JP2008202149A - Treatment liquid for metal surface treatment, and surface treatment method - Google Patents

Treatment liquid for metal surface treatment, and surface treatment method Download PDF

Info

Publication number
JP2008202149A
JP2008202149A JP2008144555A JP2008144555A JP2008202149A JP 2008202149 A JP2008202149 A JP 2008202149A JP 2008144555 A JP2008144555 A JP 2008144555A JP 2008144555 A JP2008144555 A JP 2008144555A JP 2008202149 A JP2008202149 A JP 2008202149A
Authority
JP
Japan
Prior art keywords
surface treatment
compound
metal
ppm
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144555A
Other languages
Japanese (ja)
Other versions
JP5215043B2 (en
Inventor
Takaomi Nakayama
隆臣 中山
Hiroyuki Sato
裕之 佐藤
Toshiyuki Aijima
敏行 相島
Eisaku Okada
栄作 岡田
Fumiya Yoshida
文也 吉田
Katsuhiro Shioda
克博 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Nihon Parkerizing Co Ltd
Toyota Motor Corp
Original Assignee
Daihatsu Motor Co Ltd
Nihon Parkerizing Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Nihon Parkerizing Co Ltd, Toyota Motor Corp filed Critical Daihatsu Motor Co Ltd
Priority to JP2008144555A priority Critical patent/JP5215043B2/en
Publication of JP2008202149A publication Critical patent/JP2008202149A/en
Application granted granted Critical
Publication of JP5215043B2 publication Critical patent/JP5215043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment liquid and a surface treatment method where a surface treatment film having excellent corrosion resistance after coating can be deposited on a metal surface without incorporating components harmful to the environment and without generating sludge made into waste. <P>SOLUTION: Disclosed is a water base surface treatment liquid for surface-treating a metallic material selected from an iron based material, a zinc based material, an aluminum based material and a magnesium based material or simultaneously surface-treating two or more kinds thereamong. The treatment liquid comprises: (1) one or more kinds of compounds selected from a zirconium compound and a titanium compound by 5 to 5,000 ppm in terms of the above metallic element; (2) free fluorine ions by 0.1 to 100 ppm; and (3) one or more kinds of compounds selected from the group consisting of a calcium compound, a magnesium compound and a strontium compound; wherein, the concentration of the above compound is 5 to 50 ppm in the case of a calcium compound in terms of the above metallic element, and is 10 to 5,000 ppm in the case of a magnesium compound or a strontium compound in terms of the above metallic element, further comprises: (4) nitrate of 1,000 by 50,000 ppm; and (5) at least one kind of oxygen acid and/or oxoate selected from HBrO<SB>3</SB>, HNO<SB>2</SB>, H<SB>2</SB>O<SB>2</SB>, H<SB>2</SB>WO<SB>4</SB>, H<SB>2</SB>MoO<SB>4</SB>and their salts, and has (6) a pH of 3 to 6. The treatment liquid may further comprise a polymer compound and a surfactant. A metallic material is brought into contact with the above treatment liquid, so as to form a film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車車体に代表される様な鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の単独或はその2種乃至4種からなる構造物の金属材料表面に、それぞれ単独に或はその2種乃至4種を同時に、塗装後の耐食性に優れる表面処理皮膜を析出させることを可能とする表面処理用処理液、及び表面処理方法に関する。   The present invention can be applied to the surface of a metal material of an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material typified by an automobile body or a structure composed of 2 to 4 kinds thereof. Relates to a surface treatment treatment liquid and a surface treatment method capable of precipitating a surface treatment film having excellent corrosion resistance after coating two to four kinds at the same time.

金属表面に塗装後の耐食性に優れる表面処理皮膜を析出させる手法としては、りん酸亜鉛処理法やクロメート処理法が現在一般に用いられている。りん酸亜鉛処理法は、冷延鋼板等の鋼、亜鉛めっき鋼板及び一部のアルミニウム合金表面に耐食性に優れる皮膜を析出させることができる。しかしながら、りん酸亜鉛処理を行う際には、反応の副生成物であるスラッジの発生が避けられず、且つアルミニウム合金の種類によっては塗装後の耐糸錆性を十分に確保することができない。アルミニウム合金に対しては、クロメート処理を施すことによって十分な塗装後の性能を確保することが可能である。しかしながら、昨今の環境規制から処理液中に有害な6価クロムを含むクロメート処理は敬遠される方向にある。そこで、処理液中に有害成分を含まない表面処理方法として、以下に示す発明が提案されている。   As a technique for depositing a surface treatment film having excellent corrosion resistance after coating on a metal surface, a zinc phosphate treatment method and a chromate treatment method are generally used. The zinc phosphate treatment method can deposit a film having excellent corrosion resistance on the surface of steel such as cold-rolled steel sheets, galvanized steel sheets and some aluminum alloys. However, when the zinc phosphate treatment is performed, the generation of sludge as a by-product of the reaction is inevitable, and depending on the type of aluminum alloy, the yarn rust resistance after coating cannot be sufficiently ensured. For aluminum alloys, sufficient post-painting performance can be ensured by applying chromate treatment. However, due to recent environmental regulations, chromate treatment containing hexavalent chromium harmful to the treatment liquid is in a direction to be avoided. Therefore, the following invention has been proposed as a surface treatment method that does not contain harmful components in the treatment liquid.

例えば、孤立電子対を持つ窒素原子を含有する化合物、及び前記化合物とジルコニウム化合物を含有する金属表面用ノンクロムコーティング剤が提案されている(特許文献1参照)。この方法は、前記組成物を塗布することによって、有害成分である6価クロムを含まずに、塗装後の耐食性、及び密着性に優れた表面処理皮膜を得ることを可能とするものである。しかしながら、対象とされる金属素材がアルミニウム合金に限られており、且つ塗布乾燥によって表面処理皮膜を形成せしめるため、自動車車体の様な複雑な構造物に塗布することは困難である。   For example, a compound containing a nitrogen atom having a lone electron pair and a non-chromium coating agent for a metal surface containing the compound and a zirconium compound have been proposed (see Patent Document 1). This method makes it possible to obtain a surface-treated film excellent in corrosion resistance and adhesion after coating without applying hexavalent chromium, which is a harmful component, by applying the composition. However, since the target metal material is limited to aluminum alloy and a surface treatment film is formed by coating and drying, it is difficult to apply to a complicated structure such as an automobile body.

そこで、化成反応によって塗装後の密着性及び耐食性に優れる表面処理皮膜を析出させる方法として多数の方法が提案されている(例えば、特許文献2、特許文献3、特許文献4及び特許文献5参照)。しかしながら、何れの方法も対象とされる金属材料が、素材そのものの耐食性に優れるアルミニウム合金に限定されており、鉄系材料や亜鉛系材料表面に表面処理皮膜を析出させることは不可能であった。   Then, many methods are proposed as a method of depositing the surface treatment film | membrane which is excellent in the adhesiveness and corrosion resistance after coating by chemical conversion reaction (for example, refer patent document 2, patent document 3, patent document 4, and patent document 5). . However, the metal materials targeted by either method are limited to aluminum alloys that are excellent in corrosion resistance of the materials themselves, and it was impossible to deposit a surface treatment film on the surface of iron-based materials or zinc-based materials. .

また、金属アセチルアセトネートと、水溶性無機チタン化合物又は水溶性無機ジルコニウム化合物とからなる表面処理組成物で、塗装後の耐食性及び密着性に優れる表面処理皮膜を析出せしめる手法が提案されている(特許文献6参照)。
この方法を用いることによって、適用される金属材料がアルミニウム合金以外にマグネシウム、マグネシウム合金、亜鉛、及び亜鉛めっき合金にまで拡大された。しかしながら、この方法では冷延鋼板等の鉄系材料表面に表面処理皮膜を析出させることは不可能であり、鉄系材料を同時に処理することはできない。
Further, a method for depositing a surface treatment film having excellent corrosion resistance and adhesion after coating with a surface treatment composition comprising a metal acetylacetonate and a water-soluble inorganic titanium compound or a water-soluble inorganic zirconium compound has been proposed ( (See Patent Document 6).
By using this method, the metal material applied was expanded to magnesium, magnesium alloy, zinc, and galvanized alloy in addition to aluminum alloy. However, in this method, it is impossible to deposit a surface treatment film on the surface of an iron-based material such as a cold-rolled steel sheet, and the iron-based material cannot be treated simultaneously.

更に、クロムフリー塗布型酸性組成物による金属表面処理方法、例えば、耐食性に優れる皮膜となり得る成分の水溶液を金属表面に塗布した後、水洗工程を行わずに焼き付け乾燥することによって皮膜を固定化する金属表面処理方法が提案されている(特許文献7参照)。この方法は、皮膜の生成に化学反応を伴わないため、亜鉛めっき鋼板、冷延鋼板及びアルミニウム合金等の金属表面に皮膜処理を施すことが可能である。しかしながら、前記特許文献1に開示された発明と同様に、塗布乾燥によって皮膜を生成させるため、自動車車体の様な複雑な構造物に均一な皮膜処理を施すことは困難である。   Further, a metal surface treatment method using a chromium-free coating-type acidic composition, for example, an aqueous solution of a component that can be a film having excellent corrosion resistance is applied to the metal surface, and then the film is fixed by baking and drying without performing a water washing step. A metal surface treatment method has been proposed (see Patent Document 7). Since this method does not involve a chemical reaction in the formation of the film, it is possible to perform a film treatment on metal surfaces such as galvanized steel sheets, cold-rolled steel sheets, and aluminum alloys. However, similarly to the invention disclosed in Patent Document 1, since a film is generated by coating and drying, it is difficult to perform a uniform film treatment on a complicated structure such as an automobile body.

従って、従来技術では環境に有害な成分を含まず、廃棄物となるスラッジが発生しない処理液で、自動車車体の様に冷延鋼板等の鉄系材料と亜鉛めっき鋼板等の亜鉛系材料、更にアルミニウム系及びマグネシウム系材料の2種乃至4種を同時に処理し、耐食性と密着性に優れる表面処理を施すことは不可能であった。   Therefore, in the prior art, it is a treatment liquid that does not contain environmentally harmful components and does not generate sludge as waste, such as ferrous materials such as cold-rolled steel sheets and zinc-based materials such as galvanized steel sheets, It has been impossible to treat two or four types of aluminum and magnesium materials at the same time and perform surface treatment with excellent corrosion resistance and adhesion.

特開2000−204485号公報JP 2000-204485 A 特開昭56−136978号公報JP-A-56-136978 特開平8−176841号公報JP-A-8-176841 特開平9−25436号公報Japanese Patent Laid-Open No. 9-25436 特開平9−31404号公報JP-A-9-31404 特開2000−199077号公報JP 2000-199077 A 特開平5−195244号公報JP-A-5-195244

本発明は、従来技術では不可能であった、環境に有害な成分を含まず、廃棄物となるスラッジが発生しないで、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の表面に塗装後の耐食性に優れる表面処理皮膜を析出させることを可能とする表面処理用処理液を提供し、また自動車車体の様に鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種乃至4種を組み合わせた構造物の金属表面に、塗装後の耐食性に優れる表面処理皮膜を同一組成、同一条件で、同時に析出させることを可能とする表面処理用処理液を提供し、更にこの表面処理用処理液を用いる表面処理方法を提供することを目的とする。   The present invention does not contain components harmful to the environment, which is impossible with the prior art, and does not generate waste sludge, and is coated on the surface of iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials. Provided is a treatment liquid for surface treatment that makes it possible to deposit a surface treatment film having excellent corrosion resistance later, and two to four types of iron-based material, zinc-based material, aluminum-based material, and magnesium-based material as in an automobile body. Provided with a surface treatment solution that allows a surface treatment film with excellent corrosion resistance after coating to be deposited on the metal surface of a structure with a combination of seeds at the same composition and under the same conditions. It is an object of the present invention to provide a surface treatment method using a treatment liquid.

本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来技術にはない表面処理用処理液及び表面処理方法を完成するに至った。
すなわち本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理するための水系表面処理液であって、
(1)ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記金属元素として5〜5000ppm、
(2)遊離フッ素イオンを0.1〜100ppm、および
(3)カルシウム化合物、マグネシウム化合物及びストロンチウム化合物からなる群から選ばれる1種以上の化合物を含み、前記化合物の濃度が、前記金属元素として、カルシウム化合物の場合は5〜50ppm、マグネシウム化合物又はストロンチウム化合物の場合は10〜3000ppmである
(4)硝酸根を1000〜50000ppm含む
(5)HBrO3、HNO2、H22、H2WO4及びH2MoO4並びにこれらの塩類の中から選ばれる少なくとも1種の酸素酸及び/又は酸素酸塩を含む
(6)pHが3〜6であることを特徴とする金属の表面処理用処理液。ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記金属元素として5〜5000ppm含み、また遊離フッ素イオンを0.1〜100ppm含み、且つpHが2〜6であることを特徴とする金属の表面処理用処理液である。
As a result of intensive studies on means for solving the above problems, the present inventors have completed a surface treatment solution and a surface treatment method that are not present in the prior art.
That is, the present invention is a water-based surface treatment liquid for surface-treating a metal material selected from iron-based material, zinc-based material, aluminum-based material and magnesium-based material alone or two or more of them simultaneously,
(1) One or more compounds selected from a zirconium compound and a titanium compound are used as the metal element in an amount of 5 to 5000 ppm,
(2) 0.1-100 ppm of free fluorine ions, and (3) one or more compounds selected from the group consisting of calcium compounds, magnesium compounds, and strontium compounds, and the concentration of the compound as the metal element, 5 to 50 ppm for calcium compounds and 10 to 3000 ppm for magnesium compounds or strontium compounds (4) Contains 1000 to 50000 ppm nitrate radicals (5) HBrO 3 , HNO 2 , H 2 O 2 , H 2 WO 4 And H 2 MoO 4 and at least one oxygen acid and / or oxyacid salt selected from these salts (6) A metal surface treatment solution characterized by having a pH of 3 to 6 . One or more compounds selected from a zirconium compound and a titanium compound are contained as the metal element in an amount of 5 to 5000 ppm, free fluorine ions are contained in an amount of 0.1 to 100 ppm, and the pH is 2 to 6. This is a treatment liquid for surface treatment.

これらの表面処理用処理液には、更に水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含有させてもよいし、ノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤から選ばれる少なくとも1種の界面活性剤を含有させてもよい。   These surface treatment liquids may further contain at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, a nonionic surfactant, an anionic interface. You may contain the at least 1 sort (s) of surfactant chosen from an activator and a cationic surfactant.

また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料のそれぞれ単独を或はその2種以上を同時に、上述の表面処理用処理液と接触させることを特徴とする金属の表面処理方法である。この表面処理方法において、金属材料を表面処理用処理液と接触させた後に、水洗し或いは水洗せずに、更に、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液と接触させてもよく、また水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させてもよい。   In the present invention, each of metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials may be brought into contact with the above-mentioned surface treatment solution at the same time or two or more of them simultaneously. This is a metal surface treatment method. In this surface treatment method, at least one selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, after being brought into contact with the treatment liquid for surface treatment, without being washed with water or with water. It may be contacted with an acidic aqueous solution of a compound containing any of these elements, or may be contacted with a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound.

また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料のそれぞれ単独を或はその2種以上を同時に、該金属材料を陰極として、上述の表面処理用処理液中にて電解処理することを特徴とする金属の表面処理方法である。この表面処理方法において、金属材料を表面処理用処理液中にて電解処理した後に、水洗し或いは水洗せずに、更に、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液と接触させてもよく、また水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させてもよい。   In addition, the present invention provides the above-described surface treatment using a metal material selected from iron-based material, zinc-based material, aluminum-based material, and magnesium-based material alone or two or more of them simultaneously and using the metal material as a cathode. It is the metal surface treatment method characterized by carrying out the electrolytic treatment in the process liquid. In this surface treatment method, at least selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, after the electrolytic treatment of the metal material in the surface treatment solution, without being washed with water or with water. You may make it contact with the acidic aqueous solution of the compound containing 1 type of elements, and you may make it contact with the process liquid containing at least 1 sort (s) of high molecular compound chosen from a water-soluble high molecular compound and a water-dispersible high molecular compound. .

また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれた、脱脂・清浄化処理してない金属材料のそれぞれ単独を或はその2種以上を同時に、上述のノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤から選ばれる少なくとも1種の界面活性剤を含有させた表面処理液と接触させて、金属表面の脱脂処理と皮膜形成処理を同時に行うことができる方法である。   In addition, the present invention provides a metal material selected from iron-based material, zinc-based material, aluminum-based material, and magnesium-based material that has not been degreased and cleaned, or two or more of them simultaneously. A surface treatment solution containing at least one surfactant selected from nonionic surfactants, anionic surfactants and cationic surfactants, to perform degreasing treatment and film formation treatment on the metal surface. This is a method that can be performed simultaneously.

また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料表面に、上述の表面処理方法によって形成されたチタニウム及びジルコニウムから選ばれる金属元素の少なくとも1種を含む表面処理皮膜を有し、且つ該表面処理皮膜の付着量が、前記金属元素換算で、鉄系金属材料表面の場合には30mg/m2以上であり、亜鉛系金属材料表面の場合には20mg/m2以上であり、アルミ系金属材料表面の場合には10mg/m2以上であり、マグネシウム系金属材料表面の場合には10mg/m2以上であることを特徴とする金属材料である。 Further, the present invention provides at least one metal element selected from titanium and zirconium formed on the surface of a metal material selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials by the surface treatment method described above. In the case of a surface of a zinc-based metal material, the amount of the surface-treated film including the surface treatment film is 30 mg / m 2 or more in the case of an iron-based metal material surface in terms of the metal element. is a 20 mg / m 2 or more, in the case of aluminum-based metal material surface is at 10 mg / m 2 or more, a metal material, characterized in that in the case of magnesium-based metal material surface is 10 mg / m 2 or more is there.

本発明の表面処理用処理液及びこの処理液を用いた表面処理方法によれば、従来技術では不可能であった、環境に有害な成分を含まない処理浴で、スラッジを発生させることなく、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種乃至4種を同時に又は各々単独からなる金属表面に、塗装後の耐食性に優れる表面処理皮膜を析出させることができる。また、被処理金属材料の表面調整工程を行わなくても表面処理皮膜を析出させることができ、その場合は処理工程の短縮、省スペース化が可能となる。   According to the treatment liquid for surface treatment of the present invention and the surface treatment method using this treatment liquid, without generating sludge in a treatment bath that does not contain components harmful to the environment, which is impossible with the prior art, A surface-treated film having excellent corrosion resistance after coating can be deposited on a metal surface composed of two or four of iron-based material, zinc-based material, aluminum-based material and magnesium-based material simultaneously or individually. Further, the surface treatment film can be deposited without performing the surface adjustment step of the metal material to be treated. In this case, the treatment step can be shortened and the space can be saved.

本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理し、塗装後の耐食性に優れる表面処理皮膜を析出させる技術に係わる。ここで鉄系材料とは、冷延鋼板及び熱間圧延鋼板等の鋼板、鋳鉄及び焼結材等の鉄系金属を言う。また、亜鉛系材料とは、亜鉛ダイキャストや亜鉛含有めっきを言う。この亜鉛含有めっきは、亜鉛又は亜鉛と他の金属(例えば、ニッケル、鉄、アルミニウム、マンガン、クロム、マグネシウム、コバルト、鉛及びアンチモン等の少なくとも1種の金属)との合金及び不可避不純物によりめっきされたものを言い、そのめっき方法は例えば溶融めっき、電気めっき、蒸着めっき等で制限はない。
また、アルミニウム系材料とは、5000系アルミニウム合金や6000系アルミニウム合金の様なアルミニウム合金板材やADC−12に代表されるアルミニウム合金ダイキャスト等を示す。更に、マグネシウム系材料とは、マグネシウム合金を用いた板材やダイキャスト等を言う。
The present invention provides a surface-treated film excellent in corrosion resistance after coating by individually or individually treating metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials and magnesium-based materials. It is related to the technique of depositing. Here, the iron-based material refers to a steel plate such as a cold-rolled steel plate and a hot-rolled steel plate, and an iron-based metal such as cast iron and a sintered material. The zinc-based material refers to zinc die-casting or zinc-containing plating. This zinc-containing plating is plated with zinc or an alloy of zinc and another metal (for example, at least one metal such as nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead and antimony) and inevitable impurities. The plating method is not limited by, for example, hot dipping, electroplating, and vapor deposition plating.
The aluminum-based material refers to an aluminum alloy plate material such as a 5000-series aluminum alloy or a 6000-series aluminum alloy, an aluminum alloy die-cast represented by ADC-12, or the like. Further, the magnesium-based material refers to a plate material, die-cast, or the like using a magnesium alloy.

本発明は、前記金属材料の単独を構成部材に含む構造物、或は前記金属材料の2種乃至4種を構成部材に含む構造物に適用される。そして、前記金属材料の2種乃至4種を構成部材に含む構造物に適用する場合は、2種乃至4種の金属材料の表面を同時に表面処理することができるものである。ここで、2種乃至4種の金属材料を同時に表面処理する場合は、異種金属同士が接触しない状態であっても構わないし、溶接、接着、リベット止め等の接合方法によって異種金属同士が接合接触した状態でも構わない。   The present invention is applied to a structure including a single metallic material as a constituent member, or a structure including two to four metallic materials as a constituent member. And when applying to the structure which contains 2 to 4 types of said metal materials in a structural member, the surface of 2 to 4 types of metal materials can be surface-treated simultaneously. Here, when the surface treatment of two to four kinds of metal materials is performed simultaneously, the dissimilar metals may not be in contact with each other, and the dissimilar metals are joined and contacted by a joining method such as welding, adhesion, riveting or the like. It does not matter even if it is in the state.

本発明の表面処理用処理液は、ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記記金属元素として5〜5000ppm含み、遊離フッ素イオンを0.1〜100ppm含み、且つpHが2〜6の処理液である。ここで、本発明で用いられるジルコニウム化合物としては、ZrCl4、ZrOCl2、Zr(SO4)2、ZrOSO4、Zr(NO3)4、ZrO(NO3)2、H2ZrF6、H2ZrF6の塩、ZrO2、ZrOBr2、及びZrF4などが挙げられる。またチタニウム化合物としては、TiCl4、Ti(SO4)2、TiOSO4、Ti(NO3)4、TiO(NO3)2、TiO2OC24、H2TiF6、H2TiF6の塩、TiO2、及びTiF4などが挙げられる。本発明ではジルコニウム化合物が好ましく使用される。 The treatment liquid for surface treatment of the present invention contains 5 to 5000 ppm of one or more compounds selected from a zirconium compound and a titanium compound as the metal element, contains 0.1 to 100 ppm of free fluorine ions, and has a pH of 2 to 2. 6 treatment liquid. Here, examples of the zirconium compound used in the present invention include ZrCl 4 , ZrOCl 2 , Zr (SO 4 ) 2 , ZrOSO 4 , Zr (NO 3 ) 4 , ZrO (NO 3 ) 2 , H 2 ZrF 6 , H 2. ZrF 6 salts, ZrO 2 , ZrOBr 2 , ZrF 4 and the like can be mentioned. Titanium compounds include TiCl 4 , Ti (SO 4 ) 2 , TiOSO 4 , Ti (NO 3 ) 4 , TiO (NO 3 ) 2 , TiO 2 OC 2 O 4 , H 2 TiF 6 , and H 2 TiF 6 . Examples thereof include salts, TiO 2 , and TiF 4 . In the present invention, a zirconium compound is preferably used.

本発明に用いられるジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物の濃度は、前記金属元素として(すなわち、ジルコニウム及び/又はチタニウムとして)5〜5000ppmであることが好ましく、より好ましくは10〜3000ppmである。本発明の表面処理用処理液及び表面処理方法を用いて得られる皮膜はジルコニウム又はチタニウムの酸化物や水酸化物であるため、前記ジルコニウム化合物又はチタニウム化合物から選ばれる1種以上の化合物の濃度がジルコニウム及び/又はチタニウムとして5ppmよりも小さいと、皮膜主成分濃度が小さいために耐食性を得るために十分な付着量を実用的な処理時間で得ることが困難となる。また、濃度が5000ppmよりも大きい場合は、十分な付着量は得られるが、それ以上耐食性を向上させる効果はなく、経済的に不利なだけである。   The concentration of one or more compounds selected from the zirconium compound and titanium compound used in the present invention is preferably 5 to 5000 ppm as the metal element (that is, as zirconium and / or titanium), more preferably 10 to 10 ppm. 3000 ppm. Since the film obtained using the surface treatment solution and the surface treatment method of the present invention is an oxide or hydroxide of zirconium or titanium, the concentration of one or more compounds selected from the zirconium compound or titanium compound is high. If it is less than 5 ppm as zirconium and / or titanium, it is difficult to obtain a sufficient amount of adhesion in a practical treatment time for obtaining corrosion resistance because the concentration of the main component of the film is small. Further, when the concentration is higher than 5000 ppm, a sufficient amount of adhesion can be obtained, but there is no further effect of improving the corrosion resistance, which is only economically disadvantageous.

ジルコニウム化合物又はチタニウム化合物は、酸性溶液には比較的溶解するが、アルカリ溶液中では不安定であり、容易にジルコニウム又はチタニウムの酸化物又は水酸化物として析出する。本発明の表面処理用処理液のpHは2〜6、より好ましいpHは3〜6である。このpHで被処理金属材料を本発明の表面処理用処理液と接触させると、被処理金属材料の溶解反応が起こる。そして、被処理金属材料が溶解することによって、被処理金属材料界面ではpHの上昇が起こり、ジルコニウム及びチタニウムの酸化物又は水酸化物が皮膜として被処理金属材料表面に析出するのである。   A zirconium compound or a titanium compound is relatively soluble in an acidic solution, but is unstable in an alkaline solution and easily precipitates as an oxide or hydroxide of zirconium or titanium. The surface treatment solution of the present invention has a pH of 2 to 6, more preferably 3 to 6. When the metal material to be treated is brought into contact with the treatment liquid for surface treatment of the present invention at this pH, a dissolution reaction of the metal material to be treated occurs. Then, when the metal material to be treated is dissolved, the pH rises at the metal material interface, and zirconium and titanium oxides or hydroxides are deposited on the surface of the metal material as a film.

本発明の表面処理用処理液では、その中に遊離フッ素イオンを存在させる。遊離フッ素イオンを存在させるには、表面処理用処理液にフッ素化合物を添加する。この遊離フッ素イオンの供給源としては、フッ化水素酸、H2ZrF6、H2ZrF6の塩、H2TiF6、H2TiF6の塩、H2SiF6、H2SiF6の塩、HBF4、HBF4の塩、NaHF2、KHF2、NH4HF2、NaF、KF、及びNH4Fなどが挙げられる。遊離フッ素イオンは、表面処理用処理液中におけるジルコニウム化合物及びチタニウム化合物の安定性を向上させる作用を有する。更に、遊離フッ素イオンは、本発明の表面処理の対象とする金属材料である鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料の何れの材料に対しても酸性溶液中での溶解反応を促進する作用を有する。従って、フッ素化合物を添加して遊離フッ素イオンを存在させることによって、本発明の表面処理用処理液の安定性を高めながら、且つ被処理金属材料に対する反応性をも高めることが可能となる。 In the treatment liquid for surface treatment of the present invention, free fluorine ions are present therein. In order to make free fluorine ions exist, a fluorine compound is added to the surface treatment solution. As a source of this free fluorine ion, hydrofluoric acid, H 2 ZrF 6 , H 2 ZrF 6 salt, H 2 TiF 6 , H 2 TiF 6 salt, H 2 SiF 6 , H 2 SiF 6 salt , HBF 4 , HBF 4 salt, NaHF 2 , KHF 2 , NH 4 HF 2 , NaF, KF, and NH 4 F. Free fluorine ions have the effect of improving the stability of the zirconium compound and the titanium compound in the surface treatment solution. Furthermore, free fluorine ions are dissolved in an acidic solution with respect to any of iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials, which are metal materials to be subjected to the surface treatment of the present invention. Has the effect of promoting Therefore, by adding a fluorine compound and allowing free fluorine ions to be present, it is possible to improve the reactivity of the metal material to be treated while improving the stability of the treatment liquid for surface treatment of the present invention.

本出願人は、先に、鉄又は亜鉛の少なくとも1種を含む金属の表面を処理するための表面処理用組成物及び表面処理用処理液について、チタニウム化合物やジルコニウム化合物とフッ素含有化合物とを用い、表面処理用組成物及び表面処理用処理液中の前記金属元素の合計モル重量Aとフッ素含有化合物中の全フッ素原子をHFに換算したときのモル重量Bの比A/Bを特定範囲すなわち0.06〜0.18にすることを提案した(PCT/JP02/05860)。本発明によれば、チタニウム化合物やジルコニウム化合物の金属元素の濃度と、pHと、遊離フッ素イオンの濃度とを規定することによって、上記の特定範囲外においても、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理することが可能である。   The present applicant previously used a titanium compound, a zirconium compound, and a fluorine-containing compound for a surface treatment composition and a surface treatment solution for treating the surface of a metal containing at least one of iron or zinc. The ratio A / B between the total molar weight A of the metal elements in the surface treatment composition and the surface treatment liquid and the molar weight B when all fluorine atoms in the fluorine-containing compound are converted to HF is a specific range, Proposed to be 0.06 to 0.18 (PCT / JP02 / 05860). According to the present invention, by defining the concentration, pH, and free fluorine ion concentration of the metal element of the titanium compound or zirconium compound, the iron-based material, the zinc-based material, the aluminum can be used even outside the above specific range. A metal material selected from a base material and a magnesium base material can be surface-treated alone or in combination of two or more thereof.

鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料は、各々の反応性が異なるために、従来技術では、前記金属材料の2種以上を同時に表面処理することは不可能であった。本発明においては、表面処理用処理液の安定性と反応性のバランスを遊離フッ素イオンの濃度を調整することによって自在に変えることができるため、反応性の異なる、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種以上を同時に、又は各々単独に表面処理を施すことが可能である。   Iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials have different reactivities. Therefore, in the prior art, it has been impossible to simultaneously treat two or more of the metal materials. In the present invention, the balance between the stability and reactivity of the treatment liquid for surface treatment can be freely changed by adjusting the concentration of free fluorine ions. Therefore, the iron-based material, zinc-based material having different reactivity, Two or more types of aluminum-based and magnesium-based materials can be subjected to surface treatment simultaneously or independently.

ここで言う遊離フッ素イオンの濃度は、市販のイオン電極を用いて測定されるフッ素イオン濃度を示す。本発明の表面処理用処理液中の遊離フッ素イオンの濃度は0.1〜100ppmであることが好ましく、より好ましくは、2〜70ppmである。遊離フッ素イオンの濃度が100ppmよりも高い場合は、被処理金属材料の溶解反応は促進されるが、表面処理用処理液中でのジルコニウム化合物及びチタニウム化合物が非常に安定であるため、被処理金属材料界面でpHが上昇しても皮膜として析出し難くなる。また、0.1ppmよりも小さい場合は、表面処理用処理液の安定性と反応性の向上に対する効果が小さく、遊離フッ素イオンを含有させる意味が無くなる。   The density | concentration of the free fluorine ion said here shows the fluorine ion concentration measured using a commercially available ion electrode. It is preferable that the density | concentration of the free fluorine ion in the processing liquid for surface treatment of this invention is 0.1-100 ppm, More preferably, it is 2-70 ppm. When the concentration of free fluorine ions is higher than 100 ppm, the dissolution reaction of the metal material to be treated is promoted, but the zirconium compound and the titanium compound in the surface treatment solution are very stable. Even if the pH rises at the material interface, it is difficult to deposit as a film. On the other hand, when the concentration is less than 0.1 ppm, the effect of improving the stability and reactivity of the surface treatment solution is small, and the meaning of containing free fluorine ions is lost.

本発明における遊離フッ素イオンは、表面処理用処理液の安定性及び反応性の向上作用の他に、被処理金属材料の溶解によって溶出した成分を表面処理用処理液中に安定に保つ作用を担う。従来技術の一つであるりん酸亜鉛処理の場合は、例えば鉄系金属材料から溶出した鉄イオンがりん酸と不溶性の塩であるりん酸鉄を作るためスラッジが発生する。本発明の表面処理用処理液においても、処理液中にりん酸根を含ませることができるが、りん酸根の濃度が1.0g/Lを超えると、スラッジを発生することがある。また、処理浴の容量に対して著しく被処理金属材料の処理量が多い場合は、溶出した成分を可溶化するために、例えば、硫酸、塩酸等の無機酸;酢酸、蓚酸、酒石酸、クエン酸、琥珀酸、グルコン酸、フタル酸等の有機酸;溶出成分をキレートすることができるキレート剤などを、1種又は2種以上添加してもよい。   The free fluorine ions in the present invention have the effect of keeping the components eluted by dissolution of the metal material to be treated stably in the surface treatment liquid in addition to the action of improving the stability and reactivity of the surface treatment liquid. . In the case of zinc phosphate treatment, which is one of the prior arts, sludge is generated because, for example, iron ions eluted from an iron-based metal material form iron phosphate which is an insoluble salt with phosphoric acid. In the surface treatment liquid of the present invention, phosphate radicals can be contained in the treatment liquid, but sludge may be generated when the concentration of phosphate radicals exceeds 1.0 g / L. In addition, when the amount of the metal material to be treated is remarkably large with respect to the volume of the treatment bath, for example, inorganic acids such as sulfuric acid and hydrochloric acid; acetic acid, oxalic acid, tartaric acid, citric acid, etc. are used to solubilize the eluted components. Organic acids such as oxalic acid, gluconic acid, phthalic acid, etc .; one or more chelating agents capable of chelating elution components may be added.

本発明の表面処理用処理液には、カルシウム化合物、マグネシウム化合物及びストロンチウム化合物からなる群から選ばれる少なくとも1種以上を含むことができる。本発明は、ある特定濃度のジルコニウム化合物及びチタニウム化合物を含む水溶液の遊離フッ素イオンの濃度をある一定範囲にすることによって、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種乃至4種を同時に、又は各々単独に表面処理を施すことを可能としたものである。ここで、前記カルシウム化合物、マグネシウム化合物又はストロンチウム化合物に含まれる金属元素(カルシウム、マグネシウム又はストロンチウム)は、水溶液中でフッ素とフッ化物の塩を生成することによって、水溶液中の遊離フッ素イオン濃度を一定の値に保とうとする作用を有する。この作用によって、様々な種類の被処理金属材料を同時に表面処理しても、その使用比率に依らず、常に一定な遊離フッ素イオン濃度が保たれるため、それぞれの被処理金属材料に最適な皮膜付着量が得られる。   The surface treatment solution of the present invention may contain at least one selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds. In the present invention, the concentration of free fluorine ions in an aqueous solution containing a specific concentration of a zirconium compound and a titanium compound is set within a certain range, whereby two to four types of iron-based material, zinc-based material, aluminum-based material, and magnesium-based material are used. It is possible to perform the surface treatment on the seeds simultaneously or individually. Here, the metal element (calcium, magnesium or strontium) contained in the calcium compound, magnesium compound or strontium compound generates a salt of fluorine and fluoride in the aqueous solution, so that the concentration of free fluorine ions in the aqueous solution is constant. It has the effect of trying to keep the value of. Because of this action, even if various types of metal materials to be processed are surface-treated at the same time, a constant free fluorine ion concentration is always maintained regardless of the ratio of use, so the optimum film for each metal material to be processed Amount of adhesion can be obtained.

本発明に用いることができるカルシウム化合物、マグネシウム化合物又はストロンチウム化合物としては、例えばこれら金属元素の酸化物、水酸化物、塩化物、硫酸塩、硝酸塩及び炭酸塩などが挙げられる。また、カルシウム化合物、マグネシウム化合物及びストロンチウム化合物以外にも、フッ素含有水溶液中の遊離フッ素イオン濃度を一定に保つ作用がある化合物であれば、無機物、有機物の如何を問わず、本発明に用いることができる。   Examples of the calcium compound, magnesium compound or strontium compound that can be used in the present invention include oxides, hydroxides, chlorides, sulfates, nitrates and carbonates of these metal elements. In addition to calcium compounds, magnesium compounds, and strontium compounds, any compound that has an action of keeping the free fluorine ion concentration in the fluorine-containing aqueous solution constant can be used in the present invention regardless of whether it is an inorganic substance or an organic substance. it can.

本発明に用いるマグネシウム化合物又はストロンチウム化合物の濃度は、前記金属元素として、10〜5000ppmであることが好ましく、より好ましくは100〜3000ppmである。カルシウム化合物の場合は、フッ化カルシウムの溶解度が著しく小さいためにカルシウムとして5〜100ppmが好ましく、より好ましくは5〜50ppmである。ここで、前記化合物の濃度が上限値よりも大きい場合は、表面処理用処理液の安定性が損なわれ連続操業上の支障が生じる可能性がある。また、前記化合物の濃度が下限値よりも小さい場合は、特に鉄系材料上の本発明の皮膜の付着量が低下する恐れがある。   The concentration of the magnesium compound or strontium compound used in the present invention is preferably 10 to 5000 ppm, more preferably 100 to 3000 ppm as the metal element. In the case of a calcium compound, since the solubility of calcium fluoride is remarkably small, 5-100 ppm as calcium is preferable, More preferably, it is 5-50 ppm. Here, when the concentration of the compound is larger than the upper limit value, the stability of the treatment liquid for surface treatment may be impaired, which may cause trouble in continuous operation. In addition, when the concentration of the compound is smaller than the lower limit, the amount of the coating of the present invention on the iron-based material may be reduced.

また、本発明の表面処理用処理液には硝酸根を1000〜50000ppm、より好ましくは、1000〜30000ppm添加することができる。硝酸根は、酸化剤として作用し、本発明における皮膜析出反応を促進する作用と、前記カルシウム化合物、マグネシウム化合物又はストロンチウム化合物の表面処理用処理液中での溶解度を高める作用を有する。従って、硝酸根の濃度が1000ppmよりも小さい場合でも、耐食性に優れる皮膜を析出させることはできるが、前記カルシウム化合物、マグネシウム化合物又はストロンチウム化合物の濃度が高い場合には、表面処理用処理液の安定性が損なわれる恐れがある。また、硝酸根の濃度は50000ppmで十分であり、それ以上硝酸根を添加しても経済的に不利となるだけである。   Moreover, 1000 to 50000 ppm, more preferably 1000 to 30000 ppm of nitrate radicals can be added to the surface treatment solution of the present invention. The nitrate radical acts as an oxidant and has an action of promoting the film deposition reaction in the present invention and an action of increasing the solubility of the calcium compound, magnesium compound or strontium compound in the surface treatment solution. Accordingly, even when the concentration of nitrate radical is less than 1000 ppm, a film having excellent corrosion resistance can be deposited. However, when the concentration of the calcium compound, magnesium compound or strontium compound is high, the surface treatment solution is stable. There is a risk that the sex will be impaired. Further, the concentration of nitrate radicals is sufficient at 50,000 ppm, and adding more nitrate radicals is only economically disadvantageous.

また、本発明の表面処理用処理液には、HClO3、HBrO3、HNO3、HNO2、HMnO4、HVO3、H22、H2WO4及びH2MoO4からなる群から選ばれる少なくとも1種の酸素酸及び/又はこれらの酸素酸の塩類を添加することができる。酸素酸又はその塩は、被処理素材に対する酸化剤として作用し、本発明に於ける皮膜形成反応を促進する。上記の酸素酸又はこれらの酸素酸の塩類の添加濃度には特に限定はないが、10〜5000ppm程度の添加量で酸化剤としての効果を充分に発揮する。 The surface treatment solution of the present invention is selected from the group consisting of HClO 3 , HBrO 3 , HNO 3 , HNO 2 , HMnO 4 , HVO 3 , H 2 O 2 , H 2 WO 4 and H 2 MoO 4. At least one oxygen acid and / or salts of these oxygen acids can be added. Oxygen acid or a salt thereof acts as an oxidizing agent for the material to be treated, and accelerates the film forming reaction in the present invention. The addition concentration of the above-mentioned oxygen acid or salts of these oxygen acids is not particularly limited, but the effect as an oxidizing agent is sufficiently exhibited with an addition amount of about 10 to 5000 ppm.

更に、本発明の表面処理用処理液には、水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を添加してもよい。本発明の表面処理用処理液を用いて表面処理した金属材料は十分な耐食性を有しているが、潤滑性などの更なる機能が必要な場合には、所望の機能に応じて高分子化合物を選択して添加し、皮膜の物性を改質してもよい。上記の水溶性高分子化合物及び水分散性高分子化合物としては、例えばポリビニルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共重合体、エチレンと(メタ)アクリル酸や(メタ)アクリルレートなどのアクリル系単量体との共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、アミノ変性フェノール樹脂、ポリエステル樹脂、エポキシ樹脂など金属の表面処理に常用されている高分子化合物を用いることができる。   Furthermore, at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound may be added to the surface treatment treatment liquid of the present invention. The metal material surface-treated with the treatment liquid for surface treatment of the present invention has sufficient corrosion resistance. However, when a further function such as lubricity is required, a polymer compound depending on the desired function May be selected and added to modify the physical properties of the film. Examples of the water-soluble polymer compound and the water-dispersible polymer compound include polyvinyl alcohol, poly (meth) acrylic acid, a copolymer of acrylic acid and methacrylic acid, ethylene and (meth) acrylic acid, and (meth). Polymer compounds commonly used for metal surface treatment, such as copolymers with acrylic monomers such as acrylates, copolymers of ethylene and vinyl acetate, polyurethane, amino-modified phenolic resins, polyester resins, and epoxy resins Can be used.

本発明の表面処理用処理液を用いて金属の表面を処理するには、常法で表面を脱脂処理し、清浄化した被処理金属材料を表面処理用処理液に接触させるだけでよい。これによって、金属素材表面にジルコニウム及びチタニウムから選ばれる金属元素の酸化物及び/又は水酸化物からなる皮膜が析出し、密着性及び耐食性の良い表面処理皮膜層が形成される。この接触処理はスプレー処理、浸漬処理及び流しかけ処理などのいかなる工法も用いることができ、この接触方法は性能に影響を及ぼさない。前記金属の水酸化物を純粋な水酸化物として得ることは、化学的に困難であり、一般には、前記金属の酸化物に水和水が付いた形態も水酸化物の範疇に入れている。従って、前記金属の水酸化物は熱を加えることによって、最終的には酸化物となる。本発明における表面処理皮膜層の構造は、表面処理を施した後に常温又は低温で乾燥した場合は、酸化物と水酸化物が混在した状態、更に、表面処理後に高温で乾燥した場合は、酸化物のみ乃至は酸化物が多い状態になっていると考えられる。   In order to treat the surface of a metal using the surface treatment liquid of the present invention, it is only necessary to degrease the surface by a conventional method and bring the cleaned metal material into contact with the surface treatment liquid. As a result, a film made of an oxide and / or hydroxide of a metal element selected from zirconium and titanium is deposited on the surface of the metal material, and a surface-treated film layer having good adhesion and corrosion resistance is formed. For this contact treatment, any method such as spray treatment, dipping treatment and pouring treatment can be used, and this contact method does not affect the performance. It is chemically difficult to obtain the metal hydroxide as a pure hydroxide. In general, a form in which the metal oxide has hydrated water is also included in the category of hydroxide. . Therefore, the metal hydroxide eventually becomes an oxide when heated. The structure of the surface treatment film layer in the present invention is a state in which an oxide and a hydroxide are mixed when dried at room temperature or low temperature after the surface treatment, and further when oxidized at a high temperature after surface treatment. It is considered that only the object or the oxide is in a large state.

本発明における表面処理用処理液の使用条件には、特に限定はない。本発明の表面処理液の反応性は、表面処理用処理液中のジルコニウム化合物又はチタニウム化合物の濃度と、遊離フッ素イオン濃度を変えることによって自在にコントロールできる。そのため、処理温度及び処理時間は処理浴の反応性との組合せで、いかようにも変えることが可能である。   There are no particular limitations on the use conditions of the surface treatment solution in the present invention. The reactivity of the surface treatment liquid of the present invention can be freely controlled by changing the concentration of the zirconium compound or the titanium compound and the free fluorine ion concentration in the surface treatment liquid. Therefore, the treatment temperature and treatment time can be changed in any way in combination with the reactivity of the treatment bath.

また、上記の表面処理用処理液に、ノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤の群の中から選ばれる少なくとも1種の界面活性剤を添加して表面処理に用いることができる。この表面処理用処理液を用いて金属素材を表面処理する場合は、被処理金属材料を予め脱脂処理し、清浄化しなくとも良好な皮膜を形成させることができる。すなわち、この表面処理用処理液は脱脂化成兼用表面処理剤として使用できる。   In addition, at least one surfactant selected from the group of nonionic surfactants, anionic surfactants and cationic surfactants is added to the above-described surface treatment treatment solution and used for the surface treatment. be able to. When a metal material is surface-treated using the surface treatment liquid, a good film can be formed without degreasing the metal material to be treated in advance and cleaning it. That is, this surface treatment liquid can be used as a degreasing chemical treatment surface treatment agent.

また、本発明の表面処理用処理液を用いて金属の表面を処理するには、被処理金属材料を陰極とし、表面処理用処理液中で電解を行う方法を採用することもできる。ここで、被処理金属材料を陰極として電解処理を行うと、陰極界面では水素の還元反応が起りpHが上昇する。pHの上昇に伴い、陰極界面でのジルコニウム化合物及び/又はチタニウム化合物の安定性が低下し、酸化物若しくは水を含んだ水酸化物として表面処理皮膜が析出する。   Further, in order to treat the surface of a metal using the surface treatment solution of the present invention, a method of performing electrolysis in the surface treatment solution using a metal material to be treated as a cathode may be employed. Here, when electrolytic treatment is performed using the metal material to be treated as a cathode, a reduction reaction of hydrogen occurs at the cathode interface and the pH rises. As the pH increases, the stability of the zirconium compound and / or titanium compound at the cathode interface decreases, and the surface-treated film is deposited as an oxide or a hydroxide containing water.

また、被処理金属材料を表面処理用処理液と接触した後、或いは表面処理用処理液中で電解処理した後に、水洗し又は水洗せずに、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液、若しくは水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させることによって、更に、本発明の効果を高めることができる。   In addition, after contacting the metal material to be treated with the surface treatment liquid or after electrolytic treatment in the surface treatment liquid, from cobalt, nickel, tin, copper, titanium and zirconium without washing with water. By contacting with an acidic aqueous solution of a compound containing at least one element selected from the group consisting of, or a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, Furthermore, the effect of the present invention can be enhanced.

本発明によって得られた表面処理皮膜層は、薄膜で優れた塗装性能を示すが、被処理金属材料の表面状態によっては、表面処理皮膜層に微細な欠陥部が存在する可能性がある。そこで、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液、又は水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させることによって、上記の微細な欠陥部が被覆され耐食性が更に高まるのである。   The surface-treated film layer obtained by the present invention is a thin film and exhibits excellent coating performance. However, depending on the surface state of the metal material to be treated, there may be a fine defect in the surface-treated film layer. Therefore, an acidic aqueous solution of a compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium, or at least one selected from a water-soluble polymer compound and a water-dispersible polymer compound By contacting with a treatment liquid containing the above polymer compound, the fine defects are covered and the corrosion resistance is further enhanced.

上記したコバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物は、特に限定はないが、入手が容易である前記金属元素の酸化物、水酸化物、フッ化物、錯フッ化物、塩化物、硝酸塩、オキシ硝酸塩、硫酸塩、オキシ硫酸塩、炭酸塩、オキシ炭酸塩、りん酸塩、オキシりん酸塩、蓚酸塩、オキシ蓚酸塩及び有機金属化合物等を用いることができる。また、前記金属元素を含む酸性水溶液のpHは2〜6であることが好ましく、りん酸、硝酸、硫酸、フッ化水素酸、塩酸、及び、有機酸等の酸や、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アルカリ金属塩、アンモニム塩、及びアミン類等のアルカリで調整することができる。   The compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium is not particularly limited, but is easily available as an oxide or hydroxide of the metal element. , Fluoride, complex fluoride, chloride, nitrate, oxynitrate, sulfate, oxysulfate, carbonate, oxycarbonate, phosphate, oxyphosphate, oxalate, oxysilicate, organometallic compounds, etc. Can be used. The pH of the acidic aqueous solution containing the metal element is preferably 2 to 6, and acids such as phosphoric acid, nitric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid, and organic acids, sodium hydroxide, hydroxide It can adjust with alkalis, such as potassium, lithium hydroxide, an alkali metal salt, an ammonium salt, and amines.

また、上記した水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物としては、例えばポリビニルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共重合体、エチレンと(メタ)アクリル酸や(メタ)アクリルレートなどのアクリル系単量体との共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、アミノ変性フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、タンニン及びタンニン酸とその塩、及びフィチン酸等を用いることができる。   Examples of at least one polymer compound selected from the water-soluble polymer compound and the water-dispersible polymer compound include polyvinyl alcohol, poly (meth) acrylic acid, and a copolymer of acrylic acid and methacrylic acid. , Copolymers of ethylene and acrylic monomers such as (meth) acrylic acid and (meth) acrylate, copolymers of ethylene and vinyl acetate, polyurethane, amino-modified phenolic resins, polyester resins, epoxy resins, Tannin, tannic acid and its salt, phytic acid and the like can be used.

本発明は、被処理金属材料表面にジルコニウム及び又はチタニウムから選ばれる金属元素の酸化物及び/又は水酸化物からなる表面処理皮膜層を設けることで、金属材料の耐食性を飛躍的に高めることを可能としたものである。ここで、前記金属元素の酸化物及び水酸化物は、酸やアルカリに侵され難く化学的に安定な性質を有している。実際の金属の腐食環境では、金属の溶出が起こるアノード部ではpHの低下が、また還元反応が起こるカソード部ではpHの上昇が起こる。従って、耐酸性及び耐アルカリ性に劣る表面処理皮膜は、腐食環境下で溶解しその効果が失われていく。本発明における表面処理皮膜層の主成分は、酸やアルカリに侵されにくいため、腐食環境下においても優れた効果が持続する。   The present invention dramatically increases the corrosion resistance of a metal material by providing a surface treatment film layer made of an oxide and / or hydroxide of a metal element selected from zirconium and / or titanium on the surface of the metal material to be treated. It is possible. Here, the oxide and hydroxide of the metal element have a chemically stable property that is hardly affected by acid or alkali. In an actual metal corrosive environment, a decrease in pH occurs at the anode portion where metal elution occurs, and a pH increase occurs at the cathode portion where the reduction reaction occurs. Therefore, the surface treatment film inferior in acid resistance and alkali resistance dissolves in a corrosive environment and loses its effect. Since the main component of the surface treatment film layer in the present invention is not easily affected by acid or alkali, excellent effects are maintained even in a corrosive environment.

また、前記の金属元素の酸化物及び水酸化物は、金属と酸素を介したネットワーク構造を作るため、非常に良好なバリヤー皮膜となる。金属材料の腐食は、使用される環境によっても異なるが、一般には水と酸素が存在する状況での酸素要求型腐食であり、その腐食スピードは塩化物等の成分の存在によって促進される。ここで、本発明の表面処理皮膜層は、水、酸素及び腐食促進成分に対するバリヤー効果を有するため、優れた耐食性を発揮できる。   In addition, the metal element oxides and hydroxides form a network structure through the metal and oxygen, so that a very good barrier film is obtained. Although the corrosion of a metal material differs depending on the environment in which it is used, it is generally an oxygen demand type corrosion in the presence of water and oxygen, and the corrosion speed is accelerated by the presence of components such as chloride. Here, since the surface treatment film layer of the present invention has a barrier effect against water, oxygen and corrosion promoting components, it can exhibit excellent corrosion resistance.

ここで、前記バリヤー効果を利用して、冷間圧延鋼板、熱間圧延鋼板、鋳鉄及び焼結材等の鉄系材料の耐食性を高めるには、前記金属元素換算で30mg/m2以上の付着量が必要であり、好ましくは40mg/m2以上、より好ましくは50mg/m2以上の付着量である。また、亜鉛又は亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等の亜鉛系材料の耐食性を高めるには、前記金属元素換算で20mg/m2以上の付着量が必要であり、好ましくは30mg/m2以上の付着量である。更に、アルミニウム鋳物及びアルミニウム合金板等のアルミニウム系材料の耐食性を高めるには、前記金属元素換算で10mg/m2以上の付着量が必要であり、好ましくは20mg/m2以上の付着量である。また、マグネシウム合金板及びマグネシウム鋳物等のマグネシウム系材料の耐食性を高めるには、前記金属元素換算で10mg/m2以上の付着量が必要であり、好ましくは20mg/m2以上の付着量である。付着量の上限に関しては特に制限はないが、付着量が1g/m2を越えると、表面処理皮膜層にクラックが発生し易くなり、均一な皮膜を得る作業が困難となる。従って、鉄系材料、亜鉛系材料、及びアルミニウム系材料ともに、付着量の上限は、1g/m2より好ましくは800mg/m2である。 Here, in order to improve the corrosion resistance of iron-based materials such as cold rolled steel sheet, hot rolled steel sheet, cast iron and sintered material using the barrier effect, adhesion of 30 mg / m 2 or more in terms of the metal element The amount is necessary, and the amount is preferably 40 mg / m 2 or more, more preferably 50 mg / m 2 or more. Moreover, in order to improve the corrosion resistance of zinc-based materials such as zinc or galvanized steel sheets and alloyed hot-dip galvanized steel sheets, an amount of adhesion of 20 mg / m 2 or more in terms of the metal element is required, preferably 30 mg / m 2. It is the above adhesion amount. Furthermore, in order to improve the corrosion resistance of aluminum-based materials such as aluminum castings and aluminum alloy plates, an amount of deposit of 10 mg / m 2 or more is required in terms of the metal element, and preferably an amount of deposit of 20 mg / m 2 or more. . Further, in order to enhance the corrosion resistance of magnesium-based materials such as magnesium alloy plates and magnesium castings, an amount of adhesion of 10 mg / m 2 or more is required in terms of the metal element, and preferably an amount of adhesion of 20 mg / m 2 or more. . Although there is no restriction | limiting in particular about the upper limit of the adhesion amount, If the adhesion amount exceeds 1 g / m < 2 >, it will become easy to generate | occur | produce a crack in a surface treatment film layer, and the operation | work which obtains a uniform film | membrane will become difficult. Therefore, iron-based material, zinc-based material, and aluminum-based materials in both, the upper limit of the coating weight, preferably from 1 g / m 2 is 800 mg / m 2.

以下に実施例を比較例とともに挙げ、本発明の表面処理用処理液及び表面処理方法の効果を具体的に説明する。なお、実施例で使用した被処理素材、脱脂剤及び塗料は市販されている材料の中から任意に選定したものであり、本発明の表面処理用処理液及び表面処理方法の実際の用途を限定するものではない。   Examples are given below together with comparative examples to specifically describe the effects of the surface treatment liquid and the surface treatment method of the present invention. In addition, the to-be-processed material used in the Example, a degreasing agent, and a coating material are arbitrarily selected from commercially available materials, and limit the actual use of the surface treatment liquid and the surface treatment method of the present invention. Not what you want.

〔供試板〕
実施例と比較例の供試板に、冷延鋼板、溶融亜鉛メッキ鋼板、アルミニウム合金板及びマグネシウム合金板を用いた。この供試板の略号と内訳を以下に示す。
なお、表面処理後の外観の評価にはSPC、GA及びAlの3種類の金属材料をスポット溶接で接合した状態の供試板を用いた。表面処理皮膜層の付着量の評価にはSPC、GA、Al、Mgのそれぞれ個々の供試板と、SPC、GA及びAlの3種類の金属材料をスポット溶接で接合した状態の供試板とを用いた。塗装性能の評価には、SPC、GA及びAlの3種類の金属材料をスポット溶接で接合した状態の供試板を用い、表面処理、塗装、塗装性能評価までの一連の試験を実施した。図1は、SPC、GA及びAlの3種類の金属材料をスポット溶接した供試板の平面図、図2はその正面図である。1はスポット溶接部を示す。
・SPC(冷延鋼板:JIS−G−3141)
・GA(両面合金化溶融亜鉛メッキ鋼板:メッキ目付量45g/m2
・Al(アルミニウム合金板:6000系アルミニウム合金)
・Mg(マグネシウム合金板:JIS−H−4201)
[Test plate]
Cold rolled steel plates, hot dip galvanized steel plates, aluminum alloy plates and magnesium alloy plates were used for the test plates of the examples and comparative examples. The abbreviations and breakdown of this test plate are shown below.
For evaluation of the appearance after the surface treatment, a test plate in which three kinds of metal materials of SPC, GA and Al were joined by spot welding was used. For the evaluation of the adhesion amount of the surface treatment film layer, each test plate of SPC, GA, Al, and Mg, and a test plate in which three kinds of metal materials of SPC, GA, and Al are joined by spot welding, Was used. For the evaluation of coating performance, a series of tests from surface treatment, coating, and coating performance evaluation were carried out using test plates in which three kinds of metal materials of SPC, GA and Al were joined by spot welding. FIG. 1 is a plan view of a test plate spot welded with three kinds of metal materials of SPC, GA, and Al, and FIG. 2 is a front view thereof. Reference numeral 1 denotes a spot weld.
・ SPC (Cold rolled steel sheet: JIS-G-3141)
GA (double-side alloyed hot-dip galvanized steel sheet: plating weight 45 g / m 2 )
・ Al (aluminum alloy plate: 6000 series aluminum alloy)
・ Mg (magnesium alloy plate: JIS-H-4201)

〔処理工程〕
実施例、比較例の処理工程は次のとおりである。
実施例1〜4、参考例7及び比較例1〜4:アルカリ脱脂→水洗→皮膜化成処理→水洗→純水洗→乾燥
参考例5:アルカリ脱脂→水洗→電解化成処理→水洗→純水洗→乾燥
実施例6:皮膜化成処理(脱脂化成兼用)→水洗→純水洗→乾燥
実施例8:アルカリ脱脂→水洗→皮膜化成処理→水洗→後処理→純水洗→乾燥
実施例9:皮膜化成処理(脱脂化成兼用)→水洗→後処理→純水洗→乾燥
比較例5:アルカリ脱脂→水洗→表面調整→りん酸亜鉛処理→水洗→純水洗→乾燥
上記において、アルカリ脱脂は、実施例、比較例ともにファインクリーナーL4460(登録商標:日本パーカライジング(株)製)を2%に水道水で希釈し、40℃、120秒間、被処理板にスプレーして使用した。皮膜処理後の水洗、及び純水洗は、実施例、比較例ともに室温で30秒間、被処理板にスプレーした。
[Processing process]
The processing steps of the examples and comparative examples are as follows.
Examples 1-4, Reference Example 7 and Comparative Examples 1-4: Alkaline degreasing → Washing → Film conversion treatment → Washing → Pure water washing → Drying Reference example 5: Alkaline degreasing → Water washing → Electrochemical conversion treatment → Washing → Pure water washing → Drying Example 6: Film chemical conversion treatment (degreasing chemical combination) → water washing → pure water washing → drying Example 8: alkali degreasing → water washing → film chemical conversion treatment → water washing → post treatment → pure water washing → drying Example 9: film chemical conversion treatment (degreasing) Chemical conversion) → Washing → Post-treatment → Pure water washing → Drying Comparative Example 5: Alkaline degreasing → Washing → Surface preparation → Zinc phosphate treatment → Washing → Pure water washing → Drying Cleaner L4460 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 2% with tap water and sprayed onto a plate to be treated at 40 ° C. for 120 seconds. The washing with water and the washing with pure water after the film treatment were sprayed on the plate to be treated for 30 seconds at room temperature in both the examples and the comparative examples.

実施例1
オキシ硝酸ジルコニウム試薬と硝酸を用いて、ジルコニウム濃度が200ppmである水溶液を調製した。この水溶液を45℃に加温した後、水酸化ナトリウム試薬とフッ化水素酸を用いて、pHを3.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を1ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は50ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に120秒間浸漬して表面処理を行った。
Example 1
An aqueous solution having a zirconium concentration of 200 ppm was prepared using a zirconium oxynitrate reagent and nitric acid. After heating this aqueous solution to 45 ° C, the pH is adjusted to 3.0 using a sodium hydroxide reagent and hydrofluoric acid, and a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment solution was prepared by adjusting the free fluorine ion concentration measured at 1 to 1 ppm. The total fluorine concentration in the surface treatment solution after adjusting the free fluorine ion concentration was 50 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 120 seconds for surface treatment.

実施例2
オキシ硝酸ジルコニウム試薬と硝酸マグネシウム試薬と硝酸ストロンチウム試薬を用いて、ジルコニウム濃度が100ppm、マグネシウム濃度が5000ppm、ストロンチウム濃度が2000ppm、硝酸根が28470ppmである水溶液を調製した。この水溶液を50℃に加温した後、アンモニア水試薬とフッ化水素酸を用いてpHを4.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を80ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は2000ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に60秒間浸漬して表面処理を行った。
Example 2
Using a zirconium oxynitrate reagent, a magnesium nitrate reagent, and a strontium nitrate reagent, an aqueous solution having a zirconium concentration of 100 ppm, a magnesium concentration of 5000 ppm, a strontium concentration of 2000 ppm, and a nitrate radical of 28470 ppm was prepared. After heating this aqueous solution to 50 ° C, the pH is adjusted to 4.0 using an aqueous ammonia reagent and hydrofluoric acid, and measurement is performed with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.). The free fluorine ion concentration to be adjusted to 80 ppm was used as a surface treatment solution. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 2000 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 60 seconds to perform surface treatment.

実施例3
ヘキサフルオロジルコン酸(IV)水溶液と硫酸チタン(IV)水溶液と硫酸カルシウム試薬と硝酸を用いて、ジルコニウム濃度が1000ppm、チタニウム濃度が2000ppm、カルシウム濃度が5ppm、硝酸根が1000ppmの水溶液を調製した。この水溶液を40℃に加温した後、水酸化カリウム試薬とフッ化水素酸を用いて、pHを5.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を25ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は2250ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に90秒間浸漬して表面処理を行った。
Example 3
Using an aqueous hexafluorozirconate (IV) solution, an aqueous titanium (IV) sulfate solution, a calcium sulfate reagent, and nitric acid, an aqueous solution having a zirconium concentration of 1000 ppm, a titanium concentration of 2000 ppm, a calcium concentration of 5 ppm, and a nitrate radical of 1000 ppm was prepared. After heating this aqueous solution to 40 ° C., the pH is adjusted to 5.0 using a potassium hydroxide reagent and hydrofluoric acid, and a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment solution was prepared by adjusting the free fluorine ion concentration measured in step 1 to 25 ppm. The total fluorine concentration in the surface treatment solution after adjusting the free fluorine ion concentration was 2250 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 90 seconds for surface treatment.

実施例4
ヘキサフルオロチタン酸(IV)水溶液と硝酸ストロンチウム試薬と亜硝酸ナトリウム試薬を用いて、チタニウム濃度が5000ppm、ストロンチウム濃度が5000ppm、硝酸根が7080ppm、亜硝酸根が40ppmである水溶液を調製した。この水溶液を35℃に加温した後、トリエタノールアミン試薬とフッ化水素酸を用いて、pHを4.0に調整し、またフッ素イオンメーター(IM−55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を10ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は11900ppmであった。
脱脂後に水洗を施した供試板に、上記の表面処理用処理液を120秒間スプレーで噴霧して表面処理を行った。
Example 4
Using an aqueous hexafluorotitanate (IV) solution, a strontium nitrate reagent and a sodium nitrite reagent, an aqueous solution having a titanium concentration of 5000 ppm, a strontium concentration of 5000 ppm, a nitrate radical of 7080 ppm, and a nitrite radical of 40 ppm was prepared. After heating this aqueous solution to 35 ° C., the pH is adjusted to 4.0 using a triethanolamine reagent and hydrofluoric acid, and a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment solution was prepared by adjusting the free fluorine ion concentration measured in step 1 to 10 ppm. The total fluorine concentration in the surface treatment solution after adjusting the free fluorine ion concentration was 11900 ppm.
The surface treatment was carried out by spraying the above-mentioned surface treatment solution on a test plate that had been washed with water after degreasing for 120 seconds.

参考例5
オキシ硝酸ジルコニウム試薬とヘキサフルオロチタン酸(IV)水溶液と硝酸マグネシウム試薬と硝酸と塩素酸ナトリウム試薬を用いて、ジルコニウム濃度が5ppm、チタニウム濃度が5ppm、マグネシウム濃度が100ppm、硝酸根が30520ppm、塩素酸根が100ppmである水溶液を調製した。この水溶液を30℃に加温した後、アンモニア水試薬とフッ化水素酸を用いて、pHを6.0に調整し、フッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を0.5ppmに調整した表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は12ppmであった。
脱脂後に水洗を施した供試板を陰極とし、陽極にカーボン電極を用いて、前記表面処理用処理液中で5A/dm2の電解条件で5秒間電解して表面処理を行った。
Reference Example 5
Using zirconium oxynitrate reagent, hexafluorotitanate (IV) aqueous solution, magnesium nitrate reagent, nitric acid and sodium chlorate reagent, zirconium concentration is 5 ppm, titanium concentration is 5 ppm, magnesium concentration is 100 ppm, nitrate radical is 30520 ppm, chlorate radical An aqueous solution with 100 ppm was prepared. After heating this aqueous solution to 30 ° C, the pH is adjusted to 6.0 using ammonia water reagent and hydrofluoric acid, and measured with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.). The surface treatment solution was adjusted to a free fluorine ion concentration of 0.5 ppm. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 12 ppm.
Using a test plate that had been degreased and washed with water as a cathode, and using a carbon electrode as the anode, surface treatment was performed by electrolysis for 5 seconds in the above-described surface treatment solution under an electrolytic condition of 5 A / dm 2 .

実施例6
オキシ硝酸ジルコニウム試薬と酸化マグネシウム試薬と硝酸と過酸化水素水試薬を用いて、ジルコニウム濃度が150ppm、マグネシウム濃度が10ppm、硝酸根が5200ppm、過酸化水素が10ppmである水溶液を調製した。
この水溶液を50℃に加温した後、アンモニア水試薬とフッ化水素酸を用いて、pHを5.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を50ppmに調整し、更にノニオン系界面活性剤であるポリオキシエチレンノニルフェニルエーテル(エチレンオキサイド付加モル数:12モル)を2g/L添加して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は170ppmであった。
脱脂処理を行わずに塗油されたままの供試板に、上記の表面処理用処理液を90秒間スプレーで噴霧して脱脂と同時に表面処理を行った。
Example 6
Using a zirconium oxynitrate reagent, a magnesium oxide reagent, nitric acid, and a hydrogen peroxide solution, an aqueous solution having a zirconium concentration of 150 ppm, a magnesium concentration of 10 ppm, a nitrate radical of 5200 ppm, and hydrogen peroxide of 10 ppm was prepared.
After heating this aqueous solution to 50 ° C., the pH is adjusted to 5.0 using an aqueous ammonia reagent and hydrofluoric acid, and with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.). The concentration of free fluorine ions to be measured was adjusted to 50 ppm, and 2 g / L of polyoxyethylene nonyl phenyl ether (number of moles of ethylene oxide added: 12 mol), which is a nonionic surfactant, was added to the surface treatment treatment liquid. did. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 170 ppm.
The surface treatment was performed simultaneously with the degreasing by spraying the above-mentioned surface treatment treatment liquid on the test plate as it was without being degreased and sprayed for 90 seconds.

参考例7
硫酸チタン(IV)水溶液と硝酸カルシウム試薬と硝酸マグネシウム試薬と過マンガン酸カリウム試薬とを用いて、チタニウム濃度が100ppm、カルシム濃度が50ppm、マグネシウム濃度が5000ppm、硝酸根が25660ppm、過マンガン酸が10ppmである水溶液を調製した。更に、この水溶液に水溶性アクリル系高分子化合物(ジュリマーAC-10L:日本純薬株式会社製)を固形分濃度が1%になるように添加し50℃に加温した後、水酸化ナトリウム試薬とフッ化水素酸でpHを3.0に調整し、フッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を95ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は2000ppmであった。
脱脂処理後に水洗を施した供試板を、上記の表面処理用処理液に60秒間浸漬して表面処理を行った。
Reference Example 7
Using titanium (IV) sulfate aqueous solution, calcium nitrate reagent, magnesium nitrate reagent and potassium permanganate reagent, titanium concentration is 100 ppm, calcium concentration is 50 ppm, magnesium concentration is 5000 ppm, nitrate radical is 25660 ppm, and permanganate is 10 ppm. An aqueous solution was prepared. Further, a water-soluble acrylic polymer compound (Jurimer AC-10L: manufactured by Nippon Pure Chemical Co., Ltd.) was added to this aqueous solution so that the solid content concentration would be 1% and heated to 50 ° C., and then a sodium hydroxide reagent. PH adjusted to 3.0 with HF and hydrofluoric acid, and free fluorine ion concentration measured with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) is adjusted to 95 ppm to treat the surface treatment It was. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 2000 ppm.
The test plate that had been washed with water after the degreasing treatment was immersed in the surface treatment solution for 60 seconds for surface treatment.

実施例8
水溶性アクリル系高分子化合物(ジュリマーAC-10L:日本純薬株式会社製)が固形分濃度で1%、りん酸試薬がりん酸根として2g/Lである水溶液を調調製した。この水溶液を40℃に加温した後、アンモニア水試薬で、pHを4.5に調整して後処理液を作製した。実施例5の表面処理で皮膜化成及び水洗を行った供試板を、上記の後処理液に30秒間浸漬して後処理を行った。
Example 8
An aqueous solution in which a water-soluble acrylic polymer compound (Julimer AC-10L: manufactured by Nippon Pure Chemical Co., Ltd.) was 1% in terms of solid content and a phosphate reagent was 2 g / L as a phosphate group was prepared. This aqueous solution was heated to 40 ° C., and then adjusted to pH 4.5 with an aqueous ammonia reagent to prepare a post-treatment liquid. The test plate that had been subjected to film formation and water washing in the surface treatment of Example 5 was immersed in the post-treatment liquid for 30 seconds to perform post-treatment.

実施例9
ヘキサフルオロジルコン酸(IV)水溶液と硝酸コバルト試薬を用いて、ジルコニウム濃度が50ppm、コバルト濃度が50ppmである水溶液を調製し、更に前記水溶液を40℃に加温した後、アンモニア水試薬で、pHを5.0に調整して後処理液を作製した。実施例6の表面処理で皮膜化成及び水洗を行った供試板を、上記の後処理液に30秒間浸漬して後処理を行った。
Example 9
Using an aqueous hexafluorozirconic acid (IV) solution and a cobalt nitrate reagent, an aqueous solution having a zirconium concentration of 50 ppm and a cobalt concentration of 50 ppm was prepared, and the aqueous solution was further heated to 40 ° C. Was adjusted to 5.0 to prepare a post-treatment liquid. The test plate that had been subjected to film formation and water washing in the surface treatment of Example 6 was immersed in the above-described post-treatment liquid for 30 seconds for post-treatment.

比較例1
オキシ硝酸ジルコニウム試薬と硝酸マグネシウム試薬と硝酸を用いて、ジルコニウム濃度が500ppm、マグネシウム濃度が1000ppm、硝酸根が6780ppmである水溶液を調製した。この水溶液を45℃に加温した後、水酸化ナトリウム試薬でpHを4.0に調整して表面処理用処理液とした。前記表面処理用処理液中の遊離フッ素イオン濃度を市販のフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定した結果、0ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に120秒間浸漬して表面処理を行った。
Comparative Example 1
Using a zirconium oxynitrate reagent, a magnesium nitrate reagent, and nitric acid, an aqueous solution having a zirconium concentration of 500 ppm, a magnesium concentration of 1000 ppm, and a nitrate radical of 6780 ppm was prepared. This aqueous solution was heated to 45 ° C., and then adjusted to pH 4.0 with a sodium hydroxide reagent to obtain a surface treatment solution. The free fluorine ion concentration in the surface treatment solution was measured with a commercially available fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) and found to be 0 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 120 seconds for surface treatment.

比較例2
硫酸チタン(IV)水溶液を用いて、チタニウム濃度が2000ppmである水溶液を調整した。前記水溶液を50℃に加温した後、アンモニア水試薬とフッ化水素酸でpHを3.5に調整し、フッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を400ppmに調整して表面処理用処理液とした。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に90秒間浸漬して表面処理を行った。
Comparative Example 2
An aqueous solution having a titanium concentration of 2000 ppm was prepared using an aqueous solution of titanium (IV) sulfate. After the aqueous solution is heated to 50 ° C., the pH is adjusted to 3.5 with an aqueous ammonia reagent and hydrofluoric acid, and measured by a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment liquid was prepared by adjusting the fluorine ion concentration to 400 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 90 seconds for surface treatment.

比較例3
市販のクロミッククロメート処理薬剤であるアルクロム713(登録商標:日本パーカライジング(株)製)を3.6%に水道水で希釈し、更に全酸度、遊離酸度をカタログ値の中心に調整した。
脱脂後に水洗を施した供試板を、35℃に加温した前記クロメート処理液に60秒間浸漬してクロメート処理を行った。
Comparative Example 3
Alchrome 713 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.), which is a commercially available chromic chromate treatment agent, was diluted to 3.6% with tap water, and the total acidity and free acidity were adjusted to the center of the catalog value.
The test plate that had been degreased and washed with water was immersed in the chromate treatment solution heated to 35 ° C. for 60 seconds for chromate treatment.

比較例4
市販のノンクロメート処理薬剤であるパルコート3756(登録商標:日本パーカライジング(株)製)を2%に水道水で希釈し、更に全酸度、遊離酸度をカタログ値の中心に調整した。脱脂後に水洗を施した供試板を、40℃に加温した上記のノンクロメート処理液に60秒間浸漬してノンクロメート処理を行った。
Comparative Example 4
Palcoat 3756 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.), a commercially available non-chromate treatment agent, was diluted to 2% with tap water, and the total acidity and free acidity were adjusted to the center of the catalog value. The test plate that had been degreased and washed with water was immersed in the non-chromate treatment solution heated to 40 ° C. for 60 seconds to perform non-chromate treatment.

比較例5
脱脂後に水洗を施した供試板に、表面調整処理剤であるプレパレンZN(登録商標:日本パーカライジング(株)製)を0.1%に水道水で希釈した液を室温で30秒間スプレーで噴霧した後に、パルボンドL3020(登録商標:日本パーカライジング(株)製)を4.8%に水道水で希釈し、更に、フッ化水素ナトリウム試薬をフッ素として200ppm添加した後に、全酸度、遊離酸度をカタログ値の中心に調整した42℃のりん酸亜鉛化成処理液に浸漬してりん酸亜鉛皮膜を析出させた。
Comparative Example 5
A test plate that has been degreased and washed with water is sprayed with a solution prepared by diluting Preparen ZN (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) 0.1% with tap water at room temperature for 30 seconds. After that, Palbond L3020 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 4.8% with tap water, and after adding 200 ppm of sodium hydrogen fluoride reagent as fluorine, the total acidity and free acidity were cataloged. A zinc phosphate coating was deposited by dipping in a 42 ° C. zinc phosphate conversion solution adjusted to the center of the value.

〔表面処理皮膜の評価〕
実施例及び比較例の表面処理後の供試板の外観を目視で評価した。その結果を表1に示す。また、表面処理皮膜層の付着量を蛍光X線分析装置(システム3270;理学電気工業(株)製)で測定した。その結果を表2及び表3に示す。なお、表面処理皮膜層の付着量は、各々の金属材料を接合せずに個々に処理した場合(接合なし)と、スポット溶接で接合して処理した場合(接合あり)について測定を行った。
[Evaluation of surface treatment film]
The appearance of the test plates after the surface treatment of the examples and comparative examples was visually evaluated. The results are shown in Table 1. Moreover, the adhesion amount of the surface treatment film layer was measured with a fluorescent X-ray analyzer (system 3270; manufactured by Rigaku Denki Kogyo Co., Ltd.). The results are shown in Tables 2 and 3. In addition, the adhesion amount of the surface treatment film layer was measured when each metal material was treated individually without joining (no joining) and when treated by spot welding (joined).

Figure 2008202149
Figure 2008202149

表1は、実施例及び比較例で得られた表面処理皮膜の外観評価結果を示す。実施例、参考例は、全ての供試板の全ての金属材料種に対して均一な皮膜を得ることができた。更に、実施例、参考例で使用した供試板のスポット溶接部にも表面処理皮膜が析出している様子が観察された。これに対して、比較例では全ての供試板に対して均一な皮膜を析出させることはできなかった。特に、比較例3,4、及び5ではスポット溶接部には全く皮膜が析出していなかった。また、比較例5は、冷延鋼板と亜鉛めっき鋼板とアルミニウム合金を同時に処理する際に用いられるりん酸亜鉛処理液であるが、今回の試験の様に、各々のテストピースを溶接によって接合した条件では、冷延鋼板上にスケと呼ばれる金属材料素地が露出した部分が現れていた。   Table 1 shows the appearance evaluation results of the surface treatment films obtained in Examples and Comparative Examples. In Examples and Reference Examples, uniform films could be obtained for all metal material types of all test plates. Furthermore, it was observed that the surface treatment film was deposited on the spot welds of the test plates used in Examples and Reference Examples. On the other hand, in the comparative example, a uniform film could not be deposited on all the test plates. In particular, in Comparative Examples 3, 4, and 5, no film was deposited on the spot welds. Moreover, although the comparative example 5 is a zinc phosphate processing liquid used when processing a cold-rolled steel plate, a galvanized steel plate, and an aluminum alloy simultaneously, each test piece was joined by welding like this test. Under the conditions, a portion where a metal material base called Suke was exposed appeared on the cold-rolled steel sheet.

Figure 2008202149
Figure 2008202149

Figure 2008202149
Figure 2008202149

表2及び表3は、実施例、参考例及び比較例で得られた表面処理皮膜の付着量の測定結果を示す。実施例、参考例では、全ての供試板の全ての金属材料種に対して目標とする付着量を得ることができた。また、実施例、参考例における表面処理皮膜層の付着量は、供試板の接合の有無に依らず一定であった。対して、比較例では皮膜外観評価結果からも明らかな通り、全ての供試板に対して均一な皮膜を析出させることはできなかった。   Tables 2 and 3 show the measurement results of the adhesion amount of the surface treatment film obtained in Examples, Reference Examples and Comparative Examples. In Examples and Reference Examples, target adhesion amounts could be obtained for all metal material types of all test plates. Moreover, the adhesion amount of the surface treatment film layer in Examples and Reference Examples was constant regardless of the presence or absence of bonding of the test plates. On the other hand, in the comparative example, a uniform film could not be deposited on all the test plates, as is apparent from the film appearance evaluation results.

〔塗装性能の評価〕
(塗装性能評価板の作製)
実施例、参考例及び比較例の表面処理板の塗装性能を評価するため、
カチオン電着塗装→純水洗→焼き付け→中塗り→焼き付け→上塗り→焼き付けの工程で塗装を行った。カチオン電着塗装、中塗り塗装、上塗り塗装は次のとおりである。
カチオン電着塗装:エポキシ系カチオン電着塗料(エレクロン9400:関西ペイント(株)製)、電圧200V、膜厚20μm、175℃20分焼き付け
中塗り塗装:アミノアルキッド系塗料(アミラックTP−37グレー:関西ペイント(株)製)、スプレー塗装、膜厚35μm、140℃20分焼き付け
上塗り塗装:アミノアルキッド系塗料(アミラックTM−13白:関西ペイント(株)製)、スプレー塗装、膜厚35μm、140℃20分焼き付け
[Evaluation of coating performance]
(Preparation of paint performance evaluation board)
In order to evaluate the coating performance of the surface treated plates of Examples, Reference Examples and Comparative Examples,
The coating was performed in the process of cationic electrodeposition coating → pure water washing → baking → intermediate coating → baking → top coating → baking. Cationic electrodeposition coating, intermediate coating, and top coating are as follows.
Cationic electrodeposition coating: Epoxy-based cationic electrodeposition coating (Electron 9400: manufactured by Kansai Paint Co., Ltd.), voltage 200 V, film thickness 20 μm, 175 ° C., 20 minutes baking intermediate coating: aminoalkyd coating (Amirac TP-37 Gray: Kansai Paint Co., Ltd.), spray coating, film thickness 35 μm, 140 ° C. for 20 minutes baking top coating: aminoalkyd paint (Amirac TM-13 white: manufactured by Kansai Paint Co., Ltd.), spray coating, film thickness 35 μm, 140 Baking for 20 minutes

(塗装性能評価)
実施例及び比較例の塗装性能の評価を行った。その結果を表4及び表5に示す。評価項目と略号を以下に示す。なお、電着塗装完了時点での塗膜を電着塗膜、上塗り塗装完了時点での塗膜を3coats塗膜と称することとする。
<1> SST:塩水噴霧試験(電着塗膜)
<2> SDT:塩温水試験(電着塗膜)
<3> 1st ADH:1次密着性(3coats塗膜)
<4> 2nd ADH:耐水2次密着性(3coats塗膜)
(Painting performance evaluation)
The coating performance of Examples and Comparative Examples was evaluated. The results are shown in Tables 4 and 5. Evaluation items and abbreviations are shown below. The coating film at the time of completion of electrodeposition coating is referred to as an electrodeposition coating film, and the coating film at the time of completion of top coating is referred to as a 3 coats coating film.
<1> SST: Salt spray test (electrodeposition coating)
<2> SDT: salt warm water test (electrodeposition coating)
<3> 1st ADH: Primary adhesion (3coats coating film)
<4> 2nd ADH: Water resistant secondary adhesion (3coats coating)

SST:鋭利なカッターでクロスカットを入れた電着塗装板に5%塩水を840時間噴霧(JIS−Z−2371に準ずる)した。噴霧終了後にクロスカット部からの両側最大膨れ幅を測定した。
SDT:電着塗装板を、50℃に昇温した5wt%のNaCl水溶液に840時間浸漬した。浸漬終了後に水道水で水洗→常温乾燥したテストピースの全面をガムテープで剥離し、各々の金属材料上の塗膜の剥離面積を目視で判定した。
SST: 5% salt water was sprayed for 840 hours (according to JIS-Z-2371) onto an electrodeposition coated plate with a crosscut cut with a sharp cutter. After spraying, the maximum swollen width on both sides from the crosscut part was measured.
SDT: The electrodeposition coated plate was immersed in a 5 wt% NaCl aqueous solution heated to 50 ° C. for 840 hours. After the immersion, the entire surface of the test piece washed with tap water and dried at room temperature was peeled off with a gum tape, and the peeled area of the coating film on each metal material was visually determined.

1st ADH:3coats塗膜に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部のセロファンテープ剥離を行い碁盤目の剥離個数を数えた。
2nd ADH:3coats塗装板を40℃の脱イオン水に240時間浸漬した。浸漬後に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部のセロファンテープ剥離を行い碁盤目の剥離個数を数えた。
1st ADH: 100 coats of 2 mm intervals were cut with a sharp cutter on the 3 coats coating. The cellophane tape was peeled off from the grid area, and the number of peeled grids was counted.
The 2nd ADH: 3coats coating plate was immersed in deionized water at 40 ° C. for 240 hours. After dipping, 100 grids at intervals of 2 mm were cut with a sharp cutter. The cellophane tape was peeled off from the grid area, and the number of peeled grids was counted.

Figure 2008202149
Figure 2008202149

表4は、電着塗膜の塗装性能評価結果を示す。実施例、参考例は、全ての供試板に対して良好な耐食性を示した。対して比較例1では、表面処理用処理液中に遊離フッ素イオンを全く含まないため、表面処理皮膜が十分に析出せず、耐食性が劣っていた。また、比較例2では、表面処理用処理液中の遊離フッ素イオン濃度が高いため、特にSPC上の皮膜付着量が小さく耐食性に劣る結果であった。参考例5及び実施例6は、比較例よりも優れた塗装性能を示すものの、他の実施例と比較すると若干、電着塗装後の耐食性が劣る結果であった。しかしながら、実施例8及び9に示されるとおり、後処理を施すことによって耐食性が更に向上した。   Table 4 shows the coating performance evaluation results of the electrodeposition coating film. The examples and reference examples showed good corrosion resistance for all the test plates. On the other hand, in Comparative Example 1, since the surface treatment liquid did not contain any free fluorine ions, the surface treatment film did not sufficiently precipitate and the corrosion resistance was poor. Moreover, in the comparative example 2, since the free fluorine ion density | concentration in the processing liquid for surface treatment was high, it was a result in particular that the coating amount on SPC was small and it was inferior to corrosion resistance. Although Reference Example 5 and Example 6 showed coating performance superior to that of the comparative example, the results were slightly inferior in corrosion resistance after electrodeposition coating as compared with other examples. However, as shown in Examples 8 and 9, the corrosion resistance was further improved by the post-treatment.

比較例3はアルミ合金用のクロメート処理剤、比較例4はアルミ合金用のノンクロメート処理剤であるため、Alの耐食性は優れていたが、他の供試板の耐食性は明らかに実施例に劣っていた。比較例5は、現在、カチオン電着塗装下地として一般に用いられているりん酸亜鉛処理である。しかしながら、比較例5においても、今回の試験の様に、各々のテストピースを溶接によって接合した条件では、実施例と比較して劣る結果であった。   Since Comparative Example 3 is a chromate treatment agent for aluminum alloys and Comparative Example 4 is a non-chromate treatment agent for aluminum alloys, the corrosion resistance of Al was excellent, but the corrosion resistance of other test plates is clearly in the examples. It was inferior. Comparative Example 5 is a zinc phosphate treatment generally used as a cationic electrodeposition coating base. However, in Comparative Example 5 as well, the test pieces were inferior to the Examples in the conditions in which the test pieces were joined by welding as in this test.

Figure 2008202149
Figure 2008202149

表5は、3coats板の密着性評価結果を示す。実施例、参考例は、全ての供試板に対して良好な密着性を示した。1st ADHに関しては、比較例においても良好な結果であったが、2nd ADHでは、電着塗膜の耐食性と同様に全ての供試板に対して良好な密着性を示す水準はなかった。また、比較例5においては、表面処理後の処理浴中にはりん酸亜鉛処理時の副生成物であるスラッジが発生していた。しかしながら、実施例、参考例においては、何れの水準においてもスラッジの発生は認められなかった。   Table 5 shows the adhesion evaluation results of the 3coats plate. The Examples and Reference Examples showed good adhesion to all the test plates. As for 1st ADH, good results were obtained in the comparative examples. However, in 2nd ADH, there was no level showing good adhesion to all the test plates as well as the corrosion resistance of the electrodeposition coating film. In Comparative Example 5, sludge, which is a by-product during the zinc phosphate treatment, was generated in the treatment bath after the surface treatment. However, in Examples and Reference Examples, no sludge was observed at any level.

以上の結果から、本発明品である表面処理用処理液及び表面処理方法を用いることによって、処理浴及び処理条件を変えることなくSPC、GA及びAlを同時に処理し、密着性と耐食性に優れる表面処理皮膜を析出させることが可能であることが明らかである。更に、本発明を用いることによって、溶接部の上にも耐食性に優れる表面処理皮膜を析出させることが可能となった。また、本発明の表面処理方法は、被処理金属材料と表面処理用処理液を接触させるだけでよいため、袋構造部内部の様に、攪拌効果が期待できない部位にも表面処理皮膜を析出させ耐食性の向上を図ることが可能である。   From the above results, by using the treatment liquid for surface treatment and the surface treatment method according to the present invention, SPC, GA and Al are simultaneously treated without changing the treatment bath and treatment conditions, and the surface has excellent adhesion and corrosion resistance. It is clear that a treatment film can be deposited. Furthermore, by using the present invention, it becomes possible to deposit a surface treatment film having excellent corrosion resistance on the welded portion. In addition, since the surface treatment method of the present invention only needs to contact the metal material to be treated and the treatment liquid for surface treatment, the surface treatment film is deposited even on the portion where the stirring effect cannot be expected, such as inside the bag structure. It is possible to improve the corrosion resistance.

供試板の平面図Plan view of the test plate 供試板の正面図Front view of the test plate

符号の説明Explanation of symbols

1 スポット溶接部、SPC 冷延鋼板、GA 溶融亜鉛メッキ鋼板、Al アルミニウム合金板 1 Spot weld, SPC cold-rolled steel sheet, GA hot-dip galvanized steel sheet, Al aluminum alloy sheet

Claims (11)

鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理するための水系表面処理液であって、
(1)ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記金属元素として5〜5000ppm、
(2)遊離フッ素イオンを0.1〜100ppm、
(3)カルシウム化合物、マグネシウム化合物及びストロンチウム化合物からなる群から選ばれる1種以上の化合物を含み、前記化合物の濃度が、前記金属元素として、カルシウム化合物の場合は5〜50ppm、マグネシウム化合物又はストロンチウム化合物の場合は10〜5000ppmである
(4)硝酸根を1000〜50000ppm含む
(5)HBrO3、HNO2、H22、H2WO4及びH2MoO4並びにこれらの塩類の中から選ばれる少なくとも1種の酸素酸及び/又は酸素酸塩を含む
(6)pHが3〜6であることを特徴とする金属の表面処理用処理液。
A water-based surface treatment liquid for surface-treating metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials individually or in combination of two or more thereof,
(1) One or more compounds selected from a zirconium compound and a titanium compound are used as the metal element in an amount of 5 to 5000 ppm,
(2) 0.1-100 ppm of free fluorine ions,
(3) One or more compounds selected from the group consisting of a calcium compound, a magnesium compound and a strontium compound, and the concentration of the compound is 5 to 50 ppm in the case of a calcium compound as the metal element, a magnesium compound or a strontium compound (4) containing 1000 to 50000 ppm of nitrate radical (5) selected from HBrO 3 , HNO 2 , H 2 O 2 , H 2 WO 4 and H 2 MoO 4 and their salts (6) A metal surface treatment liquid characterized by having a pH of 3 to 6 and containing at least one oxygen acid and / or oxyacid salt.
更に水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む請求項1に記載の金属の表面処理用処理液。   The metal surface treatment solution according to claim 1, further comprising at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound. 更にノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤から選ばれる少なくとも1種の界面活性剤を含む請求項1または2に記載の金属の表面処理用処理液。   The metal surface treatment solution according to claim 1 or 2, further comprising at least one surfactant selected from nonionic surfactants, anionic surfactants, and cationic surfactants. 鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料のそれぞれ単独を或はその2種以上を同時に、請求項1〜3のいずれか1項に記載の表面処理用処理液と接触させることを特徴とする金属の表面処理方法。   The treatment for surface treatment according to any one of claims 1 to 3, wherein each of metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials is used alone or in combination of two or more thereof. A metal surface treatment method comprising contacting with a liquid. 金属材料を表面処理用処理液と接触させた後に、水洗し或いは水洗せずに、更にコバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液と接触させることを特徴とする請求項4に記載の金属の表面処理方法。   After contacting the metal material with the treatment liquid for surface treatment, the acid of the compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium, with or without washing with water The metal surface treatment method according to claim 4, wherein the metal surface treatment method comprises contacting with an aqueous solution. 金属材料を表面処理用処理液と接触させた後に、水洗し或いは水洗せずに、更に水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させることを特徴とする請求項4に記載の金属の表面処理方法。   A treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, with or without being washed with water after contacting the metal material with the treatment liquid for surface treatment; The metal surface treatment method according to claim 4, wherein contact is made. 鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれた、脱脂・清浄化処理してない金属材料のそれぞれ単独を或はその2種以上を同時に、請求項3に記載の表面処理用処理液と接触させることを特徴とする金属の表面処理方法。   The surface according to claim 3, wherein each of the metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials that has not been degreased and cleaned is used alone or in combination of two or more thereof. A metal surface treatment method comprising contacting with a treatment liquid for treatment. 鉄系金属材料表面に請求項4〜7のいずれかに記載の表面処理方法によって形成されたチタニウム及びジルコニウムから選ばれる金属元素の少なくとも1種を含む表面処理皮膜を有し、且つ該表面処理皮膜の付着量が前記金属元素換算で30mg/m2以上であることを特徴とする金属材料。 A surface treatment film comprising at least one metal element selected from titanium and zirconium formed by the surface treatment method according to claim 4 on the surface of an iron-based metal material, and the surface treatment film The metal material is characterized in that the amount of adhering is 30 mg / m 2 or more in terms of the metal element. 亜鉛系金属材料表面に請求項4〜7のいずれかに記載の表面処理方法によって形成されたチタニウム又はジルコニウムから選ばれる金属元素の少なくとも1種を含む表面処理皮膜を有し、且つ該表面処理皮膜の付着量が前記金属元素換算で20mg/m2以上であることを特徴とする金属材料。 A surface-treated film comprising at least one metal element selected from titanium or zirconium formed by the surface treatment method according to any one of claims 4 to 7 on the surface of a zinc-based metal material, and the surface-treated film The metal material is characterized in that the amount of adhering is 20 mg / m 2 or more in terms of the metal element. アルミ系金属材料表面に請求項4〜7のいずれかに記載の表面処理方法によって形成されたチタニウム又はジルコニウムから選ばれる金属元素の少なくとも1種を含む表面処理皮膜層を有し、且つ該表面処理皮膜の付着量が前記金属元素換算で10mg/m2以上であることを特徴とする金属材料。 A surface treatment film layer containing at least one metal element selected from titanium or zirconium formed by the surface treatment method according to any one of claims 4 to 7 on the surface of an aluminum-based metal material, and the surface treatment A metal material, wherein the amount of coating is 10 mg / m 2 or more in terms of the metal element. マグネシウム系金属材料表面に請求項4〜7のいずれかに記載の表面処理方法によって形成されたチタニウム又はジルコニウムから選ばれる金属元素の少なくとも1種を含む表面処理皮膜層を有し、且つ前記表面処理皮膜の付着量が前記金属元素換算で10mg/m2以上であることを特徴とする金属材料。 A surface treatment film layer containing at least one metal element selected from titanium or zirconium formed by the surface treatment method according to any one of claims 4 to 7 on the surface of the magnesium-based metal material, and the surface treatment A metal material, wherein the amount of coating is 10 mg / m 2 or more in terms of the metal element.
JP2008144555A 2008-06-02 2008-06-02 Metal surface treatment liquid and surface treatment method Expired - Lifetime JP5215043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144555A JP5215043B2 (en) 2008-06-02 2008-06-02 Metal surface treatment liquid and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144555A JP5215043B2 (en) 2008-06-02 2008-06-02 Metal surface treatment liquid and surface treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002362640A Division JP4205939B2 (en) 2002-12-13 2002-12-13 Metal surface treatment method

Publications (2)

Publication Number Publication Date
JP2008202149A true JP2008202149A (en) 2008-09-04
JP5215043B2 JP5215043B2 (en) 2013-06-19

Family

ID=39779937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144555A Expired - Lifetime JP5215043B2 (en) 2008-06-02 2008-06-02 Metal surface treatment liquid and surface treatment method

Country Status (1)

Country Link
JP (1) JP5215043B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515856A (en) * 2009-12-28 2013-05-09 日本パーカライジング株式会社 Metal pretreatment compositions containing zirconium, copper, zinc, and nitrates, and associated coatings on metal substrates
JP2013100599A (en) * 2011-10-14 2013-05-23 Nippon Paint Co Ltd Method for manufacturing automobile component
JP2014025092A (en) * 2012-07-25 2014-02-06 Kobe Steel Ltd Surface treated metal material, method of producing surface treated metal material, and joint structure
JP2014198911A (en) * 2010-10-18 2014-10-23 株式会社神戸製鋼所 Aluminum alloy sheet, joined body using the same, and automotive member
WO2014192082A1 (en) 2013-05-28 2014-12-04 日本パーカライジング株式会社 Supplement, surface-treated metal material, and production method therefor
JP2015028210A (en) * 2013-07-16 2015-02-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method of passivating belt-like original sheet
WO2017213221A1 (en) * 2016-06-08 2017-12-14 株式会社Uacj Aluminum alloy conductive member for transport device
WO2020080552A1 (en) 2018-10-19 2020-04-23 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2020080553A1 (en) 2018-10-19 2020-04-23 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824618B1 (en) * 1969-06-28 1973-07-23
JPH04276087A (en) * 1990-12-21 1992-10-01 Metallges Ag Method for after-cleaning of formed layer
JPH05195246A (en) * 1991-11-01 1993-08-03 Nippon Parkerizing Co Ltd Phosphate chemical coating composition and coating method using the same
JPH05195244A (en) * 1991-08-30 1993-08-03 Nippon Parkerizing Co Ltd Surface treatment of metal with chromium-free coating-type acid composition
JPH07310189A (en) * 1994-03-24 1995-11-28 Nippon Parkerizing Co Ltd Surface treating composition for aluminum containing metallic material and surface treatment
JPH08176841A (en) * 1994-12-22 1996-07-09 Nippon Parkerizing Co Ltd Surface treating composition for aluminum-containing metallic material excellent in sludge controlling property and treatment of surface
JPH08302477A (en) * 1994-12-06 1996-11-19 Nippon Parkerizing Co Ltd Zinc phosphate-base chemical conversion solution for metallic material and treatment
JPH0920984A (en) * 1995-06-30 1997-01-21 Nippon Parkerizing Co Ltd Surface-treating solution for aluminum-containing metallic material and surface treatment
JPH0931404A (en) * 1995-07-21 1997-02-04 Nippon Parkerizing Co Ltd Surface treating composition for aluminum-containing metal and treatment of surface
JPH09503823A (en) * 1993-10-15 1997-04-15 サークル−プロスコ・インコーポレーテッド Conversion coatings for metal surfaces
JPH1136082A (en) * 1997-05-22 1999-02-09 Nippon Parkerizing Co Ltd Surface treating solution for light metal or light alloy material
JP2000087253A (en) * 1998-07-16 2000-03-28 Nippon Parkerizing Co Ltd Degreasing and zinc phosphate chemical conversion liquid for steel material with deposition of oil
JP2000282256A (en) * 1999-03-29 2000-10-10 Nippon Paint Co Ltd Non-chromium rust preventive treating agent for highly corrosion resistant aluminum
JP2001234352A (en) * 2000-02-22 2001-08-31 Nippon Paint Co Ltd Method for producing fin material made of aluminum, and fin material made of aluminum produced by the method
WO2001066827A1 (en) * 2000-03-04 2001-09-13 Henkel Kommanditgesellschaft Auf Aktien Method for providing metal surfaces with protection against corrosion

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824618B1 (en) * 1969-06-28 1973-07-23
JPH04276087A (en) * 1990-12-21 1992-10-01 Metallges Ag Method for after-cleaning of formed layer
JPH05195244A (en) * 1991-08-30 1993-08-03 Nippon Parkerizing Co Ltd Surface treatment of metal with chromium-free coating-type acid composition
JPH05195246A (en) * 1991-11-01 1993-08-03 Nippon Parkerizing Co Ltd Phosphate chemical coating composition and coating method using the same
JPH09503823A (en) * 1993-10-15 1997-04-15 サークル−プロスコ・インコーポレーテッド Conversion coatings for metal surfaces
JPH07310189A (en) * 1994-03-24 1995-11-28 Nippon Parkerizing Co Ltd Surface treating composition for aluminum containing metallic material and surface treatment
JPH08302477A (en) * 1994-12-06 1996-11-19 Nippon Parkerizing Co Ltd Zinc phosphate-base chemical conversion solution for metallic material and treatment
JPH08176841A (en) * 1994-12-22 1996-07-09 Nippon Parkerizing Co Ltd Surface treating composition for aluminum-containing metallic material excellent in sludge controlling property and treatment of surface
JPH0920984A (en) * 1995-06-30 1997-01-21 Nippon Parkerizing Co Ltd Surface-treating solution for aluminum-containing metallic material and surface treatment
JPH0931404A (en) * 1995-07-21 1997-02-04 Nippon Parkerizing Co Ltd Surface treating composition for aluminum-containing metal and treatment of surface
JPH1136082A (en) * 1997-05-22 1999-02-09 Nippon Parkerizing Co Ltd Surface treating solution for light metal or light alloy material
JP2000087253A (en) * 1998-07-16 2000-03-28 Nippon Parkerizing Co Ltd Degreasing and zinc phosphate chemical conversion liquid for steel material with deposition of oil
JP2000282256A (en) * 1999-03-29 2000-10-10 Nippon Paint Co Ltd Non-chromium rust preventive treating agent for highly corrosion resistant aluminum
JP2001234352A (en) * 2000-02-22 2001-08-31 Nippon Paint Co Ltd Method for producing fin material made of aluminum, and fin material made of aluminum produced by the method
WO2001066827A1 (en) * 2000-03-04 2001-09-13 Henkel Kommanditgesellschaft Auf Aktien Method for providing metal surfaces with protection against corrosion
JP2003526013A (en) * 2000-03-04 2003-09-02 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Rust prevention method for metal surface

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515856A (en) * 2009-12-28 2013-05-09 日本パーカライジング株式会社 Metal pretreatment compositions containing zirconium, copper, zinc, and nitrates, and associated coatings on metal substrates
JP2014198911A (en) * 2010-10-18 2014-10-23 株式会社神戸製鋼所 Aluminum alloy sheet, joined body using the same, and automotive member
JP2013100599A (en) * 2011-10-14 2013-05-23 Nippon Paint Co Ltd Method for manufacturing automobile component
JP2014025092A (en) * 2012-07-25 2014-02-06 Kobe Steel Ltd Surface treated metal material, method of producing surface treated metal material, and joint structure
KR20160003134A (en) 2013-05-28 2016-01-08 니혼 파커라이징 가부시키가이샤 Supplement, surface-treated metal material, and production method therefor
WO2014192082A1 (en) 2013-05-28 2014-12-04 日本パーカライジング株式会社 Supplement, surface-treated metal material, and production method therefor
JP2015028210A (en) * 2013-07-16 2015-02-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Method of passivating belt-like original sheet
WO2017213221A1 (en) * 2016-06-08 2017-12-14 株式会社Uacj Aluminum alloy conductive member for transport device
JPWO2017213221A1 (en) * 2016-06-08 2019-04-04 株式会社Uacj Aluminum alloy conductive member for transportation equipment
JP7073257B2 (en) 2016-06-08 2022-05-23 株式会社Uacj Aluminum alloy conductive member for transportation equipment
WO2020080552A1 (en) 2018-10-19 2020-04-23 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2020080553A1 (en) 2018-10-19 2020-04-23 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
KR20210053957A (en) 2018-10-19 2021-05-12 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR20210056410A (en) 2018-10-19 2021-05-18 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
US11492679B2 (en) 2018-10-19 2022-11-08 Nippon Steel Corporation Hot-rolled steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP5215043B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP4205939B2 (en) Metal surface treatment method
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
JP4402991B2 (en) Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
JP4427332B2 (en) Treatment liquid for surface treatment of aluminum or magnesium metal and surface treatment method
EP1486585A1 (en) Method of treating metal surfaces
JP4510079B2 (en) Surface-treated metal material
JP4975378B2 (en) Metal surface treatment liquid, surface treatment method, surface treatment material
JP2011127141A (en) Metallic material whose surface is treated for electrodeposition coating and method for conversion coating
MX2007011230A (en) Surface-treated metallic material.
JP2007314888A (en) Multilayer coating film structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5215043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term