosion and/or passivation compositions for metal-containing substrates and methods for making, enhancing, and applying the same

Similar Documents

Publication Publication Date Title
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
US6179934B1 (en) Aqueous phosphating composition and process for metal surfaces
CA2277967A1 (en) Aqueous phosphating composition and process for metal surfaces
KR20040038635A (en) Surface treating composition, surface treating solution, surface treating method and product with metallic material
JPH055899B2 (en)
JP4393349B2 (en) Cold-rolled steel sheet with excellent phosphatability and post-coating salt hot water resistance
JPH11323569A (en) Phosphate solution for galvanized steel sheet and phosphate treated galvanized steel sheet and as its method
JP4492254B2 (en) Phosphate-treated galvanized steel sheet with excellent corrosion resistance and blackening resistance
KR101106516B1 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JP5119864B2 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JPS634635B2 (en)
JPS62294198A (en) Rustproof steel sheet for automobile and its production
JP2947633B2 (en) Nickel / chromium-containing galvanized steel sheet / steel material for coating base and its manufacturing method
JPS62294197A (en) Rustproof steel sheet for automobile and its production
JP4635638B2 (en) Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance
JPH11310895A (en) Production of electrogalvanized steel sheet
JP3183630B2 (en) Electrogalvanized steel sheet
JPH0676675B2 (en) Method for producing galvanized steel sheet with excellent chemical conversion treatability and post-painting performance
JP2569993B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JP3241170B2 (en) Pretreatment method for cationic electrodeposition coating of aluminum-based metal materials
JPH0375379A (en) Coated product, production thereof, concentrated phosphating agent and concentrated treating agent for replenishment
JP3319402B2 (en) Chromate treatment of galvanized steel sheet with excellent corrosion resistance and surface appearance
JP3221299B2 (en) Chromated galvanized steel sheet with excellent color stability
JP2697485B2 (en) Manufacturing method of high corrosion resistant galvannealed steel sheet
JP3141489B2 (en) Chromate treatment method for galvanized steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111