JP4635638B2 - Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance - Google Patents

Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance Download PDF

Info

Publication number
JP4635638B2
JP4635638B2 JP2005042907A JP2005042907A JP4635638B2 JP 4635638 B2 JP4635638 B2 JP 4635638B2 JP 2005042907 A JP2005042907 A JP 2005042907A JP 2005042907 A JP2005042907 A JP 2005042907A JP 4635638 B2 JP4635638 B2 JP 4635638B2
Authority
JP
Japan
Prior art keywords
layer
phosphate
steel sheet
galvanized
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042907A
Other languages
Japanese (ja)
Other versions
JP2006225737A (en
Inventor
裕樹 中丸
千代子 多田
和美 山下
英男 笹岡
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005042907A priority Critical patent/JP4635638B2/en
Priority to CN2006800013202A priority patent/CN101068951B/en
Priority to KR1020077008720A priority patent/KR20070061880A/en
Priority to PCT/JP2006/303204 priority patent/WO2006088225A1/en
Priority to TW095105383A priority patent/TWI316974B/en
Publication of JP2006225737A publication Critical patent/JP2006225737A/en
Application granted granted Critical
Publication of JP4635638B2 publication Critical patent/JP4635638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、建材用や家電用等に好適な表面処理鋼板に係り、特に、塗装用下地鋼板として好適なリン酸塩処理電気亜鉛めっき鋼板に関する。
The present invention relates to a suitable surface treatment steel sheet for building materials and home appliances such as, in particular, of a preferred phosphating galvanized steel sheet as a paint substrate steel sheet.

建材、家電製品等の使途で耐食性を要求される部位には、亜鉛めっきや亜鉛合金めっきなどの表面処理を施された亜鉛系めっき鋼板が使用されている。これら亜鉛系めっき鋼板はそのままで使用されることは少なく、通常は塗装を施されて使用されている。塗装を施す際には、前処理として、リン酸塩処理、クロメート処理等の化成処理が施されている。
リン酸塩処理は、リン酸イオンを含有した酸性溶液と亜鉛系めっき鋼板とを接触させ、反応させてリン酸亜鉛を主成分とする結晶性皮膜をめっき表面に形成させる処理であり、塗膜との密着性を向上させ、各種塗装に対して安定した塗装下地性能を有する。このため、リン酸塩処理を施された亜鉛系めっき鋼板は、建材用、家電用等の塗装用下地鋼板として幅広く使用されてきた。
Zinc-based galvanized steel sheets that have been subjected to surface treatment such as galvanization or zinc alloy plating are used in parts that require corrosion resistance in the use of building materials, home appliances, and the like. These galvanized steel sheets are rarely used as they are, and are usually used after being painted. When coating is performed, chemical conversion treatment such as phosphate treatment and chromate treatment is performed as a pretreatment.
Phosphate treatment is a treatment in which an acidic solution containing phosphate ions and a zinc-based plated steel sheet are brought into contact with each other and reacted to form a crystalline film mainly composed of zinc phosphate on the plating surface. Adhesion with the paint and stable paint base performance for various types of paint. For this reason, the zinc-based plated steel sheet to which the phosphate treatment has been applied has been widely used as a base steel sheet for coating for building materials, home appliances and the like.

しかし、リン酸塩処理単独では耐食性が不足するため、通常、リン酸塩処理後に「シーリング処理」と称する封孔処理が施されてきた。この封孔処理は、スプレー、浸漬等の方法で6価クロム含有水溶液を鋼板と接触させ、その後水洗せずに乾燥する処理であり、この処理により耐食性が向上する。しかし、6価クロムが環境規制物質であることから、この6価クロム含有水溶液を使用する「シーリング処理」に代わる、リン酸塩処理皮膜の耐食性向上対策が要望されていた。   However, since the phosphate treatment alone has insufficient corrosion resistance, a sealing treatment called “sealing treatment” has been usually performed after the phosphate treatment. This sealing treatment is a treatment in which a hexavalent chromium-containing aqueous solution is brought into contact with the steel plate by a method such as spraying or dipping, and then dried without washing with water. This treatment improves the corrosion resistance. However, since hexavalent chromium is an environmentally regulated substance, there has been a demand for measures for improving the corrosion resistance of the phosphate-treated film instead of the “sealing treatment” using this hexavalent chromium-containing aqueous solution.

このような要望に対し、例えば特許文献1には、亜鉛系めっき層面に、結晶質のリン酸塩系の化成処理皮膜層と、さらにその上に非晶質のリン酸系皮膜を有する耐食性に優れた表面処理鋼板が提案されている。また、特許文献2には、亜鉛含有めっき鋼板の表面に、リン酸亜鉛処理皮膜を有し、その上層に、銅化合物と、チタン化合物及びジルコン化合物の中から選ばれた少なくとも1種の金属化合物と、あるいはさらにビスフェノールAとアミン類とホルムアルデヒドとの重縮合樹脂化合物と、水とを含む液状組成物を塗布、乾燥させて得られたシーリング処理皮膜を有する耐食性および塗料密着性に優れた非クロム系リン酸亜鉛処理鋼板が提案されている。特許文献1、特許文献2に記載された技術は、クロムを全く使用しないシーリング処理である。   In response to such a demand, for example, Patent Document 1 discloses a corrosion resistance having a crystalline phosphate-based chemical conversion coating layer on the surface of the zinc-based plating layer and an amorphous phosphate-based coating thereon. An excellent surface-treated steel sheet has been proposed. Patent Document 2 discloses that a zinc phosphate-treated film is formed on the surface of a zinc-containing plated steel sheet, and an upper layer thereof includes at least one metal compound selected from a copper compound, a titanium compound, and a zircon compound. Or a non-chromium with excellent corrosion resistance and paint adhesion having a sealing film obtained by applying and drying a liquid composition containing a polycondensation resin compound of bisphenol A, amines and formaldehyde, and water A zinc phosphate-treated steel sheet has been proposed. The techniques described in Patent Document 1 and Patent Document 2 are sealing processes that do not use chromium at all.

また、特許文献3には、金属材料表面にZn系めっき層が形成され、さらに該めっき層上に0.1重量%以上望ましくは5重量%以下のMgを含有するリン酸塩系化合物からなる皮膜が形成されている表面処理鋼板が提案されている。特許文献3に記載された技術では、リン酸塩皮膜中に0.1重量%以上のMgを含有させることで、耐食性が向上するとしている。
また、特許文献4には、リン酸亜鉛皮膜が、Mgを2%以上、Ni、Co、Cuから選ばれた1種以上の元素を0.01〜1%含有し,付着量が0.7g/m以上である耐食性および色調に優れたリン酸亜鉛処理亜鉛系めっき鋼板が提案されている。
特開2000-313967号公報 特開2004−143475号公報 特開平1−312081号公報 特開2002−285346号公報
Patent Document 3 discloses a film made of a phosphate compound containing a Zn-based plating layer formed on the surface of a metal material and further containing 0.1 wt% or more, preferably 5 wt% or less of Mg on the plating layer. A formed surface-treated steel sheet has been proposed. In the technique described in Patent Document 3, the corrosion resistance is improved by adding 0.1 wt% or more of Mg in the phosphate film.
Patent Document 4 discloses that the zinc phosphate coating contains Mg of 2% or more, 0.01 to 1% of one or more elements selected from Ni, Co and Cu, and an adhesion amount of 0.7 g / m 2. A zinc phosphate-treated zinc-based plated steel sheet having excellent corrosion resistance and color tone as described above has been proposed.
JP 2000-313967 A JP 2004-143475 A Japanese Unexamined Patent Publication No. 1-312081 JP 2002-285346 A

しかし、特許文献1、2に記載された技術は、クロムを全く使用しないシーリング処理であるが、いずれも、最上層皮膜を形成する工程において、水溶性の薬液を塗布し、さらに加熱焼付けすることが必要であり、既存のリン酸塩処理亜鉛めっき鋼板の製造設備に加えて、新たにこれらの薬液を塗布するためのコーティング設備および焼付設備が必要となり製造コストの高騰を招くという経済的な問題を残していた。   However, the techniques described in Patent Documents 1 and 2 are sealing treatments that do not use chromium at all. In either case, in the process of forming the uppermost layer film, a water-soluble chemical solution is applied, followed by baking by heating. This is an economic problem in that in addition to the existing phosphatized galvanized steel sheet manufacturing equipment, new coating equipment and baking equipment for applying these chemicals are required, leading to an increase in manufacturing costs. Was leaving.

一方、特許文献3、特許文献4に記載された技術では、シーリング処理無しで、リン酸塩処理皮膜そのものの耐食性を向上できるとしている。しかし、特許文献3に記載された技術では、上層皮膜にMgを含有するため、高温多湿環境下に晒された場合に表面が黒く変色する場合があり、耐黒変性が劣化するという問題があった。また、特許文献4に記載された技術では、リン酸亜鉛皮膜中にMgを多量に含有することで高温多湿環境下に晒された場合に表面が黒く変色する場合があり耐黒変性が劣化するとともに、リン酸亜鉛皮膜にNi、Co、Cuを高濃度に含むことでリン酸亜鉛皮膜の色調が暗くなるという問題があった。   On the other hand, in the techniques described in Patent Document 3 and Patent Document 4, the corrosion resistance of the phosphating film itself can be improved without sealing treatment. However, in the technique described in Patent Document 3, since the upper layer film contains Mg, the surface may turn black when exposed to a high-temperature and high-humidity environment. It was. Further, in the technique described in Patent Document 4, the surface of the zinc phosphate film may change to black when exposed to a high-temperature and high-humidity environment by containing a large amount of Mg. At the same time, there is a problem that the color tone of the zinc phosphate coating becomes dark when Ni, Co, and Cu are contained in the zinc phosphate coating at a high concentration.

本発明は、従来技術の問題に鑑み、クロムを使用するシーリング処理を行うことなく、従来のシーリング処理と同等の耐食性を有し、しかも耐黒変性に優れたリン酸塩処理電気亜鉛めっき鋼板を提案することを目的とする。
The present invention is conventionally in view of the art problems, without performing a sealing treatment using chromium, it has a conventional sealing process and corrosion resistance equivalent to, yet good phosphating galvanized steel sheet blackening resistance The purpose is to propose.

本発明者らは、上記した課題を達成するため、リン酸塩処理亜鉛めっき鋼板の耐食性および耐黒変性に影響する要因について鋭意検討した。その結果、上記した課題を達成できるリン酸塩処理亜鉛めっき鋼板として、先に特願2004-240782号明細書にて、鋼板表面に所定量のNiを含有するη相単相からなる亜鉛めっき層と、その上層として所定量のMgを含有するリン酸塩処理層を有するリン酸塩処理亜鉛めっき鋼板を提案した。このリン酸塩処理亜鉛めっき鋼板は、優れた耐食性を有するとともに耐黒変性にも優れているが、鋼板表面に所定量のNiを含有するη相単相からなる亜鉛めっき層を形成する必要がある。このような亜鉛めっき層は、電気亜鉛めっき処理により形成する場合には、めっき液中に適切な量のNiイオンを添加することで容易に形成することができるが、溶融亜鉛めっき処理により形成する場合には、それほど容易では無いという問題があった。   In order to achieve the above-described problems, the present inventors diligently studied factors that affect the corrosion resistance and blackening resistance of a phosphate-treated galvanized steel sheet. As a result, as a phosphate-treated galvanized steel sheet that can achieve the above-mentioned problem, in the specification of Japanese Patent Application No. 2004-240782, a galvanized layer comprising a single phase of η phase containing a predetermined amount of Ni on the steel sheet surface And a phosphate-treated galvanized steel sheet having a phosphate-treated layer containing a predetermined amount of Mg as an upper layer. This phosphate-treated galvanized steel sheet has excellent corrosion resistance and excellent blackening resistance, but it is necessary to form a galvanized layer consisting of a single phase of η phase containing a predetermined amount of Ni on the steel sheet surface. is there. Such a galvanized layer can be easily formed by adding an appropriate amount of Ni ions to the plating solution when formed by electrogalvanizing, but is formed by hot dip galvanizing. In some cases, there was a problem that it was not so easy.

そこで、本発明者らは、さらにリン酸塩処理亜鉛めっき鋼板の耐食性および耐黒変性に影響する各種要因について鋭意検討した。その結果、亜鉛めっき層とリン酸塩処理層との中間に、微量のNi付着部を介在させることを思いついた。鋼板表面に亜鉛めっき層を形成したのち、亜鉛めっき層の表面に微量のNi付着部を形成し、そのNi付着部のうえにさらに所定量のMgを含有するリン酸塩処理層を形成する表面処理層構造とすることにより、耐食性及び耐黒変性がともに向上し、シーリング処理を必要とすることなく、また亜鉛めっき層中にNiを含有させることなく、耐食性及び耐黒変性がともに優れたリン酸塩処理亜鉛めっき鋼板とすることができることを新たに見出した。   Therefore, the present inventors have intensively studied various factors affecting the corrosion resistance and blackening resistance of the phosphate-treated galvanized steel sheet. As a result, they have come up with a small amount of Ni adhesion between the galvanized layer and the phosphate-treated layer. After forming a galvanized layer on the surface of the steel plate, a surface on which a small amount of Ni adhesion is formed on the surface of the galvanization layer, and a phosphate treatment layer containing a predetermined amount of Mg is further formed on the Ni adhesion By adopting a treatment layer structure, both corrosion resistance and blackening resistance are improved, without requiring a sealing treatment, and without containing Ni in the galvanized layer, phosphorus having excellent corrosion resistance and blackening resistance. It was newly found that an acid-treated galvanized steel sheet can be obtained.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明は、鋼板の少なくとも一方の面に電気亜鉛めっき層と該電気亜鉛めっき層の上層としてリン酸塩処理層を有するリン酸塩処理電気亜鉛めっき鋼板であって、前記電気亜鉛めっき層とりん酸塩処理層との中間に0.1〜500 mg/mのNi付着部を形成してなることを特徴とする、耐食性及び耐黒変性に優れたリン酸塩処理電気亜鉛めっき鋼板であり、前記リン酸塩処理層はMgを0.1質量%以上2.0質量%未満含有する。また本発明では、前記亜鉛めっき層の付着量は、1g/m以上100g/m以下である。また本発明では前記リン酸塩処理層の付着量は、0.2g/m以上3g/m以下であることが好ましい。
The present invention has been completed based on the above findings and further studies. That is, the present invention is a phosphate treated galvanized steel sheet having a phosphate treatment layer on at least one surface as an upper layer of the galvanized layer and the electro-galvanized layer of the steel sheet, the galvanized layer When characterized by being obtained by forming a Ni deposition of 0.1 to 500 mg / m 2 in the middle of the phosphating layer, it is a phosphate treated galvanized steel sheet excellent in corrosion resistance and blackening resistance the phosphating layer you containing 0.1% by mass to less than 2.0 mass% of Mg. In the present invention also adhesion amount of the zinc plating layer, 1 g / m 2 or more 100 g / m 2 Ru der below. In the present invention, the amount of the phosphate treatment layer deposited is preferably 0.2 g / m 2 or more and 3 g / m 2 or less.

また本発明のリン酸塩処理亜鉛めっき鋼板の製造方法は、鋼板に、鋼板の少なくとも一方の面に亜鉛めっき層を形成する亜鉛めっき処理工程と、該亜鉛めっき処理工程で形成された亜鉛めっき層の上層として、リン酸塩処理層を形成するリン酸塩処理工程とを順次施すリン酸塩処理亜鉛めっき鋼板の製造方法であって、前記亜鉛めっき処理工程後で前記リン酸塩処理工程前に、前記亜鉛めっき層を形成した鋼板にNiイオンを含有する水溶液を接触させて亜鉛めっき層の表面にNiを置換析出させるか、あるいはより積極的に、前記亜鉛めっき層を形成した鋼板を陰極としてNiイオンを含有する水溶液中で電解し亜鉛めっき層の表面にNiを析出させて、前記亜鉛めっき層の表面に微量のNi付着部を形成するNi付着部形成処理工程を含み、前記リン酸塩処理工程がMgイオン濃度とZnイオン濃度の比、Mg2+/Zn2+ が0.05超えを満足するリン酸塩処理液を用い、前記Ni付着部形成処理工程を施された鋼板を該リン酸塩処理液中に浸漬又は該鋼板に該リン酸塩処理液をスプレーして、前記亜鉛めっき層の上層として、前記Ni付着部の上に、Mgを0.1質量%以上2.0質量%未満含有するリン酸塩処理層を形成する工程であることを特徴とするリン酸塩処理亜鉛めっき鋼板の製造方法とすることが好ましい。 Moreover, the manufacturing method of the phosphating galvanized steel sheet of the present invention includes a galvanizing process step for forming a galvanized layer on at least one surface of the steel sheet, and a galvanized layer formed in the galvanizing process step. As a top layer, a phosphating treatment step of forming a phosphating treatment layer in order, a method of manufacturing a phosphating galvanized steel sheet, after the galvanizing treatment step and before the phosphating treatment step The steel sheet on which the galvanized layer is formed is brought into contact with an aqueous solution containing Ni ions to displace and precipitate Ni on the surface of the galvanized layer, or more actively, the steel sheet on which the galvanized layer is formed is used as a cathode. Including a Ni adhering portion forming treatment step of forming a trace amount of Ni adhering portion on the surface of the galvanized layer by electrolyzing in an aqueous solution containing Ni ions and precipitating Ni on the surface of the galvanized layer. The salt treatment step uses a phosphate treatment solution in which the ratio of Mg ion concentration to Zn ion concentration and Mg 2+ / Zn 2+ exceeds 0.05, and the steel sheet subjected to the Ni adhering portion formation treatment step is treated with the phosphate. Phosphoric acid containing Mg in an amount of 0.1% by mass or more and less than 2.0% by mass on the Ni adhering portion as an upper layer of the galvanized layer by immersing in the treatment solution or spraying the phosphate treatment solution on the steel plate It is preferable to provide a method for producing a phosphate-treated galvanized steel sheet, which is a step of forming a salt-treated layer.

また本発明のリン酸塩処理亜鉛めっき鋼板の製造方法では前記Mgイオンが、硝酸Mgの添加によるものであることが好ましく、また本発明では、前記亜鉛めっき処理工程が、電気亜鉛めっき処理工程もしくは溶融亜鉛めっき処理工程であることが好ましく、また、本発明では、前記亜鉛めっき層の付着量が、1g/m以上100g/m以下であることが好ましく、また、本発明では、前記Ni付着部の平均Ni付着量が、0.1〜500 mg/mであることが好ましく、また本発明では、前記リン酸塩処理層の付着量が0.2g/m以上3g/m以下であることが好ましい。 Further, in the method for producing a phosphate-treated galvanized steel sheet of the present invention, the Mg ions are preferably obtained by adding Mg nitrate, and in the present invention, the galvanizing treatment step is an electrogalvanizing treatment step or It is preferable that it is a hot dip galvanizing treatment step. In the present invention, the amount of the galvanized layer is preferably 1 g / m 2 or more and 100 g / m 2 or less. It is preferable that the average Ni adhesion amount of the adhesion part is 0.1 to 500 mg / m 2 , and in the present invention, the adhesion amount of the phosphating layer is 0.2 g / m 2 or more and 3 g / m 2 or less. It is preferable.

本発明によれば、シーリング処理を行うことなく、従来のリン酸塩処理亜鉛めっき鋼板と同等以上の耐食性を有し、しかも同等の耐黒変性を有するリン酸塩処理電気亜鉛めっき鋼板を容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、環境への悪影響を防止して、リン酸塩処理電気亜鉛めっき鋼板を製造できるという効果もある。
According to the present invention, without performing a sealing treatment, it has a conventional phosphating galvanized steel sheet equal to or higher than corrosion resistance, yet the phosphating galvanized steel sheet having the same blackening easily In addition, it can be manufactured at a low cost and has a remarkable industrial effect. Further, according to the present invention, to prevent an adverse effect on the environment, there is also an effect that can be produced phosphating galvanized steel sheet.

本発明のリン酸塩処理亜鉛めっき鋼板は、基板である鋼板の少なくとも一方の面に亜鉛めっき層と該亜鉛めっき層の上層としてリン酸塩処理層を有し、さらに亜鉛めっき層とリン酸塩処理層との中間にNi付着部を介在させてなる亜鉛めっき鋼板である。基板とする鋼板は、亜鉛系めっき鋼板として適用できる鋼板であればよく、とくにその種類は限定されない。用途に応じ適宜選択すればよい。   The phosphatized galvanized steel sheet of the present invention has a galvanized layer and a phosphatized layer as an upper layer of the galvanized layer on at least one surface of the steel sheet as a substrate. It is a galvanized steel sheet in which a Ni adhering portion is interposed in the middle of the treatment layer. The steel plate used as a board | substrate should just be a steel plate applicable as a galvanized steel plate, and the kind in particular is not limited. What is necessary is just to select suitably according to a use.

本発明では、基板とする鋼板上に形成される亜鉛めっき層は、電気亜鉛めっき処理によって形成される。また、亜鉛めっき層の付着量は、用途に応じて適宜選択できるが、耐食性の観点から1g/m以上とすることが好ましい。しかし、付着量が100g/mを超えると耐めっき剥離性が低下する。なお、より好ましくは5g/m以上、70g/m以下である。
In the present invention, the galvanized layer formed on the steel plate as the substrate is formed by electrogalvanizing treatment . Moreover, although the adhesion amount of a galvanization layer can be suitably selected according to a use, it is preferable to set it as 1 g / m < 2 > or more from a corrosion-resistant viewpoint. However, when the adhesion amount exceeds 100 g / m 2 , the plating peel resistance decreases. In addition, More preferably, they are 5 g / m < 2 > or more and 70 g / m < 2 > or less.

本発明では、亜鉛めっき層の表面にNi付着部を形成し、亜鉛めっき層の上層であるリン酸塩処理層との中間に介在させる。これにより、耐黒変性が向上する。本発明では、亜鉛めっき層とリン酸塩処理層との中間に介在させるNi付着部のNi平均付着量は、0.1〜500 mg/mとする。亜鉛めっき層の表面に設けるNi付着部は、上記した平均付着量の範囲を満足するものであれば、均一な層として存在していてもよく、また微視的には不連続な形態で付着したものであってもよい。なお、ここでは平均付着量とは、後述するようにJIS H 0401-1999に規定された付着試験に準拠して定量される値であり、測定面積がJIS H 0401-1999に規定された面積についての付着量の平均値である。Ni付着部のNiの平均付着量が、0.1mg/m未満では、上層にMgを含有するりん酸塩処理層を形成した場合に、特に高温多湿環境下で発生する黒変を防止することができない。なお、Ni付着量が多いほど、黒変防止効果が確実になるため、Niの平均付着量は、好ましくは1mg/m以上、より好ましくは5mg/m以上とすることが望ましい。一方、Niの平均付着量が500mg/mm2を超えて増えすぎると耐食性の劣化を生じるため、500mg/mm2を上限値とする。なお、好ましくは100mg/m以下、より好ましくは20mg/m以下である。 In the present invention, the Ni adhesion portion is formed on the surface of the galvanized layer and is interposed between the phosphating layer, which is the upper layer of the galvanized layer. Thereby, the blackening resistance is improved. In this invention, the Ni average adhesion amount of the Ni adhesion part interposed in the middle of a galvanization layer and a phosphate treatment layer shall be 0.1-500 mg / m < 2 >. The Ni adhesion portion provided on the surface of the galvanized layer may exist as a uniform layer as long as it satisfies the above-mentioned range of the average adhesion amount, and adheres in a microscopically discontinuous form. It may be what you did. Here, the average adhesion amount is a value quantified in accordance with an adhesion test stipulated in JIS H 0401-1999 as described later, and the measurement area is an area stipulated in JIS H 0401-1999. It is the average value of the amount of adhesion. If the average amount of Ni deposited on the Ni deposit is less than 0.1 mg / m 2 , prevent blackening that occurs particularly in high-temperature and high-humidity environments when a phosphate-treated layer containing Mg is formed in the upper layer. I can't. In addition, since the effect of preventing blackening becomes more certain as the amount of Ni attached increases, the average amount of attached Ni is preferably 1 mg / m 2 or more, more preferably 5 mg / m 2 or more. On the other hand, if the average adhesion amount of Ni exceeds 500 mg / mm 2 and increases too much, corrosion resistance deteriorates, so 500 mg / mm 2 is the upper limit. In addition, Preferably it is 100 mg / m < 2 > or less, More preferably, it is 20 mg / m < 2 > or less.

また、本発明のリン酸塩処理亜鉛めっき鋼板は、亜鉛めっき層の上層として上記したNi付着部の上に、リン酸塩処理層を有する。本発明のリン酸塩処理亜鉛めっき鋼板では、リン酸塩処理層は、Mgを0.1質量%以上2.0質量%未満含有する。リン酸塩処理層中にMgを含有することにより、塩水噴霧試験において白錆が発生するまでの時間を遅延させることが可能となり、シーリング処理を施すことなくリン酸塩処理亜鉛めっき鋼板の耐食性を向上させることができる。リン酸塩処理層中のMg含有量を0.1質量%以上とすることにより、上記した効果が顕著となり、従来のシーリング処理を施したリン酸塩処理亜鉛めっき鋼板の耐食性とほぼ同等の耐食性を、シーリング処理を施すことなく確保することができる。一方、2.0質量%以上のMgを含有しても耐食性の向上効果は飽和するうえ、さらにリン酸塩処理層中のMg含有量が増加するにしたがい、耐黒変性が劣化する傾向となる。このため、リン酸塩処理層中のMg含有量は2.0質量%未満を上限とした。なお、Mgは耐黒変性の観点から1.4質量%以下とすることが好ましく、さらに好ましくは0.5〜1.0質量%である。   Moreover, the phosphate-treated galvanized steel sheet of the present invention has a phosphate-treated layer on the above-described Ni adhesion portion as an upper layer of the galvanized layer. In the phosphate-treated galvanized steel sheet of the present invention, the phosphate-treated layer contains Mg in an amount of 0.1% by mass or more and less than 2.0% by mass. By including Mg in the phosphate treatment layer, it is possible to delay the time until white rust is generated in the salt spray test, and the corrosion resistance of the phosphate-treated galvanized steel sheet can be reduced without applying a sealing treatment. Can be improved. By making the Mg content in the phosphating layer 0.1% by mass or more, the above-mentioned effect becomes remarkable, and the corrosion resistance substantially equivalent to the corrosion resistance of the phosphating galvanized steel sheet subjected to the conventional sealing treatment, It can be ensured without applying a sealing process. On the other hand, even if 2.0% by mass or more of Mg is contained, the effect of improving the corrosion resistance is saturated, and further, the blackening resistance tends to deteriorate as the Mg content in the phosphate treatment layer increases. For this reason, the upper limit of the Mg content in the phosphate treatment layer is less than 2.0% by mass. In addition, Mg is preferably 1.4% by mass or less, more preferably 0.5 to 1.0% by mass from the viewpoint of blackening resistance.

また、リン酸塩処理層中には、リン酸塩処理液中に含まれる他のカチオン、例えばNi、Mn、Co等が、0.01〜0.4質量%程度であれば不可避的不純物として含有されてもなんら問題はない。
また、リン酸塩処理層の付着量は、耐食性及び十分な塗料密着性を確保するために、0.2g/m以上とすることが好ましく、より好ましくは1.0g/m以上、さらに好ましくは1.5g/m以上である。なお、付着量の増加による上記した効果は、3g/m以上では飽和するために、3g/mを上限とすることが好ましい。
Further, in the phosphate treatment layer, other cations contained in the phosphate treatment solution, for example, Ni, Mn, Co, etc. may be contained as inevitable impurities if they are about 0.01 to 0.4% by mass. There is no problem.
Further, the adhesion amount of the phosphating layer is preferably 0.2 g / m 2 or more, more preferably 1.0 g / m 2 or more, and further preferably, in order to ensure corrosion resistance and sufficient paint adhesion. 1.5 g / m 2 or more. In addition, since the above-mentioned effect by the increase in adhesion amount is saturated at 3 g / m 2 or more, it is preferable to set 3 g / m 2 as the upper limit.

つぎに、本発明のリン酸塩処理亜鉛めっき鋼板の好ましい製造方法について説明する。
本発明では、基板とする鋼板に、鋼板の少なくとも一方の面に亜鉛めっき層を形成する亜鉛めっき処理工程と、前記亜鉛めっき層の表面に微量のNi付着部を形成するNi付着部形成処理工程と、前記亜鉛めっき層の上層として、該Ni付着部のうえにリン酸塩処理層を形成するリン酸塩処理工程と、を順次施す。
Below, the preferable manufacturing method of the phosphating galvanized steel plate of this invention is demonstrated.
In the present invention, a galvanizing process for forming a galvanized layer on at least one surface of the steel sheet, and a Ni-attached part forming process for forming a small amount of Ni-adhered part on the surface of the galvanized layer. And a phosphate treatment step of forming a phosphate treatment layer on the Ni deposit as the upper layer of the galvanized layer.

なお、前処理として、必要に応じ、電解脱脂、酸洗等および水洗を行い,鋼板表面を清浄化してのち、亜鉛めっき処理工程を行なうことは言うまでもない。
亜鉛めっき処理工程における亜鉛めっき層の形成手段としては、真空蒸着法、溶融めっき法及び電気めっき法などが例示できるが、本発明の亜鉛めっき処理工程においては、電気めっき法を用いて、電気亜鉛めっき処理工程とする。以下、電気めっき法を用いる場合を例として説明する。
Needless to say, as the pretreatment, if necessary, electrolytic degreasing, pickling, etc. and water washing are performed to clean the steel plate surface, and then the galvanizing treatment step is performed.
Examples of means for forming the galvanized layer in the galvanizing process include vacuum deposition, hot dipping, and electroplating. In the galvanizing process of the present invention, electroplating is performed using electroplating. Let it be a plating process . Hereinafter, the case where the electroplating method is used will be described as an example.

本発明の亜鉛めっき処理工程では、通常のめっき浴組成を用いた電気めっき法がいずれも好適に利用できる。
亜鉛めっき浴としては、通常の純亜鉛めっき層を形成する亜鉛めっき浴である、硫酸亜鉛溶液、塩化亜鉛溶液等が、いずれも好適に利用でき、とくに限定する必要はない。また、亜鉛めっき層の付着量に応じ、電流密度等の通電条件を調整することはいうまでもない。なお、亜鉛めっき層の付着量は、1〜100g/mの範囲とすることが耐食性、耐めっき剥離性の観点から好ましい。
本発明では、亜鉛めっき処理工程後でリン酸塩処理工程前に、Ni付着部形成処理工程を施す。Ni付着部形成処理工程では、亜鉛めっき処理工程により表面に亜鉛めっき層を形成された鋼板をNiイオンを含有する水溶液に接触させて亜鉛めっき層の表面にNiを置換析出させるか、あるいはより積極的に、前記亜鉛めっき層を形成した鋼板を陰極としてNiイオンを含有する水溶液中で電解し亜鉛めっき層の表面にNiを置換析出させることにより、微量のNi付着部を形成することが好ましい。Ni付着部形成処理工程で使用するNiイオンを含有する水溶液としては、塩化ニッケルや硫酸ニッケルなどの水溶液が適用できる。なお、Ni付着量に応じて、適宜水溶液中のNi濃度や、液温、接触時間、あるいは電解条件等を変化させることが好ましい。
In the galvanizing treatment step of the present invention, any electroplating method using a normal plating bath composition can be suitably used.
As the zinc plating bath, a zinc sulfate solution, a zinc chloride solution, etc., which are normal zinc plating baths for forming a pure zinc plating layer, can be suitably used, and there is no particular limitation. Needless to say, the energization conditions such as the current density are adjusted according to the amount of the galvanized layer deposited. In addition, it is preferable from a viewpoint of corrosion resistance and plating peeling resistance that the adhesion amount of a zinc plating layer shall be the range of 1-100 g / m < 2 >.
In the present invention, the Ni adhering portion forming treatment step is performed after the galvanizing treatment step and before the phosphate treatment step. In the Ni adhering part forming treatment process, the steel sheet on which the galvanized layer is formed by the galvanizing process is brought into contact with an aqueous solution containing Ni ions to displace and deposit Ni on the surface of the galvanized layer, or more aggressively. In particular, it is preferable to form a small amount of the Ni-adhered portion by electrolysis in an aqueous solution containing Ni ions using the steel sheet on which the galvanized layer is formed as a cathode, and substituting and depositing Ni on the surface of the galvanized layer. An aqueous solution such as nickel chloride or nickel sulfate can be used as the aqueous solution containing Ni ions used in the Ni adhering portion forming process. It is preferable to change the Ni concentration in the aqueous solution, the liquid temperature, the contact time, the electrolysis conditions, or the like as appropriate in accordance with the amount of Ni attached.

Ni付着部形成処理工程を施された鋼板は、ついで、リン酸塩処理工程を施される。リン酸塩処理工程では、Ni付着部の上に、0.1質量%以上2.0質量%未満含有するリン酸塩処理層を形成する。リン酸塩処理層は、Ni付着部形成処理工程を施された鋼板とリン酸塩処理液とを、スプレーあるいは浸漬等の常法により接触させて形成することが好ましい。リン酸塩処理層にMgを含有させるために、本発明では、Mgイオン濃度とZnイオン濃度の質量比、Mg2+/Zn2+ が0.05超え、好ましくは5以下を満足するリン酸塩処理液を用いる。なお、リン酸塩処理層中に取り込まれるMg量は、処理液中のMg2+/Zn2+比の他に、処理液中のZn濃度、液温、pH等によっても影響される。前記したMg2+/Zn2+の範囲は、通常の化成処理を行う条件下、例えばZn濃度:0.5〜5g/L、液温:30〜70℃、pH:1.0〜2.5の範囲の場合にとくに好ましい。 The steel sheet that has been subjected to the Ni adhering portion forming treatment step is then subjected to a phosphate treatment step. In the phosphate treatment step, a phosphate treatment layer containing 0.1% by mass or more and less than 2.0% by mass is formed on the Ni adhesion part. The phosphating layer is preferably formed by bringing the steel sheet subjected to the Ni adhering portion forming process and the phosphating solution into contact with each other by a conventional method such as spraying or dipping. In order to contain Mg in the phosphating layer, in the present invention, a phosphating solution that satisfies the mass ratio of Mg ion concentration to Zn ion concentration, Mg 2+ / Zn 2+ exceeds 0.05, preferably 5 or less. Use. Note that the amount of Mg taken into the phosphate treatment layer is influenced by the Zn concentration, solution temperature, pH, and the like in the treatment solution, in addition to the Mg 2+ / Zn 2+ ratio in the treatment solution. The range of Mg 2+ / Zn 2+ described above is particularly preferable under the conditions under which ordinary chemical conversion treatment is performed, for example, when the Zn concentration is 0.5 to 5 g / L, the liquid temperature is 30 to 70 ° C., and the pH is 1.0 to 2.5. .

Mg2+/Zn2+ が0.05以下では、Mgを0.1質量%以上含有するリン酸塩処理層とすることができない場合がある。また、Mg2+/Zn2+ が5を超えて高くなりすぎると、リン酸塩処理層中のMg量が適正範囲を外れる場合がある。リン酸塩処理液中のMg2+/Zn2+を適正レベルとするためには、Mg塩を適正濃度で溶解させる必要がある。このため、Mgと対になるアニオンの選択が重要となる。Mgイオン源として、水酸化Mg、炭酸Mg、硫酸Mgなどを用いた場合には十分な溶解度が得られない傾向がある。塩化Mgは溶解度は十分であるが、Mgイオンと同時に高濃度の塩素イオンがリン酸塩処理液中に混入してリン酸塩皮膜の形成に悪影響を及ぼすことがある。このようなことから、Mgイオン源としては、硝酸Mgが好適である。 When Mg 2+ / Zn 2+ is 0.05 or less, a phosphating layer containing 0.1 mass% or more of Mg may not be obtained. On the other hand, if Mg 2+ / Zn 2+ exceeds 5 and becomes too high, the amount of Mg in the phosphating layer may be outside the proper range. In order to set Mg 2+ / Zn 2+ in the phosphating solution to an appropriate level, it is necessary to dissolve the Mg salt at an appropriate concentration. For this reason, selection of the anion which becomes a pair with Mg becomes important. When Mg hydroxide, Mg carbonate, Mg sulfate, or the like is used as the Mg ion source, there is a tendency that sufficient solubility cannot be obtained. Mg chloride has sufficient solubility, but simultaneously with Mg ions, a high concentration of chlorine ions may be mixed into the phosphating solution and adversely affect the formation of the phosphate film. For this reason, Mg nitrate is suitable as the Mg ion source.

本発明で使用するリン酸塩処理液としては、亜鉛イオン、リン酸イオンを含有し、さらに促進剤等を含有する市販の処理液、例えば、日本パーカライジング(株)製の商品名「PB3312M」などに、さらに上記したMgイオン源を所定量添加したものが好適に利用できる。また、リン酸塩処理層の付着量は、鋼板とリン酸塩処理液との接触時間を制御する常法により0.2〜3.0g/mの範囲に調整することが好ましい。 As the phosphate treatment solution used in the present invention, a commercial treatment solution containing zinc ions, phosphate ions, and further containing an accelerator, for example, trade name “PB3312M” manufactured by Nippon Parkerizing Co., Ltd. In addition, a further addition of a predetermined amount of the above-mentioned Mg ion source can be suitably used. Moreover, it is preferable to adjust the adhesion amount of a phosphate process layer to the range of 0.2-3.0 g / m < 2 > by the conventional method which controls the contact time of a steel plate and a phosphate process liquid.

なお、リン酸塩処理工程に先立ち、Ni付着部形成処理工程を施された鋼板表面の表面調整処理を行なうことが好ましい。Ni付着部形成処理工程を施された鋼板表面の表面調整は、チタンコロイド系活性処理剤を用いてスプレーにより行なうことが好ましい。チタンコロイド系活性処理剤としては、例えば、日本パーカライジング(株)製プレバレンZN(商品名)が例示できる。
つぎに、実施例に基づき本発明をさらに詳細に説明する。
In addition, it is preferable to perform the surface adjustment process of the steel plate surface which gave the Ni adhesion part formation process process prior to a phosphate process process. The surface adjustment of the steel sheet surface that has been subjected to the Ni adhering portion forming treatment step is preferably performed by spraying using a titanium colloidal active treatment agent. As a titanium colloid type active treating agent, Nippon Parkerizing Co., Ltd. prevalene ZN (brand name) can be illustrated, for example.
Next, the present invention will be described in more detail based on examples.

板厚1.0mmの冷延鋼板から、大きさ:210×100mmの試験板を採取した。これら試験板に、まず前処理を施した。前処理は、オルソ珪酸ソーダ(60g/L)添加のアルカリ脱脂液(液温:70℃)中で、対極をステンレス板とし、電流密度:5A/dmで30秒間の電解脱脂と、電解脱脂後水洗を施し、さらに30g/Lの硫酸水溶液(液温:30℃)中に5秒間浸漬して酸洗したのち、水洗する処理とした。この前処理を施した後、試験板に電気亜鉛めっき処理を施し、試験板片面に、付着量:5〜40g/mの亜鉛めっき層を形成した。 A test plate having a size of 210 × 100 mm was taken from a cold-rolled steel plate having a thickness of 1.0 mm. These test plates were first pretreated. Pretreatment, ortho sodium silicate (60 g / L) added alkaline degreasing solution (liquid temperature: 70 ° C.) in the counter electrode and a stainless steel plate, the current density: at 5A / dm 2 30 seconds electrolytic degreasing, electrolytic degreasing After washing with water, it was further immersed in a 30 g / L sulfuric acid aqueous solution (liquid temperature: 30 ° C.) for 5 seconds, pickled, and then washed with water. After performing this pretreatment, the test plate was subjected to electrogalvanizing treatment, and a zinc plating layer having an adhesion amount of 5 to 40 g / m 2 was formed on one surface of the test plate.

電気亜鉛めっき処理はつぎのとおりとした。
440 g/Lの硫酸亜鉛7水和物を添加した亜鉛めっき液を用いて亜鉛めっき浴とした。亜鉛めっき液は硫酸を添加してpH:1.5に調整した。なお、亜鉛めっき浴の浴温は50℃とした。上記した亜鉛めっき浴中で、酸化イリジウム被覆Ti板電極を対極とし、該対極を、試験板と極間距離10mmで平行に配置し、極間に流速1.5m/sでめっき液を循環させながら、電流密度70A/dm2で通電した。
The electrogalvanizing treatment was as follows.
A zinc plating solution to which 440 g / L of zinc sulfate heptahydrate was added was used as a zinc plating bath. The zinc plating solution was adjusted to pH 1.5 by adding sulfuric acid. The bath temperature of the galvanizing bath was 50 ° C. In the galvanizing bath described above, the iridium oxide-coated Ti plate electrode is used as a counter electrode, the counter electrode is placed in parallel with the test plate at a distance of 10 mm, and the plating solution is circulated at a flow rate of 1.5 m / s between the electrodes. And energized at a current density of 70 A / dm 2 .

このようにして試験板表面に亜鉛めっき層を形成したのち、該亜鉛めっき層の表面にNiを付着形成するNi付着部形成処理を施し、亜鉛めっき層のうえに、付着量:0.1〜500 mg/mのNi付着部を形成した。
Ni付着部形成処理はつぎのとおりとした。
表面に亜鉛めっき層を形成された試験片を、10g/Lの硫酸ニッケル水溶液(40℃)に1〜10秒間浸漬するか、もしくは、酸化イリジウム被覆Ti板電極を対極として、該対極と試験片を平行に配置し、電流密度:5A/dm2で通電し、電解して、所定量のNiを析出させNi付着部を形成した。なお、Ni付着量は、浸漬時間または電解時間を変化させて調整した。
After forming a galvanized layer on the surface of the test plate in this way, a Ni adhesion portion forming process for forming Ni on the surface of the galvanized layer is performed. On the galvanized layer, the adhesion amount: 0.1 to 500 mg A Ni adhesion portion of / m 2 was formed.
The Ni adhesion part formation process was as follows.
A test piece with a galvanized layer formed on the surface is immersed in a 10 g / L nickel sulfate aqueous solution (40 ° C.) for 1 to 10 seconds, or an iridium oxide-coated Ti plate electrode is used as a counter electrode, and the counter electrode and the test piece Were placed in parallel, energized at a current density of 5 A / dm 2 , and electrolyzed to deposit a predetermined amount of Ni to form a Ni-adhered portion. Note that the Ni adhesion amount was adjusted by changing the dipping time or electrolysis time.

このようにして、亜鉛めっき層のうえにNi付着部を形成した後、水洗し、ついでリン酸塩処理を施した。なお、リン酸塩処理の前処理として、亜鉛めっき層のうえにNi付着部を形成した鋼板に、表面調整剤(日本パーカライジング(株)製:商品名「プレンパレンZ」)による表面調整処理を施した。
リン酸塩処理は、亜鉛めっき層のうえにNi付着部を形成した鋼板に、リン酸亜鉛処理液(日本パーカライジング(株)製:商品名「PB3312M」に硝酸Mgを添加したもの;Zn濃度:3.5g/L、液温:60℃、pH:2.2)をスプレーして接触させ、水洗、乾燥して、リン酸塩処理層を形成し、亜鉛めっき層とリン酸塩処理層との中間にNi付着部を介在させてなるリン酸塩処理亜鉛めっき鋼板(試験板)とした。なお、リン酸塩処理液中に添加するMg源の添加量を変化して、リン酸塩処理層中のMg量を変化させた。また、リン酸塩処理層の付着量はリン酸塩処理液との接触時間を変えて変化させた。
Thus, after forming a Ni adhesion part on a galvanization layer, it washed with water, and then gave phosphate treatment. In addition, as a pretreatment for phosphating, a steel sheet with a Ni deposit on the galvanized layer was subjected to a surface conditioning treatment using a surface conditioning agent (Nippon Parkerizing Co., Ltd., trade name “Plenpalen Z”). did.
Phosphate treatment is a zinc phosphate treatment solution (Nihon Parkerizing Co., Ltd .: trade name “PB3312M” with Mg nitrate added to steel sheet with a Ni deposit on the galvanized layer; Zn concentration: 3.5g / L, liquid temperature: 60 ° C, pH: 2.2) sprayed and contacted, washed with water and dried to form a phosphate treatment layer, between the galvanized layer and phosphate treatment layer A phosphate-treated galvanized steel sheet (test plate) with a Ni adhering portion interposed was used. The amount of Mg in the phosphating layer was changed by changing the amount of the Mg source added to the phosphating solution. Moreover, the adhesion amount of the phosphate treatment layer was changed by changing the contact time with the phosphate treatment solution.

また、比較として、通常の亜鉛めっき浴を用いて純亜鉛めっき層と、通常のリン酸塩処理液を用いてMgを含有しないリン酸塩処理層を形成しさらに、無水クロム(V1)酸を主成分とする水溶液(日本パーカライジング(株)製:商品名「LN62」)を用いてシーリング処理を施し、リン酸塩処理亜鉛めっき鋼板(試験板)とした(試験板No.26)。なお、シーリング処理なしのリン酸塩処理亜鉛めっき鋼板(試験板)も作製した(試験板No.24)。   As a comparison, a pure galvanized layer was formed using a normal galvanizing bath, and a phosphate-treated layer containing no Mg was formed using a normal phosphating solution, and chromic anhydride (V1) was added. Using an aqueous solution (manufactured by Nippon Parkerizing Co., Ltd .: trade name “LN62”) as a main component, a sealing treatment was performed to obtain a phosphate-treated galvanized steel sheet (test plate) (test plate No. 26). A phosphate-treated galvanized steel sheet (test plate) without sealing treatment was also produced (test plate No. 24).

得られた試験板について、亜鉛めっき層、Ni付着部およびリン酸塩処理層の付着量、耐食性および耐黒変性について調査した。なお、調査面は、得られた試験板の亜鉛めっき層およびリン酸塩処理層が形成された面とした。調査方法はつぎの通りとした。
(1)亜鉛めっき層、Ni付着部、及びりん酸塩処理層の付着量
亜鉛めっき層中のめっき付着量及び亜鉛めっき層の上に形成されたNi付着部の付着量は、亜鉛めっき処理後にNiを析出付着させ表面にNi付着部を形成された亜鉛めっき層について、JIS H 0401-1999に規定された付着量試験方法に準拠して、ヘキサメチレンテトラミン液に溶解させ、めっき層が溶解した液を、JIS K 0121-1993に規定された電気加熱方式原子吸光分析装置にて分析して求めた。リン酸塩処理層の付着量は重クロム酸アンモニウム水溶液で溶解して重量法で求めた。またリン酸塩処理層中のMg含有量は、リン酸塩処理層を重クロム酸アンモニウム水溶液で溶解し、その溶解液をICP分析(誘起結合プラズマ発光分析)により分析して求めた。
(2)耐食性
得られた試験板から、試験片(大きさ:100×50mm)を切り出し、試験片の端部及び裏面をテープシールした後、JIS Z 2371-2000の規定に準拠して塩水噴霧試験を実施した。試験中、定期的に試験片表面を観察し、試験片の全評価面積に対し白錆発生面積が5%になるまでの時間(白錆発生時間)を調べ、耐食性を評価した。白錆発生時間が、24時間以上である場合を◎、24時間未満8時間以上である場合を○、8時間未満4時間以上である場合を△、4時間未満である場合を×とした。
(3)耐黒変性
得られた試験板から、試験片(大きさ:100×50mm)を切り出し、分光式色差計SQ2000(日本電色製)を用いて、まず、試験片の初期のL値(明度)を測定した。ついで、試験片を、温度80℃、湿度95%RHの恒温恒湿槽中に24時間放置した。放置後、試験片のL値を同様に測定し、L値(初期値)からのL値の変化量ΔLを求めた。ΔLが、−1以上である場合を◎、−1未満−2以上である場合を○、−2未満−4以上である場合を△、−4未満である場合を×として耐黒変性を評価した。
About the obtained test plate, the adhesion amount, corrosion resistance, and blackening resistance of the galvanized layer, the Ni adhesion portion, and the phosphate treatment layer were investigated. The investigation surface was a surface on which the galvanized layer and the phosphate treatment layer of the obtained test plate were formed. The survey method was as follows.
(1) Adhesion amount of galvanized layer, Ni adhering portion, and phosphate treatment layer The amount of adhering plating in the galvanized layer and the adhering amount of Ni adhering portion formed on the galvanized layer are determined after galvanizing treatment. The zinc plating layer with Ni deposited and deposited on the surface was dissolved in a hexamethylenetetramine solution in accordance with the adhesion amount test method specified in JIS H 0401-1999, and the plating layer was dissolved. The solution was obtained by analyzing with an electric heating type atomic absorption spectrometer specified in JIS K 0121-1993. The adhesion amount of the phosphate treatment layer was determined by a weight method after dissolving with an aqueous ammonium dichromate solution. The Mg content in the phosphate treatment layer was determined by dissolving the phosphate treatment layer with an ammonium dichromate aqueous solution and analyzing the solution by ICP analysis (inductively coupled plasma emission analysis).
(2) Corrosion resistance A test piece (size: 100 x 50 mm) is cut out from the obtained test plate, the end and back of the test piece are tape-sealed, and then sprayed with salt water in accordance with JIS Z 2371-2000. The test was conducted. During the test, the surface of the test piece was regularly observed, and the time until the white rust generation area became 5% of the total evaluation area of the test piece (white rust generation time) was examined to evaluate the corrosion resistance. The case where the white rust occurrence time was 24 hours or more was rated as ◎, the case where it was less than 24 hours and 8 hours or more, ○, the case where it was less than 8 hours and 4 hours or more, and the case where it was less than 4 hours, and ×.
(3) Blackening resistance A test piece (size: 100 × 50 mm) was cut out from the obtained test plate, and the initial L value of the test piece was first measured using a spectroscopic color difference meter SQ2000 (Nippon Denshoku). (Lightness) was measured. Next, the test piece was left in a constant temperature and humidity chamber at a temperature of 80 ° C. and a humidity of 95% RH for 24 hours. After standing, the L value of the test piece was measured in the same manner, and the change amount ΔL of the L value from the L value (initial value) was obtained. When ΔL is −1 or more, ◎, less than −1, −2 or more, ○, less than −2 to −4 or more, Δ, and less than −4, x is evaluated as blackening resistance. did.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

本発明例はいずれも、シーリング処理を行うことなく、従来のリン酸塩処理鋼板と同等またはそれ以上の耐食性及び同等の耐黒変性を有するリン酸塩処理亜鉛めっき鋼板となっている。一方、本発明の範囲を外れる比較例は、耐食性、耐黒変性、のうちのいずれかが劣化している。
All of the examples of the present invention are phosphate-treated galvanized steel sheets having corrosion resistance equivalent to or higher than that of conventional phosphate-treated steel sheets and equivalent blackening resistance without performing sealing treatment. On the other hand, in a comparative example that is out of the scope of the present invention, either corrosion resistance or blackening resistance is deteriorated.

Claims (1)

鋼板の少なくとも一方の面に電気亜鉛めっき層と該電気亜鉛めっき層の上層としてりん酸塩処理層を有するりん酸塩処理電気亜鉛めっき鋼板であって、前記電気亜鉛めっき層とりん酸塩処理層との中間に0.1〜500mg/mのNi付着部を形成してなり、前記電気亜鉛めっき層の付着量が、1g/m 以上100g/m 以下であり、前記りん酸塩処理層が、Mgを0.1質量%以上2.0質量%未満含有することを特徴とする耐食性及び耐黒変性に優れたりん酸塩処理電気亜鉛めっき鋼板。
A phosphating galvanized steel sheet having a phosphate treatment layer on at least one surface as an upper layer of the galvanized layer and the electro-galvanized layer of the steel sheet, the galvanized layer and the phosphating layer Ri Na and middle to form an Ni deposition of 0.1 to 500 mg / m 2 of the deposition amount of the electro-galvanized layer, 1 g / m 2 or more 100 g / m 2 or less, the phosphate treatment layer but corrosion resistance and excellent phosphating galvanized steel sheet blackening resistance, characterized in that it contains less than 0.1 wt% to 2.0 wt% of Mg.
JP2005042907A 2005-02-18 2005-02-18 Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance Active JP4635638B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005042907A JP4635638B2 (en) 2005-02-18 2005-02-18 Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance
CN2006800013202A CN101068951B (en) 2005-02-18 2006-02-16 Phosphate-treated galvanized steel sheet having excellent resistance to corrosion and blackening
KR1020077008720A KR20070061880A (en) 2005-02-18 2006-02-16 Phosphate-treated galvanized steel sheet having excellent resistance to corrosion and blackening
PCT/JP2006/303204 WO2006088225A1 (en) 2005-02-18 2006-02-16 Phosphate-treated galvanized steel sheet having excellent resistance to corrosion and blackening
TW095105383A TWI316974B (en) 2005-02-18 2006-02-17 Phosphate treated zinc-coated steel sheet having excellent corrosion resistance and blackening resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042907A JP4635638B2 (en) 2005-02-18 2005-02-18 Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance

Publications (2)

Publication Number Publication Date
JP2006225737A JP2006225737A (en) 2006-08-31
JP4635638B2 true JP4635638B2 (en) 2011-02-23

Family

ID=36916620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042907A Active JP4635638B2 (en) 2005-02-18 2005-02-18 Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance

Country Status (5)

Country Link
JP (1) JP4635638B2 (en)
KR (1) KR20070061880A (en)
CN (1) CN101068951B (en)
TW (1) TWI316974B (en)
WO (1) WO2006088225A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677128B (en) * 2011-03-07 2015-02-18 弘运钢铁工业股份有限公司 Electrogalvanized steel sheet having zinc oxide film formed by electrolysis and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222065A (en) * 1988-03-02 1989-09-05 Nisshin Steel Co Ltd Surface treatment for hot dipped steel sheet
JPH01263280A (en) * 1988-04-15 1989-10-19 Nippon Parkerizing Co Ltd Phosphating solution for steel and zinc or zinc alloy plated steel plate
JPH01312081A (en) * 1988-06-09 1989-12-15 Kobe Steel Ltd Surface-treated metallic material
JPH0813154A (en) * 1994-06-27 1996-01-16 Nippon Parkerizing Co Ltd Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
JPH08296014A (en) * 1995-04-24 1996-11-12 Taiyo Seiko Kk Production of hot-dip galvanized steel sheet
JP2001152356A (en) * 1999-11-29 2001-06-05 Kawasaki Steel Corp Phosphate chemical conversion treating method for galvanized steel sheet
JP2003193268A (en) * 2001-12-21 2003-07-09 Jfe Engineering Kk Surface treated steel sheet having excellent corrosion resistance and blacking resistance and manufacturing method thereof
JP2004209791A (en) * 2002-12-27 2004-07-29 Jfe Steel Kk Precoated steel plate excellent in environmental consistency and corrosion resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226584A (en) * 1990-01-30 1991-10-07 Nippon Parkerizing Co Ltd Solution for surface-treating galvanized steel sheet and method therefor
US5318640A (en) * 1990-01-30 1994-06-07 Henkel Corporation Surface treatment method and composition for zinc coated steel sheet
JP4727840B2 (en) * 2001-04-19 2011-07-20 株式会社神戸製鋼所 Coated steel sheet excellent in workability and corrosion resistance, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222065A (en) * 1988-03-02 1989-09-05 Nisshin Steel Co Ltd Surface treatment for hot dipped steel sheet
JPH01263280A (en) * 1988-04-15 1989-10-19 Nippon Parkerizing Co Ltd Phosphating solution for steel and zinc or zinc alloy plated steel plate
JPH01312081A (en) * 1988-06-09 1989-12-15 Kobe Steel Ltd Surface-treated metallic material
JPH0813154A (en) * 1994-06-27 1996-01-16 Nippon Parkerizing Co Ltd Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
JPH08296014A (en) * 1995-04-24 1996-11-12 Taiyo Seiko Kk Production of hot-dip galvanized steel sheet
JP2001152356A (en) * 1999-11-29 2001-06-05 Kawasaki Steel Corp Phosphate chemical conversion treating method for galvanized steel sheet
JP2003193268A (en) * 2001-12-21 2003-07-09 Jfe Engineering Kk Surface treated steel sheet having excellent corrosion resistance and blacking resistance and manufacturing method thereof
JP2004209791A (en) * 2002-12-27 2004-07-29 Jfe Steel Kk Precoated steel plate excellent in environmental consistency and corrosion resistance

Also Published As

Publication number Publication date
CN101068951A (en) 2007-11-07
WO2006088225A1 (en) 2006-08-24
TWI316974B (en) 2009-11-11
TW200643230A (en) 2006-12-16
KR20070061880A (en) 2007-06-14
JP2006225737A (en) 2006-08-31
CN101068951B (en) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
WO2004055237A1 (en) Treating fluid for surface treatment of metal and method for surface treatment
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
TWI792744B (en) Surface-treated steel sheet and manufacturing method thereof
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
WO2018042980A1 (en) Surface-treated steel sheet, organic resin-coated steel sheet, and container using same
KR100908162B1 (en) Phosphated Galvanized Steel Sheet
KR20040038635A (en) Surface treating composition, surface treating solution, surface treating method and product with metallic material
JP4635638B2 (en) Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance
KR101106516B1 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JP4992385B2 (en) Organic resin-coated phosphate-treated zinc-based plated steel sheet and method for producing the same
JP5119864B2 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JPH03223472A (en) Surface treating liquid and surface treatment for galvanized steel sheet
JP4862484B2 (en) Method for producing electrogalvanized steel sheet
JP4147141B2 (en) Trivalent chromate treatment method and steel material with chromate film
JP3330423B2 (en) Cathode electrolytic resin chromate type metal surface treatment method
JP3319402B2 (en) Chromate treatment of galvanized steel sheet with excellent corrosion resistance and surface appearance
JP3367454B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent organic resin film adhesion and edge creep resistance
JPH08325794A (en) Production of electrolytically chromated galvanized steel sheet excellent in resistance to corrosion, fingerprinting and chromium elution and in stabilized productivity and to provide electrolytic chromating bath used in that case
JPH08325793A (en) Production of electrolytically chromated galvanized steel sheet excellent in resistance to corrosion, fingerprinting and chromate elution and in continuous productivity and to provide electrolytic chromating bath used in that case
JPH11279772A (en) Hot dip galvanized steel sheet excellent in blackening resistance and its production
JPH08325751A (en) Production of electrolytically chromated galvanized steel sheet excellent in resistance to corrosion, fingerprinting and chromium elution and in continuous productivity and electrolytic chromating bath used in that case
JPH0430476B2 (en)
JPH10259485A (en) Production of zinc-nickel alloy electroplated steel sheet good in appearance after chemical conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4635638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250