WO2014192082A1 - Supplement, surface-treated metal material, and production method therefor - Google Patents

Supplement, surface-treated metal material, and production method therefor Download PDF

Info

Publication number
WO2014192082A1
WO2014192082A1 PCT/JP2013/064801 JP2013064801W WO2014192082A1 WO 2014192082 A1 WO2014192082 A1 WO 2014192082A1 JP 2013064801 W JP2013064801 W JP 2013064801W WO 2014192082 A1 WO2014192082 A1 WO 2014192082A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
fluorine
metal material
ions
replenisher
Prior art date
Application number
PCT/JP2013/064801
Other languages
French (fr)
Japanese (ja)
Inventor
川井 智
慶幸 川出
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN201380076902.7A priority Critical patent/CN105378144B/en
Priority to PCT/JP2013/064801 priority patent/WO2014192082A1/en
Priority to EP13886009.3A priority patent/EP3006600B1/en
Priority to KR1020157033718A priority patent/KR101726536B1/en
Priority to US14/894,488 priority patent/US20160186351A1/en
Priority to JP2015519528A priority patent/JP6055915B2/en
Publication of WO2014192082A1 publication Critical patent/WO2014192082A1/en
Priority to PH12015502678A priority patent/PH12015502678A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths

Definitions

  • the present invention relates to a replenisher, a surface-treated metal material, and a method for producing the same.
  • Patent Document 1 Patent Document 2
  • a chemical conversion treatment and / or an electrolytic treatment for example, a cathode of a metal material in a surface treatment solution for a metal material containing zirconium (hereinafter also referred to as Zr) ions and fluorine (hereinafter also referred to as F) ions.
  • Zr zirconium
  • F fluorine
  • zirconium ions in the surface treatment liquid for metal materials become oxides and adhere as a film and are consumed.
  • Zirconium ion concentration of the steel decreases.
  • fluorine ions are less taken into the film than zirconium ions, and the amount of decrease in fluorine ion concentration per unit area in the surface treatment liquid for metal materials is less than that of zirconium ions.
  • H 2 ZrF 6 is often used as the surface treatment liquid for metal material containing zirconium ions, and the reaction formula thereof is as follows.
  • the pH in the vicinity of the metal material rises due to the consumption of acid by etching, the reduction of hydrogen ions in the vicinity of the cathode electrode, etc., and as shown in Equation (1) 2 ZrF 6 is hydrolyzed, and a zirconium-based film such as zirconium oxide is formed on the surface of the metal material.
  • Patent Document 3 uses a zirconium compound containing fluorine and a replenisher containing a zirconium compound not containing fluorine, and an amount of zirconium ions in consideration of the balance with the replenishment amount of fluorine ions to the surface treatment liquid for metal materials. It is proposed that the above problem can be solved by replenishing. More specifically, in paragraph 0033 of Patent Document 3, a Zr ion concentration of 17 g / L of a Zr fluoride hydrofluoric acid and Zr nitrate mixed solution (fluorinated Zr hydroacid: Zr nitrate 55:45 by weight) is used. It is disclosed that Zr ions have been replenished.
  • replenishers used for replenishing zirconium ions to the surface treatment liquid for metal materials are usually used while being stored in a warehouse for a long time after purchase. For this reason, it is required to be usable even after being stored for a long period of time.
  • the replenisher is stored for a long period of time in a high temperature environment, it is necessary that no precipitation or the like occurs in the replenisher.
  • the present inventors examined the storage stability of the replenisher specifically described in Patent Document 3, and as a result, the storage stability did not meet the recent required level, and further improvements were necessary. It was.
  • the cumulative treatment load is the result of continuous operation of the coating treatment, and the cumulative treatment area (Sm 2 ) of the metal material divided by the surface treatment liquid volume for metal material (VL) (S / V (m 2 / L)), as a coating treatment technology for metal materials, it is necessary that the change in the component balance of the surface treatment liquid for metal materials is small and the processability does not deteriorate for a larger cumulative processing load. It is said.
  • the surface treatment liquid for metal materials is partially or completely updated to ensure stable treatment. It is necessary to ensure sex. In that case, it is not preferable from the viewpoint of production efficiency, cost, and environment.
  • the inventors conducted continuous operation of the film treatment using the replenisher specifically described in Patent Document 3, and verified the film treatment property at the time of a larger cumulative treatment load. It has been found that the amount of the coating on the surface is reduced.
  • the present invention avoids an increase in the HF concentration in the surface treatment liquid for metal material so that chemical conversion treatment and / or electrolytic treatment can be continuously performed on the metal material.
  • An object of the present invention is to provide a replenisher that can replenish the surface treatment solution for metal material with higher concentration of zirconium ions and has excellent long-term storage stability.
  • Another object of the present invention is to provide a method for producing a surface-treated metal material using the replenisher.
  • the present inventors have found that the above problem can be solved by using a replenisher having a high zirconium ion concentration obtained by using a predetermined compound. That is, the configuration of the present invention for solving the above problems is as follows.
  • the total concentration (g / L) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing product (B) is 25 or more.
  • Total molar amount (M F ) of fluorine ions derived from fluorine-containing material (B) and total molar amount of zirconium ions derived from fluorine-free zirconium compound (A) and fluorine-containing material (B) (M Zr ) (M F / M Zr ) is less than 2.00 and less than 6.00.
  • a chemical conversion treatment and / or an electrolytic treatment is continuously performed on the metal material in a surface treatment solution for the metal material containing zirconium ions and fluorine ions to form a chemical conversion treatment film containing zirconium on the metal material.
  • a method of manufacturing a surface-treated metal material (1) A method for producing a surface-treated metal material, wherein the replenisher according to any one of (1) to (3) is added to a surface treatment solution for a metal material to replenish zirconium ions.
  • the chemical conversion treatment and / or the electrolytic treatment can be continuously performed on the metal material, while avoiding an increase in the HF concentration in the surface treatment liquid for the metal material.
  • Zirconium ions can be replenished to the surface treatment liquid at a higher concentration, and a replenisher that is superior in long-term storage stability can be provided.
  • the manufacturing method of the surface treatment metal material which uses this replenisher can be provided.
  • the replenisher of the present invention contains a predetermined fluorine-free zirconium compound (A), a predetermined fluorine-containing material (B), and a predetermined acid component (C), and contains zirconium ions (Zr ions) at a high concentration. contains. Further, the replenisher of the present invention is a ratio (M AC / M F ) between the total molar amount (M AC ) of the anion derived from the acid component (C) and the total molar amount (M F ) of the fluorine ion (F ion).
  • the ratio (M F / M Zr ) of the total molar amount (M Zr ) of zirconium ions and the total molar amount (M F ) of fluorine ions is within a predetermined range.
  • the replenisher contains zirconium ions at a higher concentration than fluorine ions. Therefore, in continuous chemical conversion coating production, when the replenisher is continuously replenished to the surface treatment liquid for metal material, a large amount of zirconium ions can be continuously supplied while avoiding an increase in HF. As a result, the chemical conversion treatment and / or the electrolytic treatment of the metal material can be continuously performed while suppressing the amount of auto drain.
  • the replenisher is more excellent in long-term storage stability and can be continuously subjected to chemical conversion treatment and / or electrolytic treatment of metal materials.
  • An agent can be provided.
  • the replenisher of the present invention is a surface treatment for a metal material containing zirconium ions and fluorine ions, which is used for forming a chemical conversion treatment film containing zirconium as a main component on the surface of the metal material by chemical conversion treatment and / or electrolytic treatment. It is mainly used to supply zirconium ions to the liquid. In addition, in continuous chemical conversion treatment film manufacture, implementation of an auto drain is not refused. First, various materials contained in the replenisher will be described in detail, and then a method for producing the replenisher will be described in detail.
  • the fluorine-free zirconium compound (A) contained in the replenisher of the present invention is a compound containing no Z atom and no fluorine atom.
  • the fluorine-free zirconium compound (A) include at least one selected from the group consisting of basic zirconium carbonate, zirconium carbonate, zirconium hydroxide, and ammonium zirconium carbonate.
  • basic zirconium carbonate or carbonic acid is preferred in that the storage stability of the replenisher is superior and the surface treatment can be carried out more continuously (hereinafter also referred to simply as “the effect of the present invention is more excellent”).
  • Zirconium is more preferred.
  • the fluorine-containing material (B) contained in the replenisher of the present invention is a compound containing a fluorine atom, and F ions are supplied into the replenisher by the compound.
  • Zr ion is also supplied in a replenisher.
  • the fluorine-containing material (B) include at least one selected from the group consisting of hydrofluoric acid, a hydrofluoric acid salt, zirconium hydrofluoric acid, and a zirconium hydrofluoric acid salt.
  • hydrofluoric acid or zirconium hydrofluoric acid is more preferable in that the effect of the present invention is more excellent.
  • the salt of hydrofluoric acid include a salt of hydrofluoric acid and a base (for example, an amine compound), preferably a base containing no metal such as an ammonium salt.
  • the salt of zirconium hydrofluoric acid include metal acid salts such as K 2 ZrF 6 (for example, sodium salt, potassium salt, lithium salt, ammonium salt, etc.).
  • K 2 ZrF 6 for example, sodium salt, potassium salt, lithium salt, ammonium salt, etc.
  • the acid component (C) contained in the replenisher of the present invention plays a role in adjusting the pH of the replenisher and other components (fluorine-free zirconium compound (A) and / or fluorine-containing material (B)). It plays a role in helping solubility.
  • the acid component (C) include at least one selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, and acetic acid. Among these, nitric acid or sulfuric acid is more preferable in that the effect of the present invention is more excellent.
  • an acid component (C) you may mix and use the said acid component 2 or more types.
  • Total molar amount (M F ) of fluorine ions derived from fluorine-containing material (B) and total molar amount of zirconium ions derived from fluorine-free zirconium compound (A) and fluorine-containing material (B) (M Zr ) (M F / M Zr ) is less than 2.00 and less than 6.00. Below, each relationship is demonstrated.
  • the ratio (M AC / M F ) is preferably more than 0.40 and less than 2.00, more preferably more than 0.50 and less than 2.00, and more than 0.50. .60 or less is more preferable, and 1.00 or more and 1.60 or less is particularly preferable.
  • the ratio (M AC / M F ) is less than 0.35, the long-term storage stability of the replenisher is poor.
  • the ratio (M AC / M F) is 2.00 or more, the amount of deposition of the film continued use of the replenisher is reduced, it is no longer possible to create the desired coating.
  • the anion derived from the acid component (C) intends NO 3 ⁇ , Cl ⁇ , SO 4 2 ⁇ , and CH 3 COO ⁇ .
  • the total concentration (g / L) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing material (B) in the replenisher of the present invention is 25 or more. If it is in the said range, a more economical chemical conversion treatment film can be manufactured.
  • the total concentration (g / L) of zirconium ions is preferably 30 or more, and more preferably 35 or more, from the viewpoint that the amount of the replenisher used is small and the operation economy is more excellent.
  • the upper limit is not particularly limited, but it is often 70 or less from the viewpoint of the solubility of the fluorine-free zirconium compound (A) and the fluorine-containing product (B).
  • the concentration of the replenisher is dilute, so that a large amount of the replenisher must be replenished to the surface treatment liquid for metal material, and supercharged water is accordingly added As a result, the volume of the surface treatment liquid for metal materials has increased, and as a result, it is necessary to increase the amount of auto drain of the surface treatment liquid for metal materials in order to perform continuous film treatment. Is not preferable. Further, when zirconium hydrofluoric acid or a salt thereof is used as the fluorine-containing material (B), zirconium ions derived from the fluorine-containing material (B) are supplied.
  • the ratio (M F / M Zr ) to the total molar amount (M F ) is 2.00 or more and less than 6.00. If it is in the said range, HF of the surface treatment liquid for metal materials will not accumulate
  • the ratio (M F / M Zr ) is preferably 2.50 to 5.50, more preferably 3.00 to 5.00, in which the effect of the present invention is more excellent.
  • the ratio (M F / M Zr ) is less than 2.00, it is difficult to dissolve zirconium ions in the replenisher.
  • the ratio (M F / M Zr ) is 6.00 or more, if the replenisher is continuously used, accumulation of HF in the surface treatment liquid for metal material cannot be avoided. In the case of producing a treated film, it is necessary to increase the amount of auto drain, which is not preferable from an environmental and economic point of view.
  • the measurement of various ions described above can be performed using a known measuring instrument, atomic absorption, ICP, ion chromatography, or a fluorine ion meter.
  • the content of the fluorine-free zirconium compound (A) in the replenisher of the present invention is not particularly limited as long as the relations (I) to (III) are satisfied, but the deposition efficiency of the chemical conversion film is more excellent.
  • the amount is preferably from 0.1 to 500 parts by weight, more preferably from 10 to 300 parts by weight, based on 100 parts by weight of the fluorine-containing material (B).
  • the pH of the replenisher of the present invention is not particularly limited, but is preferably less than 4.0 and more preferably more than 0 and 1.5 or less in terms of excellent stability of the replenisher.
  • an alkali component can also be used.
  • Alkali components include alkali metal oxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, organic substances such as ammonia, monoethanolamine, diethanolamine, and triethanolamine. Examples include amines. Among them, it is preferable to use ammonia from the viewpoint that there is no metal contamination and no organic solvent is contained.
  • the replenisher of the present invention may contain a solvent, if necessary.
  • the kind in particular of solvent used is not restrict
  • the organic solvent include alcohol solvents.
  • Regarding the content of the organic solvent it may be in a range that does not impair the stability of the replenisher and the stability of the surface treatment liquid for metal material replenished with the replenisher, but it should not be used from the viewpoint of the working environment. preferable.
  • the replenisher contains a solvent
  • the total mass of the fluorine-free zirconium compound (A), the fluorine-containing material (B), and the acid component (C) is the replenisher in that the deposition efficiency of the chemical conversion coating is more excellent. 2 to 90% by mass is preferable with respect to the total amount, and 4 to 80% by mass is more preferable.
  • the manufacturing method of the replenisher of the present invention is not particularly limited, and a known method is adopted.
  • a method in which a fluorine-free zirconium compound (A), a fluorine-containing material (B), and an acid component (C) are added and mixed in a solvent can be mentioned.
  • the above-described replenisher is replenished into the surface treatment liquid for metal material.
  • the replenisher it is preferable to add the replenisher so that the zirconium ion concentration does not decrease by 20% or more in order to obtain a predetermined chemical conversion coating on the metal material continuously and stably.
  • the total fluorine ion amount replenished simultaneously with zirconium is determined from the total amount of total fluorine ions contained in the chemical treatment film and the total amount of fluorine ions contained in the surface treatment solution for metal materials taken out of the metal material. It is preferable to replenish the amount obtained by subtracting the amount of fluorine ions of HF produced as a by-product in the surface treatment solution for metal material when a zirconium compound film is formed.
  • the method of adding the replenisher of the present invention to the surface treatment solution for metal material is not particularly limited, and a method of adding the replenisher in small portions (Method A) or a predetermined amount of replenisher in a lump. (Method B).
  • Method A is preferable from the point that the component fluctuation
  • the method of adding the replenisher to the surface treatment liquid for metal material may be employed.
  • the surface for metal materials during the manufacturing method of surface-treated metal materials is superior in that it is excellent in production efficiency especially at high-speed operation, and can continuously and stably produce the surface-treated metal materials.
  • a method of adding a replenisher to the treatment liquid is preferred.
  • the surface treatment liquid for metal material used in the method for producing a surface-treated metal material of the present invention will be described.
  • the surface treatment liquid for metal material used in the method for producing a surface-treated metal material of the present invention described above contains Zr ions and fluorine ions.
  • Examples of the supply source of zirconium ions in the surface treatment liquid for metal materials include the above-described fluorine-free zirconium compound (A), zirconium hydrofluoric acid, or a salt thereof.
  • Zr ions in the surface treatment liquid for metal materials as shown in (1) ZrF n (4-n) , complex fluorination in which 1 to 6 mol of fluorine is coordinated to 1 mol of zirconium.
  • zirconium ions and (2) zirconium or zirconyl inorganic acids such as zirconium nitrate or zirconium sulfate, or zirconium or zirconyl ions generated from organic acid zirconium or zirconyl such as zirconium acetate or zirconyl acetate.
  • the content of zirconium ions in the surface treatment liquid for metal material is not particularly limited, but is 0.05 to 10.5 in that it is more excellent in stability of the surface treatment liquid for metal material and more excellent in deposition efficiency of the chemical conversion film. 00 g / L is preferable, and 0.10 to 2.00 g / L is more preferable.
  • fluorine-containing compound a known fluorine-containing compound (fluorine-containing compound) is used as a supply source of fluorine ions in the surface treatment liquid for metal materials.
  • fluorine-containing compound those having at least one element selected from the group consisting of Ti, Zr, Hf, Si, Al and B are preferably used. Specifically, for example, (TiF 6 ) 2 ⁇ , (ZrF 6 ) 2 ⁇ , (HfF 6 ) 2 ⁇ , (SiF 6 ) 2 ⁇ , (AlF 6 ) 3 ⁇ , (BF 4 OH) ⁇ , etc.
  • fluorine-containing compound examples include hydrofluoric acid, its ammonium salt, its alkali metal salt, and metal fluoride (for example, aluminum fluoride, zinc fluoride, vanadium fluoride, tin fluoride, fluorine fluoride).
  • metal fluoride for example, aluminum fluoride, zinc fluoride, vanadium fluoride, tin fluoride, fluorine fluoride.
  • oxyfluorides eg, fluorine oxide, acetyl fluoride, benzoyl fluoride, etc.
  • Fluorine ions in the surface treatment liquid for metal materials are HF-derived fluorine ions (F ⁇ ) present in the surface treatment liquid for metal materials and fluorine-containing complex ions such as the above complex zirconium fluoride ions. It refers to both fluorine ions, and the total fluorine ion concentration described above and below refers to the total concentration of both.
  • the free fluorine concentration refers to the concentration of fluorine ions (F ⁇ ) derived from HF.
  • the content of total fluorine ions in the surface treatment liquid for metal materials is not particularly limited, but the total fluorine ion concentration is superior in terms of the stability of the surface treatment liquid for metal materials and the deposition efficiency of the chemical conversion coating.
  • the free fluorine ion concentration is preferably 5 mg / L to 400 mg / L, more preferably 10 to 250 mg / L.
  • the content (concentration) of Zr ions, total fluorine ions, and free fluorine ions in the surface treatment solution for metal materials can be quantified using atomic absorption, ICP, ion chromatography, or a fluorine ion meter.
  • the pH of the surface treatment solution for metal materials is adjusted as appropriate according to the target metal material and the conditions of chemical conversion treatment or electrolytic treatment, but it is superior in stability of the surface treatment solution for metal materials and deposits of the chemical conversion treatment film. From the viewpoint of more excellent properties, it is preferably about 2.5 to 5.0, more preferably 3.0 to 5.0. In addition, pH of the surface treatment liquid for metal materials can be measured using a pH meter.
  • Metal material The kind in particular of metal material to be used is not restrict
  • the shape of the metal material is not particularly limited, and may be a plate shape or another shape. Other shapes include, for example, the body and parts of transportation equipment such as automobiles, agricultural equipment and parts, steel furniture, building materials, and the like.
  • the chemical conversion treatment using the above-described surface treatment solution for metal material can be carried out under known conditions using a known treatment facility.
  • the chemical conversion treatment is a treatment for forming a film on the surface of the metal material by bringing a predetermined surface treatment liquid for the metal material into contact with the metal material at room temperature or warming (immersion, coating, or spraying). .
  • the time for contacting the metal material with the surface treatment liquid for the metal material is appropriately adjusted according to the material, shape, treatment method, application, and target coating amount of the target metal material. Usually, it is often about 0.1 to 600 seconds in terms of more excellent characteristics.
  • the electrolytic treatment (anodic electrolytic treatment, cathodic electrolytic treatment) using the surface treatment liquid for metal material
  • it can be carried out under known conditions using a known electrolytic treatment facility.
  • the current density is preferably from 0.1 to 20.0 A / dm 2 and more preferably from 0.5 to 10.0 A / dm 2 from the viewpoint of more excellent deposition efficiency of the chemical conversion coating.
  • the amount of zirconium deposited on the formed chemical conversion coating is appropriately adjusted according to the material and application of the target metal material.
  • either the chemical conversion treatment or the electrolytic treatment can be used because the properties as the chemical conversion coating are more excellent. In many cases, the amount is usually about 1 to 70 mg / m 2 .
  • Test plate The following (1) to (3) were used as test plates used in Examples and Comparative Examples.
  • Aluminum alloy plate (6000 series aluminum alloy plate thickness: 0.8mm)
  • Cold rolled steel plate (SPC, plate thickness: 0.8 mm)
  • Alloyed hot-dip galvanized steel sheet (GA, thickness: 0.8 mm)
  • Continuous processing test method As the chemical conversion treatment, any one of the following continuous treatment methods 1 to 3 was performed.
  • ⁇ Continuous processing method 1> A treatment solution having the following component concentrations was bathed for 10 L, adjusted to pH 4.0, and heated to 40 ° C. to obtain a surface treatment solution for metal materials. The treatment liquid was stirred, and the test plate (1) was immersed for 180 seconds to perform a surface treatment with a target Zr adhesion amount of 13 mg / m 2 . This was treated as a single treatment, and thereafter a surface treatment (continuous treatment test) was repeatedly performed using a new test plate (1).
  • the test was performed until the treatment load reached 13.3 m 2 / L, and the Zr adhesion amount at the initial stage of the continuous test and the Zr adhesion amount during the 13.3 m 2 / L treatment were measured.
  • the Zr adhesion amount on the treatment material surface was quantified using XRF (fluorescence X-ray analysis method).
  • ⁇ Continuous processing method 2> A treatment solution having the following component concentrations was bathed for 10 L, adjusted to pH 4.0, and heated to 40 ° C. to obtain a surface treatment solution for metal materials. This treatment liquid was stirred, and the test plate (2) was immersed for 120 seconds to perform a surface treatment with a target Zr deposition amount of 20 mg / m 2 . This was treated as one time, and then a new surface treatment (continuous treatment test) was performed using a new test plate (2).
  • the test was performed until the treatment load reached 16.7 m 2 / L, and the Zr adhesion amount at the initial stage of the continuous test and the Zr adhesion amount at the time of 16.7 m 2 / L treatment were measured.
  • the Zr adhesion amount on the treatment material surface was quantified using XRF (fluorescence X-ray analysis method).
  • the concentrations of the various components were Zr ions: 500 mg / L, total F ions: 680 mg / L, free F ions: 36 mg / L, NO 3 ions: 750 mg / L.
  • a treatment solution having the following component concentrations was bathed for 10 L, adjusted to pH 3.7, and heated to 40 ° C. as a surface treatment solution for metal materials.
  • the treatment liquid was stirred, and the test plate (3) was immersed for 30 seconds to perform a surface treatment with a target Zr deposition amount of 10 mg / m 2 .
  • This was treated as a single treatment, and thereafter a surface treatment (continuous treatment test) was repeatedly performed using a new test plate (3).
  • the amount of the treatment liquid (take-out liquid) adhering to the test plate (3) and taken out was 22 mL / m 2 , so the liquid level and the amount of the treatment liquid in the treatment liquid were increased every 0.5 m 2 / L.
  • Replenishment of the Zr concentration drop was performed with water and the replenisher shown in Table 1, and the Zr concentration was adjusted simultaneously with the liquid level.
  • the pH of the treatment liquid was also adjusted with ammonia water as necessary every 0.5 m 2 / L.
  • the above-mentioned continuous test was performed until 10 L of the total amount of the processing solution was replaced with 100% by the carry-out solution. That is, the test was performed until the treatment load reached 45.5 m 2 / L, and the Zr adhesion amount at the initial stage of the continuous test and the Zr adhesion amount at the time of 45.5 m 2 / L treatment were measured.
  • the Zr adhesion amount on the treatment material surface was quantified using XRF (fluorescence X-ray analysis method).
  • Zr carbonate represents zirconium carbonate
  • basic carbonate Zr represents basic zirconium carbonate
  • Zr concentration represents zirconium ion concentration (g / L).
  • the ratio (M AC / M F) is in the predetermined range is smaller than Comparative Example 1-3, was inferior storage stability of the replenisher.
  • Comparative Examples 4 to 6 it is presumed that the ratio of the anion derived from the acid component (C) is higher than the fluorine derived from the fluorine-containing material (B) as an anion for stabilizing zirconium in the replenisher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The purpose of the present invention is to provide a supplement that avoids an increase in the HF concentration in a surface-treatment liquid for metal materials, is capable of supplying zirconium ions at high concentration by using the metal material surface-treatment liquid, and has excellent long-term storage stability, in order to continuously chemically convert and/or electrolytically treat a metal material. This supplement contains prescribed amounts of: a zirconium compound (A) not containing fluorine and including at least one type selected from a group comprising zirconium basic carbonate, zirconium carbonate, zirconium hydroxide, and ammonium zirconium carbonate; a fluorine-containing matter (B) including at least one type selected from a group comprising hydrofluoric acid, a hydrofluoric acid salt, fluorozirconic acid, and a fluorozirconic acid salt; and an acid component (C) including at least one type selected from a group comprising nitric acid, hydrochloric acid, sulfuric acid, and acetic acid.

Description

補給剤、表面処理金属材料およびその製造方法Replenisher, surface-treated metal material and method for producing the same
 本発明は、補給剤、表面処理金属材料およびその製造方法に関する。 The present invention relates to a replenisher, a surface-treated metal material, and a method for producing the same.
 金属材料製品は、塗料密着性、塗装後耐食性、裸耐食性などの機能を付与する為に、その表面に対して、用途に応じた化成処理、例えば、リン酸塩処理やクロメート処理などを施すことが一般的である。
 しかし、近年は、環境負荷軽減への関心が高く、リン酸塩スラッジ等の産業廃棄物を低減する検討や6価クロムの使用を制限する規制への対応がなされ、ジルコニウム化合物などを利用した化成処理皮膜がリン酸塩やクロメート処理に置き換わる新たな皮膜処理として提案されている(特許文献1、特許文献2)。より具体的には、ジルコニウム(以後、Zrとも表記する)イオンおよびフッ素(以後、Fとも称する)イオンを含む金属材料用表面処理液中で金属材料の化成処理および/または電解処理(例えば、カソード電解など)を行うことにより、金属材料表面上にジルコニウム系の化成処理皮膜(以後、単に皮膜とも称する)を得ることでき、それによって金属材料表面に優れた性能を付与することができる。
In order to impart functions such as paint adhesion, post-coating corrosion resistance, and bare corrosion resistance, the metal material product is subjected to chemical conversion treatment according to the application, for example, phosphate treatment or chromate treatment, etc. Is common.
However, in recent years, interest in reducing environmental impacts has been high, and studies have been made to reduce industrial waste such as phosphate sludge and regulations restricting the use of hexavalent chromium. A treatment film has been proposed as a new film treatment that replaces a phosphate or chromate treatment (Patent Document 1, Patent Document 2). More specifically, a chemical conversion treatment and / or an electrolytic treatment (for example, a cathode) of a metal material in a surface treatment solution for a metal material containing zirconium (hereinafter also referred to as Zr) ions and fluorine (hereinafter also referred to as F) ions. By performing electrolysis or the like, a zirconium-based chemical conversion coating (hereinafter simply referred to as a coating) can be obtained on the surface of the metal material, thereby imparting excellent performance to the surface of the metal material.
 上述の金属材料用表面処理において、連続して皮膜の製造を行うと、金属材料用表面処理液中のジルコニウムイオンは酸化物などとなり皮膜として付着し消費されるため、金属材料用表面処理液中のジルコニウムイオン濃度は低下していく。一方、フッ素イオンは、皮膜への取り込みがジルコニウムイオンよりも少なく、金属材料用表面処理液中の単位面積あたりのフッ素イオン濃度の低下量はジルコニウムイオンよりも少ない。 In the surface treatment for metal materials described above, if the coating is continuously manufactured, zirconium ions in the surface treatment liquid for metal materials become oxides and adhere as a film and are consumed. Zirconium ion concentration of the steel decreases. On the other hand, fluorine ions are less taken into the film than zirconium ions, and the amount of decrease in fluorine ion concentration per unit area in the surface treatment liquid for metal materials is less than that of zirconium ions.
 より具体的には、ジルコニウムイオンを含む金属材料用表面処理液は、H2ZrF6を使用する場合が多く、その反応式は以下である。
2ZrF6+2H2O→ZrO2↓+6HF・・・式(1)
 金属材料と金属材料用表面処理液との界面では、エッチングによる酸の消費、カソード電極近傍での水素イオンの還元などにより、金属材料近傍のpHが上昇し、式(1)に示すようにH2ZrF6の加水分解が生じ、ジルコニウム酸化物などのジルコニウム系皮膜が金属材料表面に形成される。
 一方、フッ素イオンに関しては、式(1)に示すように、1モルのZrO2生成に伴い副生成物として理論上6モルのHFが金属材料用表面処理液中に生じる。皮膜の主成分であるZrと比較し、皮膜中へ含まれるHFは非常に少量であるため、連続して金属表面処理を行うとHFが金属材料用表面処理液中に蓄積しその濃度は上昇する。式(1)においてHFは右辺にあるため、HF濃度が上昇すると、皮膜生成反応が抑制され、適正なジルコニウム化合物の皮膜が生成しにくくなっていく。また、ジルコニウムイオン濃度が低下すると、ジルコニウムイオンを補給しなければならず、その場合、H2ZrF6を補給することが一般的であり、このジルコニウムイオンとフッ素イオンの比率の補給では、HFの蓄積が回避されることはない。そこで、従来は、HFの蓄積を避けるため、連続操業をしながら金属材料用表面処理液を自動的に部分廃棄(オートドレイン)して、HFの濃度を一定に保つ手法が多くとられている。しかしながら、ジルコニウムイオンやHFなどを大量に含んだ液をオートドレインし、排水へ流すことは、環境負荷を低減した皮膜を提案しているにも関わらず、環境的および経済的な観点から好ましくなく、改善が求められている。
More specifically, H 2 ZrF 6 is often used as the surface treatment liquid for metal material containing zirconium ions, and the reaction formula thereof is as follows.
H 2 ZrF 6 + 2H 2 O → ZrO 2 ↓ + 6HF Formula (1)
At the interface between the metal material and the surface treatment solution for the metal material, the pH in the vicinity of the metal material rises due to the consumption of acid by etching, the reduction of hydrogen ions in the vicinity of the cathode electrode, etc., and as shown in Equation (1) 2 ZrF 6 is hydrolyzed, and a zirconium-based film such as zirconium oxide is formed on the surface of the metal material.
On the other hand, with respect to fluorine ions, as shown in the formula (1), 6 mol of HF is theoretically generated as a by-product in the surface treatment liquid for metal material as 1 mol of ZrO 2 is produced. Compared with Zr, which is the main component of the film, the amount of HF contained in the film is very small. Therefore, when metal surface treatment is performed continuously, HF accumulates in the surface treatment solution for metal materials and its concentration increases. To do. In Formula (1), since HF is on the right side, when the HF concentration increases, the film formation reaction is suppressed, and it becomes difficult to form a film of an appropriate zirconium compound. In addition, when the concentration of zirconium ions decreases, zirconium ions must be replenished. In that case, it is common to replenish H 2 ZrF 6. In this replenishment of the ratio of zirconium ions to fluorine ions, Accumulation is not avoided. Therefore, conventionally, in order to avoid accumulation of HF, many techniques have been adopted in which the surface treatment liquid for metal material is automatically partially discarded (auto drain) while continuously operating to keep the HF concentration constant. . However, it is not preferable from the environmental and economic viewpoints to auto-drain a liquid containing a large amount of zirconium ions, HF, etc., and to flow it to the wastewater, despite the proposal of a film with reduced environmental impact. There is a need for improvement.
 そこで、特許文献3では、フッ素を含むジルコニウム化合物とフッ素を含まないジルコニウム化合物を含む補給剤を使用して、金属材料用表面処理液へフッ素イオンの補給量とのバランスを考慮した量のジルコニウムイオンの補給を行うことにより、上記問題を解決できる旨を提案している。より具体的には、特許文献3の段落0033においては、Zrイオン濃度17g/Lのフッ化Zr水素酸と硝酸Zr混合溶液(重量比でフッ化Zr水素酸:硝酸Zr=55:45)でZrイオンの補給を行った旨が開示されている。 Therefore, Patent Document 3 uses a zirconium compound containing fluorine and a replenisher containing a zirconium compound not containing fluorine, and an amount of zirconium ions in consideration of the balance with the replenishment amount of fluorine ions to the surface treatment liquid for metal materials. It is proposed that the above problem can be solved by replenishing. More specifically, in paragraph 0033 of Patent Document 3, a Zr ion concentration of 17 g / L of a Zr fluoride hydrofluoric acid and Zr nitrate mixed solution (fluorinated Zr hydroacid: Zr nitrate 55:45 by weight) is used. It is disclosed that Zr ions have been replenished.
特開2008-202149号公報JP 2008-202149 A 特開2010-90407号公報JP 2010-90407 A 特許第4996409号公報Japanese Patent No. 4996409
 一方、金属材料用表面処理液にジルコニウムイオンを補給する為に使用される補給剤は、通常、購入後、倉庫などに長期間保管しつつ使用される場合が多い。そのため、長期間保管された後においても使用可能であることが求められ、特に、補給剤を高温環境下で長期間保管した際に、補給剤中に沈殿などが生じていないことが必要とされる。
 本発明者らは特許文献3に具体的に記載される補給剤について、保存安定性の検討を行ったところ、その保存安定性は昨今の要求レベルを満たしておらず、さらなる改良が必要であった。
On the other hand, replenishers used for replenishing zirconium ions to the surface treatment liquid for metal materials are usually used while being stored in a warehouse for a long time after purchase. For this reason, it is required to be usable even after being stored for a long period of time. In particular, when the replenisher is stored for a long period of time in a high temperature environment, it is necessary that no precipitation or the like occurs in the replenisher. The
The present inventors examined the storage stability of the replenisher specifically described in Patent Document 3, and as a result, the storage stability did not meet the recent required level, and further improvements were necessary. It was.
 また、近年、皮膜処理費用の低コスト化が望まれており、それに伴い生産効率のより一層の向上が望まれている。生産効率を向上させる手段としては、オートドレインを極力抑制する方法と、従来よりも累計の処理負荷をより大きくしつつ皮膜処理を行う方法が挙げられる。なお、累計の処理負荷とは、皮膜処理の連続運転を実施した結果、金属材料の累計処理面積(Sm)を金属材料用表面処理液容量(VL)で除したもの(S/V(m/L))を指し、金属材料の皮膜処理技術として、より大きな累計の処理負荷に対して、金属材料用表面処理液の成分バランスの変化が小さいことや、処理性が劣化しないことが必要とされる。累計の処理負荷に対して、金属材料用表面処理液の成分バランスの変化が大きかったり、処理性が劣化しやすい場合は、金属材料用表面処理液を部分的または全量更新して、安定した処理性を確保する必要がでてくる。その場合、生産効率、コストや環境的な点から好ましくない。
 本発明者らは特許文献3に具体的に記載される補給剤を用いて、皮膜処理の連続運転を実施し、より大きな累計処理負荷の時点での皮膜処理性を検証したところ、金属材料上への皮膜の付着量が低減してしまうことを知見した。
In recent years, it has been desired to reduce the cost of coating treatment, and accordingly, further improvement in production efficiency is desired. As means for improving the production efficiency, there are a method of suppressing auto drain as much as possible and a method of performing film processing while increasing the total processing load as compared with the conventional method. Note that the cumulative treatment load is the result of continuous operation of the coating treatment, and the cumulative treatment area (Sm 2 ) of the metal material divided by the surface treatment liquid volume for metal material (VL) (S / V (m 2 / L)), as a coating treatment technology for metal materials, it is necessary that the change in the component balance of the surface treatment liquid for metal materials is small and the processability does not deteriorate for a larger cumulative processing load. It is said. If the change in the component balance of the surface treatment liquid for metal materials is large or the processability is likely to deteriorate with respect to the total processing load, the surface treatment liquid for metal materials is partially or completely updated to ensure stable treatment. It is necessary to ensure sex. In that case, it is not preferable from the viewpoint of production efficiency, cost, and environment.
The inventors conducted continuous operation of the film treatment using the replenisher specifically described in Patent Document 3, and verified the film treatment property at the time of a larger cumulative treatment load. It has been found that the amount of the coating on the surface is reduced.
 本発明は、上記実情に鑑みて、金属材料に対して化成処理および/または電解処理を連続して行うことができるように、金属材料用表面処理液中のHF濃度の上昇を回避しつつ、金属材料用表面処理液にジルコニウムイオンをより高濃度で補給することができ、長期保存安定性に優れる補給剤を提供することを目的とする。
 また、本発明は、該補給剤を使用した表面処理金属材料の製造方法を提供することも目的とする。
In view of the above circumstances, the present invention avoids an increase in the HF concentration in the surface treatment liquid for metal material so that chemical conversion treatment and / or electrolytic treatment can be continuously performed on the metal material, An object of the present invention is to provide a replenisher that can replenish the surface treatment solution for metal material with higher concentration of zirconium ions and has excellent long-term storage stability.
Another object of the present invention is to provide a method for producing a surface-treated metal material using the replenisher.
 本発明者らは、鋭意検討を行った結果、所定の化合物を使用して得られるジルコニウムイオン濃度が高い補給剤を使用することにより、上記課題を解決できることを見出した。
 すなわち、上記課題を解決するための本発明の構成は以下の通りである。
As a result of intensive studies, the present inventors have found that the above problem can be solved by using a replenisher having a high zirconium ion concentration obtained by using a predetermined compound.
That is, the configuration of the present invention for solving the above problems is as follows.
(1) 金属材料に対して、ジルコニウムを含有する化成処理皮膜を化成処理および/または電解処理によって形成することに用いられるジルコニウムイオンおよびフッ素イオンを含む金属材料用表面処理液に対して、ジルコニウムイオンを補給するために使用される補給剤であって、
 塩基性炭酸ジルコニウム、炭酸ジルコニウム、水酸化ジルコニウム、および炭酸ジルコニウムアンモニウムからなる群から選択される少なくとも1種を含むフッ素非含有ジルコニウム化合物(A)と、フッ化水素酸、フッ化水素酸の塩、ジルコニウムフッ化水素酸、および、ジルコニウムフッ化水素酸の塩からなる群から選択される少なくとも1種を含むフッ素含有物(B)と、硝酸、塩酸、硫酸、および、酢酸からなる群から選択される少なくとも1種を含む酸成分(C)とを含有し、
 以下の(I)~(III)を満足する、補給剤。
(I)酸成分(C)由来のアニオンの合計モル量(MAC)とフッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)との比(MAC/MF)が0.35以上2.00未満である。
(II)フッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)に由来するジルコニウムイオンの合計濃度(g/L)が25以上である。
(III)フッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)とフッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)に由来するジルコニウムイオンの合計モル量(MZr)との比(MF/MZr)が2.00以上6.00未満である。
(2) 比(MAC/MF)が0.50超2.00未満である、(1)に記載の補給剤。
(3) 比(MAC/MF)が0.50超1.60以下である、(1)または(2)に記載の補給剤。
(4) ジルコニウムイオンおよびフッ素イオンを含む金属材料用表面処理液中で金属材料に対して連続して化成処理および/または電解処理を施し、金属材料上にジルコニウムを含有する化成処理皮膜を形成する表面処理金属材料の製造方法であって、
 (1)~(3)のいずれかに記載の補給剤を金属材料用表面処理液に加えて、ジルコニウムイオンの補給を行う、表面処理金属材料の製造方法。
(5) (4)に記載の表面処理金属材料の製造方法より得られる、表面処理金属材料。
(1) Zirconium ions with respect to a surface treatment solution for metal materials containing zirconium ions and fluorine ions used for forming a chemical conversion treatment film containing zirconium on metal materials by chemical treatment and / or electrolytic treatment. A replenisher used to replenish
A fluorine-free zirconium compound (A) containing at least one selected from the group consisting of basic zirconium carbonate, zirconium carbonate, zirconium hydroxide, and ammonium zirconium carbonate, hydrofluoric acid, a salt of hydrofluoric acid, Fluorine-containing material (B) containing at least one selected from the group consisting of zirconium hydrofluoric acid and a salt of zirconium hydrofluoric acid, and selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, and acetic acid An acid component (C) containing at least one of
A replenisher that satisfies the following (I) to (III):
(I) The ratio (M AC / M F ) between the total molar amount (M AC ) of the anion derived from the acid component (C) and the total molar amount (M F ) of the fluorine ion derived from the fluorine-containing material (B) It is 0.35 or more and less than 2.00.
(II) The total concentration (g / L) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing product (B) is 25 or more.
(III) Total molar amount (M F ) of fluorine ions derived from fluorine-containing material (B) and total molar amount of zirconium ions derived from fluorine-free zirconium compound (A) and fluorine-containing material (B) (M Zr ) (M F / M Zr ) is less than 2.00 and less than 6.00.
(2) The replenisher according to (1), wherein the ratio (M AC / M F ) is more than 0.50 and less than 2.00.
(3) The replenisher according to (1) or (2), wherein the ratio (M AC / M F ) is more than 0.50 and not more than 1.60.
(4) A chemical conversion treatment and / or an electrolytic treatment is continuously performed on the metal material in a surface treatment solution for the metal material containing zirconium ions and fluorine ions to form a chemical conversion treatment film containing zirconium on the metal material. A method of manufacturing a surface-treated metal material,
(1) A method for producing a surface-treated metal material, wherein the replenisher according to any one of (1) to (3) is added to a surface treatment solution for a metal material to replenish zirconium ions.
(5) A surface-treated metal material obtained from the method for producing a surface-treated metal material according to (4).
 本発明によれば、金属材料に対して化成処理および/または電解処理を連続的して行うことができるように、金属材料用表面処理液中のHF濃度の上昇を回避しつつ、金属材料用表面処理液にジルコニウムイオンをより高濃度で補給することができ、長期保存安定性により優れる補給剤を提供することができる。
 また、本発明によれば、該補給剤を使用した表面処理金属材料の製造方法を提供することができる。
According to the present invention, for the metal material, the chemical conversion treatment and / or the electrolytic treatment can be continuously performed on the metal material, while avoiding an increase in the HF concentration in the surface treatment liquid for the metal material. Zirconium ions can be replenished to the surface treatment liquid at a higher concentration, and a replenisher that is superior in long-term storage stability can be provided.
Moreover, according to this invention, the manufacturing method of the surface treatment metal material which uses this replenisher can be provided.
 以下に、本発明の補給剤、および、表面処理金属材料の製造方法について説明する。
 本発明の補給剤は、所定のフッ素非含有ジルコニウム化合物(A)と、所定のフッ素含有物(B)と、所定の酸成分(C)とを含み、ジルコニウムイオン(Zrイオン)を高濃度で含有する。また、本発明の補給剤は、酸成分(C)由来のアニオンの合計モル量(MAC)とフッ素イオン(Fイオン)の合計モル量(MF)との比(MAC/MF)、および、ジルコニウムイオンの合計モル量(MZr)とフッ素イオンの合計モル量(MF)との比(MF/MZr)が所定範囲内である。上記の成分と、その成分量比を満たすことにより、該補給剤の長期間の保存安定性が達成される。また、該補給剤中には、フッ素イオンと比較して、ジルコニウムイオンが高濃度で含まれている。従って、連続した化成処理皮膜製造において、該補給剤を金属材料用表面処理液に連続して補給した場合、HFの増加を回避しつつ、多量のジルコニウムイオンを連続して供給することができるため、結果として、オートドレイン量を抑制しつつ、金属材料の化成処理および/または電解処理を連続して行うことができる。特に、比(MAC/MF)を所定範囲に調整することにより、該補給剤の長期保存安定性により優れ、金属材料の化成処理および/または電解処理を連続して行うことが可能な補給剤を提供することができる。
 まず、本発明の補給剤の態様を以下に説明し、その後該補給剤を使用した表面処理金属材料の製造方法について説明する。
Below, the replenisher of this invention and the manufacturing method of a surface treatment metal material are demonstrated.
The replenisher of the present invention contains a predetermined fluorine-free zirconium compound (A), a predetermined fluorine-containing material (B), and a predetermined acid component (C), and contains zirconium ions (Zr ions) at a high concentration. contains. Further, the replenisher of the present invention is a ratio (M AC / M F ) between the total molar amount (M AC ) of the anion derived from the acid component (C) and the total molar amount (M F ) of the fluorine ion (F ion). And the ratio (M F / M Zr ) of the total molar amount (M Zr ) of zirconium ions and the total molar amount (M F ) of fluorine ions is within a predetermined range. By satisfying the above components and the component amount ratio, long-term storage stability of the replenisher is achieved. Further, the replenisher contains zirconium ions at a higher concentration than fluorine ions. Therefore, in continuous chemical conversion coating production, when the replenisher is continuously replenished to the surface treatment liquid for metal material, a large amount of zirconium ions can be continuously supplied while avoiding an increase in HF. As a result, the chemical conversion treatment and / or the electrolytic treatment of the metal material can be continuously performed while suppressing the amount of auto drain. In particular, by adjusting the ratio (M AC / M F ) to a predetermined range, the replenisher is more excellent in long-term storage stability and can be continuously subjected to chemical conversion treatment and / or electrolytic treatment of metal materials. An agent can be provided.
First, an embodiment of the replenisher of the present invention will be described below, and then a method for producing a surface-treated metal material using the replenisher will be described.
[補給剤]
 本発明の補給剤は、金属材料表面にジルコニウムを主成分として含有する化成処理皮膜を化成処理および/または電解処理によって形成するために使用される、ジルコニウムイオンおよびフッ素イオンを含む金属材料用表面処理液に対して、主にジルコニウムイオンを補給するために使用される。なお、連続した化成処理皮膜製造において、オートドレインの実施を拒むものではない。
 まず、該補給剤に含まれる各種材料について詳述し、その後該補給剤の製造方法について詳述する。
[Replenisher]
The replenisher of the present invention is a surface treatment for a metal material containing zirconium ions and fluorine ions, which is used for forming a chemical conversion treatment film containing zirconium as a main component on the surface of the metal material by chemical conversion treatment and / or electrolytic treatment. It is mainly used to supply zirconium ions to the liquid. In addition, in continuous chemical conversion treatment film manufacture, implementation of an auto drain is not refused.
First, various materials contained in the replenisher will be described in detail, and then a method for producing the replenisher will be described in detail.
(フッ素非含有ジルコニウム化合物(A))
 本発明の補給剤中に含まれるフッ素非含有ジルコニウム化合物(A)は、フッ素原子を含まず、Zr原子を含む化合物である。
 フッ素非含有ジルコニウム化合物(A)としては、塩基性炭酸ジルコニウム、炭酸ジルコニウム、水酸化ジルコニウム、および炭酸ジルコニウムアンモニウムからなる群から選択される少なくとも1種が挙げられる。なかでも、補給剤の保存安定性がより優れ、表面処理をより連続して実施できる点(以後、単に「本発明の効果がより優れる点」とも称する)で、塩基性炭酸ジルコニウム、または、炭酸ジルコニウムがより好ましい。
 なお、フッ素非含有ジルコニウム化合物(A)としては、上記化合物を2種以上混合して使用してもよい。
(Fluorine-free zirconium compound (A))
The fluorine-free zirconium compound (A) contained in the replenisher of the present invention is a compound containing no Z atom and no fluorine atom.
Examples of the fluorine-free zirconium compound (A) include at least one selected from the group consisting of basic zirconium carbonate, zirconium carbonate, zirconium hydroxide, and ammonium zirconium carbonate. Among these, basic zirconium carbonate or carbonic acid is preferred in that the storage stability of the replenisher is superior and the surface treatment can be carried out more continuously (hereinafter also referred to simply as “the effect of the present invention is more excellent”). Zirconium is more preferred.
In addition, as a fluorine-free zirconium compound (A), you may use the said compound in mixture of 2 or more types.
(フッ素含有物(B))
 本発明の補給剤中に含まれるフッ素含有物(B)は、フッ素原子を含む化合物であり、該化合物によって、補給剤中にFイオンが供給される。なお、フッ素含有物(B)としてジルコニウムフッ化水素酸またはその塩を使用する場合は、Zrイオンも合わせて補給剤中に供給される。
 フッ素含有物(B)としては、フッ化水素酸、フッ化水素酸の塩、ジルコニウムフッ化水素酸、および、ジルコニウムフッ化水素酸の塩からなる群から選択される少なくとも1種が挙げられる。なかでも、本発明の効果がより優れる点で、フッ化水素酸、または、ジルコニウムフッ化水素酸がより好ましい。
 なお、フッ化水素酸の塩としては、例えば、フッ化水素酸と塩基(例えば、アミン化合物)、好ましくは、アンモニウム塩など金属を含まない塩基との塩が挙げられる。また、ジルコニウムフッ化水素酸の塩としては、例えば、K2ZrF6などの金属酸塩(例えば、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等)が挙げられる。
 また、フッ素含有物(B)としては、上記化合物を2種以上混合して使用してもよい。
(Fluorine-containing material (B))
The fluorine-containing material (B) contained in the replenisher of the present invention is a compound containing a fluorine atom, and F ions are supplied into the replenisher by the compound. In addition, when using zirconium hydrofluoric acid or its salt as a fluorine containing material (B), Zr ion is also supplied in a replenisher.
Examples of the fluorine-containing material (B) include at least one selected from the group consisting of hydrofluoric acid, a hydrofluoric acid salt, zirconium hydrofluoric acid, and a zirconium hydrofluoric acid salt. Among these, hydrofluoric acid or zirconium hydrofluoric acid is more preferable in that the effect of the present invention is more excellent.
Examples of the salt of hydrofluoric acid include a salt of hydrofluoric acid and a base (for example, an amine compound), preferably a base containing no metal such as an ammonium salt. Examples of the salt of zirconium hydrofluoric acid include metal acid salts such as K 2 ZrF 6 (for example, sodium salt, potassium salt, lithium salt, ammonium salt, etc.).
Further, as the fluorine-containing material (B), two or more of the above compounds may be mixed and used.
(酸成分(C))
 本発明の補給剤中に含まれる酸成分(C)は、補給剤のpHを調整する役割、および、他の成分(フッ素非含有ジルコニウム化合物(A)および/またはフッ素含有物(B))の溶解性を助ける役割を果たす。
 酸成分(C)としては、硝酸、塩酸、硫酸、および、酢酸からなる群から選択される少なくとも1種が挙げられる。なかでも、本発明の効果がより優れる点で、硝酸、または、硫酸がより好ましい。
 なお、酸成分(C)としては、上記酸成分を2種以上混合して使用してもよい。
(Acid component (C))
The acid component (C) contained in the replenisher of the present invention plays a role in adjusting the pH of the replenisher and other components (fluorine-free zirconium compound (A) and / or fluorine-containing material (B)). It plays a role in helping solubility.
Examples of the acid component (C) include at least one selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, and acetic acid. Among these, nitric acid or sulfuric acid is more preferable in that the effect of the present invention is more excellent.
In addition, as an acid component (C), you may mix and use the said acid component 2 or more types.
(各種含有量)
 本発明の補給剤中の各種成分は、以下の(I)~(III)の関係を満足する。
(I)酸成分(C)由来のアニオンの合計モル量(MAC)とフッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)との比(MAC/MF)が0.35以上2.00未満である。
(II)フッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)に由来するジルコニウムイオンの合計濃度(g/L)が25以上である。
(III)フッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)とフッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)に由来するジルコニウムイオンの合計モル量(MZr)との比(MF/MZr)が2.00以上6.00未満である。
 以下に、それぞれの関係について説明する。
(Various contents)
Various components in the replenisher of the present invention satisfy the following relationships (I) to (III).
(I) The ratio (M AC / M F ) between the total molar amount (M AC ) of the anion derived from the acid component (C) and the total molar amount (M F ) of the fluorine ion derived from the fluorine-containing material (B) It is 0.35 or more and less than 2.00.
(II) The total concentration (g / L) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing product (B) is 25 or more.
(III) Total molar amount (M F ) of fluorine ions derived from fluorine-containing material (B) and total molar amount of zirconium ions derived from fluorine-free zirconium compound (A) and fluorine-containing material (B) (M Zr ) (M F / M Zr ) is less than 2.00 and less than 6.00.
Below, each relationship is demonstrated.
((I)について)
 本発明の補給剤中における、酸成分(C)由来のアニオンの合計モル量(MAC)とフッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)との比(MAC/MF)が0.35以上2.00未満である。上記範囲内であれば、該補給剤の保存安定性が優れると共に、金属材料用表面処理液のHFが蓄積することなく、連続的に安定して化成処理皮膜の製造を行うことができる。なかでも、本発明の効果がより優れる範囲として、比(MAC/MF)は0.40超2.00未満が好ましく、0.50超2.00未満がより好ましく、0.50超1.60以下がさらに好ましく、1.00以上1.60以下が特に好ましい。
 比(MAC/MF)が0.35未満の場合、該補給剤の長期保存安定性が劣る。また、比(MAC/MF)が2.00以上の場合、該補給剤を使用し続けると皮膜の付着量が減少して、所望の皮膜を形成できなくなる。
 なお、酸成分(C)(硝酸、塩酸、硫酸、および、酢酸)由来のアニオンとは、NO3 -、Cl-、SO4 2-、CH3COO-を意図する。
(About (I))
Ratio (M AC ) of the total molar amount (M AC ) of the anion derived from the acid component (C) and the total molar amount (M F ) of the fluorine ion derived from the fluorine-containing material (B) in the replenisher of the present invention. / M F ) is 0.35 or more and less than 2.00. Within the above range, the storage stability of the replenisher is excellent, and the chemical conversion coating can be manufactured stably and continuously without accumulating HF of the surface treatment liquid for metal material. Among them, as a range in which the effect of the present invention is more excellent, the ratio (M AC / M F ) is preferably more than 0.40 and less than 2.00, more preferably more than 0.50 and less than 2.00, and more than 0.50. .60 or less is more preferable, and 1.00 or more and 1.60 or less is particularly preferable.
When the ratio (M AC / M F ) is less than 0.35, the long-term storage stability of the replenisher is poor. Further, when the ratio (M AC / M F) is 2.00 or more, the amount of deposition of the film continued use of the replenisher is reduced, it is no longer possible to create the desired coating.
The anion derived from the acid component (C) (nitric acid, hydrochloric acid, sulfuric acid, and acetic acid) intends NO 3 , Cl , SO 4 2− , and CH 3 COO .
((II)について)
 本発明の補給剤中における、フッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)に由来するジルコニウムイオンの合計濃度(g/L)は、25以上である。上記範囲内であれば、より経済的な化成処理皮膜の製造を行うことができる。なかでも、補給剤使用量が少なく操業経済性がより優れる点で、ジルコニウムイオンの合計濃度(g/L)は、30以上が好ましく、35以上がより好ましい。上限は特に制限されないが、フッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)の溶解性の点から、70以下の場合が多い。
 なお、ジルコニウムイオンの合計濃度(g/L)が25未満の場合、該補給剤濃度が希薄な為、金属材料用表面処理液へ該補給剤を多量に補給せねばならず、それに伴い過給水となり金属材料用表面処理液容量が増加し、結果として、連続して皮膜処理を行うためには金属材料用表面処理液のオートドレインの量を増やすことが必要となり、環境的および経済的な点から好ましくない。
 また、フッ素含有物(B)として、ジルコニウムフッ化水素酸またはその塩が使用される場合は、フッ素含有物(B)由来のジルコニウムイオンが供給される。
(About (II))
The total concentration (g / L) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing material (B) in the replenisher of the present invention is 25 or more. If it is in the said range, a more economical chemical conversion treatment film can be manufactured. Among them, the total concentration (g / L) of zirconium ions is preferably 30 or more, and more preferably 35 or more, from the viewpoint that the amount of the replenisher used is small and the operation economy is more excellent. The upper limit is not particularly limited, but it is often 70 or less from the viewpoint of the solubility of the fluorine-free zirconium compound (A) and the fluorine-containing product (B).
When the total concentration of zirconium ions (g / L) is less than 25, the concentration of the replenisher is dilute, so that a large amount of the replenisher must be replenished to the surface treatment liquid for metal material, and supercharged water is accordingly added As a result, the volume of the surface treatment liquid for metal materials has increased, and as a result, it is necessary to increase the amount of auto drain of the surface treatment liquid for metal materials in order to perform continuous film treatment. Is not preferable.
Further, when zirconium hydrofluoric acid or a salt thereof is used as the fluorine-containing material (B), zirconium ions derived from the fluorine-containing material (B) are supplied.
((III)について)
 本発明の補給剤中における、フッ素非含有ジルコニウム化合物(A)およびフッ素含有物(B)に由来するジルコニウムイオンの合計モル量(MZr)と、フッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)との比(MF/MZr)は、2.00以上6.00未満である。上記範囲内であれば、金属材料用表面処理液のHFが蓄積することなく、連続的に安定して化成処理皮膜の製造を行うことができる。なかでも、本発明の効果がより優れる範囲は、比(MF/MZr)は2.50~5.50が好ましく、3.00~5.00がより好ましい。
 比(MF/MZr)が2.00未満の場合、補給剤中へジルコニウムイオンを溶解させることが難しい。また、当該比(MF/MZr)が6.00以上の場合、該補給剤を使用し続けると金属材料用表面処理液中のHFの蓄積を回避することができない為、安定して化成処理皮膜の製造を行う場合にはオートドレインの量を増やすことが必要となり、環境的および経済的な点から好ましくない。
(About (III))
The total molar amount (M Zr ) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing material (B) in the replenisher of the present invention, and the fluorine ions derived from the fluorine-containing material (B) The ratio (M F / M Zr ) to the total molar amount (M F ) is 2.00 or more and less than 6.00. If it is in the said range, HF of the surface treatment liquid for metal materials will not accumulate | store, but manufacture of a chemical conversion treatment film can be performed stably stably. In particular, the ratio (M F / M Zr ) is preferably 2.50 to 5.50, more preferably 3.00 to 5.00, in which the effect of the present invention is more excellent.
When the ratio (M F / M Zr ) is less than 2.00, it is difficult to dissolve zirconium ions in the replenisher. In addition, when the ratio (M F / M Zr ) is 6.00 or more, if the replenisher is continuously used, accumulation of HF in the surface treatment liquid for metal material cannot be avoided. In the case of producing a treated film, it is necessary to increase the amount of auto drain, which is not preferable from an environmental and economic point of view.
 上述した各種イオンの測定は、公知の測定機器、原子吸光、ICP、イオンクロマト、または、フッ素イオンメーターを用いて測定できる。 The measurement of various ions described above can be performed using a known measuring instrument, atomic absorption, ICP, ion chromatography, or a fluorine ion meter.
 本発明の補給剤中における、フッ素非含有ジルコニウム化合物(A)の含有量は上記(I)~(III)の関係を満たせば特に制限されないが、化成処理皮膜の析出効率がより優れる点で、フッ素含有物(B)100質量部に対して、0.1~500質量部が好ましく、10~300質量部がより好ましい。 The content of the fluorine-free zirconium compound (A) in the replenisher of the present invention is not particularly limited as long as the relations (I) to (III) are satisfied, but the deposition efficiency of the chemical conversion film is more excellent. The amount is preferably from 0.1 to 500 parts by weight, more preferably from 10 to 300 parts by weight, based on 100 parts by weight of the fluorine-containing material (B).
 本発明の補給剤のpHは特に制限されないが、補給剤の安定性が優れる点で、4.0未満が好ましく、0超1.5以下がより好ましい。なお、pH調整を行う場合に、アルカリ成分を使用することもできる。アルカリ成分としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属酸化物、水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属の水酸化物、アンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなど有機アミンが挙げられる。なかでも、金属のコンタミが無く、有機溶媒を含まないという点より、アンモニアを使用することが好ましい。 The pH of the replenisher of the present invention is not particularly limited, but is preferably less than 4.0 and more preferably more than 0 and 1.5 or less in terms of excellent stability of the replenisher. In addition, when adjusting pH, an alkali component can also be used. Alkali components include alkali metal oxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, organic substances such as ammonia, monoethanolamine, diethanolamine, and triethanolamine. Examples include amines. Among them, it is preferable to use ammonia from the viewpoint that there is no metal contamination and no organic solvent is contained.
 本発明の補給剤は、必要に応じて、溶媒を含んでいてもよい。使用される溶媒の種類は特に制限されず、通常、水および/または有機溶媒が使用される。
 有機溶媒としては、例えば、アルコール系溶媒などが挙げられる。有機溶媒の含有量に関しては、補給剤の安定性と、補給剤を用いて補給する金属材料用表面処理液の安定性を害さない範囲であればよいが、作業環境の観点から使用しないのが好ましい。
 補給剤が溶媒を含む場合の上記フッ素非含有ジルコニウム化合物(A)、フッ素含有物(B)、および酸成分(C)の合計質量は、化成処理皮膜の析出効率がより優れる点で、補給剤全量に対して、2~90質量%が好ましく、4~80質量%がより好ましい。
The replenisher of the present invention may contain a solvent, if necessary. The kind in particular of solvent used is not restrict | limited, Usually, water and / or an organic solvent are used.
Examples of the organic solvent include alcohol solvents. Regarding the content of the organic solvent, it may be in a range that does not impair the stability of the replenisher and the stability of the surface treatment liquid for metal material replenished with the replenisher, but it should not be used from the viewpoint of the working environment. preferable.
When the replenisher contains a solvent, the total mass of the fluorine-free zirconium compound (A), the fluorine-containing material (B), and the acid component (C) is the replenisher in that the deposition efficiency of the chemical conversion coating is more excellent. 2 to 90% by mass is preferable with respect to the total amount, and 4 to 80% by mass is more preferable.
 なお、本発明の補給剤の製造方法は特に制限されず、公知の方法が採用される。例えば、溶媒中に、フッ素非含有ジルコニウム化合物(A)とフッ素含有物(B)と酸成分(C)を加えて、混合する方法が挙げられる。 In addition, the manufacturing method of the replenisher of the present invention is not particularly limited, and a known method is adopted. For example, a method in which a fluorine-free zirconium compound (A), a fluorine-containing material (B), and an acid component (C) are added and mixed in a solvent can be mentioned.
[表面処理金属材料の製造方法]
 以下では、本発明の補給剤を使用した表面処理金属材料の製造方法について説明する。
 本発明の表面処理金属材料の製造方法は、ジルコニウムイオンおよびフッ素イオンを含む金属材料用表面処理液中で金属材料に連続して化成処理および/または電解処理を施し、金属材料上にジルコニウムを含有する化成処理皮膜を形成する方法である。
 上記表面処理金属材料の製造方法を連続して実施すると、それに応じて金属材料用表面処理液中のジルコニウムイオンの濃度が低下し、ジルコニウム化合物の皮膜が生成しにくくなる。このようなジルコニウムイオンの濃度低下分を補うために、上述した該補給剤が金属材料用表面処理液中に補給される。
 なお、一般的には、連続して安定的に金属材料上に所定の化成処理皮膜を得るために、ジルコニウムイオン濃度が20%以上低下しないように該補給剤を加えることが好ましい。ジルコニウムと同時に補給される全フッ素イオン量は、化成処理皮膜に含まれる全フッ素イオン量と金属材料に付着して持ち出される金属材料用表面処理液中に含まれる全フッ素イオン量の合計量から、ジルコニウム化合物の皮膜が生成する際に金属材料用表面処理液中に副生成するHFのフッ素イオン量を差し引いた量を補給することが好ましい。
[Method for producing surface-treated metal material]
Below, the manufacturing method of the surface treatment metal material using the replenisher of this invention is demonstrated.
In the method for producing a surface-treated metal material according to the present invention, a metal material is continuously subjected to chemical conversion treatment and / or electrolytic treatment in a surface treatment solution for metal material containing zirconium ions and fluorine ions, and zirconium is contained on the metal material. This is a method of forming a chemical conversion treatment film.
When the method for producing the surface-treated metal material is continuously carried out, the concentration of zirconium ions in the surface treatment liquid for metal material is lowered accordingly, and it becomes difficult to form a film of the zirconium compound. In order to compensate for such a decrease in the concentration of zirconium ions, the above-described replenisher is replenished into the surface treatment liquid for metal material.
In general, it is preferable to add the replenisher so that the zirconium ion concentration does not decrease by 20% or more in order to obtain a predetermined chemical conversion coating on the metal material continuously and stably. The total fluorine ion amount replenished simultaneously with zirconium is determined from the total amount of total fluorine ions contained in the chemical treatment film and the total amount of fluorine ions contained in the surface treatment solution for metal materials taken out of the metal material. It is preferable to replenish the amount obtained by subtracting the amount of fluorine ions of HF produced as a by-product in the surface treatment solution for metal material when a zirconium compound film is formed.
 なお、本発明の補給剤を金属材料用表面処理液に加える方法は特に制限されず、補給剤を少量ずつ分割して数回にわたって加える方法(方法A)や、所定量の補給剤を一括して加える方法(方法B)が挙げられる。なかでも、金属材料用表面処理液中の成分変動が小さく、連続して安定的に表面処理金属材料の製造を行うことができる点より、方法Aが好ましい。
 また、本発明の補給剤を金属材料用表面処理液に加える際には、一旦製造を中止して、金属材料用表面処理液に補給剤を加える方法、および、製造を中止せずに、表面処理金属材料の製造方法の最中に金属材料用表面処理液に補給剤を加える方法のいずれを採用してもよい。なかでも、特に高速操業の際の生産効率に優れ、連続して安定的に表面処理金属材料の製造方法を行うことができる点より、表面処理金属材料の製造方法の最中に金属材料用表面処理液に補給剤を加える方法が好ましい。
 以後、本発明の表面処理金属材料の製造方法で使用される金属材料用表面処理液について説明する。
The method of adding the replenisher of the present invention to the surface treatment solution for metal material is not particularly limited, and a method of adding the replenisher in small portions (Method A) or a predetermined amount of replenisher in a lump. (Method B). Especially, the method A is preferable from the point that the component fluctuation | variation in the surface treatment liquid for metal materials is small and can manufacture a surface treatment metal material stably continuously.
In addition, when adding the replenisher of the present invention to the surface treatment liquid for metal material, the method of adding the replenisher to the surface treatment liquid for metal material, and the surface without stopping production, Any method of adding a replenisher to the surface treatment liquid for metal material during the method for producing the treated metal material may be employed. In particular, the surface for metal materials during the manufacturing method of surface-treated metal materials is superior in that it is excellent in production efficiency especially at high-speed operation, and can continuously and stably produce the surface-treated metal materials. A method of adding a replenisher to the treatment liquid is preferred.
Hereinafter, the surface treatment liquid for metal material used in the method for producing a surface-treated metal material of the present invention will be described.
(金属材料用表面処理液)
 上述した本発明の表面処理金属材料の製造方法で用いられる金属材料用表面処理液には、Zrイオンおよびフッ素イオンが含有される。
 金属材料用表面処理液中のジルコニウムイオンの供給源としては、例えば、上述したフッ素非含有ジルコニウム化合物(A)、ジルコニウムフッ化水素酸またはその塩などが挙げられる。
 なお、金属材料用表面処理液中のZrイオンとしては、(1)ZrF (4-n)で示されるように、ジルコニウム1モルに対して1~6モルのフッ素が配位した錯フッ化ジルコニウムイオン、および、(2)硝酸ジルコニウムや硫酸ジルコニウムなどの無機酸ジルコニウムもしくはジルコニル、または、酢酸ジルコニウムや酢酸ジルコニルなどの有機酸ジルコニウムもしくはジルコニルから生じた、ジルコニウムイオンもしくはジルコニルイオンの双方を指す。
 金属材料用表面処理液中のジルコニウムイオンの含有量は特に制限されないが、金属材料用表面処理液の安定性により優れ、化成処理皮膜の析出効率にもより優れる点で、0.05~10.00g/Lが好ましく、0.10~2.00g/Lがより好ましい。
(Surface treatment solution for metal materials)
The surface treatment liquid for metal material used in the method for producing a surface-treated metal material of the present invention described above contains Zr ions and fluorine ions.
Examples of the supply source of zirconium ions in the surface treatment liquid for metal materials include the above-described fluorine-free zirconium compound (A), zirconium hydrofluoric acid, or a salt thereof.
As Zr ions in the surface treatment liquid for metal materials, as shown in (1) ZrF n (4-n) , complex fluorination in which 1 to 6 mol of fluorine is coordinated to 1 mol of zirconium. It refers to both zirconium ions and (2) zirconium or zirconyl inorganic acids such as zirconium nitrate or zirconium sulfate, or zirconium or zirconyl ions generated from organic acid zirconium or zirconyl such as zirconium acetate or zirconyl acetate.
The content of zirconium ions in the surface treatment liquid for metal material is not particularly limited, but is 0.05 to 10.5 in that it is more excellent in stability of the surface treatment liquid for metal material and more excellent in deposition efficiency of the chemical conversion film. 00 g / L is preferable, and 0.10 to 2.00 g / L is more preferable.
 また、金属材料用表面処理液中のフッ素イオンの供給源としては、公知のフッ素を含む化合物(フッ素含有化合物)が使用される。
 なお、フッ素含有化合物として、Ti、Zr、Hf、Si、AlおよびBからなる群から選ばれる原子の少なくとも1種の元素を有するものが好適に用いられる。具体的には、例えば、(TiF62-、(ZrF62-、(HfF62-、(SiF62-、(AlF63-、(BF4OH)-などのアニオンに水素原子が1~3原子配位した錯体、これらのアニオンのアンモニウム塩、これらのアニオンの金属塩等が挙げられる。
 その他にも、フッ素含有化合物としては、例えば、フッ化水素酸、そのアンモニウム塩、そのアルカリ金属塩や、金属フッ化物(例えば、フッ化アルミニウム、フッ化亜鉛、フッ化バナジウム、フッ化スズ、フッ化マンガン、フッ化第一鉄、フッ化第二鉄、など)や、酸フッ化物(例えば、酸化フッ素、フッ化アセチル、フッ化ベンゾイルなど)が挙げられる。
 なお、金属材料用表面処理液中のフッ素イオンは、金属材料用表面処理液中に存在するHF由来のフッ素イオン(F-)と、上記錯フッ化ジルコニウムイオンのようにフッ素含有錯イオン中のフッ素イオンの双方を指し、前述および後述の全フッ素イオン濃度はこの双方の合計濃度を指す。遊離フッ素濃度はHF由来のフッ素イオン(F-)の濃度を指す。
 金属材料用表面処理液中の全フッ素イオンの含有量は特に制限されないが、金属材料用表面処理液の安定性により優れ、化成処理皮膜の析出効率にもより優れる点で、全フッ素イオン濃度として0.050~10.000g/Lが好ましく、0.100~3.000g/Lがより好ましい。遊離フッ素イオン濃度としては、5mg/L~400mg/Lが好ましく、10~250mg/Lがより好ましい。
In addition, a known fluorine-containing compound (fluorine-containing compound) is used as a supply source of fluorine ions in the surface treatment liquid for metal materials.
As the fluorine-containing compound, those having at least one element selected from the group consisting of Ti, Zr, Hf, Si, Al and B are preferably used. Specifically, for example, (TiF 6 ) 2− , (ZrF 6 ) 2− , (HfF 6 ) 2− , (SiF 6 ) 2− , (AlF 6 ) 3− , (BF 4 OH) −, etc. A complex in which 1 to 3 hydrogen atoms are coordinated to an anion, an ammonium salt of these anions, a metal salt of these anions and the like can be mentioned.
In addition, examples of the fluorine-containing compound include hydrofluoric acid, its ammonium salt, its alkali metal salt, and metal fluoride (for example, aluminum fluoride, zinc fluoride, vanadium fluoride, tin fluoride, fluorine fluoride). Manganese fluoride, ferrous fluoride, ferric fluoride, etc.) and oxyfluorides (eg, fluorine oxide, acetyl fluoride, benzoyl fluoride, etc.).
Fluorine ions in the surface treatment liquid for metal materials are HF-derived fluorine ions (F ) present in the surface treatment liquid for metal materials and fluorine-containing complex ions such as the above complex zirconium fluoride ions. It refers to both fluorine ions, and the total fluorine ion concentration described above and below refers to the total concentration of both. The free fluorine concentration refers to the concentration of fluorine ions (F ) derived from HF.
The content of total fluorine ions in the surface treatment liquid for metal materials is not particularly limited, but the total fluorine ion concentration is superior in terms of the stability of the surface treatment liquid for metal materials and the deposition efficiency of the chemical conversion coating. 0.050 to 10.000 g / L is preferable, and 0.100 to 3.000 g / L is more preferable. The free fluorine ion concentration is preferably 5 mg / L to 400 mg / L, more preferably 10 to 250 mg / L.
 なお、金属材料用表面処理液中のZrイオンおよび全フッ素イオン、遊離フッ素イオンの含有量(濃度)は、原子吸光、ICP、イオンクロマト、または、フッ素イオンメーターを用いて定量することができる。 The content (concentration) of Zr ions, total fluorine ions, and free fluorine ions in the surface treatment solution for metal materials can be quantified using atomic absorption, ICP, ion chromatography, or a fluorine ion meter.
 金属材料用表面処理液のpHは、対象とする金属材料や化成処理または電解処理の条件などに応じて適宜調整されるが、金属材料用表面処理液の安定性により優れ、化成処理皮膜の析出性にもより優れる点で、2.5~5.0程度が好ましく、3.0~5.0がより好ましい。なお、金属材料用表面処理液のpHは、pHメーターを用いて測定することができる。 The pH of the surface treatment solution for metal materials is adjusted as appropriate according to the target metal material and the conditions of chemical conversion treatment or electrolytic treatment, but it is superior in stability of the surface treatment solution for metal materials and deposits of the chemical conversion treatment film. From the viewpoint of more excellent properties, it is preferably about 2.5 to 5.0, more preferably 3.0 to 5.0. In addition, pH of the surface treatment liquid for metal materials can be measured using a pH meter.
 以後、本発明の表面処理金属材料の製造方法で使用される金属材料、並びに、化成処理および電解処理について説明する。 Hereinafter, the metal material used in the method for producing the surface-treated metal material of the present invention, and the chemical conversion treatment and the electrolytic treatment will be described.
(金属材料)
 使用される金属材料の種類は特に制限されず、公知の金属材料を使用することができる。例えば、鉄系材料、めっき系材料、亜鉛系材料、アルミニウム系材料、マグネシウム系材料などが挙げられる。
 金属材料の形状は特に制限されず、板状であっても、他の形状であってもよい。他の形状としては、例えば、自動車などの輸送機器の車体およびその部品、農機具およびその部品、鋼製家具、建材などが挙げられる。
(Metal material)
The kind in particular of metal material to be used is not restrict | limited, A well-known metal material can be used. Examples thereof include iron-based materials, plating-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials.
The shape of the metal material is not particularly limited, and may be a plate shape or another shape. Other shapes include, for example, the body and parts of transportation equipment such as automobiles, agricultural equipment and parts, steel furniture, building materials, and the like.
(化成処理または電解処理)
 上記の金属材料用表面処理液を使用した化成処理としては、公知の処理設備を使用して、公知の条件で実施することができる。なお、化成処理とは、金属材料に対して、所定の金属材料用表面処理液を常温または加温して接触(浸漬または塗布またはスプレー)させ、金属材料表面上に皮膜を形成する処理である。
 金属材料と金属材料用表面処理液を接触させる時間は、対象とする金属材料の材質や形状や処理方式、および用途、狙いの皮膜付着量に応じて適宜調整されるが、化成処理皮膜としての特性がより優れる点で、通常、0.1~600秒程度の場合が多い。
 また、金属材料用表面処理液を使用した電解処理(陽極電解処理、陰極電解処理)としては、公知の電解処理設備を使用して、公知の条件で実施することができる。
 例えば、化成処理皮膜の析出効率がより優れる点で、電流密度としては0.1~20.0A/dm2が好ましく、0.5~10.0A/dm2がより好ましい。
 形成された化成処理皮膜のジルコニウム付着量は、対象とする金属材料の材質や用途に応じて適宜調整されるが、化成処理皮膜としての特性がより優れる点で、化成処理および電解処理のいずれかの場合も、通常、1~70mg/m2程度の場合が多い。
(Chemical conversion treatment or electrolytic treatment)
The chemical conversion treatment using the above-described surface treatment solution for metal material can be carried out under known conditions using a known treatment facility. The chemical conversion treatment is a treatment for forming a film on the surface of the metal material by bringing a predetermined surface treatment liquid for the metal material into contact with the metal material at room temperature or warming (immersion, coating, or spraying). .
The time for contacting the metal material with the surface treatment liquid for the metal material is appropriately adjusted according to the material, shape, treatment method, application, and target coating amount of the target metal material. Usually, it is often about 0.1 to 600 seconds in terms of more excellent characteristics.
Moreover, as the electrolytic treatment (anodic electrolytic treatment, cathodic electrolytic treatment) using the surface treatment liquid for metal material, it can be carried out under known conditions using a known electrolytic treatment facility.
For example, the current density is preferably from 0.1 to 20.0 A / dm 2 and more preferably from 0.5 to 10.0 A / dm 2 from the viewpoint of more excellent deposition efficiency of the chemical conversion coating.
The amount of zirconium deposited on the formed chemical conversion coating is appropriately adjusted according to the material and application of the target metal material. However, either the chemical conversion treatment or the electrolytic treatment can be used because the properties as the chemical conversion coating are more excellent. In many cases, the amount is usually about 1 to 70 mg / m 2 .
 以下、具体的な実施例を挙げて本発明を説明する。本実施例はあくまで本発明を説明する一部に過ぎず、本発明を限定するものではない。 Hereinafter, the present invention will be described with specific examples. The present embodiment is merely a part for explaining the present invention, and does not limit the present invention.
(供試板)
 実施例と比較例とで使用される供試板には、以下の(1)~(3)を用いた。
 (1)アルミ合金板(6000系アルミニウム合金 板厚:0.8mm)
 (2)冷間圧延鋼板(SPC、板厚:0.8mm)
 (3)合金化溶融亜鉛めっき鋼板(GA、板厚:0.8mm)
(Test plate)
The following (1) to (3) were used as test plates used in Examples and Comparative Examples.
(1) Aluminum alloy plate (6000 series aluminum alloy plate thickness: 0.8mm)
(2) Cold rolled steel plate (SPC, plate thickness: 0.8 mm)
(3) Alloyed hot-dip galvanized steel sheet (GA, thickness: 0.8 mm)
(補給剤)
 表1に示す、フッ素非含有ジルコニウム化合物(A)と、フッ素含有物(B)と、酸成分(C)とを、表1に示す組成となるように、水中で混合し、各種補給剤を調製した。
(Supplement)
The fluorine-free zirconium compound (A), fluorine-containing product (B), and acid component (C) shown in Table 1 are mixed in water so as to have the composition shown in Table 1, and various replenishers are added. Prepared.
(金属材料の表面処理方法)
 後述する実施例および比較例の金属材料の表面処理方法は、以下の手順に従って行った。
(1)脱脂
(2)水洗(水道水)
(3)化成処理
(4)水洗(水道水)
(5)水洗(イオン交換水)
(6)水切り乾燥
 なお、上記における脱脂は、日本パーカライジング社製アルカリ脱脂剤ファインクリーナーL4460(2.0%、45℃、120秒、スプレー処理)を用いて行った。
 化成処理の方法については次の連続処理試験方法にて詳細は説明する。また、水切り乾燥では、ロールで水切りを行った後、100℃雰囲気オーブンで乾燥を行った。
(Surface treatment method for metal materials)
The surface treatment method of the metal material of the Example and comparative example which are mentioned later was performed according to the following procedures.
(1) Degreasing (2) Washing with water (tap water)
(3) Chemical conversion treatment (4) Water washing (tap water)
(5) Water washing (ion exchange water)
(6) Draining and drying In addition, the degreasing | defatting in the above was performed using Nippon Parkerizing Co., Ltd. alkali degreasing agent fine cleaner L4460 (2.0%, 45 degreeC, 120 second, spray process).
Details of the chemical conversion treatment method will be described in the following continuous treatment test method. Moreover, in draining drying, after performing draining with a roll, it dried in 100 degreeC atmosphere oven.
(連続処理試験方法(ランニング性試験))
 上記化成処理としては、以下の連続処理方法1~3のいずれかを実施した。
<連続処理方法1>
 下記成分濃度の処理液を10L建浴して、pH4.0とし、40℃に加温したものを金属材料用表面処理液とした。この処理液を攪拌し、供試板(1)を180秒間浸漬して、狙いZr付着量13mg/m2の表面処理を行った。これを1回の処理として、その後、新たな供試板(1)を用いて繰り返し表面処理(連続処理試験)を行った。この際、供試板(1)に付着し、持ち出される処理液(持出し液)の液量は75mL/m2であったため、処理負荷0.5m2/L毎に液面および処理液中のZr濃度低下分の補充を水および表1に示す補給剤で行い、液面と同時にZr濃度の調整を行った。処理液のpHについても0.5m2/L毎に、必要に応じてアンモニア水で調整した。上記連続試験は、処理液総量の10Lが、持出し液で100%置換されるまで行った。すなわち、13.3m2/Lの処理負荷となるまで試験を行い、連続試験初期のZr付着量と13.3m2/L処理時のZr付着量を測定した。なお、処理材表面上のZr付着量はXRF(蛍光X線分析法)を用いて定量した。
(Continuous processing test method (running test))
As the chemical conversion treatment, any one of the following continuous treatment methods 1 to 3 was performed.
<Continuous processing method 1>
A treatment solution having the following component concentrations was bathed for 10 L, adjusted to pH 4.0, and heated to 40 ° C. to obtain a surface treatment solution for metal materials. The treatment liquid was stirred, and the test plate (1) was immersed for 180 seconds to perform a surface treatment with a target Zr adhesion amount of 13 mg / m 2 . This was treated as a single treatment, and thereafter a surface treatment (continuous treatment test) was repeatedly performed using a new test plate (1). At this time, since the amount of the processing liquid (take-out liquid) adhering to the test plate (1) and taking out was 75 mL / m 2 , the liquid level and the processing liquid in the processing liquid every 0.5 m 2 / L processing load. Replenishment of the Zr concentration drop was performed with water and the replenisher shown in Table 1, and the Zr concentration was adjusted simultaneously with the liquid level. The pH of the treatment liquid was also adjusted with ammonia water as necessary every 0.5 m 2 / L. The above-mentioned continuous test was performed until 10 L of the total amount of the processing solution was replaced with 100% by the carry-out solution. That is, the test was performed until the treatment load reached 13.3 m 2 / L, and the Zr adhesion amount at the initial stage of the continuous test and the Zr adhesion amount during the 13.3 m 2 / L treatment were measured. In addition, the Zr adhesion amount on the treatment material surface was quantified using XRF (fluorescence X-ray analysis method).
(処理液成分)
 各種成分の濃度は、Zrイオン:100mg/L、全Fイオン:150mg/L、遊離Fイオン:25mg/L、NO3イオン:190mg/Lであった。
(Processing liquid components)
The concentration of each component was Zr ion: 100 mg / L, total F ion: 150 mg / L, free F ion: 25 mg / L, NO 3 ion: 190 mg / L.
<連続処理方法2>
 下記成分濃度の処理液を10L建浴して、pH4.0とし、40℃に加温したものを金属材料用表面処理液とした。この処理液を攪拌し、供試板(2)を120秒間浸漬して、狙いZr付着量20mg/m2の表面処理を行った。これを1回の処理として、その後新たな供試板(2)を用いて繰り返し表面処理(連続処理試験)を行った。この際、供試板(2)に付着し、持ち出される処理液(持出し液)の液量は60mL/m2であったため、処理負荷0.5m2/L毎に液面および処理液中のZr濃度低下分の補充を水および表1に示す補給剤で行い、液面と同時にZr濃度の調整を行った。処理液のpHについても0.5m2/L毎に、必要に応じてアンモニア水で調整した。上記連続試験は、処理液総量の10Lが、持出し液で100%置換されるまで行った。すなわち、16.7m2/Lの処理負荷となるまで試験を行い、連続試験初期のZr付着量と16.7m2/L処理時のZr付着量を測定した。なお、処理材表面上のZr付着量はXRF(蛍光X線分析法)を用いて定量した。
<Continuous processing method 2>
A treatment solution having the following component concentrations was bathed for 10 L, adjusted to pH 4.0, and heated to 40 ° C. to obtain a surface treatment solution for metal materials. This treatment liquid was stirred, and the test plate (2) was immersed for 120 seconds to perform a surface treatment with a target Zr deposition amount of 20 mg / m 2 . This was treated as one time, and then a new surface treatment (continuous treatment test) was performed using a new test plate (2). At this time, since the amount of the processing liquid (take-out liquid) adhering to the test plate (2) and taken out was 60 mL / m 2 , the liquid surface and the processing liquid in every 0.5 m 2 / L of processing load Replenishment of the Zr concentration drop was performed with water and the replenisher shown in Table 1, and the Zr concentration was adjusted simultaneously with the liquid level. The pH of the treatment liquid was also adjusted with ammonia water as necessary every 0.5 m 2 / L. The above-mentioned continuous test was performed until 10 L of the total amount of the processing solution was replaced with 100% by the carry-out solution. That is, the test was performed until the treatment load reached 16.7 m 2 / L, and the Zr adhesion amount at the initial stage of the continuous test and the Zr adhesion amount at the time of 16.7 m 2 / L treatment were measured. In addition, the Zr adhesion amount on the treatment material surface was quantified using XRF (fluorescence X-ray analysis method).
(処理液成分)
 各種成分の濃度は、Zrイオン:500mg/L、全Fイオン:680mg/L、遊離Fイオン:36mg/L、NO3イオン:750mg/Lであった。
(Processing liquid components)
The concentrations of the various components were Zr ions: 500 mg / L, total F ions: 680 mg / L, free F ions: 36 mg / L, NO 3 ions: 750 mg / L.
<連続処理方法3>
 下記成分濃度の処理液を10L建浴して、pH3.7とし、40℃に加温したものを金属材料用表面処理液とした。この処理液を攪拌し、供試板(3)を30秒間浸漬して、狙いZr付着量10mg/m2の表面処理を行った。これを1回の処理として、その後新たな供試板(3)を用いて繰り返し表面処理(連続処理試験)を行った。この際、供試板(3)に付着し、持ち出される処理液(持出し液)の液量は22mL/m2であったため、処理負荷0.5m2/L毎に液面および処理液中のZr濃度低下分の補充を水および表1に示す補給剤で行い、液面と同時にZr濃度の調整を行った。処理液のpHについても0.5m2/L毎に、必要に応じてアンモニア水で調整した。上記連続試験は、処理液総量の10Lが、持出し液で100%置換されるまで行った。すなわち、45.5m2/Lの処理負荷となるまで試験を行い、連続試験初期のZr付着量と45.5m2/L処理時のZr付着量を測定した。なお、処理材表面上のZr付着量はXRF(蛍光X線分析法)を用いて定量した。
<Continuous processing method 3>
A treatment solution having the following component concentrations was bathed for 10 L, adjusted to pH 3.7, and heated to 40 ° C. as a surface treatment solution for metal materials. The treatment liquid was stirred, and the test plate (3) was immersed for 30 seconds to perform a surface treatment with a target Zr deposition amount of 10 mg / m 2 . This was treated as a single treatment, and thereafter a surface treatment (continuous treatment test) was repeatedly performed using a new test plate (3). At this time, the amount of the treatment liquid (take-out liquid) adhering to the test plate (3) and taken out was 22 mL / m 2 , so the liquid level and the amount of the treatment liquid in the treatment liquid were increased every 0.5 m 2 / L. Replenishment of the Zr concentration drop was performed with water and the replenisher shown in Table 1, and the Zr concentration was adjusted simultaneously with the liquid level. The pH of the treatment liquid was also adjusted with ammonia water as necessary every 0.5 m 2 / L. The above-mentioned continuous test was performed until 10 L of the total amount of the processing solution was replaced with 100% by the carry-out solution. That is, the test was performed until the treatment load reached 45.5 m 2 / L, and the Zr adhesion amount at the initial stage of the continuous test and the Zr adhesion amount at the time of 45.5 m 2 / L treatment were measured. In addition, the Zr adhesion amount on the treatment material surface was quantified using XRF (fluorescence X-ray analysis method).
(処理液成分)
 各種成分の濃度は、Zrイオン:1500mg/L、全Fイオン:2010mg/L、遊離Fイオン:95mg/L、NO3イオン:2190mg/Lであった。
(Processing liquid components)
The concentration of each component was Zr ion: 1500 mg / L, total F ion: 2010 mg / L, free F ion: 95 mg / L, NO 3 ion: 2190 mg / L.
(評価試験)
 表1に示す補給剤を用いて、下記に示す(A)、(B)の評価を行った。
(A)補給剤保管安定性試験(長期保管性)
 表1に示す補給剤について、ポリ容器内に密閉し、製造直後から35℃環境下で最大6ヶ月保管を行い、液外観を評価した。評価基準は以下の通りである。実用上、「○」または「◎」が好ましい。
 ◎:6ヶ月後の外観に変化なし
 ○:3ヶ月後から6ヶ月未満の間に外観に変化あり
 △:2週間後から3ヶ月未満の間に外観に変化あり
 ×:2週間以内で沈殿または濁りまたはゲル化が確認される
 なお、外観に変化なしとは、沈殿物、濁りおよびゲル化の内全てが確認されず、無色透明の状態を示す。
(Evaluation test)
Using the replenishers shown in Table 1, the following (A) and (B) were evaluated.
(A) Replenisher storage stability test (long-term storage)
The replenishers shown in Table 1 were sealed in a plastic container and stored for up to 6 months in a 35 ° C. environment immediately after production to evaluate the liquid appearance. The evaluation criteria are as follows. Practically, “◯” or “◎” is preferable.
◎: No change in appearance after 6 months ○: Change in appearance between 3 months and less than 6 months △: Change in appearance between 2 weeks and less than 3 months ×: Precipitation or precipitation within 2 weeks Turbidity or gelation is confirmed. “No change in appearance” means that all of precipitates, turbidity and gelation are not confirmed, and the state is colorless and transparent.
(B)ランニング性試験(連続処理性試験)
 表1に示す処理方法で連続処理試験を行い、試験初期(1回目)と処理液の置換率100%時のテストピース(供試板)のZr付着量を測定し、その値を比較した。評価基準は以下の通りである。実用上、「○」または「◎」が好ましい。
 ◎:連続処理試験初期のZr付着量に対し、100%置換後のZr付着量が95%以上105%未満
 ○:連続処理試験初期のZr付着量に対し、100%置換後のZr付着量が85%以上95%未満
 △:連続処理試験初期のZr付着量に対し、100%置換後のZr付着量が50%以上85%未満
 ×:連続処理試験初期のZr付着量に対し、100%置換後のZr付着量が50%未満
(B) Running test (continuous process test)
A continuous treatment test was conducted by the treatment method shown in Table 1, and the Zr adhesion amount of the test piece (test plate) at the initial stage of the test (first time) and when the treatment solution substitution rate was 100% was measured, and the values were compared. The evaluation criteria are as follows. Practically, “◯” or “◎” is preferable.
A: Zr adhesion amount after 100% substitution is 95% or more and less than 105% with respect to the Zr adhesion amount at the initial stage of the continuous treatment test. O: Zr adhesion amount after 100% substitution with respect to the Zr adhesion amount at the initial stage of the continuous treatment test. 85% or more and less than 95% Δ: Zr adhesion amount after 100% substitution is 50% or more and less than 85% with respect to the Zr adhesion amount at the initial stage of the continuous treatment test. The amount of Zr adhesion after is less than 50%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、「炭酸Zr」は炭酸ジルコニウムを、「塩基炭酸Zr」は塩基性炭酸ジルコニウムを、「Zr濃度」はジルコニウムイオン濃度(g/L)をそれぞれ示す。 In Table 1, “Zr carbonate” represents zirconium carbonate, “basic carbonate Zr” represents basic zirconium carbonate, and “Zr concentration” represents zirconium ion concentration (g / L).
*1)H2ZrF6:HF=4.6:1(重量比)
*2)比較例1~3においては、補給剤自身の長期保管性が悪く、35℃環境下おいて1週間以内で沈殿が確認されたため、実使用上で使用不可とみなし、ランニング性試験を実施していない。
* 1) H 2 ZrF 6 : HF = 4.6: 1 (weight ratio)
* 2) In Comparative Examples 1 to 3, the long-term storage of the replenisher itself was poor, and precipitation was confirmed within one week in an environment of 35 ° C. Not performed.
 表1に示すように、本発明の補給剤を使用した実施例においては、補給剤の長期保管性が優れると共に、処理の連続処理性(連続運転性)も優れることが確認された。
 なかでも、実施例2~3と実施例1、4~9との比較から分かるように、MAC/MFが0.50超2.00未満の場合、補給剤の長期保管性がより優れることが確認された。
 また、実施例2~3、7~9と実施例1、4~6との比較から分かるように、MAC/MFが0.50超1.60以下の場合、ランニング性(連続運転性)がより優れることが確認された。
As shown in Table 1, in the examples using the replenisher of the present invention, it was confirmed that the long-term storage property of the replenisher was excellent and the continuous processability (continuous operability) of the treatment was also excellent.
Among them, as can be seen from the comparison between Examples 2-3 and Examples 1 and 4 to 9, when M AC / M F is less than 0.50 ultra 2.00, more excellent long-term storage of the replenisher It was confirmed.
As it can be seen from a comparison of Examples 2 to 3, 7 to 9 and Examples 1 and 4 to 6, when M AC / M F is 0.50 ultra 1.60, the running property (continuous operation of ) Was confirmed to be better.
 一方、比(MAC/MF)が所定範囲内より小さい比較例1~3においては、補給剤の保存安定性が劣っていた。
 また、特許文献3(特許第4996409号)の段落〔0033〕に記載のフッ化Zr水素酸と硝酸Zr混合補給液はMAC/MF=0.33であり、表1の比較例1~3に示すように該補給剤では所望の効果が得られなかった。
 比較例4~6においては、補給剤中のジルコニウムを安定化させるアニオンとしてフッ素含有物(B)由来のフッ素よりも酸成分(C)由来のアニオンの比率が高い為と推測されるが、金属材料用表面処理液中へ比較例4~6の補給剤を添加した後、処理液中においてZr-Fの配位よりもジルコニウムと他アニオンとの配位の方が強くなり、成膜反応が安定しにくくなる。これは、H2ZrF6の加水分解を成膜反応として利用しているため、ジルコニウムイオンとFイオンの配位状態が影響したと考えられる。
On the other hand, the ratio (M AC / M F) is in the predetermined range is smaller than Comparative Example 1-3, was inferior storage stability of the replenisher.
In addition, the mixed replenisher for Zr hydrofluoric acid and Zr nitrate described in paragraph [0033] of Patent Document 3 (Patent No. 4996409) has M AC / M F = 0.33, and Comparative Examples 1 to As shown in FIG. 3, the replenisher did not provide the desired effect.
In Comparative Examples 4 to 6, it is presumed that the ratio of the anion derived from the acid component (C) is higher than the fluorine derived from the fluorine-containing material (B) as an anion for stabilizing zirconium in the replenisher. After adding the replenishers of Comparative Examples 4 to 6 to the surface treatment liquid for materials, the coordination between zirconium and other anions is stronger than the coordination of Zr—F in the treatment liquid, and the film formation reaction is increased. It becomes difficult to stabilize. This is presumably because the coordination state of zirconium ions and F ions affected the hydrolysis of H 2 ZrF 6 as a film-forming reaction.

Claims (5)

  1.  金属材料に対して、ジルコニウムを含有する化成処理皮膜を化成処理および/または電解処理によって形成することに用いられる、ジルコニウムイオンおよびフッ素イオンを含む金属材料用表面処理液に対して、ジルコニウムイオンを補給するために使用される補給剤であって、
     塩基性炭酸ジルコニウム、炭酸ジルコニウム、水酸化ジルコニウム、および炭酸ジルコニウムアンモニウムからなる群から選択される少なくとも1種を含むフッ素非含有ジルコニウム化合物(A)と、フッ化水素酸、フッ化水素酸の塩、ジルコニウムフッ化水素酸、および、ジルコニウムフッ化水素酸の塩からなる群から選択される少なくとも1種を含むフッ素含有物(B)と、硝酸、塩酸、硫酸、および、酢酸からなる群から選択される少なくとも1種を含む酸成分(C)とを含有し、
     以下の(I)~(III)を満足する、補給剤。
    (I)前記酸成分(C)由来のアニオンの合計モル量(MAC)と前記フッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)との比(MAC/MF)が0.35以上2.00未満である。
    (II)前記フッ素非含有ジルコニウム化合物(A)および前記フッ素含有物(B)に由来するジルコニウムイオンの合計濃度(g/L)が25以上である。
    (III)前記フッ素含有物(B)に由来するフッ素イオンの合計モル量(MF)と前記フッ素非含有ジルコニウム化合物(A)および前記フッ素含有物(B)に由来するジルコニウムイオンの合計モル量(MZr)との比(MF/MZr)が2.00以上6.00未満である。
    Zirconium ions are replenished to the surface treatment solution for metal materials containing zirconium ions and fluorine ions, which is used to form a chemical conversion treatment film containing zirconium on metal materials by chemical treatment and / or electrolytic treatment. A replenisher used to
    A fluorine-free zirconium compound (A) containing at least one selected from the group consisting of basic zirconium carbonate, zirconium carbonate, zirconium hydroxide, and ammonium zirconium carbonate, hydrofluoric acid, a salt of hydrofluoric acid, Fluorine-containing material (B) containing at least one selected from the group consisting of zirconium hydrofluoric acid and a salt of zirconium hydrofluoric acid, and selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid, and acetic acid An acid component (C) containing at least one of
    A replenisher that satisfies the following (I) to (III):
    (I) Ratio (M AC / M F ) between the total molar amount (M AC ) of the anion derived from the acid component (C) and the total molar amount (M F ) of the fluorine ion derived from the fluorine-containing material (B) ) Is 0.35 or more and less than 2.00.
    (II) The total concentration (g / L) of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing product (B) is 25 or more.
    (III) The total molar amount (M F ) of fluorine ions derived from the fluorine-containing material (B) and the total molar amount of zirconium ions derived from the fluorine-free zirconium compound (A) and the fluorine-containing material (B) (M Zr) and the ratio of (M F / M Zr) is less than 6.00 2.00 or more.
  2.  前記比(MAC/MF)が0.50超2.00未満である、請求項1に記載の補給剤。 The replenisher according to claim 1, wherein the ratio (M AC / M F ) is more than 0.50 and less than 2.00.
  3.  前記比(MAC/MF)が0.50超1.60以下である、請求項1または2に記載の補給剤。 The replenisher according to claim 1 or 2, wherein the ratio (M AC / M F ) is more than 0.50 and not more than 1.60.
  4.  ジルコニウムイオンおよびフッ素イオンを含む金属材料用表面処理液中で金属材料に対して連続して化成処理および/または電解処理を施し、前記金属材料上にジルコニウムを含有する化成処理皮膜を形成する表面処理金属材料の製造方法であって、
     請求項1~3のいずれか1項に記載の補給剤を前記金属材料用表面処理液に加えて、ジルコニウムイオンの補給を行う、表面処理金属材料の製造方法。
    Surface treatment in which a metal material is continuously subjected to chemical conversion treatment and / or electrolytic treatment in a surface treatment solution for metal material containing zirconium ions and fluorine ions to form a chemical conversion treatment film containing zirconium on the metal material. A method for producing a metal material,
    A method for producing a surface-treated metal material, wherein the replenisher according to any one of claims 1 to 3 is added to the surface treatment liquid for metal material to replenish zirconium ions.
  5.  請求項4に記載の表面処理金属材料の製造方法より得られる、表面処理金属材料。
     
    A surface-treated metal material obtained from the method for producing a surface-treated metal material according to claim 4.
PCT/JP2013/064801 2013-05-28 2013-05-28 Supplement, surface-treated metal material, and production method therefor WO2014192082A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380076902.7A CN105378144B (en) 2013-05-28 2013-05-28 supply agent, surface-treated metal material and preparation method thereof
PCT/JP2013/064801 WO2014192082A1 (en) 2013-05-28 2013-05-28 Supplement, surface-treated metal material, and production method therefor
EP13886009.3A EP3006600B1 (en) 2013-05-28 2013-05-28 Supplement and production method for surface-treated metal material
KR1020157033718A KR101726536B1 (en) 2013-05-28 2013-05-28 Supplement, surface-treated metal material, and production method therefor
US14/894,488 US20160186351A1 (en) 2013-05-28 2013-05-28 Replenisher, surface-treated metallic material, and production method thereof
JP2015519528A JP6055915B2 (en) 2013-05-28 2013-05-28 Method for producing replenisher and surface-treated metal material
PH12015502678A PH12015502678A1 (en) 2013-05-28 2015-11-27 Supplement, surface -treated metal material, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064801 WO2014192082A1 (en) 2013-05-28 2013-05-28 Supplement, surface-treated metal material, and production method therefor

Publications (1)

Publication Number Publication Date
WO2014192082A1 true WO2014192082A1 (en) 2014-12-04

Family

ID=51988157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064801 WO2014192082A1 (en) 2013-05-28 2013-05-28 Supplement, surface-treated metal material, and production method therefor

Country Status (7)

Country Link
US (1) US20160186351A1 (en)
EP (1) EP3006600B1 (en)
JP (1) JP6055915B2 (en)
KR (1) KR101726536B1 (en)
CN (1) CN105378144B (en)
PH (1) PH12015502678A1 (en)
WO (1) WO2014192082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138530A1 (en) * 2016-02-10 2017-08-17 日本ペイント・サーフケミカルズ株式会社 Chemical conversion bath replenishment method
JP2017537229A (en) * 2014-12-12 2017-12-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Optimization of process control in corrosion-preventing metal pretreatment based on fluoride-containing bath

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074715B (en) * 2022-06-30 2024-01-30 东风商用车有限公司 Pretreatment zirconation agent for high-temperature-resistant coating and pretreatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197273A (en) * 1993-11-29 1995-08-01 Nippon Parkerizing Co Ltd Composition for treating metal and its treatment
JP2006509909A (en) * 2002-12-11 2006-03-23 日本パーカライジング株式会社 High-performance non-chromium pretreatment of aluminum for can ends
JP2008202149A (en) 2008-06-02 2008-09-04 Nippon Parkerizing Co Ltd Treatment liquid for metal surface treatment, and surface treatment method
JP2010090407A (en) 2008-10-03 2010-04-22 Nippon Parkerizing Co Ltd Liquid for treating metal surface, and method for treating metal surface
JP2012017524A (en) * 2010-06-09 2012-01-26 Nippon Paint Co Ltd Inorganic chromium-free metal surface treatment agent
JP4996409B2 (en) 2007-09-28 2012-08-08 新日本製鐵株式会社 Method for producing chemical conversion coated steel sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316565B2 (en) 1973-01-20 1978-06-02
US6916414B2 (en) * 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
TW567242B (en) * 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
JP2008240045A (en) 2007-03-27 2008-10-09 Nippon Paint Co Ltd Method of manufacturing steel drum can
US8951362B2 (en) * 2009-10-08 2015-02-10 Ppg Industries Ohio, Inc. Replenishing compositions and methods of replenishing pretreatment compositions
US9157165B2 (en) * 2010-04-22 2015-10-13 Nippon Steel & Sumitomo Metal Corporation Method of production of chemically treated steel sheet
JP5215509B1 (en) * 2011-11-30 2013-06-19 日本パーカライジング株式会社 Replenisher, surface-treated steel plate manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197273A (en) * 1993-11-29 1995-08-01 Nippon Parkerizing Co Ltd Composition for treating metal and its treatment
JP2006509909A (en) * 2002-12-11 2006-03-23 日本パーカライジング株式会社 High-performance non-chromium pretreatment of aluminum for can ends
JP4996409B2 (en) 2007-09-28 2012-08-08 新日本製鐵株式会社 Method for producing chemical conversion coated steel sheet
JP2008202149A (en) 2008-06-02 2008-09-04 Nippon Parkerizing Co Ltd Treatment liquid for metal surface treatment, and surface treatment method
JP2010090407A (en) 2008-10-03 2010-04-22 Nippon Parkerizing Co Ltd Liquid for treating metal surface, and method for treating metal surface
JP2012017524A (en) * 2010-06-09 2012-01-26 Nippon Paint Co Ltd Inorganic chromium-free metal surface treatment agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006600A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537229A (en) * 2014-12-12 2017-12-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Optimization of process control in corrosion-preventing metal pretreatment based on fluoride-containing bath
WO2017138530A1 (en) * 2016-02-10 2017-08-17 日本ペイント・サーフケミカルズ株式会社 Chemical conversion bath replenishment method

Also Published As

Publication number Publication date
CN105378144A (en) 2016-03-02
JPWO2014192082A1 (en) 2017-02-23
KR101726536B1 (en) 2017-04-12
CN105378144B (en) 2017-05-31
EP3006600A1 (en) 2016-04-13
EP3006600B1 (en) 2018-12-19
PH12015502678A1 (en) 2016-03-07
KR20160003134A (en) 2016-01-08
EP3006600A4 (en) 2017-01-18
JP6055915B2 (en) 2016-12-27
US20160186351A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
CN100537845C (en) Metal finishing treatment solution and surface treatment method
JP5571277B2 (en) Surface treatment liquid for zinc-based metal material and surface treatment method for zinc-based metal material
JPWO2002103080A1 (en) Treatment solution for surface treatment of metal and surface treatment method
JP6281990B2 (en) Improved trivalent chromium-containing composition for aluminum and aluminum alloys
AU2004202524A1 (en) Method of surface treating metal and metal surface treated thereby
WO2010050131A1 (en) Treatment solution for chemical conversion of metal material and method for treatment
JP6055915B2 (en) Method for producing replenisher and surface-treated metal material
TWI452172B (en) Supplement, method for manufacturing surface treated steel sheet
WO2018042980A1 (en) Surface-treated steel sheet, organic resin-coated steel sheet, and container using same
JP2004218071A (en) Degreasing and chemical conversion coating agent, and surface-treated metal
CN107109659B (en) 3-valent chromium chemical conversion treatment liquid and chemical conversion coating for zinc or zinc alloy substrate
JP5447218B2 (en) Surface-treated plated steel sheet and surface treatment liquid
JP6594678B2 (en) Surface treatment agent, surface treatment method, and surface-treated metal material
TWI602951B (en) Replenisher, surface-treated metal material and method for producing same
CA2881081A1 (en) Metal surface treatment liquid, surface treatment method for metal base, and metal base obtained thereby
JP2011127141A (en) Metallic material whose surface is treated for electrodeposition coating and method for conversion coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033718

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2015519528

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015502678

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013886009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201508774

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14894488

Country of ref document: US