WO2020110315A1 - Motor driving device - Google Patents

Motor driving device Download PDF

Info

Publication number
WO2020110315A1
WO2020110315A1 PCT/JP2018/044296 JP2018044296W WO2020110315A1 WO 2020110315 A1 WO2020110315 A1 WO 2020110315A1 JP 2018044296 W JP2018044296 W JP 2018044296W WO 2020110315 A1 WO2020110315 A1 WO 2020110315A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
drive device
motor drive
pulsation
Prior art date
Application number
PCT/JP2018/044296
Other languages
French (fr)
Japanese (ja)
Inventor
伸翼 角井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020557526A priority Critical patent/JP7145968B2/en
Priority to DE112018008176.1T priority patent/DE112018008176T5/en
Priority to PCT/JP2018/044296 priority patent/WO2020110315A1/en
Publication of WO2020110315A1 publication Critical patent/WO2020110315A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0025Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/32Determining the initial rotor position

Definitions

  • the present invention relates to a motor drive device that drives a synchronous motor having saliency without a sensor.
  • -A rotating magnetic field is generated when a multi-phase AC voltage is applied to the stator of a synchronous motor. Torque is generated in the synchronous motor due to the magnetic interaction between the rotating magnetic field and the rotor.
  • the polyphase AC voltage is an AC voltage of three phases or four phases or more.
  • the rotating magnetic field and the rotor need to be synchronized in phase and frequency. Therefore, in order to drive the synchronous motor, information on the rotational position or rotational frequency of the rotor is required.
  • a state and a driving method that do not include a sensor for acquiring information on the rotational position or the rotational frequency of the rotor are called “sensorless”.
  • the sensorless drive system of the synchronous motor When starting a synchronous motor without a sensor, it is necessary to start the switching control for the semiconductor elements of the inverter while synchronizing the phase and frequency of the output voltage with the rotation state of the rotor so that overcurrent does not occur. Therefore, in the sensorless drive system of the synchronous motor, it is usual to distinguish the case of starting the synchronous motor from the cases other than the case of starting. Specifically, the sensorless drive system of the synchronous motor is roughly composed of two algorithms called “steady state estimation” and "initial estimation”.
  • the algorithm of steady estimation is applied when the semiconductor element of the inverter that drives the motor is switching operation and the torque or rotation state of the motor is continuously controlled.
  • the initial estimation algorithm is applied when starting the switching operation from the state where the semiconductor element of the inverter stops the switching operation. That is, the steady estimation is started using the information on the rotational position and the rotational frequency of the rotor obtained by the initial estimation.
  • the controller intends because of the ON voltage of the switching element that constitutes the inverter and the dead time when controlling the inverter. It is known that the actual output voltage deviates from the voltage command value.
  • the voltage error which is the difference between the voltage command value and the actual output voltage, becomes more significant as the current flowing through the switching element is smaller, that is, the motor current is smaller.
  • the motor current is a current flowing through each phase of the motor, that is, a phase current of the motor.
  • the signals of the voltage sensor and current sensor include noise that enters in the analog circuit. Therefore, the voltage sensor or the current sensor cannot always detect the accurate zero-cross timing.
  • the number of times the current detection value can be sampled with a digital circuit is limited.
  • the pulsating cycle of the motor current becomes short, so that there are many timings at which current detection values cannot be obtained, and the zero-cross timing error becomes more prominent.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a motor drive device capable of highly accurately estimating information on the rotational position or rotational frequency of a rotating synchronous motor.
  • a motor drive device provides an inverter that drives a synchronous motor having saliency, a controller that controls the operating state of the inverter, and a phase current of the synchronous motor.
  • a detector for detecting is provided.
  • the controller is a voltage control unit that determines the output voltage of the inverter, a coordinate conversion unit that converts a phase current into a two-phase current in a stationary coordinate system, a pulsation extraction unit that extracts a pulsating current from the two-phase current, and the frequency of the pulsating current.
  • a phase synchronization calculator for estimating and calculating the phase.
  • the voltage control unit outputs a voltage command value in which none of the phase currents becomes zero.
  • the motor drive device of the present invention it is possible to highly accurately estimate the information on the rotational position or the rotational frequency of the rotating synchronous motor.
  • FIG. 3 is a diagram showing the relationship between the phase of the voltage command value vector and the magnitude of phase current in the first embodiment.
  • Block diagram showing the configuration of a pulsation extraction unit according to the second embodiment FIG. 3 is a block diagram showing the configuration of the phase synchronization calculation unit according to the second embodiment.
  • FIG. 3 is a block diagram showing the configuration of the phase synchronization calculation unit according to the third embodiment.
  • FIG. 8 is a diagram for explaining the operation of switching the gain of the amplifier according to the third embodiment.
  • FIG. 4 is a block diagram showing an example of a hardware configuration that realizes an arithmetic function in the controller according to the fourth embodiment.
  • the block diagram which shows another example of the hardware constitutions which implement
  • a motor drive device according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • the present invention is not limited to the embodiments described below.
  • FIG. 1 is a configuration diagram of a motor drive device according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of the inverter shown in FIG. 1, a motor drive device 100 includes a motor 2 having a rotor 2a, an inverter 1 for driving the motor 2, a controller 3 for controlling an operating state of the inverter 1, and a detector for detecting a phase current of the motor 2. 4 and.
  • the inverter 1 is supplied with DC power from the power source 110 and applies a voltage of variable amplitude and variable frequency to the motor 2.
  • the inverter 1 adjusts the voltage applied to the motor 2 by pulse width modulation (PWM) control for a plurality of semiconductor elements (not shown in FIG. 1).
  • PWM pulse width modulation
  • the motor 2 is a synchronous motor having saliency.
  • An example of a salient-polarity synchronous motor is a synchronous reluctance motor (Synchronous Reluctance Motor: hereinafter referred to as “SynRM”).
  • the SynRM rotor has a characteristic that the magnetic resistance in the radial direction changes according to the rotation angle with respect to the cylindrical axis. Such a characteristic is called "saliency”.
  • a voltage is applied to the stator of the SynRM and a current flows through the stator, a magnetic field that radially intersects the circumference of the rotor is generated.
  • torque is generated to rotate the rotor in the direction in which the magnetic flux increases, that is, the magnetic resistance in the magnetic path decreases.
  • the torque generated due to the salient pole of the rotor is called reluctance torque.
  • FIG. 2 shows the circuit configuration when the inverter 1 is a three-phase inverter.
  • the leg 10A in which the semiconductor element UP of the upper arm and the semiconductor element UN of the lower arm are connected in series, the semiconductor element VP of the upper arm and the semiconductor element VN of the lower arm are connected in series.
  • the connected leg 10B and the leg 10C in which the upper arm semiconductor element WP and the lower arm semiconductor element WN are connected in series are provided.
  • the leg 10A, the leg 10B, and the leg 10C are connected in parallel with each other.
  • a bus voltage is applied to the inverter 1 through the DC buses 15a and 15b.
  • the inverter 1 drives the motor 2 by converting the DC power of the power source 110 supplied through the DC buses 15 a and 15 b into AC power and supplying the converted AC power to the motor 2.
  • FIG. 2 exemplifies a case where the semiconductor elements UP, UN, VP, VN, WP, WN are metal oxide semiconductor field effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor: MOSFET).
  • the semiconductor element UP includes a transistor 10a and a diode 10b connected in antiparallel with the transistor 10a.
  • the other semiconductor elements UN, VP, VN, WP, WN have the same configuration.
  • the anti-parallel means that the anode side of the diode is connected to the first terminal corresponding to the source of the MOSFET and the cathode side of the diode is connected to the second terminal corresponding to the drain of the MOSFET.
  • the semiconductor elements UP, UN, VP, VN, WP, WN may be replaced by MOSFETs, for example, insulated gate bipolar transistors (Insulated Gate Bipolar Transistors: IGBT) may be used.
  • IGBT Insulated Gate Bipolar Transistors
  • FIG. 2 shows a configuration including three legs in which the semiconductor element of the upper arm and the semiconductor element of the lower arm are connected in series, the configuration is not limited to this.
  • the number of legs may be four or more.
  • one leg is composed of one upper and lower arm semiconductor element, but one leg may be composed of a plurality of pairs of upper and lower arm semiconductor elements.
  • each of the semiconductor elements UP, UN, VP, VN, WP, WN is a MOSFET
  • at least one of the semiconductor elements UP, UN, VP, VN, WP, WN is made of silicon carbide or gallium nitride. It may be formed of a wide band gap semiconductor such as a system material or diamond.
  • Wide bandgap semiconductors generally have higher voltage resistance and heat resistance than silicon semiconductors. Therefore, if at least one of the semiconductor elements UP, UN, VP, VN, WP, WN is formed of a wide bandgap semiconductor MOSFET, it is possible to obtain the effects of withstand voltage and heat resistance.
  • connection point 12 between the upper arm semiconductor element UP and the lower arm semiconductor element UN is connected to the first phase (for example, U phase) of the motor 2, and the upper arm semiconductor element VP and the lower arm semiconductor element VN are connected.
  • the connection point 13 is connected to the second phase (for example, the V phase) of the motor 2, and the connection point 14 between the upper arm semiconductor element WP and the lower arm for the semiconductor element WN is the third phase (for example, the W phase) of the motor 2. )It is connected to the.
  • the connection points 12, 13 and 14 form AC terminals.
  • the controller 3 includes a voltage control unit 50 that determines the output voltage of the inverter 1, a coordinate conversion unit 20 that converts a phase current into a two-phase current in a stationary coordinate system, and a pulsation extraction unit that extracts a pulsating current from the two-phase current. 30 and a phase synchronization calculation unit 40 that estimates and calculates the frequency and phase of the pulsating current.
  • the voltage control unit 50 calculates a voltage command value that is a command value of the voltage that the inverter 1 should output.
  • the switching states of the semiconductor elements UP, UN, VP, VN, WP, WN of the inverter 1 are determined based on the voltage command value.
  • the voltage command value for setting the torque of the motor 2 to a desired value needs to be calculated based on the rotation position and the rotation frequency of the rotor 2a.
  • the motor drive device 100 is also premised on driving the motor without a sensor.
  • the sensorless drive system of the synchronous motor is divided into two algorithms, that is, steady estimation and initial estimation, as described above.
  • the steady estimation is an algorithm applied when the inverter 1 starts switching and the torque or rotation frequency of the motor 2 is continuously controlled.
  • One of the typical methods for steady estimation is to use the induced voltage of the motor 2 (also called “back electromotive force").
  • the induced voltage is calculated based on the mathematical model of the motor, and the position between the coordinate axis of the true dq coordinate system corresponding to the position of the rotor 2a and the coordinate axis of the estimated dq coordinate system where the voltage command value is calculated is calculated. Define the phase difference.
  • the estimated dq coordinate system is corrected so as to eliminate this phase difference, and as a result, the estimated values of the position and the rotation frequency of the rotor 2a are obtained.
  • the dq coordinate system represents a rotating coordinate system when the motor 2 is vector-controlled, and is a widely known concept.
  • Another method of steady estimation is to apply a high frequency voltage to the motor 2 and use the current response at that time.
  • the current on the dq coordinates has an elliptical locus, which is a method of obtaining the estimated values of the rotational position and the rotational frequency of the rotor 2a. .. This method is often used under low speed operating conditions where the induced voltage is small.
  • the initial estimation is an algorithm applied when switching is started from the state in which the inverter 1 has stopped switching.
  • the steady estimation algorithm requires an initial value of one or both of the information on the rotational position and the rotational frequency of the rotor 2a when starting the calculation. If energization is started in a state where the difference between the initial value and the true value is large, inconveniences such as overcurrent may occur. Therefore, steady estimation is started using the information on the rotational position and the rotational frequency of the rotor 2a obtained by the initial estimation. In this way, the initial estimation algorithm is executed for a short time when the inverter 1 is started.
  • the operation of the voltage control unit 50 shown in FIG. 1 will be described below.
  • a method of initial estimation will be described in detail.
  • the method of steady estimation is not particularly limited.
  • the voltage control unit 50 When the voltage control unit 50 receives a command to start the inverter 1 from a higher-order control system (not shown), the voltage control unit 50 calculates a voltage command value in which none of the motor currents of the respective phases becomes zero. Furthermore, the voltage control unit 50 generates a voltage command value that is a DC voltage and has a voltage vector in the same direction or in the opposite direction to any phase of the motor 2. The reason for generating such a voltage command value will be described later.
  • FIG. 3 is a schematic diagram for explaining the voltage command value output by the voltage control unit 50 according to the first embodiment.
  • the motor 2 is a three-phase motor. Each phase of the three-phase motor is described as u phase, v phase and w phase.
  • the u-phase, v-phase, and w-phase form a three-phase coordinate system.
  • the uvw three-phase coordinate system is a stationary coordinate system.
  • the voltage command value vector has the same direction as the u-phase as an example, but the present invention is not limited to this.
  • the voltage command value vector may be in the same direction as the v phase or the w phase.
  • the average value of the u-phase current is represented by i u0
  • the average value of the v-phase current is represented by i v0
  • the average value of the w-phase current is represented by i w0 .
  • the inverter 1 outputs the voltage in accordance with the voltage command value shown in FIG.
  • the average value i v0 of the v-phase current and the average value i w0 of the w-phase current are opposite in sign to the average value i u0 of the u-phase current and have a magnitude of 1/2.
  • ⁇ and ⁇ in FIG. 3 are the coordinate axes when the voltage and current are converted into three phases and two phases. That is, ⁇ and ⁇ form a two-phase coordinate system.
  • the ⁇ two-phase coordinate system is a stationary coordinate system like the uvw three-phase coordinate system.
  • the conversion matrix from the uvw three-phase coordinate system to the ⁇ two-phase coordinate system is given by the following equation.
  • the transformation matrix differs from the above equation (1) depending on how the coordinate axes are defined, it is general that the ⁇ axis is defined so as to coincide with any of the uvw axes.
  • the voltage command value should be such that v ⁇ is non-zero and v ⁇ is zero.
  • the dq axes shown in FIG. 3 are obtained by rotating the ⁇ two-phase coordinate system by the rotation angle ⁇ of the rotor 2a.
  • v ⁇ , v ⁇ and i ⁇ , i ⁇ represent the two-phase converted voltage and current, respectively.
  • P represents a differential operator
  • R s represents winding resistance.
  • L ⁇ , L ⁇ and L ⁇ are defined by the following equations.
  • L ⁇ is the ⁇ -axis inductance
  • L ⁇ is the ⁇ -axis inductance
  • L ⁇ is the ⁇ -axis mutual inductance.
  • is the rotation angle of the rotor 2a
  • L 0 is the average inductance
  • L 1 is the differential inductance
  • L d is the d-axis inductance
  • L q is the q-axis inductance.
  • the d-axis inductance L d and the q-axis inductance L q are different, so that the differential inductance L 1 becomes non-zero from the fifth equation of the above equation (3). Therefore, as shown in the first and second equations of the above equation (3), the ⁇ -axis inductance L ⁇ and the ⁇ -axis inductance L ⁇ change according to the rotation angle ⁇ of the rotor 2a.
  • the differential operator P in the equation (2) is applied to both the ⁇ -axis inductance L ⁇ , the ⁇ -axis inductance L ⁇ and the ⁇ -axis mutual inductance L ⁇ , and the ⁇ -axis current i ⁇ and the ⁇ -axis current i ⁇ . To work. Therefore, when the term of the differential operator in the above equation (2) is expanded, the following equation is obtained.
  • the energized state in FIG. 3 is equivalent to applying a clockwise rotating magnetic field to the stationary motor when viewed from above the rotor 2a.
  • alpha-axis current i alpha and beta pulsation phase axis current i beta is towards the beta-axis current i beta than alpha-axis current i alpha is 90 ° advanced phase.
  • the saliency of the inductance equally affects both of the ⁇ axes, so that the pulsation amplitude of the ⁇ -axis current i ⁇ is equal to the pulsation amplitude of the ⁇ -axis current i ⁇ .
  • the ⁇ -axis current i ⁇ and the ⁇ -axis current i ⁇ are divided into an average value component (i ⁇ 0 , i ⁇ 0 ) and a pulsating current component (i ⁇ 1 , i ⁇ 1 ) as shown in the following equation. Represented by.
  • represents an unknown phase angle and ⁇ i represents the amplitude of the pulsating current.
  • ⁇ in the formula is set as in the following formula.
  • the above equation (11) indicates that if the pulsating current is extracted from the two-phase current values on the stationary coordinate system and the phase of those current values is calculated, the rotational position of the rotor 2a can be estimated as a result. ..
  • the controller 3 of the first embodiment shown in FIG. 1 performs the following operations.
  • the coordinate conversion unit 20 converts the phase current acquired from the detector 4 into an ⁇ -axis current 20a and a ⁇ -axis current 20b, which are two-phase currents on the ⁇ two-phase coordinate system, and outputs them.
  • the conversion equation at this time for example, the above equation (1) is used.
  • the pulsation extraction unit 30 extracts the ⁇ -axis pulsation current 30a and the ⁇ -axis pulsation current 30b based on the ⁇ -axis current 20a and the ⁇ -axis current 20b and outputs them to the phase synchronization calculation unit 40.
  • the ⁇ -axis pulsating current 30a and the ⁇ -axis pulsating current 30b may be collectively referred to simply as “pulsating current”.
  • the phase synchronization calculation unit 40 calculates and outputs the estimated pulsation phase 40a and the estimated pulsation frequency 40b based on the ⁇ -axis pulsation current 30a and the ⁇ -axis pulsation current 30b.
  • the estimated pulsation phase 40a and the estimated pulsation frequency 40b calculated by the phase synchronization calculation unit 40 are converted into appropriate values, and the converted values are used in a steady estimation algorithm (not shown).
  • the advantages of setting the voltage command value to a value that does not make any phase current zero that is, making the u-phase current, the v-phase current, and the w-phase current all zero, will be described.
  • the u-phase current, v-phase current, and w-phase current may be collectively referred to as “three-phase current”.
  • the PWM signal for controlling the semiconductor elements of the upper and lower arms of the inverter is provided with a pause period for giving an off command to both the semiconductor elements of the upper and lower arms. This rest period is called dead time.
  • the pause period is provided to prevent the short circuit between the DC buses 15a and 15b from occurring.
  • semiconductor devices have voltage drops due to the physical properties of semiconductor devices. If the semiconductor element is an IGBT, there is a collector-emitter voltage drop called a saturation voltage. If the semiconductor element is a MOSFET, there is a voltage drop due to the resistance between the drain and the source.
  • the amplitude ⁇ i of the ⁇ -axis pulsating current i ⁇ 1 and the ⁇ -axis pulsating current i ⁇ 1 is proportional to the magnitude of the average value i ⁇ 0 of the ⁇ -axis current. If any of the three-phase currents is small, the average value i ⁇ 0 of the ⁇ -axis current becomes too small, and the estimation accuracy of the rotational position and the rotational frequency may deteriorate.
  • the magnetic saturation of the magnetic member progresses as the amount of energization increases.
  • the degree of magnetic saturation is significantly different depending on the direction of magnetizing the rotor. For this reason, when the average value i ⁇ 0 of the ⁇ -axis current and the average value i ⁇ 0 of the ⁇ -axis current become excessive and the degree of magnetic saturation becomes strong, the detected pulsating current includes harmonics, and the rotational position Also, the estimation accuracy of the rotation frequency deteriorates.
  • the voltage control unit 50 calculates and outputs a voltage command value such that none of the three-phase currents becomes zero. As a result, it becomes easy to correct the voltage command value for setting the output voltage of the inverter 1 to a desired value. As a result, the electric current of the motor 2 can be controlled to an appropriate level, so that the estimation accuracy of the rotational position and the rotational frequency of the rotor 2a can be improved.
  • the voltage command value output by the voltage control unit 50 be a DC voltage. The reason is as follows.
  • the voltage for initial estimation contains an AC component with a frequency f.
  • an AC component of frequency f is also generated in the phase current of the motor. That is, the pulsating component synchronized with the rotation frequency of the motor and the same frequency component as the voltage are mixed in the phase current. If a plurality of frequency components are mixed in the phase current, it becomes difficult to separate them and the accuracy of initial estimation deteriorates. Therefore, it is desirable that the voltage for initial estimation, that is, the voltage command value output by the voltage control unit 50 is a DC voltage.
  • FIG. 4 is a diagram showing the relationship between the phase of the voltage command value vector and the magnitude of the phase current in the first embodiment.
  • the “direction of the voltage vector” may be rephrased as the “phase of the voltage vector” and the “same or opposite direction” may be rephrased as the “same or opposite phase”.
  • the same or opposite phase means, for example, when the phase is 60 [deg], the "same phase” is 60 [deg], and the "opposite phase” is obtained by adding 180 [deg], It means that it is 240 [deg].
  • the horizontal axis of FIG. 4 shows the phase of the voltage command value vector with respect to the ⁇ axis
  • the vertical axis shows the amplitudes of various standardized phase currents.
  • the dotted line indicates the average value i u0 of the u-phase current
  • the thin solid line indicates the average value i v0 of the v-phase current
  • the alternate long and short dash line indicates the average value i w0 of the w-phase current
  • the thin broken line indicates the average value of ⁇ -axis current.
  • i ⁇ 0 and the thick broken line represent the average value i ⁇ 0 of the ⁇ -axis currents, respectively.
  • the waveform of the thick solid line is a drawing of the waveform portion having the smallest absolute value in the average value (i u0 , i v0 , i w0 ) of each phase current.
  • the phase having the smallest absolute value among the average values (i u0 , i v0 , i w0 ) of the phase currents is defined as the “minimum phase”.
  • the minimum phase current is defined as "minimum phase current”.
  • the phase of the voltage command vector corresponds to zero.
  • the minimum phase is the v phase or the w phase, and the absolute value of the minimum phase current is “0.5”. It should be noted that this value of "0.5" is the maximum value that can be taken when the phase of the voltage command value vector is changed, which can be understood from the waveform of the thick solid line in FIG. 4, that is, the waveform of the minimum phase current. ..
  • the direction of the voltage command value vector is the same as that of the u-phase in order to “maximize the minimum phase current”. Further, according to the waveform of the minimum phase current in FIG. 4, points at intervals of 0 [deg] to 60 [deg] have the maximum values. That is, according to FIG. 4, it is understood that the voltage command value vector only needs to be oriented in the same direction or in the opposite direction to any one of the u phase, v phase, and w phase.
  • the voltage command value vector when the phase of the voltage command value vector is 60 [deg], the voltage command value vector is in the opposite direction to the v phase. Further, for example, when the phase of the voltage command value vector is 120 [deg], the voltage command value vector is in the same direction as the w phase.
  • phase of the voltage command value vector is other than zero, the phase angle ⁇ defined by the above equation (5) is different from the value shown by the above equation (10). Therefore, when the phase of the voltage command value vector is other than zero, appropriate correction is necessary in the processing of the phase synchronization calculation unit 40.
  • the voltage control unit calculates a DC voltage command value such that the phase of the voltage command value vector is in the same or opposite direction to any phase of the motor. Output. This facilitates the correction of the voltage command value for setting the output voltage of the inverter to a desired value. As a result, the motor current can be controlled to an appropriate level, and the estimation accuracy of the rotational position and rotational frequency of the rotor can be improved.
  • Embodiment 2 In the second embodiment, detailed configurations and operations of the pulsation extraction unit 30 and the phase synchronization calculation unit 40 illustrated in FIG. 1 will be described.
  • FIG. 5 is a block diagram showing the configuration of the pulsation extraction unit 30 according to the second embodiment.
  • the pulsation extraction unit 30 according to the second embodiment has two high pass filters (HPF) 301 and 302 having the same characteristics.
  • HPF high pass filters
  • the ⁇ -axis current 20a and the ⁇ -axis current 20b, which are two-phase currents in the stationary coordinate system, are input to the high-pass filters 301 and 302, respectively.
  • the time required to remove the DC component contained in the ⁇ -axis current 20a and the ⁇ -axis current 20b depends on the cutoff frequencies of the high pass filters 301 and 302. The higher the cutoff frequency, the shorter the time required to remove the DC component, and the estimation calculation by the phase synchronization calculation unit 40 described later can be started quickly.
  • the frequency of the pulsating current that must be extracted changes in conjunction with the rotation frequency of the rotor 2a. Therefore, if the cutoff frequency is too high, even the amplitude of the pulsating current may be attenuated, and the S/N ratio may decrease. Therefore, caution is required in the design.
  • FIG. 6 is a block diagram showing the configuration of the phase synchronization calculation unit 40 according to the second embodiment.
  • the phase synchronization calculation unit 40 according to the second embodiment has a phase error calculation unit 401, an amplifier 402, and an integrator 403, as shown in FIG.
  • the ⁇ -axis pulsating current 30 a (i ⁇ 1 ), the ⁇ -axis pulsating current 30 b (i ⁇ 1 ), and the estimated pulsating phase 40 a ( ⁇ 2 ) are input to the phase error calculation unit 401.
  • the estimated pulsating phase 40a is the output of the integrator 403.
  • the notation “ ⁇ 2 ” is an alternative notation for the letter “ ⁇ ” in “ ⁇ 2 ”with a hat symbol “ ⁇ ” added above it. This alternative notation is used herein except for the mathematical formulas that are inserted in the image. The same applies to " ⁇ 2 " described later.
  • the phase error calculator 401 calculates the phase error 40f ( ⁇ 2 ) according to the following equation.
  • Amplifier 402 outputs the estimated ripple frequency 40b amplifies the phase error 40f ( ⁇ 2) ( ⁇ ⁇ 2).
  • the amplifier 402 it is preferable to use a PI controller that performs proportional integration (PI) as shown in FIG.
  • the integrator 403 integrates the estimated pulsation frequency 40b and outputs the integrated value as the estimated pulsation phase 40a.
  • the estimated pulsation phase 40a is fed back to the phase error calculation unit 401.
  • the average value ( i ⁇ 0 ) of the ⁇ -axis current 20b becomes zero. Therefore, at first glance, it may be considered that it is not necessary to use the high-pass filter 302 to extract the ⁇ -axis pulsating current 30b (i ⁇ 1 ) from the ⁇ -axis current 20b. However, if there is a difference in the presence or absence of the filtering process for extracting the pulsating current and the characteristics between the ⁇ axis and the ⁇ axis, the amplitude and the phase of the extracted pulsating current may be different between the ⁇ axis and the ⁇ axis.
  • two high pass filters 301 and 302 are required regardless of the phase of the voltage command value vector. Further, it is desirable that both have the same characteristics.
  • the same characteristic here does not mean that the physical characteristics are completely the same, but means that the physical characteristics are designed and configured with the expectation that they have the same characteristics.
  • a method of calculating the pulsation frequency from the zero-cross interval and the pulsation phase from the zero-cross timing by using either the ⁇ -axis pulsating current 30a or the ⁇ -axis pulsating current 30b is also conceivable.
  • the signal from the detector 4 contains noise that enters the circuit of the detector 4, it is not always possible to detect an accurate zero-cross timing.
  • the number of samplings per cycle in which the current pulsates decreases, so the error in the zero-cross timing becomes more significant.
  • the pulsating current includes low-order harmonics due to the influence of the magnetic saturation of the motor 2 and the spatial harmonics, the relationship between the timing of zero crossing of the pulsating current and the position of the rotor 2a is more complicated. Become.
  • the phase synchronization calculation unit 40 is composed of a circuit corresponding to a PLL including a feedback path.
  • the circuit corresponding to the PLL is configured as shown in FIG. 6, since the integrator 403 is included in the path until the estimated pulsation phase 40a is obtained, it is unlikely to be affected by noise mixed in the signal path of the detector 4. Further, the estimated pulsation phase 40a is continuously calculated so as to follow the true pulsation phase. Therefore, even if the number of samplings per cycle in which the current pulsates is small, it is easy to correct the error caused by the discretization. Furthermore, even when disturbances such as magnetic saturation and spatial harmonics are mixed in the pulsating current, the estimated pulsating phase converges to the true phase on average.
  • the pulsation extraction unit 30 has two high-pass filters that remove the DC component from the two-phase current in the stationary coordinate system and output the pulsation current.
  • the two high pass filters have the same characteristics.
  • the phase synchronization calculation unit according to the second embodiment includes a phase error calculation unit that calculates a phase error based on the pulsating current and the estimated pulsation phase, an amplifier that amplifies the phase error and outputs the estimated pulsation frequency, And an integrator that integrates the estimated pulsation frequency and outputs it as an estimated pulsation phase.
  • Embodiment 3 In the third embodiment, switching of operation modes when starting the inverter 1 will be described.
  • the estimated pulsation frequency does not converge while the DC component remains in the signal input to the phase synchronization calculation unit 40. If the amplifier 402 of the phase synchronization calculation unit 40 and the integrator 403 start calculation while the DC component remains, the estimated pulsation frequency 40b ( ⁇ 2 ) and the estimated pulsation phase 40a ( ⁇ ). 2 ) diverges or oscillates to inaccurate values. As a result, the time required for the initial estimation becomes long as a result. Therefore, it is desirable that the calculation of the amplifier 402 and the integrator 403 be started when a required time elapses after the inverter 1 starts energization.
  • FIG. 7 is a block diagram showing the configuration of the phase synchronization calculation unit 41 according to the third embodiment. Comparing FIG. 7 with FIG. 6, a gain switching signal 40c for controlling switching of the gain of the amplifier 402 is added to FIG.
  • the gain representing the amplification factor of the amplifier 402 is set to zero immediately after the inverter 1 starts energization, and after the first time has elapsed since the inverter 1 started energization, The gain of the amplifier 402 is switched to a value other than zero, that is, a value greater than zero.
  • the gain of the amplifier 402 is zero, the estimated pulsation frequency 40b remains zero no matter what phase error 40f is input to the amplifier 402. As a result, the input to the integrator 403 also becomes zero, and the estimated pulsation phase 40a also remains zero.
  • the time from the start of energization of the inverter 1 to the first switching of the gain of the amplifier 402 is determined based on the cutoff frequencies of the high pass filters 301 and 302 in the pulsation extraction unit 30. More specifically, when the cutoff frequencies of the high-pass filters 301 and 302 are high, the time required to remove the DC component may be relatively short. Therefore, a relatively short time after the inverter 1 starts energization. In the meantime, the operation of the amplifier 402 can be started. On the other hand, when the cutoff frequencies of the high-pass filters 301 and 302 are low, the time required to remove the DC component becomes relatively long, so that it is necessary to provide a relatively long grace period before starting the operation of the amplifier 402. There is.
  • the gain of the amplifier 402 must be relatively large until the estimated pulsation phase 40a converges to the first value close to the true value after the amplifier 402 starts the calculation.
  • a large gain is not required.
  • the required gain of the amplifier 402 depends on whether or not the approximation of sin(2 ⁇ 2 ) ⁇ 2 ⁇ 2 holds in the phase error definition equation shown in the above equation (12). .. That is, when the true value 2 ⁇ of the pulsating current and the estimated pulsating phase ⁇ 2 are close to each other, the gain required to make the estimated pulsating phase ⁇ 2 follow the true value 2 ⁇ is relatively large. Becomes smaller. On the contrary, when the deviation between the true value 2 ⁇ and the estimated pulsation phase ⁇ 2 is large, a relatively large gain is required to converge the estimated pulsation phase ⁇ 2 to the true value 2 ⁇ .
  • the ⁇ -axis pulsating current 30a and the ⁇ -axis pulsating current 30b have low-order harmonic components due to the spatial harmonics of the motor 2 and the magnetic saturation of the motor 2.
  • the estimated pulsating phase ⁇ 2 becomes slightly oscillatory. If the estimated pulsation phase ⁇ 2 is oscillatory, the error from the true value may increase depending on the timing of holding the estimation result. Therefore, from the viewpoint of improving the accuracy of the initial estimation, it is desirable that the gain of the amplifier 402 be minimum.
  • the characteristics are switched to the direction in which the gain of the amplifier 402 decreases after the second time has elapsed since the inverter 1 started energization.
  • the second time period is longer than the first time period.
  • the gain after switching is assumed to be larger than zero.
  • the amplifier 402 holds a plurality of constants and one of the constants is selected based on the gain switching signal 40c.
  • the gain switching signal 40c itself may be a signal including a constant itself that determines the gain of the amplifier 402.
  • FIG. 8 is a diagram for explaining the operation of switching the gain of the amplifier according to the third embodiment.
  • FIG. 8 shows various waveform examples when the gain of the amplifier 402 is switched. More specifically, in the first stage of FIG. 8, the u-phase current is shown by the alternate long and short dash line, the v-phase current is shown by the broken line, and the w-phase current is shown by the solid line. In the second row of FIG. 8, the ⁇ -axis current is shown by a solid line and the ⁇ -axis current is shown by a broken line. In the third row of FIG. 8, the ⁇ -axis pulsating current is shown by a solid line and the ⁇ -axis pulsating current is shown by a broken line. In the fourth row of FIG. 8, the estimated pulsation frequency is shown by a solid line and the true frequency is shown by a broken line. In the fifth row of FIG. 8, the estimated pulsation phase is shown by a solid line and the true phase is shown by a broken line.
  • the gate start in which the inverter 1 starts outputting voltage is performed.
  • the three-phase current starts to flow.
  • a pulsating current proportional to the magnitude of the DC component is superimposed.
  • the waveform of the second stage is obtained by converting the three-phase current of the first stage into the two-phase current of the stationary coordinate system.
  • the two-phase current of the second stage is input to the pulsation extraction unit 30, and the pulsating current is extracted, and the result is the waveform of the third stage.
  • the DC component is removed after a certain period of time between time t0 and time t1.
  • the gain of the amplifier 402 is switched from zero to a positive value, and the estimation calculation of the phase synchronization calculation unit 41 is started.
  • the time from time t0 to time t1 is the time corresponding to the above-mentioned first time.
  • the DC component of the two-phase current is sufficiently removed, so that the gain of the amplifier 402 is set relatively high. Therefore, the estimated pulsation frequency 40b and the estimated pulsation phase 40a rapidly converge to values close to the true value, as shown in the waveforms of the fourth and fifth stages.
  • the gain of the amplifier 402 is switched to a smaller value.
  • the pulsation of the estimated pulsation frequency 40b and the estimated pulsation phase 40a is reduced.
  • the time from time t0 to time t2 is the time corresponding to the above-mentioned second time.
  • the estimation result is held, and the steady estimation algorithm is started using the result.
  • the phase synchronization calculating unit switches the gain of the amplifier from zero to a value larger than zero after the first time has elapsed since the inverter started energizing. As a result, the time required for the initial estimation can be shortened. Further, the phase synchronization calculation unit according to the third embodiment switches the gain of the amplifier to a smaller direction after the second time has elapsed since the inverter started energizing. As a result, the degree to which the harmonics included in the pulsating current are amplified is suppressed, and the accuracy of the estimation result is improved.
  • FIG. 9 is a configuration diagram of a motor drive device according to the fourth embodiment.
  • Motor drive device 101 shown in FIG. 9 is obtained by adding correction calculation unit 60 to controller 3 in the configuration of motor drive device 100 according to the first embodiment shown in FIG. Further, the controller 3 is shown as a controller 3A by adding the correction calculation unit 60. It should be noted that other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and duplicate description will be omitted.
  • the output of the pulsation extraction unit 30 of the controller 3 is in a phase advanced state as compared with the pulsation current contained in the original two-phase current.
  • the degree to which the phase advances depends on the cutoff frequency of the high-pass filter and the frequency of the pulsating current, that is, the rotation frequency of the rotor 2a. Therefore, the phase synchronization calculation unit 41 according to the third embodiment performs the estimation calculation on the signal with the advanced pulsation phase. Therefore, the rotational position of the rotor 2a obtained by converting the output of the phase synchronization calculation unit 41 includes an error.
  • the fourth embodiment a method for eliminating this error will be described in detail.
  • the correction calculator 60 calculates and outputs the estimated rotor phase 60a and the estimated rotor frequency 60b based on the estimated pulsation phase 40a and the estimated pulsation frequency 40b which are the outputs of the phase synchronization calculation unit 41.
  • FIG. 10 is a block diagram showing the configuration of the correction calculation unit according to the fourth embodiment.
  • the correction calculation unit 60 according to the fourth embodiment has a low pass filter (LPF) 601, a lookup table 602, a subtractor 603, and a conversion unit 604.
  • LPF low pass filter
  • the low-pass filter 601 has a high-frequency cutoff characteristic, smoothes the estimated pulsation frequency 40b, and outputs a smoothed pulsation frequency 60d.
  • the look-up table 602 outputs the phase correction amount 60e based on the smoothed pulsation frequency 60d.
  • the subtractor 603 subtracts the phase correction amount 60e from the estimated pulsation phase 40a, and outputs the subtraction result as the corrected pulsation phase 60c.
  • the conversion unit 604 converts the corrected pulsation phase 60c with a constant to obtain an estimated rotor phase 60a, and converts the smoothed pulsation frequency 60d with a constant to obtain an estimated rotor frequency 60b.
  • the estimated pulsation frequency 40b is pulsating due to the influence of magnetic saturation of the motor 2 and spatial harmonics.
  • the third embodiment has described the method of reducing this pulsation by switching the gain of the amplifier 402 in the direction of decreasing with the passage of time. However, the pulsation cannot be completely eliminated by switching the gain. Therefore, in order to improve the accuracy further, the estimated pulsation frequency 40b is smoothed by using the low-pass filter 601.
  • the type of low-pass filter may be a filter whose transfer function is in a temporary delay form, or may be a calculation for averaging an input signal over a set time. Note that the higher the high-frequency cutoff performance of the low-pass filter, the stronger the pulsation of the estimated pulsation frequency 40b can be removed, but it should be noted that the settling time of the smoothed pulsation frequency 60d becomes longer. In other words, the characteristics of the low-pass filter 601 must be determined so that the smoothed pulsation frequency 60d is settled within the target time of the initial estimation.
  • the “target time of initial estimation” is the time from the start of energization of the inverter 1 to the start of steady estimation.
  • the lookup table 602 is determined according to the phase characteristics of the high pass filters 301 and 302 in the pulsation extraction unit 30.
  • the lookup table 602 holds data indicating how much the phase of the signal that has passed through the pulsation extraction unit 30 changes according to the frequency of the signal.
  • the phase correction amount 60e is subtracted from the estimated pulsation phase 40a.
  • the corrected pulsation phase 60c exactly matches the pulsation phase of the two-phase current before being processed by the high-pass filters 301 and 302.
  • the corrected pulsation phase 60c and the smoothed pulsation frequency 60d are the phase and frequency of the pulsation component superimposed on the two-phase current.
  • the two-phase current pulsates at a frequency twice the rotation angle ⁇ of the rotor 2a. Therefore, in order to obtain information on the rotational position and the rotational frequency of the rotor 2a, the phase and frequency of the pulsating current may be multiplied by 0.5, respectively.
  • the units of the estimated rotor phase 60a and the estimated rotor frequency 60b are not particularly limited. Further, in the conversion unit 604, conversion of a mechanical angle and an electrical angle, conversion of a power method and a radian method, etc. may be performed at the same time depending on the configuration of an algorithm for steady estimation (not shown).
  • the controller according to the fourth embodiment includes the low pass filter that smoothes the estimated pulsation frequency. Thereby, the harmonics included in the estimated pulsation frequency are further reduced, and the estimation accuracy is improved. Further, the controller according to the fourth embodiment includes a look-up table that refers to the phase correction amount based on the output of the low-pass filter, and refers to the look-up table to correct the estimated pulsation phase with the phase correction amount. This look-up table is determined based on the frequency-phase characteristics of the high-pass filter that constitutes the pulsation extraction unit. As a result, the phase advance of the signal in the pulsation extraction unit is corrected, and the accurate pulsation current phase is obtained. As a result, accurate information on the rotational position of the rotor can be obtained.
  • the present invention is not limited to this.
  • the same correction may be applied to the second embodiment, and the same effect can be obtained.
  • the motor 2 may be an embedded permanent magnet synchronous motor (Interior Permanent Magnet Synchronous Motor: IPMSM).
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • FIG. 11 is a block diagram showing an example of a hardware configuration that realizes the arithmetic function in the controller according to the fourth embodiment.
  • FIG. 12 is a block diagram showing another example of the hardware configuration that realizes the arithmetic function in the controller of the fourth embodiment.
  • a processor 90 for performing arithmetic and a program read by the processor 90 are stored. It can be configured to include a memory 91 and an interface 92 for inputting and outputting signals.
  • the processor 90 may be a computing unit such as a computing device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 91 includes a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM). Examples include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs).
  • the memory 91 stores a program that executes all or some of the arithmetic functions of the controller 3A.
  • the processor 90 exchanges necessary information via the interface 92, and the processor 90 executes the program stored in the memory 91 to estimate the PWM control of the inverter 1 and the rotational position and rotational frequency of the motor 2. An initial estimate can be made.
  • the processor 90 and the memory 91 shown in FIG. 11 may be replaced with a processing circuit 93 as shown in FIG.
  • the processing circuit 93 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the hardware configuration for realizing the arithmetic function of the controller 3A of the fourth embodiment has been described, but the present invention is not limited to this. It goes without saying that the controller 3 of the first to third embodiments can also be realized with the same hardware configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

This motor driving device (100) is provided with an inverter (1), a controller (3), and a detector (4). The controller (3) is provided with a voltage control unit (50), a coordinate transformation unit (20), a pulsation extraction unit (30), and a phase synchronization calculation unit (40). The controller (3) controls the voltage which is output to a motor (2) by the inverter (1), and performs calculation for estimating a rotational position and a rotational frequency of the motor (2). The coordinate transformation unit (20) converts the motor currents obtained from the detector (4) to two-phase currents (20a, 20b) in a coordinate system at rest. The pulsation extraction unit (30) extracts pulsating currents (30a, 30b) from the two-phase currents (20a, 20b). The phase synchronization calculation unit (40) calculates an estimated pulsation phase (40a) and an estimated pulsation frequency (40b). When this calculation is performed, the voltage control unit (50) calculates and outputs a voltage command value with which any of the motor currents do not become zero.

Description

モータ駆動装置Motor drive
 本発明は、突極性を有する同期モータをセンサレスで駆動するモータ駆動装置に関する。 The present invention relates to a motor drive device that drives a synchronous motor having saliency without a sensor.
 同期モータの固定子に多相の交流電圧を印加すると回転磁界が発生する。この回転磁界と、ロータとの磁気的な相互作用によって、同期モータには、トルクが発生する。多相の交流電圧とは、三相もしくは四相以上の交流電圧である。同期モータが回転するとき、回転磁界とロータとは、位相及び周波数が同期している必要がある。従って、同期モータを駆動するには、ロータの回転位置又は回転周波数の情報が必要となる。ロータの回転位置又は回転周波数の情報を得るために、位置センサ又は速度センサを用いる方法がある。その一方で、部品点数及び配線数を削減するために、これらのセンサを用いない駆動方式の適用も拡がっている。ロータの回転位置又は回転周波数の情報を取得するためのセンサを備えていない状態及び駆動方式は、「センサレス」と呼ばれる。 -A rotating magnetic field is generated when a multi-phase AC voltage is applied to the stator of a synchronous motor. Torque is generated in the synchronous motor due to the magnetic interaction between the rotating magnetic field and the rotor. The polyphase AC voltage is an AC voltage of three phases or four phases or more. When the synchronous motor rotates, the rotating magnetic field and the rotor need to be synchronized in phase and frequency. Therefore, in order to drive the synchronous motor, information on the rotational position or rotational frequency of the rotor is required. There is a method of using a position sensor or a speed sensor to obtain information on the rotational position or rotational frequency of the rotor. On the other hand, in order to reduce the number of parts and the number of wirings, the application of a drive system that does not use these sensors is expanding. A state and a driving method that do not include a sensor for acquiring information on the rotational position or the rotational frequency of the rotor are called “sensorless”.
 同期モータをセンサレスで始動するときは、過電流などが生じないように、出力電圧の位相及び周波数をロータの回転状態に同期させつつ、インバータの半導体素子に対するスイッチング制御を開始する必要がある。このため、同期モータのセンサレス駆動方式では、同期モータを始動する場合を、始動以外の場合と区別して捉えることが通常である。具体的に、同期モータのセンサレス駆動方式は、大きく分けて「定常推定」及び「初期推定」と称される2つのアルゴリズムから構成される。 When starting a synchronous motor without a sensor, it is necessary to start the switching control for the semiconductor elements of the inverter while synchronizing the phase and frequency of the output voltage with the rotation state of the rotor so that overcurrent does not occur. Therefore, in the sensorless drive system of the synchronous motor, it is usual to distinguish the case of starting the synchronous motor from the cases other than the case of starting. Specifically, the sensorless drive system of the synchronous motor is roughly composed of two algorithms called "steady state estimation" and "initial estimation".
 定常推定のアルゴリズムは、モータを駆動するインバータの半導体素子がスイッチング動作し、継続的にモータのトルク又は回転状態が制御されているときに適用される。一方、初期推定のアルゴリズムは、インバータの半導体素子がスイッチング動作を停止している状態から、スイッチング動作を開始するときに適用される。即ち、初期推定によって得られたロータの回転位置及び回転周波数の情報を用いて、定常推定が開始される。 ▽ The algorithm of steady estimation is applied when the semiconductor element of the inverter that drives the motor is switching operation and the torque or rotation state of the motor is continuously controlled. On the other hand, the initial estimation algorithm is applied when starting the switching operation from the state where the semiconductor element of the inverter stops the switching operation. That is, the steady estimation is started using the information on the rotational position and the rotational frequency of the rotor obtained by the initial estimation.
 初期推定の一例として、特定の相の電流極性が反転する周期に基づいてロータの回転周波数を推定し、特定の相の電流極性が反転するタイミングに基づいてロータの回転位置を推定する方法が、特許文献1に開示されている。なお、便宜上、相電流の極性、即ち相電流の符号が反転することを「ゼロクロス」と呼ぶ。 As an example of the initial estimation, a method of estimating the rotation frequency of the rotor based on the cycle in which the current polarity of the specific phase reverses, and estimating the rotational position of the rotor based on the timing when the current polarity of the specific phase reverses, It is disclosed in Patent Document 1. For the sake of convenience, the inversion of the polarity of the phase current, that is, the sign of the phase current is called “zero cross”.
特開2004-336866号公報JP, 2004-336866, A
 ところで、パルス幅変調(Pulse Width Modulation:PWM)によって出力電圧が制御されるインバータにおいては、インバータを構成するスイッチング素子のオン電圧、インバータを制御する際のデッドタイムなどの影響で、コントローラが意図した電圧指令値に対して、実際の出力電圧がずれる事象が知られている。電圧指令値と実際の出力電圧との差である電圧誤差は、スイッチング素子に流れる電流が小さいほど、即ち、モータ電流が小さいほど顕著になる。なお、モータ電流とは、モータの各相に流れる電流、即ちモータの相電流である。 By the way, in an inverter whose output voltage is controlled by Pulse Width Modulation (PWM), the controller intends because of the ON voltage of the switching element that constitutes the inverter and the dead time when controlling the inverter. It is known that the actual output voltage deviates from the voltage command value. The voltage error, which is the difference between the voltage command value and the actual output voltage, becomes more significant as the current flowing through the switching element is smaller, that is, the motor current is smaller. The motor current is a current flowing through each phase of the motor, that is, a phase current of the motor.
 特許文献1に記載された初期推定では、特定の相の電流がゼロ付近で脈動するように制御されるため、上記で言う電圧誤差が顕著になる。電圧誤差が大きいと、他の相の相電流が過小となって周波数の推定精度が劣化する。或いは、他の相の相電流が過大となって磁気飽和を起こし、回転位置の推定精度が劣化する。なお、ここで言う「他の相」は、特定の相に対して、過小となったり過大となったりする相を意味している。このように、電圧誤差が大きいと、周波数の推定精度が劣化し又は、回転位置の推定精度が劣化するという課題が生じる。 In the initial estimation described in Patent Document 1, since the current of a specific phase is controlled so as to pulsate near zero, the voltage error mentioned above becomes remarkable. If the voltage error is large, the phase currents of the other phases become too small and the frequency estimation accuracy deteriorates. Alternatively, the phase currents of the other phases become excessively large, causing magnetic saturation, which deteriorates the estimation accuracy of the rotational position. The "other phase" here means a phase that is too small or too large with respect to a specific phase. As described above, when the voltage error is large, there arises a problem that the estimation accuracy of the frequency deteriorates or the estimation accuracy of the rotational position deteriorates.
 また、電圧センサ及び電流センサの信号には、アナログ回路で入り込むノイズが含まれている。このため、電圧センサ又は電流センサでは、必ずしも精確なゼロクロスのタイミングが検出できるとは限らない。 Also, the signals of the voltage sensor and current sensor include noise that enters in the analog circuit. Therefore, the voltage sensor or the current sensor cannot always detect the accurate zero-cross timing.
 また、デジタル回路で電流の検出値をサンプリングできる回数は限られている。特に、モータの高速回転中は、モータ電流の脈動する周期が短くなるため、電流の検出値が得られないタイミングが多く生じ、ゼロクロスのタイミングの誤差がより顕著となる。 Also, the number of times the current detection value can be sampled with a digital circuit is limited. In particular, during high-speed rotation of the motor, the pulsating cycle of the motor current becomes short, so that there are many timings at which current detection values cannot be obtained, and the zero-cross timing error becomes more prominent.
 本発明は、上記に鑑みてなされたものであって、回転中の同期モータの回転位置又は回転周波数の情報を高精度に推定することができるモータ駆動装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a motor drive device capable of highly accurately estimating information on the rotational position or rotational frequency of a rotating synchronous motor.
 上述した課題を解決し、目的を達成するため、本発明に係るモータ駆動装置は、突極性を有する同期モータを駆動するインバータ、インバータの動作状態を制御する制御器、及び同期モータの相電流を検出する検出器を備える。制御器は、インバータの出力電圧を決定する電圧制御部、相電流を静止座標系の二相電流へ変換する座標変換部、二相電流から脈動電流を抽出する脈動抽出部、並びに脈動電流の周波数及び位相を推定演算する位相同期演算部を備える。電圧制御部は、相電流の何れもゼロとならない電圧指令値を出力する。 In order to solve the problems described above and achieve the object, a motor drive device according to the present invention provides an inverter that drives a synchronous motor having saliency, a controller that controls the operating state of the inverter, and a phase current of the synchronous motor. A detector for detecting is provided. The controller is a voltage control unit that determines the output voltage of the inverter, a coordinate conversion unit that converts a phase current into a two-phase current in a stationary coordinate system, a pulsation extraction unit that extracts a pulsating current from the two-phase current, and the frequency of the pulsating current. And a phase synchronization calculator for estimating and calculating the phase. The voltage control unit outputs a voltage command value in which none of the phase currents becomes zero.
 本発明に係るモータ駆動装置によれば、回転中の同期モータの回転位置又は回転周波数の情報を高精度に推定することができる、という効果を奏する。 According to the motor drive device of the present invention, it is possible to highly accurately estimate the information on the rotational position or the rotational frequency of the rotating synchronous motor.
実施の形態1に係るモータ駆動装置の構成図Configuration diagram of a motor drive device according to the first embodiment 図1に示すインバータの構成を示す回路図Circuit diagram showing the configuration of the inverter shown in FIG. 実施の形態1に係る電圧制御部が出力する電圧指令値の説明に供する模式図Schematic diagram for explaining the voltage command value output by the voltage control unit according to the first embodiment. 実施の形態1における電圧指令値ベクトルの位相と相電流の大きさの関係を示す図FIG. 3 is a diagram showing the relationship between the phase of the voltage command value vector and the magnitude of phase current in the first embodiment. 実施の形態2に係る脈動抽出部の構成を示すブロック図Block diagram showing the configuration of a pulsation extraction unit according to the second embodiment 実施の形態2に係る位相同期演算部の構成を示すブロック図FIG. 3 is a block diagram showing the configuration of the phase synchronization calculation unit according to the second embodiment. 実施の形態3に係る位相同期演算部の構成を示すブロック図FIG. 3 is a block diagram showing the configuration of the phase synchronization calculation unit according to the third embodiment. 実施の形態3に係る増幅器のゲインを切り替える動作の説明に供する図FIG. 8 is a diagram for explaining the operation of switching the gain of the amplifier according to the third embodiment. 実施の形態4に係るモータ駆動装置の構成図Configuration diagram of a motor drive device according to a fourth embodiment 実施の形態4に係る補正演算部の構成を示すブロック図Block diagram showing a configuration of a correction operation unit according to the fourth embodiment 実施の形態4の制御器における演算機能を実現するハードウェア構成の一例を示すブロック図FIG. 4 is a block diagram showing an example of a hardware configuration that realizes an arithmetic function in the controller according to the fourth embodiment. 実施の形態4の制御器における演算機能を実現するハードウェア構成の別の例を示すブロック図The block diagram which shows another example of the hardware constitutions which implement|achieve the arithmetic function in the controller of Embodiment 4.
 以下に添付図面を参照し、本発明の実施の形態に係るモータ駆動装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。 A motor drive device according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置の構成図である。図2は、図1に示すインバータの構成を示す回路図である。図1において、モータ駆動装置100は、ロータ2aを有するモータ2と、モータ2を駆動するインバータ1と、インバータ1の動作状態を制御する制御器3と、モータ2の相電流を検出する検出器4とを備える。
Embodiment 1.
FIG. 1 is a configuration diagram of a motor drive device according to the first embodiment. FIG. 2 is a circuit diagram showing a configuration of the inverter shown in FIG. 1, a motor drive device 100 includes a motor 2 having a rotor 2a, an inverter 1 for driving the motor 2, a controller 3 for controlling an operating state of the inverter 1, and a detector for detecting a phase current of the motor 2. 4 and.
 インバータ1は、電力源110より直流電力の供給を受け、モータ2へ可変振幅及び可変周波数の電圧を印加する。インバータ1は、図1では図示しない複数の半導体素子へのパルス幅変調(Pulse Width Modulation:PWM)制御によってモータ2への印加電圧を調整する。 The inverter 1 is supplied with DC power from the power source 110 and applies a voltage of variable amplitude and variable frequency to the motor 2. The inverter 1 adjusts the voltage applied to the motor 2 by pulse width modulation (PWM) control for a plurality of semiconductor elements (not shown in FIG. 1).
 モータ2は、突極性を有する同期モータである。突極性を有する同期モータの一例は、同期リラクタンスモータ(Synchronous Reluctance Motor:以下「SynRM」と表記)である。SynRMのロータは、円筒軸を基準とする回転角に応じて、径方向の磁気抵抗が変化する特性を有している。このような特性は、「突極性」と呼ばれる。SynRMのステータに電圧を印加し、ステータに電流が流れると、ロータの円周上を径方向に差交する磁界が生成される。このとき、磁束が大きくなる方向、即ち磁路の磁気抵抗が小さくなる方向へ、ロータを回転させようとするトルクが発生する。このように、ロータの突極性に起因して生じるトルクは、リラクタンストルクと呼ばれる。 The motor 2 is a synchronous motor having saliency. An example of a salient-polarity synchronous motor is a synchronous reluctance motor (Synchronous Reluctance Motor: hereinafter referred to as “SynRM”). The SynRM rotor has a characteristic that the magnetic resistance in the radial direction changes according to the rotation angle with respect to the cylindrical axis. Such a characteristic is called "saliency". When a voltage is applied to the stator of the SynRM and a current flows through the stator, a magnetic field that radially intersects the circumference of the rotor is generated. At this time, torque is generated to rotate the rotor in the direction in which the magnetic flux increases, that is, the magnetic resistance in the magnetic path decreases. Thus, the torque generated due to the salient pole of the rotor is called reluctance torque.
 図2には、インバータ1が三相インバータである場合の回路構成が示されている。図2に示されるインバータ1は、上アームの半導体素子UPと下アームの半導体素子UNとが直列に接続されたレグ10Aと、上アームの半導体素子VPと下アームの半導体素子VNとが直列に接続されたレグ10Bと、上アームの半導体素子WPと下アームの半導体素子WNとが直列に接続されたレグ10Cと、を備える。レグ10A、レグ10B及びレグ10Cは、互いに並列に接続されている。 FIG. 2 shows the circuit configuration when the inverter 1 is a three-phase inverter. In the inverter 1 shown in FIG. 2, the leg 10A in which the semiconductor element UP of the upper arm and the semiconductor element UN of the lower arm are connected in series, the semiconductor element VP of the upper arm and the semiconductor element VN of the lower arm are connected in series. The connected leg 10B and the leg 10C in which the upper arm semiconductor element WP and the lower arm semiconductor element WN are connected in series are provided. The leg 10A, the leg 10B, and the leg 10C are connected in parallel with each other.
 インバータ1には、直流母線15a,15bを通じて、母線電圧が印加される。インバータ1は、直流母線15a,15bを通じて供給される電力源110の直流電力を交流電力に変換し、変換した交流電力をモータ2に供給することでモータ2を駆動する。 A bus voltage is applied to the inverter 1 through the DC buses 15a and 15b. The inverter 1 drives the motor 2 by converting the DC power of the power source 110 supplied through the DC buses 15 a and 15 b into AC power and supplying the converted AC power to the motor 2.
 図2では、半導体素子UP,UN,VP,VN,WP,WNが金属酸化膜半導体電界効果型トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)である場合を例示している。半導体素子UPは、トランジスタ10aと、トランジスタ10aに逆並列に接続されるダイオード10bとを含む。他の半導体素子UN,VP,VN,WP,WNについても同様の構成である。逆並列とは、MOSFETのソースに相当する第1端子にダイオードのアノード側が接続され、MOSFETのドレインに相当する第2端子にダイオードのカソード側が接続されることを意味する。 FIG. 2 exemplifies a case where the semiconductor elements UP, UN, VP, VN, WP, WN are metal oxide semiconductor field effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor: MOSFET). The semiconductor element UP includes a transistor 10a and a diode 10b connected in antiparallel with the transistor 10a. The other semiconductor elements UN, VP, VN, WP, WN have the same configuration. The anti-parallel means that the anode side of the diode is connected to the first terminal corresponding to the source of the MOSFET and the cathode side of the diode is connected to the second terminal corresponding to the drain of the MOSFET.
 なお、半導体素子UP,UN,VP,VN,WP,WNは、MOSFETに代えて、例えば絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を用いてもよい。 The semiconductor elements UP, UN, VP, VN, WP, WN may be replaced by MOSFETs, for example, insulated gate bipolar transistors (Insulated Gate Bipolar Transistors: IGBT) may be used.
 また、図2は、上アームの半導体素子と下アームの半導体素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。また、図2では、1つのレグが1つの上下アームの半導体素子で構成されているが、1つのレグが複数対の上下アームの半導体素子で構成されていてもよい。 Also, although FIG. 2 shows a configuration including three legs in which the semiconductor element of the upper arm and the semiconductor element of the lower arm are connected in series, the configuration is not limited to this. The number of legs may be four or more. Further, in FIG. 2, one leg is composed of one upper and lower arm semiconductor element, but one leg may be composed of a plurality of pairs of upper and lower arm semiconductor elements.
 また、半導体素子UP,UN,VP,VN,WP,WNのトランジスタ10aがMOSFETである場合、半導体素子UP,UN,VP,VN,WP,WNのうちの少なくとも1つは、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されていてもよい。 When the transistor 10a of each of the semiconductor elements UP, UN, VP, VN, WP, WN is a MOSFET, at least one of the semiconductor elements UP, UN, VP, VN, WP, WN is made of silicon carbide or gallium nitride. It may be formed of a wide band gap semiconductor such as a system material or diamond.
 一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧性及び耐熱性が高い。そのため、半導体素子UP,UN,VP,VN,WP,WNのうちの少なくとも1つにワイドバンドギャップ半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。 Wide bandgap semiconductors generally have higher voltage resistance and heat resistance than silicon semiconductors. Therefore, if at least one of the semiconductor elements UP, UN, VP, VN, WP, WN is formed of a wide bandgap semiconductor MOSFET, it is possible to obtain the effects of withstand voltage and heat resistance.
 上アームの半導体素子UPと下アームの半導体素子UNとの接続点12はモータ2の第1の相(例えばU相)に接続され、上アームの半導体素子VPと下アームの半導体素子VNとの接続点13はモータ2の第2の相(例えばV相)に接続され、上アームの半導体素子WPと下アームの半導体素子WNとの接続点14はモータ2の第3の相(例えばW相)に接続されている。インバータ1において、接続点12,13,14は、交流端子を成す。 A connection point 12 between the upper arm semiconductor element UP and the lower arm semiconductor element UN is connected to the first phase (for example, U phase) of the motor 2, and the upper arm semiconductor element VP and the lower arm semiconductor element VN are connected. The connection point 13 is connected to the second phase (for example, the V phase) of the motor 2, and the connection point 14 between the upper arm semiconductor element WP and the lower arm for the semiconductor element WN is the third phase (for example, the W phase) of the motor 2. )It is connected to the. In the inverter 1, the connection points 12, 13 and 14 form AC terminals.
 図1に戻り、モータ駆動装置100の説明を続ける。制御器3は、インバータ1の出力電圧を決定する電圧制御部50と、相電流を静止座標系の二相電流へ変換する座標変換部20と、二相電流から脈動電流を抽出する脈動抽出部30と、脈動電流の周波数及び位相を推定演算する位相同期演算部40とを備える。 Returning to FIG. 1, the description of the motor drive device 100 will be continued. The controller 3 includes a voltage control unit 50 that determines the output voltage of the inverter 1, a coordinate conversion unit 20 that converts a phase current into a two-phase current in a stationary coordinate system, and a pulsation extraction unit that extracts a pulsating current from the two-phase current. 30 and a phase synchronization calculation unit 40 that estimates and calculates the frequency and phase of the pulsating current.
 電圧制御部50は、インバータ1が出力すべき電圧の指令値である電圧指令値を演算する。インバータ1の半導体素子UP,UN,VP,VN,WP,WNのスイッチング状態は、電圧指令値に基づいて決定される。ここで、モータ2のトルクを所望の値にするための電圧指令値は、ロータ2aの回転位置及び回転周波数に基づいて演算される必要がある。 The voltage control unit 50 calculates a voltage command value that is a command value of the voltage that the inverter 1 should output. The switching states of the semiconductor elements UP, UN, VP, VN, WP, WN of the inverter 1 are determined based on the voltage command value. Here, the voltage command value for setting the torque of the motor 2 to a desired value needs to be calculated based on the rotation position and the rotation frequency of the rotor 2a.
 ロータ2aの回転位置又は回転周波数の情報を得るために、位置センサ又は速度センサを用いる方法がある。ところが、これらのセンサは、モータと同軸上に設置されることが多く、モータの設置スペースに制約があると、許容されるモータの軸長が小さくなってしまう。このため、位置センサ又は速度センサを用いる方法は、結果的にモータ出力が制限されてしまうという不利点がある。また、位置センサ又は速度センサは、センサの信号線を制御器3が実装されるハードウェアへ配線する必要がある。このため、位置センサ又は速度センサを用いる方法は、部品コストが増加し、断線のリスクがあるといった課題が生じる。これらの理由により、位置センサ及び速度センサを用いない駆動方式である、センサレス駆動方式の適用が拡がっている。実施の形態1に係るモータ駆動装置100も、センサレスでモータを駆動することを前提とする。 There is a method of using a position sensor or a speed sensor to obtain information on the rotation position or rotation frequency of the rotor 2a. However, these sensors are often installed coaxially with the motor, and if the installation space of the motor is restricted, the allowable axial length of the motor will be reduced. Therefore, the method using the position sensor or the speed sensor has a disadvantage that the motor output is limited as a result. Further, in the position sensor or the speed sensor, the signal line of the sensor needs to be wired to the hardware in which the controller 3 is mounted. Therefore, the method of using the position sensor or the speed sensor has a problem that the cost of parts increases and there is a risk of disconnection. For these reasons, the application of the sensorless drive system, which is a drive system that does not use the position sensor and the speed sensor, is expanding. The motor drive device 100 according to the first embodiment is also premised on driving the motor without a sensor.
 モータ2をセンサレスで始動するときは、過電流などが生じないように、出力電圧の位相及び周波数をロータ2aの回転状態に同期させた上で、インバータ1のスイッチング制御を開始する必要がある。この観点から、同期モータのセンサレス駆動方式は、前述したように、定常推定及び初期推定という2つのアルゴリズムに区分されている。 When starting the motor 2 without a sensor, it is necessary to start the switching control of the inverter 1 after synchronizing the phase and frequency of the output voltage with the rotation state of the rotor 2a so that overcurrent does not occur. From this viewpoint, the sensorless drive system of the synchronous motor is divided into two algorithms, that is, steady estimation and initial estimation, as described above.
 前述したように、定常推定は、インバータ1がスイッチングを開始し、継続的にモータ2のトルク又は回転周波数が制御されているときに適用されるアルゴリズムである。 As described above, the steady estimation is an algorithm applied when the inverter 1 starts switching and the torque or rotation frequency of the motor 2 is continuously controlled.
 定常推定の代表的な方式の1つに、モータ2の誘起電圧(「逆起電圧」とも呼ばれる)を用いる方法がある。この方法では、モータの数式モデルに基づき誘起電圧を演算し、ロータ2aの位置に対応する真のdq座標系の座標軸と、電圧指令値が演算される推定dq座標系の座標軸との間の位相差を定義する。そして、この位相差が解消されるように推定dq座標系が修正され、結果的にロータ2aの位置及び回転周波数の推定値が得られる。なお、dq座標系とは、モータ2をベクトル制御するときの回転座標系を表すものであり、広く知られた概念である。 One of the typical methods for steady estimation is to use the induced voltage of the motor 2 (also called "back electromotive force"). In this method, the induced voltage is calculated based on the mathematical model of the motor, and the position between the coordinate axis of the true dq coordinate system corresponding to the position of the rotor 2a and the coordinate axis of the estimated dq coordinate system where the voltage command value is calculated is calculated. Define the phase difference. Then, the estimated dq coordinate system is corrected so as to eliminate this phase difference, and as a result, the estimated values of the position and the rotation frequency of the rotor 2a are obtained. The dq coordinate system represents a rotating coordinate system when the motor 2 is vector-controlled, and is a widely known concept.
 定常推定の別の方式として、モータ2へ高周波電圧を印加し、そのときの電流応答を用いる方法がある。この方法では、突極性を有するモータ2に高周波電圧を印加すると、dq座標上の電流が楕円状の軌跡となることを利用してロータ2aの回転位置及び回転周波数の推定値を得る方法である。この方法は、誘起電圧が小さくなる低速の運転条件で用いられることが多い。 Another method of steady estimation is to apply a high frequency voltage to the motor 2 and use the current response at that time. In this method, when a high-frequency voltage is applied to the motor 2 having saliency, the current on the dq coordinates has an elliptical locus, which is a method of obtaining the estimated values of the rotational position and the rotational frequency of the rotor 2a. .. This method is often used under low speed operating conditions where the induced voltage is small.
 また、前述したように、初期推定は、インバータ1がスイッチングを停止している状態から、スイッチングを開始するときに適用されるアルゴリズムである。前述したように、定常推定のアルゴリズムでは、演算を開始するときに、ロータ2aの回転位置及び回転周波数の情報のうちの何れか1つ又は両方の初期値が必要となる。初期値と真値の差が大きい状態で通電を開始すると、過電流が発生するなどの不都合が生じる。このため、初期推定によって得られたロータ2aの回転位置及び回転周波数の情報を用いて、定常推定が開始される。このように、初期推定のアルゴリズムは、インバータ1の起動時に短時間だけ実行される。 Also, as described above, the initial estimation is an algorithm applied when switching is started from the state in which the inverter 1 has stopped switching. As described above, the steady estimation algorithm requires an initial value of one or both of the information on the rotational position and the rotational frequency of the rotor 2a when starting the calculation. If energization is started in a state where the difference between the initial value and the true value is large, inconveniences such as overcurrent may occur. Therefore, steady estimation is started using the information on the rotational position and the rotational frequency of the rotor 2a obtained by the initial estimation. In this way, the initial estimation algorithm is executed for a short time when the inverter 1 is started.
 以下、図1に示した電圧制御部50の動作を説明する。実施の形態1では、初期推定の方法について詳述する。なお、定常推定の方法は特に限定しない。 The operation of the voltage control unit 50 shown in FIG. 1 will be described below. In the first embodiment, a method of initial estimation will be described in detail. The method of steady estimation is not particularly limited.
 電圧制御部50は、インバータ1を起動する指令を図示しない上位の制御系から受けたとき、各相のモータ電流の何れもゼロとならない電圧指令値を演算する。更に、電圧制御部50は、直流電圧であり、且つ、電圧ベクトルがモータ2の何れかの相と同一又は逆の方向となる電圧指令値を生成する。なお、このような電圧指令値を生成する理由は、後述する。 When the voltage control unit 50 receives a command to start the inverter 1 from a higher-order control system (not shown), the voltage control unit 50 calculates a voltage command value in which none of the motor currents of the respective phases becomes zero. Furthermore, the voltage control unit 50 generates a voltage command value that is a DC voltage and has a voltage vector in the same direction or in the opposite direction to any phase of the motor 2. The reason for generating such a voltage command value will be described later.
 図3は、実施の形態1に係る電圧制御部50が出力する電圧指令値の説明に供する模式図である。ここでは、モータ2は三相モータとする。三相モータの各相は、u相、v相及びw相と表記する。u相、v相及びw相は、三相座標系を構成する。uvw三相座標系は、静止座標系である。なお、図3では、一例として電圧指令値ベクトルはu相と同じ方向としているが、これに限定されない。電圧指令値ベクトルは、v相又はw相と同一方向としてもよい。 FIG. 3 is a schematic diagram for explaining the voltage command value output by the voltage control unit 50 according to the first embodiment. Here, the motor 2 is a three-phase motor. Each phase of the three-phase motor is described as u phase, v phase and w phase. The u-phase, v-phase, and w-phase form a three-phase coordinate system. The uvw three-phase coordinate system is a stationary coordinate system. In FIG. 3, the voltage command value vector has the same direction as the u-phase as an example, but the present invention is not limited to this. The voltage command value vector may be in the same direction as the v phase or the w phase.
 まず、u相電流の平均値をiu0、v相電流の平均値をiv0、w相電流の平均値をiw0で表す。そして、図3に示される電圧指令値に従って、インバータ1が電圧を出力する。すると、v相電流の平均値iv0及びw相電流の平均値iw0は、u相電流の平均値iu0と、符合が逆で大きさが1/2となる。 First, the average value of the u-phase current is represented by i u0 , the average value of the v-phase current is represented by i v0 , and the average value of the w-phase current is represented by i w0 . Then, the inverter 1 outputs the voltage in accordance with the voltage command value shown in FIG. Then, the average value i v0 of the v-phase current and the average value i w0 of the w-phase current are opposite in sign to the average value i u0 of the u-phase current and have a magnitude of 1/2.
 また、図3中のα及びβの矢印は、電圧及び電流を三相二相変換したときの座標軸である。即ち、α及びβは、二相座標系を構成する。αβ二相座標系は、uvw三相座標系と同様に静止座標系である。uvw三相座標系からαβ二相座標系への変換行列は、次式で与えられる。 Moreover, the arrows of α and β in FIG. 3 are the coordinate axes when the voltage and current are converted into three phases and two phases. That is, α and β form a two-phase coordinate system. The αβ two-phase coordinate system is a stationary coordinate system like the uvw three-phase coordinate system. The conversion matrix from the uvw three-phase coordinate system to the αβ two-phase coordinate system is given by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、座標軸の定義の仕方によっては、変換行列が上記(1)式とは異なるものとなるが、α軸がuvw軸のうちの何れかと一致するように定義するのが一般的である。図3及び上記(1)式のようにαβ軸を定義したとき、電圧指令値はvαを非ゼロとし、vβをゼロとすればよいことになる。なお、図3に図示したdq軸は、αβ二相座標系をロータ2aの回転角θによって回転座標変換したものである。 Although the transformation matrix differs from the above equation (1) depending on how the coordinate axes are defined, it is general that the α axis is defined so as to coincide with any of the uvw axes. When the αβ axis is defined as shown in FIG. 3 and the above equation (1), the voltage command value should be such that v α is non-zero and v β is zero. It should be noted that the dq axes shown in FIG. 3 are obtained by rotating the αβ two-phase coordinate system by the rotation angle θ of the rotor 2a.
 ところで、回転中のモータの固定子に直流電圧を印加すると、突極性に起因して相電流に脈動が生じる。この脈動電流の性質について、以下に詳述する。 By the way, when a DC voltage is applied to the rotating motor stator, pulsation occurs in the phase current due to the saliency. The nature of this pulsating current will be described in detail below.
 まず、αβ座標系のSynRMの電圧方程式は、次式で表される。 First, the voltage equation of SynRM in the αβ coordinate system is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記(2)式において、vα,vβ及びiα,iβは、それぞれ二相変換した電圧及び電流を表す。また、Pは微分演算子、Rは巻線抵抗を表す。更に、Lα,Lβ,Lαβは、次式で定義される。 In the above formula (2), v α , v β and i α , i β represent the two-phase converted voltage and current, respectively. Further, P represents a differential operator, and R s represents winding resistance. Further, L α , L β and L αβ are defined by the following equations.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記(3)式において、Lαはα軸インダクタンス、Lβはβ軸インダクタンス、Lαβはαβ軸相互インダクタンスである。また、θはロータ2aの回転角、Lは平均インダクタンス、Lは差分インダクタンス、Lはd軸インダクタンス、Lはq軸インダクタンスである。 In the above formula (3), L α is the α-axis inductance, L β is the β-axis inductance, and L αβ is the αβ-axis mutual inductance. Further, θ is the rotation angle of the rotor 2a, L 0 is the average inductance, L 1 is the differential inductance, L d is the d-axis inductance, and L q is the q-axis inductance.
 突極性を有するモータでは、d軸インダクタンスLと、q軸インダクタンスLとが異なるので、上記(3)式の第5式から差分インダクタンスLが非ゼロとなる。従って、上記(3)式の第1式及び第2式に示されるように、ロータ2aの回転角θに応じて、α軸インダクタンスLα及びβ軸インダクタンスLβが変化する。 In the motor having the saliency, the d-axis inductance L d and the q-axis inductance L q are different, so that the differential inductance L 1 becomes non-zero from the fifth equation of the above equation (3). Therefore, as shown in the first and second equations of the above equation (3), the α-axis inductance L α and the β-axis inductance L β change according to the rotation angle θ of the rotor 2a.
 また、上記(2)式の微分演算子Pは、α軸インダクタンスLα、β軸インダクタンスLβ及びαβ軸相互インダクタンスLαβ、並びに、α軸電流iα及びβ軸電流iβの何れにも作用する。よって上記(2)式の微分演算子の項を展開すると、次式が得られる。 Further, the differential operator P in the equation (2) is applied to both the α-axis inductance L α , the β-axis inductance L β and the αβ-axis mutual inductance L αβ , and the α-axis current i α and the β-axis current i β. To work. Therefore, when the term of the differential operator in the above equation (2) is expanded, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記(4)式において、ωはロータ2aの回転周波数を表しており、ω=Pθである。図3の通電状態は、ロータ2a上から見ると、静止したモータに時計回りの回転磁界を与えるのと等価である。従って、α軸電流iα及びβ軸電流iβの脈動の位相は、β軸電流iβよりα軸電流iαの方が90度進んだ位相となる。 In the above formula (4), ω represents the rotation frequency of the rotor 2a, and ω=Pθ. The energized state in FIG. 3 is equivalent to applying a clockwise rotating magnetic field to the stationary motor when viewed from above the rotor 2a. Thus, alpha-axis current i alpha and beta pulsation phase axis current i beta is towards the beta-axis current i beta than alpha-axis current i alpha is 90 ° advanced phase.
 また、ステータ上で見ると、インダクタンスの突極性はαβ軸の何れにも等しく影響を及ぼすので、α軸電流iαの脈動の振幅と、β軸電流iβの脈動の振幅とは等しい。これらを踏まえ、α軸電流iα及びβ軸電流iβを、平均値の成分(iα0,iβ0)と、脈動電流の成分(iα1,iβ1)とに分けると、次式のように表される。 When viewed on the stator, the saliency of the inductance equally affects both of the αβ axes, so that the pulsation amplitude of the α-axis current i α is equal to the pulsation amplitude of the β-axis current i β . Based on these, the α-axis current i α and the β-axis current i β are divided into an average value component (i α0 , i β0 ) and a pulsating current component (i α1 , i β1 ) as shown in the following equation. Represented by.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記(5)式において、φは未知の位相角、Δiは脈動電流の振幅を表している。ここで、二相電流の平均値iα0,iβ0は、上記(2)式において、インダクタンス成分が係る項の全てを無視して方程式を解けば求まる。既に述べた通り、β軸電圧vβはゼロであるから、α軸電流の平均値iα0及びβ軸電流の平均値iβ0のそれぞれは、iα0=vα/Rs,iβ0=0となる。 In the above formula (5), φ represents an unknown phase angle and Δi represents the amplitude of the pulsating current. Here, the average values i α0 and i β0 of the two-phase current can be obtained by solving the equation by ignoring all the terms relating to the inductance component in the equation (2). Since the β-axis voltage v β is zero, as described above, the α-axis current average value i α0 and the β-axis current average value i β0 are i α0 =v α /Rs, i β0 =0. Become.
 また、上記(4)式に上記(5)式を代入すると、次式が得られる。 Also, by substituting the above equation (5) into the above equation (4), the following equation is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 更に、上記(6)式の第1行の式を整理すると、次式が得られる。 Further, by rearranging the formula in the first line of the above formula (6), the following formula is obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 但し、上記(7)式では、式中のδを次式のように置いている。 However, in the above formula (7), δ in the formula is set as in the following formula.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記(7)式が恒等である条件より、脈動電流の振幅Δiと、未知の位相角φが、次式及び次々式のように求まる。 From the condition that equation (7) is the same, the amplitude Δi of the pulsating current and the unknown phase angle φ are obtained as in the following equation and the following equations.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、上記(9)式において、抵抗成分はリアクタンス成分に比して十分に小さい。従って、上記(8)式は、δ=π/2と近似でき、上記(10)式は、φ=π/2と近似できる。このとき、α軸脈動電流iα1及びβ軸脈動電流iβ1は、次式のように変形できる。 Here, in the above equation (9), the resistance component is sufficiently smaller than the reactance component. Therefore, the above equation (8) can be approximated to δ=π/2, and the above equation (10) can be approximated to φ=π/2. At this time, the α-axis pulsating current i α1 and the β-axis pulsating current i β1 can be transformed into the following equation.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上記(11)式は、静止座標系上の二相の電流値から脈動電流を抽出し、それらの電流値の位相を演算すれば、結果的にロータ2aの回転位置が推定できることを表している。 The above equation (11) indicates that if the pulsating current is extracted from the two-phase current values on the stationary coordinate system and the phase of those current values is calculated, the rotational position of the rotor 2a can be estimated as a result. ..
 具体的に、図1に示す実施の形態1の制御器3は、以下の動作を行う。まず、座標変換部20は、検出器4から取得した相電流を、αβ二相座標系上の二相電流であるα軸電流20a及びβ軸電流20bに変換して出力する。このときの変換式は、例えば上記(1)式を使用する。 Specifically, the controller 3 of the first embodiment shown in FIG. 1 performs the following operations. First, the coordinate conversion unit 20 converts the phase current acquired from the detector 4 into an α-axis current 20a and a β-axis current 20b, which are two-phase currents on the αβ two-phase coordinate system, and outputs them. As the conversion equation at this time, for example, the above equation (1) is used.
 次に、脈動抽出部30は、α軸電流20a及びβ軸電流20bに基づいて、α軸脈動電流30a及びβ軸脈動電流30bを抽出して位相同期演算部40に出力する。なお、以下の説明では、α軸脈動電流30a及びβ軸脈動電流30bを総称して、単に「脈動電流」と呼ぶ場合がある。 Next, the pulsation extraction unit 30 extracts the α-axis pulsation current 30a and the β-axis pulsation current 30b based on the α-axis current 20a and the β-axis current 20b and outputs them to the phase synchronization calculation unit 40. In the following description, the α-axis pulsating current 30a and the β-axis pulsating current 30b may be collectively referred to simply as “pulsating current”.
 そして、位相同期演算部40は、α軸脈動電流30a及びβ軸脈動電流30bに基づいて、推定脈動位相40a及び推定脈動周波数40bを演算して出力する。位相同期演算部40で演算された推定脈動位相40a及び推定脈動周波数40bは、適宜の値に換算され、それらの換算値は、図示しない定常推定のアルゴリズムで用いられる。 Then, the phase synchronization calculation unit 40 calculates and outputs the estimated pulsation phase 40a and the estimated pulsation frequency 40b based on the α-axis pulsation current 30a and the β-axis pulsation current 30b. The estimated pulsation phase 40a and the estimated pulsation frequency 40b calculated by the phase synchronization calculation unit 40 are converted into appropriate values, and the converted values are used in a steady estimation algorithm (not shown).
 次に、電圧指令値を何れの相電流もゼロとならない値とすること、即ちu相電流、v相電流及びw相電流の何れもゼロとならない値とすることの利点について説明する。なお、以下の説明では、u相電流、v相電流及びw相電流を総称して「三相電流」と呼ぶ場合がある。 Next, the advantages of setting the voltage command value to a value that does not make any phase current zero, that is, making the u-phase current, the v-phase current, and the w-phase current all zero, will be described. In the following description, the u-phase current, v-phase current, and w-phase current may be collectively referred to as “three-phase current”.
 まず、実施の形態1のインバータ1に限らず、インバータの上下アームの半導体素子を制御するPWM信号には、上下アームの半導体素子の何れにもオフ指令を与える休止期間が設けられる。この休止期間は、デッドタイムと呼ばれる。休止期間を設けるのは、直流母線15a,15b間の短絡防止を確実に実施するためである。 First, not only the inverter 1 of the first embodiment, but also the PWM signal for controlling the semiconductor elements of the upper and lower arms of the inverter is provided with a pause period for giving an off command to both the semiconductor elements of the upper and lower arms. This rest period is called dead time. The pause period is provided to prevent the short circuit between the DC buses 15a and 15b from occurring.
 また、半導体素子には、半導体素子の物性による電圧降下も存在する。半導体素子がIGBTであれば、飽和電圧と呼ばれるコレクタ-エミッタ間の電圧降下が存在する。半導体素子がMOSFETであれば、ドレイン―ソース間の抵抗分による電圧降下が存在する。 Also, semiconductor devices have voltage drops due to the physical properties of semiconductor devices. If the semiconductor element is an IGBT, there is a collector-emitter voltage drop called a saturation voltage. If the semiconductor element is a MOSFET, there is a voltage drop due to the resistance between the drain and the source.
 上記の要因で発生する電圧誤差を軽減するために、しばしば電圧指令値の補正が行われる。これら補正は、デッドタイム補正、オン電圧補正などと呼ばれる。  To reduce the voltage error caused by the above factors, the voltage command value is often corrected. These corrections are called dead time correction, on-voltage correction, and the like.
 また、半導体素子を制御する際には、半導体素子に固有の以下の特性に対応する必要がある。 Also, when controlling a semiconductor element, it is necessary to deal with the following characteristics unique to the semiconductor element.
 (1)半導体素子に流れる電流が小さい小電流領域では、半導体素子のスイッチング過渡時間が複雑に変化する。
 (2)電圧指令値の補正では、電流の極性を用いて電圧補正量の符号を決定するので、チャタリングが発生しやすい。なお、チャタリングとは、電圧補正量と電流極性の反転が予期しない早い周期で繰り返される事象のことである。
 (3)チャタリングを防止するために不感帯を設けた場合は、補正の効果が低下する。
(1) In the small current region where the current flowing through the semiconductor element is small, the switching transition time of the semiconductor element changes in a complicated manner.
(2) In the correction of the voltage command value, since the sign of the voltage correction amount is determined using the polarity of the current, chattering easily occurs. Chattering is an event in which the inversion of the voltage correction amount and the current polarity is repeated at an unexpectedly early cycle.
(3) When a dead zone is provided to prevent chattering, the effect of correction is reduced.
 上記(1)~(3)項に共通して言えるのは、半導体素子に流れる電流が小さいほど電圧指令値の補正が難しくなる、ということである。即ち、三相電流のうちの何れか1つの相電流である第1の相電流が小さいと電圧誤差が大きくなる。電圧誤差が大きくなると、第1の相電流以外の他の相電流のうちの何れかの相電流が小さくなったり、大きくなったりする。その結果、α軸電流の平均値iα0及びβ軸電流の平均値iβ0が、過小となったり、過大となったりする。 What can be said in common with the above items (1) to (3) is that the smaller the current flowing through the semiconductor element, the more difficult it becomes to correct the voltage command value. That is, the voltage error increases when the first phase current, which is one of the three phase currents, is small. When the voltage error becomes large, one of the phase currents other than the first phase current becomes smaller or larger. As a result, the average value i α0 of the α-axis current and the average value i β0 of the β-axis current become too small or too large.
 ここで、上記(9)式から明らかなように、α軸脈動電流iα1及びβ軸脈動電流iβ1の振幅Δiは、α軸電流の平均値iα0の大きさに比例している。三相電流の何れかが小さいと、α軸電流の平均値iα0が過小となって回転位置及び回転周波数の推定精度が劣化する可能性がある。 Here, as is clear from the equation (9), the amplitude Δi of the α-axis pulsating current i α1 and the β-axis pulsating current i β1 is proportional to the magnitude of the average value i α0 of the α-axis current. If any of the three-phase currents is small, the average value i α0 of the α-axis current becomes too small, and the estimation accuracy of the rotational position and the rotational frequency may deteriorate.
 また、上記(2)式ではモデル化されていないが、SynRMでは、通電量が大きくなるほど、磁性部材の磁気飽和が進む。また、SynRMでは、磁気飽和のし易さがロータを磁化する方向によって顕著に異なる。このため、α軸電流の平均値iα0及びβ軸電流の平均値iβ0が過大となって磁気飽和の程度が強くなると、検出される脈動電流に高調波が含まれるようになり、回転位置及び回転周波数の推定精度が劣化する。 Further, although not modeled in the above formula (2), in SynRM, the magnetic saturation of the magnetic member progresses as the amount of energization increases. Further, in SynRM, the degree of magnetic saturation is significantly different depending on the direction of magnetizing the rotor. For this reason, when the average value i α0 of the α-axis current and the average value i β0 of the β-axis current become excessive and the degree of magnetic saturation becomes strong, the detected pulsating current includes harmonics, and the rotational position Also, the estimation accuracy of the rotation frequency deteriorates.
 上記の点を踏まえ、実施の形態1に係る電圧制御部50は、三相電流のうちの何れの相電流もゼロとならない電圧指令値を演算して出力する。これにより、インバータ1の出力電圧を所望の値にするための、電圧指令値の補正が容易になる。結果的に、モータ2の電流を適切な大きさに制御することができるので、ロータ2aの回転位置及び回転周波数の推定精度を高めることができる。 Based on the above points, the voltage control unit 50 according to the first embodiment calculates and outputs a voltage command value such that none of the three-phase currents becomes zero. As a result, it becomes easy to correct the voltage command value for setting the output voltage of the inverter 1 to a desired value. As a result, the electric current of the motor 2 can be controlled to an appropriate level, so that the estimation accuracy of the rotational position and the rotational frequency of the rotor 2a can be improved.
 なお、回転中のモータ2に電圧を印加したとき、電圧の大きさ及び位相によらず、突極性に起因する脈動電流は観測できる。しかしながら、電圧制御部50が出力する電圧指令値は、直流電圧とすることが望ましい。その理由は、以下の通りである。 Note that when a voltage is applied to the rotating motor 2, the pulsating current due to the saliency can be observed regardless of the magnitude and phase of the voltage. However, it is desirable that the voltage command value output by the voltage control unit 50 be a DC voltage. The reason is as follows.
 例えば、初期推定用の電圧に周波数がfである交流成分が含まれていると仮定する。そうすると、モータの相電流にも周波数fの交流成分が生ずる。つまり、相電流には、モータの回転周波数に同期した脈動成分と、電圧と同一の周波数成分とが混在する。相電流に複数の周波数成分が混在すると、その分離が難しくなり、初期推定の精度が劣化する。従って、初期推定用の電圧、即ち電圧制御部50が出力する電圧指令値は、直流電圧とすることが望ましい。 For example, assume that the voltage for initial estimation contains an AC component with a frequency f. Then, an AC component of frequency f is also generated in the phase current of the motor. That is, the pulsating component synchronized with the rotation frequency of the motor and the same frequency component as the voltage are mixed in the phase current. If a plurality of frequency components are mixed in the phase current, it becomes difficult to separate them and the accuracy of initial estimation deteriorates. Therefore, it is desirable that the voltage for initial estimation, that is, the voltage command value output by the voltage control unit 50 is a DC voltage.
 続いて、電圧指令値の電圧ベクトルの方向をモータ2の何れかの相と同一又は逆の方向とすることの利点を、図4を用いて説明する。図4は、実施の形態1における電圧指令値ベクトルの位相と相電流の大きさの関係を示す図である。なお、「電圧ベクトルの方向」は「電圧ベクトルの位相」、「同一又は逆の方向」は「同一又は逆の位相」と言い替えてもよい。この場合、同一又は逆の位相とは、例えば位相が60[deg]であるとき、「同一の位相」は60[deg]であり、「逆の位相」は、180[deg]を加算した、240[deg]であることを意味する。 Next, the advantage of making the direction of the voltage vector of the voltage command value the same as or opposite to the phase of any phase of the motor 2 will be described with reference to FIG. FIG. 4 is a diagram showing the relationship between the phase of the voltage command value vector and the magnitude of the phase current in the first embodiment. The “direction of the voltage vector” may be rephrased as the “phase of the voltage vector” and the “same or opposite direction” may be rephrased as the “same or opposite phase”. In this case, the same or opposite phase means, for example, when the phase is 60 [deg], the "same phase" is 60 [deg], and the "opposite phase" is obtained by adding 180 [deg], It means that it is 240 [deg].
 図4の横軸には、α軸を基準とした電圧指令値ベクトルの位相が示され、縦軸には規格化された各種の相電流の振幅が示されている。具体的に説明すると、点線はu相電流の平均値iu0、細実線はv相電流の平均値iv0、一点鎖線はw相電流の平均値iw0、細破線はα軸電流の平均値iα0、太破線はβ軸電流の平均値iβ0をそれぞれ表している。 The horizontal axis of FIG. 4 shows the phase of the voltage command value vector with respect to the α axis, and the vertical axis shows the amplitudes of various standardized phase currents. Specifically, the dotted line indicates the average value i u0 of the u-phase current, the thin solid line indicates the average value i v0 of the v-phase current, the alternate long and short dash line indicates the average value i w0 of the w-phase current, and the thin broken line indicates the average value of α-axis current. i α0 and the thick broken line represent the average value i β0 of the β-axis currents, respectively.
 また、太実線の波形は、各相電流の平均値(iu0,iv0,iw0)のうち、最も絶対値が小さい波形部分を描画したものである。ここで、各相電流の平均値(iu0,iv0,iw0)のうちで最も絶対値が小さい相を「最小相」と定義する。また、最小相の電流を「最小相電流」と定義する。 Further, the waveform of the thick solid line is a drawing of the waveform portion having the smallest absolute value in the average value (i u0 , i v0 , i w0 ) of each phase current. Here, the phase having the smallest absolute value among the average values (i u0 , i v0 , i w0 ) of the phase currents is defined as the “minimum phase”. The minimum phase current is defined as "minimum phase current".
 図4の通電状態は、電圧指令ベクトルの位相がゼロに相当する。このとき、最小相はv相又はw相であり、最小相電流の絶対値は“0.5”である。なお、この“0.5”という値は、電圧指令値ベクトルの位相を変化させたときに取りうる最大値であることが、図4の太実線の波形、即ち最小相電流の波形から理解できる。 In the energized state of FIG. 4, the phase of the voltage command vector corresponds to zero. At this time, the minimum phase is the v phase or the w phase, and the absolute value of the minimum phase current is “0.5”. It should be noted that this value of "0.5" is the maximum value that can be taken when the phase of the voltage command value vector is changed, which can be understood from the waveform of the thick solid line in FIG. 4, that is, the waveform of the minimum phase current. ..
 前述したように、相電流が小さいほど、電圧誤差を低減するための電圧指令値の補正が難しくなる。図3において、電圧指令値ベクトルの方向をu相と同じとしたのは、「最小相電流を最大化する」ためである。また、図4における最小相電流の波形によれば、0[deg]から60[deg]刻みの点が最大値となっている。即ち、図4によれば、電圧指令値ベクトルは、u相、v相及びw相のうちの何れかの相と同じ又は逆の方向を向いていればよいことが分かる。 As mentioned above, the smaller the phase current, the more difficult it becomes to correct the voltage command value to reduce the voltage error. In FIG. 3, the direction of the voltage command value vector is the same as that of the u-phase in order to “maximize the minimum phase current”. Further, according to the waveform of the minimum phase current in FIG. 4, points at intervals of 0 [deg] to 60 [deg] have the maximum values. That is, according to FIG. 4, it is understood that the voltage command value vector only needs to be oriented in the same direction or in the opposite direction to any one of the u phase, v phase, and w phase.
 例えば、電圧指令値ベクトルの位相が60[deg]の場合、電圧指令値ベクトルはv相と逆方向である。また、例えば、電圧指令値ベクトルの位相が120[deg]の場合、電圧指令値ベクトルはw相と同方向である。 For example, when the phase of the voltage command value vector is 60 [deg], the voltage command value vector is in the opposite direction to the v phase. Further, for example, when the phase of the voltage command value vector is 120 [deg], the voltage command value vector is in the same direction as the w phase.
 但し、電圧指令値ベクトルの位相がゼロ以外の場合、上記(5)式で定義した位相角φは、上記(10)式で示す値とは異なるものとなる。このため、電圧指令値ベクトルの位相がゼロ以外の場合、位相同期演算部40の処理において、適宜の補正が必要である。 However, when the phase of the voltage command value vector is other than zero, the phase angle φ defined by the above equation (5) is different from the value shown by the above equation (10). Therefore, when the phase of the voltage command value vector is other than zero, appropriate correction is necessary in the processing of the phase synchronization calculation unit 40.
 以上説明したように、実施の形態1に係る電圧制御部によれば、電圧指令値ベクトルの位相がモータの何れかの相と同一又は逆の方向となるような直流の電圧指令値を演算して出力する。これにより、インバータの出力電圧を所望の値にするための電圧指令値の補正が容易になる。結果的に、モータ電流を適切な大きさに制御することができるので、ロータの回転位置及び回転周波数の推定精度を高めることができる。 As described above, the voltage control unit according to the first embodiment calculates a DC voltage command value such that the phase of the voltage command value vector is in the same or opposite direction to any phase of the motor. Output. This facilitates the correction of the voltage command value for setting the output voltage of the inverter to a desired value. As a result, the motor current can be controlled to an appropriate level, and the estimation accuracy of the rotational position and rotational frequency of the rotor can be improved.
実施の形態2.
 実施の形態2では、図1に示した脈動抽出部30及び位相同期演算部40の詳細な構成及び動作について説明する。
Embodiment 2.
In the second embodiment, detailed configurations and operations of the pulsation extraction unit 30 and the phase synchronization calculation unit 40 illustrated in FIG. 1 will be described.
 図5は、実施の形態2に係る脈動抽出部30の構成を示すブロック図である。実施の形態2に係る脈動抽出部30は、図5に示すように、同一の特性を有する2つのハイパスフィルタ(High Pass Filter:HPF)301,302を有する。ハイパスフィルタ301,302には、静止座標系の二相電流であるα軸電流20a及びβ軸電流20bがそれぞれ入力されている。 FIG. 5 is a block diagram showing the configuration of the pulsation extraction unit 30 according to the second embodiment. As shown in FIG. 5, the pulsation extraction unit 30 according to the second embodiment has two high pass filters (HPF) 301 and 302 having the same characteristics. The α-axis current 20a and the β-axis current 20b, which are two-phase currents in the stationary coordinate system, are input to the high- pass filters 301 and 302, respectively.
 α軸電流20a及びβ軸電流20bに含まれる直流成分が除去されるのに要する時間は、ハイパスフィルタ301,302のカットオフ周波数に依存する。カットオフ周波数が高いほど、直流成分の除去に要する時間が短く、後述する位相同期演算部40による推定演算を速やかに開始することができる。但し、抽出しなければならない脈動電流の周波数は、ロータ2aの回転周波数と連動して変化する。このため、カットオフ周波数が高すぎると、脈動電流の振幅までもが減衰されてしまい、S/N比が低下する可能性があるので、設計においては、注意を要する。 The time required to remove the DC component contained in the α-axis current 20a and the β-axis current 20b depends on the cutoff frequencies of the high pass filters 301 and 302. The higher the cutoff frequency, the shorter the time required to remove the DC component, and the estimation calculation by the phase synchronization calculation unit 40 described later can be started quickly. However, the frequency of the pulsating current that must be extracted changes in conjunction with the rotation frequency of the rotor 2a. Therefore, if the cutoff frequency is too high, even the amplitude of the pulsating current may be attenuated, and the S/N ratio may decrease. Therefore, caution is required in the design.
 次に、位相同期演算部40について説明する。図6は、実施の形態2に係る位相同期演算部40の構成を示すブロック図である。実施の形態2に係る位相同期演算部40は、図6に示すように、位相誤差演算部401、増幅器402及び積分器403を有する。 Next, the phase synchronization calculation unit 40 will be described. FIG. 6 is a block diagram showing the configuration of the phase synchronization calculation unit 40 according to the second embodiment. The phase synchronization calculation unit 40 according to the second embodiment has a phase error calculation unit 401, an amplifier 402, and an integrator 403, as shown in FIG.
 位相誤差演算部401には、α軸脈動電流30a(iα1)、β軸脈動電流30b(iβ1)、推定脈動位相40a(θ^)が入力される。推定脈動位相40aは、積分器403の出力である。「θ^」という表記は、「θ」における「θ」の文字の上部にハット記号「^」が付されたものの代替表記である。本明細書では、イメージで挿入する数式を除き、当該代替表記を使用する。後述する「ω^」についても同様である。 The α-axis pulsating current 30 a (i α1 ), the β-axis pulsating current 30 b (i β1 ), and the estimated pulsating phase 40 a (θ^ 2 ) are input to the phase error calculation unit 401. The estimated pulsating phase 40a is the output of the integrator 403. The notation “θ^ 2 ”is an alternative notation for the letter “θ” in “θ 2 ”with a hat symbol “^” added above it. This alternative notation is used herein except for the mathematical formulas that are inserted in the image. The same applies to "ω^ 2 " described later.
 位相誤差演算部401は、次式に従って位相誤差40f(Δθ)を演算する。 The phase error calculator 401 calculates the phase error 40f (Δθ 2 ) according to the following equation.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 増幅器402は、位相誤差40f(Δθ)を増幅して推定脈動周波数40b(ω^)を出力する。増幅器402は、図6にも表記するように比例積分(Proportional Integral:PI)を行うPI制御器を用いるのが好適である。 Amplifier 402 outputs the estimated ripple frequency 40b amplifies the phase error 40f (Δθ 2) (ω ^ 2). As the amplifier 402, it is preferable to use a PI controller that performs proportional integration (PI) as shown in FIG.
 積分器403は、推定脈動周波数40bを積分し、その積分値を推定脈動位相40aとして出力する。推定脈動位相40aは、位相誤差演算部401へとフィードバックされる。 The integrator 403 integrates the estimated pulsation frequency 40b and outputs the integrated value as the estimated pulsation phase 40a. The estimated pulsation phase 40a is fed back to the phase error calculation unit 401.
 上記(12)式において、2θ>θ^のとき、Δθは正となるので、推定脈動周波数ω^及び推定脈動位相θ^は、増加する方向へ修正される。逆に、2θ<θ^のとき、Δθは負となるので、推定脈動周波数ω^及び推定脈動位相θ^は、減少する方向へ修正される。最終的には、2θ=θ^となり、脈動電流の位相及び周波数が推定される。このように、位相同期演算部40は、位相同期ループ(Phase Locked Loop:PLL)の形態をとる。 In the above equation (12), when 2θ>θ^ 2 , Δθ 2 becomes positive, so the estimated pulsation frequency ω^ 2 and the estimated pulsation phase θ^ 2 are corrected in the increasing direction. Conversely, when the 2 [Theta] <theta ^ 2, since [Delta] [theta] 2 is negative, the estimated pulsating frequency omega ^ 2 and the estimated pulse phase theta ^ 2 is modified to decrease direction. Finally, 2θ=θ^ 2 , and the phase and frequency of the pulsating current are estimated. In this way, the phase-locked arithmetic unit 40 takes the form of a phase-locked loop (PLL).
 ところで、実施の形態1のように、電圧指令値ベクトルの位相をゼロとした場合、図4にも示されるように、β軸電流20bの平均値(iβ0)はゼロとなる。従って、一見すると、β軸電流20bからβ軸脈動電流30b(iβ1)を抽出するのに、ハイパスフィルタ302を用いる必要がないようにも考えられる。しかしながら、α軸とβ軸とで、脈動電流抽出のためのフィルタ処理の有無及び特性に違いがあると、抽出される脈動電流の振幅及び位相が、α軸とβ軸とで異なってしまうこととなる。従って、電圧指令値ベクトルの位相に関わらず、2つのハイパスフィルタ301,302が必要である。また、両者は同一の特性であることが望ましい。なお、ここで言う、同一の特性とは、物理的な特性が完全同一であることを意味するものではなく、同一の特性となることを期待して設計及び構成されていることを意味する。 By the way, when the phase of the voltage command value vector is set to zero as in the first embodiment, as shown in FIG. 4, the average value ( iβ0 ) of the β-axis current 20b becomes zero. Therefore, at first glance, it may be considered that it is not necessary to use the high-pass filter 302 to extract the β-axis pulsating current 30b (i β1 ) from the β-axis current 20b. However, if there is a difference in the presence or absence of the filtering process for extracting the pulsating current and the characteristics between the α axis and the β axis, the amplitude and the phase of the extracted pulsating current may be different between the α axis and the β axis. Becomes Therefore, two high pass filters 301 and 302 are required regardless of the phase of the voltage command value vector. Further, it is desirable that both have the same characteristics. In addition, the same characteristic here does not mean that the physical characteristics are completely the same, but means that the physical characteristics are designed and configured with the expectation that they have the same characteristics.
 また、α軸脈動電流30a及びβ軸脈動電流30bのうちの何れかを用い、ゼロクロスの間隔から脈動周波数を、ゼロクロスのタイミングから脈動位相を、それぞれ演算する方法も考えられる。しかしながら、検出器4からの信号には、検出器4の回路に入り込むノイズが含まれているので、必ずしも精確なゼロクロスのタイミングが検出できるとは限らない。また、モータ2の高速回転中は、電流が脈動する1周期あたりのサンプリング回数が減るので、ゼロクロスのタイミングの誤差はより顕著となる。更に、モータ2の磁気飽和と空間高調波の影響で脈動電流には低次の高調波が含まれるので、脈動電流がゼロクロスするタイミングと、ロータ2aの位置との関係は、より複雑なものとなる。 A method of calculating the pulsation frequency from the zero-cross interval and the pulsation phase from the zero-cross timing by using either the α-axis pulsating current 30a or the β-axis pulsating current 30b is also conceivable. However, since the signal from the detector 4 contains noise that enters the circuit of the detector 4, it is not always possible to detect an accurate zero-cross timing. Further, during high-speed rotation of the motor 2, the number of samplings per cycle in which the current pulsates decreases, so the error in the zero-cross timing becomes more significant. Further, since the pulsating current includes low-order harmonics due to the influence of the magnetic saturation of the motor 2 and the spatial harmonics, the relationship between the timing of zero crossing of the pulsating current and the position of the rotor 2a is more complicated. Become.
 これに対し、実施の形態2に係る位相同期演算部40は、フィードバック経路を含むPLLに相当する回路で構成される。PLLに相当する回路を図6のように構成したとき、推定脈動位相40aを得るまでの経路に積分器403を含むことから、検出器4の信号経路に混入するノイズの影響を受けにくい。また、推定脈動位相40aは、真の脈動位相に追従するよう連続的に演算が行われる。このため、仮に電流が脈動する1周期当たりのサンプリング回数が少ない場合でも、離散化に起因する誤差の補正が容易である。更に、磁気飽和、空間高調波などの外乱が脈動電流に混入した場合にも、平均的には推定脈動位相が真の位相に収束する。 On the other hand, the phase synchronization calculation unit 40 according to the second embodiment is composed of a circuit corresponding to a PLL including a feedback path. When the circuit corresponding to the PLL is configured as shown in FIG. 6, since the integrator 403 is included in the path until the estimated pulsation phase 40a is obtained, it is unlikely to be affected by noise mixed in the signal path of the detector 4. Further, the estimated pulsation phase 40a is continuously calculated so as to follow the true pulsation phase. Therefore, even if the number of samplings per cycle in which the current pulsates is small, it is easy to correct the error caused by the discretization. Furthermore, even when disturbances such as magnetic saturation and spatial harmonics are mixed in the pulsating current, the estimated pulsating phase converges to the true phase on average.
 以上説明したように、実施の形態に係る脈動抽出部30は、静止座標系の二相電流から直流成分を除去して脈動電流を出力する2つのハイパスフィルタを有する。2つのハイパスフィルタは、同一の特性である。また、実施の形態2に係る位相同期演算部は、脈動電流と推定脈動位相とに基づいて位相誤差を演算する位相誤差演算部と、位相誤差を増幅して推定脈動周波数を出力する増幅器と、推定脈動周波数を積分して推定脈動位相として出力する積分器と、を有する。これにより、種々の外乱の影響を受けにくくなるので、ロータの回転位置及び回転周波数を高精度に推定することができる。 As described above, the pulsation extraction unit 30 according to the embodiment has two high-pass filters that remove the DC component from the two-phase current in the stationary coordinate system and output the pulsation current. The two high pass filters have the same characteristics. Further, the phase synchronization calculation unit according to the second embodiment includes a phase error calculation unit that calculates a phase error based on the pulsating current and the estimated pulsation phase, an amplifier that amplifies the phase error and outputs the estimated pulsation frequency, And an integrator that integrates the estimated pulsation frequency and outputs it as an estimated pulsation phase. As a result, the influence of various disturbances is reduced, so that the rotational position and the rotational frequency of the rotor can be estimated with high accuracy.
実施の形態3.
 実施の形態3では、インバータ1を起動するときの、動作モードの切り替えについて説明する。
Embodiment 3.
In the third embodiment, switching of operation modes when starting the inverter 1 will be described.
 まず、実施の形態2で述べた通り、脈動抽出部30で静止座標系の二相電流から直流成分を除去するには、ハイパスフィルタのカットオフ周波数に応じた時間を要する。 First, as described in the second embodiment, it takes time according to the cutoff frequency of the high-pass filter to remove the DC component from the two-phase current in the stationary coordinate system by the pulsation extraction unit 30.
 また、位相同期演算部40へ入力される信号に直流成分が残留しているうちは、推定脈動周波数が収束しない。直流成分が残留しているうちに、位相同期演算部40の増幅器402と、積分器403とが演算を開始していると、推定脈動周波数40b(ω^)及び推定脈動位相40a(θ^)が不正確な値へ発散又は振動してしまう。これにより、結果的に初期推定に要する時間が長くなってしまう。従って、増幅器402及び積分器403の演算は、インバータ1が通電を開始してから、所要の時間が経過した時点で開始するのが望ましい。 Moreover, the estimated pulsation frequency does not converge while the DC component remains in the signal input to the phase synchronization calculation unit 40. If the amplifier 402 of the phase synchronization calculation unit 40 and the integrator 403 start calculation while the DC component remains, the estimated pulsation frequency 40b (ω^ 2 ) and the estimated pulsation phase 40a (θ^). 2 ) diverges or oscillates to inaccurate values. As a result, the time required for the initial estimation becomes long as a result. Therefore, it is desirable that the calculation of the amplifier 402 and the integrator 403 be started when a required time elapses after the inverter 1 starts energization.
 そこで、実施の形態3に係る位相同期演算部41は、図7に示すような構成とする。図7は、実施の形態3に係る位相同期演算部41の構成を示すブロック図である。図7を図6と比較すると、図7には増幅器402のゲインの切り替えを制御するゲイン切り替え信号40cが追加されている。 Therefore, the phase synchronization calculation unit 41 according to the third embodiment has the configuration shown in FIG. FIG. 7 is a block diagram showing the configuration of the phase synchronization calculation unit 41 according to the third embodiment. Comparing FIG. 7 with FIG. 6, a gain switching signal 40c for controlling switching of the gain of the amplifier 402 is added to FIG.
 図7の位相同期演算部41では、インバータ1が通電を開始した直後は増幅器402の増幅率を表すゲインをゼロとしておき、インバータ1が通電を開始してから第1の時間が経過した後に、増幅器402のゲインをゼロ以外の値、即ちゼロより大きい値へと切り替える。増幅器402のゲインがゼロのとき、どのような位相誤差40fが増幅器402へ入力されたとしても、推定脈動周波数40bはゼロのままである。その結果、積分器403の入力もゼロとなり、推定脈動位相40aもゼロのままとなる。 In the phase synchronization calculation unit 41 of FIG. 7, the gain representing the amplification factor of the amplifier 402 is set to zero immediately after the inverter 1 starts energization, and after the first time has elapsed since the inverter 1 started energization, The gain of the amplifier 402 is switched to a value other than zero, that is, a value greater than zero. When the gain of the amplifier 402 is zero, the estimated pulsation frequency 40b remains zero no matter what phase error 40f is input to the amplifier 402. As a result, the input to the integrator 403 also becomes zero, and the estimated pulsation phase 40a also remains zero.
 インバータ1が通電を開始してから、増幅器402のゲインが最初に切り替えられるまでの時間は、脈動抽出部30におけるハイパスフィルタ301,302のカットオフ周波数に基づいて決定される。より詳細に説明すると、ハイパスフィルタ301,302のカットオフ周波数が高い場合は、直流成分の除去に要する時間が相対的に短くてよいので、インバータ1が通電を開始してから、比較的短い時間のうちに増幅器402の演算を開始することができる。逆に、ハイパスフィルタ301,302のカットオフ周波数が低い場合は、直流成分の除去に要する時間が相対的に長くなるので、増幅器402の演算を開始するまでに、比較的長い猶予時間を設ける必要がある。 The time from the start of energization of the inverter 1 to the first switching of the gain of the amplifier 402 is determined based on the cutoff frequencies of the high pass filters 301 and 302 in the pulsation extraction unit 30. More specifically, when the cutoff frequencies of the high- pass filters 301 and 302 are high, the time required to remove the DC component may be relatively short. Therefore, a relatively short time after the inverter 1 starts energization. In the meantime, the operation of the amplifier 402 can be started. On the other hand, when the cutoff frequencies of the high- pass filters 301 and 302 are low, the time required to remove the DC component becomes relatively long, so that it is necessary to provide a relatively long grace period before starting the operation of the amplifier 402. There is.
 ところで、増幅器402が演算を開始してから、推定脈動位相40aが真値に近い第1の値へ収束するまでの間は、増幅器402のゲインが相対的に大きくなければならない。一方、推定脈動位相40aが、一旦、第1の値へ到達してからは、それほど大きなゲインを必要としない。必要な増幅器402のゲインは、上記(12)式に示した位相誤差の定義式において、sin(2θ-θ^)≒2θ-θ^の近似が成立するか否かに依存している。つまり、脈動電流の位相の真値である2θと、推定脈動位相θ^とが、概ね近づいた状態では、推定脈動位相θ^を真値2θへ追従させるのに必要なゲインは相対的に小さくなる。逆に、真値2θと推定脈動位相θ^との乖離が大きいときは、推定脈動位相θ^を真値2θへ収束させるのに、相対的に大きなゲインが必要となる。 By the way, the gain of the amplifier 402 must be relatively large until the estimated pulsation phase 40a converges to the first value close to the true value after the amplifier 402 starts the calculation. On the other hand, once the estimated pulsation phase 40a reaches the first value, a large gain is not required. The required gain of the amplifier 402 depends on whether or not the approximation of sin(2θ−θ^ 2 )≈2θ−θ^ 2 holds in the phase error definition equation shown in the above equation (12). .. That is, when the true value 2θ of the pulsating current and the estimated pulsating phase θ^ 2 are close to each other, the gain required to make the estimated pulsating phase θ^ 2 follow the true value 2θ is relatively large. Becomes smaller. On the contrary, when the deviation between the true value 2θ and the estimated pulsation phase θ^ 2 is large, a relatively large gain is required to converge the estimated pulsation phase θ^ 2 to the true value 2θ.
 一方、実施の形態2で述べたように、α軸脈動電流30a及びβ軸脈動電流30bには、モータ2の空間高調波と、モータ2の磁気飽和の影響により、低次の高調波成分が含まれている。このような高調波も増幅器402によって増幅されるので、推定脈動位相θ^は僅かに振動的になる。推定脈動位相θ^が振動的であると、推定結果をホールドするタイミングによっては真値との誤差が大きくなってしまう可能性がある。従って、初期推定の精度を高めるという観点では、増幅器402のゲインは最小限であることが望ましい。 On the other hand, as described in the second embodiment, the α-axis pulsating current 30a and the β-axis pulsating current 30b have low-order harmonic components due to the spatial harmonics of the motor 2 and the magnetic saturation of the motor 2. include. Since such a harmonic is also amplified by the amplifier 402, the estimated pulsating phase θ^ 2 becomes slightly oscillatory. If the estimated pulsation phase θ 2 is oscillatory, the error from the true value may increase depending on the timing of holding the estimation result. Therefore, from the viewpoint of improving the accuracy of the initial estimation, it is desirable that the gain of the amplifier 402 be minimum.
 従って、図7の位相同期演算部41においては、インバータ1が通電を開始してから第2の時間が経過したのちに、増幅器402のゲインが小さくなる方向へ特性が切り替えられる。第2の時間は、第1の時間よりも長い時間である。但し、切り替えられた後のゲインは、ゼロよりも大きいものとする。 Therefore, in the phase synchronization calculation unit 41 of FIG. 7, the characteristics are switched to the direction in which the gain of the amplifier 402 decreases after the second time has elapsed since the inverter 1 started energization. The second time period is longer than the first time period. However, the gain after switching is assumed to be larger than zero.
 なお、増幅器402に複数の定数を保持させておいて、ゲイン切り替え信号40cに基づいて何れかの定数を選択する方法でもよい。また、ゲイン切り替え信号40c自体が、増幅器402のゲインを決定する定数そのものを含む信号であってもよい。 Alternatively, a method may be used in which the amplifier 402 holds a plurality of constants and one of the constants is selected based on the gain switching signal 40c. Further, the gain switching signal 40c itself may be a signal including a constant itself that determines the gain of the amplifier 402.
 次に、増幅器402のゲインを時間経過に応じて切り替えていくときの動作について、図8を用いて説明する。図8は、実施の形態3に係る増幅器のゲインを切り替える動作の説明に供する図である。 Next, the operation when the gain of the amplifier 402 is switched over time will be described with reference to FIG. FIG. 8 is a diagram for explaining the operation of switching the gain of the amplifier according to the third embodiment.
 図8には、増幅器402のゲイン切替時における各種の波形例が示されている。より詳細に説明すると、図8の第1段目には、u相電流が一点鎖線で示され、v相電流が破線で示され、w相電流が実線で示されている。図8の第2段目には、α軸電流が実線で示され、β軸電流が破線で示されている。図8の第3段目には、α軸脈動電流が実線で示され、β軸脈動電流が破線で示されている。図8の第4段目には、推定脈動周波数が実線で示され、真の周波数が破線で示されている。図8の第5段目には、推定脈動位相が実線で示され、真の位相が破線で示されている。 FIG. 8 shows various waveform examples when the gain of the amplifier 402 is switched. More specifically, in the first stage of FIG. 8, the u-phase current is shown by the alternate long and short dash line, the v-phase current is shown by the broken line, and the w-phase current is shown by the solid line. In the second row of FIG. 8, the α-axis current is shown by a solid line and the β-axis current is shown by a broken line. In the third row of FIG. 8, the α-axis pulsating current is shown by a solid line and the β-axis pulsating current is shown by a broken line. In the fourth row of FIG. 8, the estimated pulsation frequency is shown by a solid line and the true frequency is shown by a broken line. In the fifth row of FIG. 8, the estimated pulsation phase is shown by a solid line and the true phase is shown by a broken line.
 図8において、まず時刻t0では、インバータ1が電圧の出力を開始するゲートスタートが行われている。インバータ1がゲートスタートすると、三相電流が流れ始める。このとき、第1段目の波形にも表れているように、直流成分の大きさに比例する脈動電流が重畳する。また、第1段目の三相電流を静止座標系の二相電流に変換したものが、第2段目の波形である。更に、第2段目の二相電流が脈動抽出部30へ入力され、脈動電流が抽出された結果が、第3段目の波形である。 In FIG. 8, first, at time t0, the gate start in which the inverter 1 starts outputting voltage is performed. When the inverter 1 starts the gate, the three-phase current starts to flow. At this time, as shown in the first-stage waveform, a pulsating current proportional to the magnitude of the DC component is superimposed. Further, the waveform of the second stage is obtained by converting the three-phase current of the first stage into the two-phase current of the stationary coordinate system. Furthermore, the two-phase current of the second stage is input to the pulsation extraction unit 30, and the pulsating current is extracted, and the result is the waveform of the third stage.
 第3段目におけるα軸脈動電流の波形を参照すると、時刻t0から時刻t1までの間において、ある時間の経過後に、直流成分が除去されていることが分かる。時刻t1では、増幅器402のゲインがゼロから正の値へと切り替えられ、位相同期演算部41の推定演算が開始される。時刻t0から時刻t1までの時間が、前述した第1の時間に対応する時間である。推定演算が開始された時点において、二相電流の直流成分は十分に除去されているので、増幅器402のゲインは相対的に高く設定される。このため、推定脈動周波数40b及び推定脈動位相40aは、第4段目及び第5段目の波形にも示されているように、真値に近い値に速やかに収束している。 By referring to the waveform of the α-axis pulsating current in the third stage, it can be seen that the DC component is removed after a certain period of time between time t0 and time t1. At time t1, the gain of the amplifier 402 is switched from zero to a positive value, and the estimation calculation of the phase synchronization calculation unit 41 is started. The time from time t0 to time t1 is the time corresponding to the above-mentioned first time. At the time when the estimation calculation is started, the DC component of the two-phase current is sufficiently removed, so that the gain of the amplifier 402 is set relatively high. Therefore, the estimated pulsation frequency 40b and the estimated pulsation phase 40a rapidly converge to values close to the true value, as shown in the waveforms of the fourth and fifth stages.
 次に、時刻t2において、増幅器402のゲインが小さくなる方向へ切り替えられる。その結果、推定脈動周波数40b及び推定脈動位相40aの脈動が低減される。時刻t0から時刻t2までの時間が、前述した第2の時間に対応する時間である。最後に、時刻t3において、推定結果がホールドされ、その結果を用いて定常推定のアルゴリズムが開始される。 Next, at time t2, the gain of the amplifier 402 is switched to a smaller value. As a result, the pulsation of the estimated pulsation frequency 40b and the estimated pulsation phase 40a is reduced. The time from time t0 to time t2 is the time corresponding to the above-mentioned second time. Finally, at time t3, the estimation result is held, and the steady estimation algorithm is started using the result.
 以上説明したように、実施の形態3に係る位相同期演算部は、インバータが通電を開始してから第1の時間が経過した後に、増幅器のゲインをゼロからゼロより大きい値へと切り替える。これにより、初期推定に要する時間を短縮することができる。また、実施の形態3に係る位相同期演算部は、インバータが通電を開始してから第2の時間が経過した後に、増幅器のゲインを小さくなる方向へ切り替える。これにより、脈動電流に含まれる高調波が増幅される度合いが抑制され、推定結果の精度が向上するという効果が得られる。 As described above, the phase synchronization calculating unit according to the third embodiment switches the gain of the amplifier from zero to a value larger than zero after the first time has elapsed since the inverter started energizing. As a result, the time required for the initial estimation can be shortened. Further, the phase synchronization calculation unit according to the third embodiment switches the gain of the amplifier to a smaller direction after the second time has elapsed since the inverter started energizing. As a result, the degree to which the harmonics included in the pulsating current are amplified is suppressed, and the accuracy of the estimation result is improved.
実施の形態4.
 次に、実施の形態4に係る同期モータの駆動装置について説明する。図9は、実施の形態4に係るモータ駆動装置の構成図である。図9に示すモータ駆動装置101は、図1に示す実施の形態1に係るモータ駆動装置100の構成において、制御器3に補正演算部60を追加したものである。また、補正演算部60の追加により、制御器3は制御器3Aとして示されている。なお、その他の構成については、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は割愛する。
Fourth Embodiment
Next, a synchronous motor drive device according to the fourth embodiment will be described. FIG. 9 is a configuration diagram of a motor drive device according to the fourth embodiment. Motor drive device 101 shown in FIG. 9 is obtained by adding correction calculation unit 60 to controller 3 in the configuration of motor drive device 100 according to the first embodiment shown in FIG. Further, the controller 3 is shown as a controller 3A by adding the correction calculation unit 60. It should be noted that other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and duplicate description will be omitted.
 制御器3の脈動抽出部30の出力は、元々の二相電流に含まれている脈動電流と比べて、位相が進んだ状態となっている。位相が進む度合いは、ハイパスフィルタのカットオフ周波数と、脈動電流の周波数、即ちロータ2aの回転周波数に依存する。従って、実施の形態3に係る位相同期演算部41は、脈動の位相が進んだ信号に対して推定演算が行われる。このため、位相同期演算部41の出力を換算して求めたロータ2aの回転位置には、誤差が含まれてくる。以下、実施の形態4では、この誤差を解消するための方法について詳述する。 The output of the pulsation extraction unit 30 of the controller 3 is in a phase advanced state as compared with the pulsation current contained in the original two-phase current. The degree to which the phase advances depends on the cutoff frequency of the high-pass filter and the frequency of the pulsating current, that is, the rotation frequency of the rotor 2a. Therefore, the phase synchronization calculation unit 41 according to the third embodiment performs the estimation calculation on the signal with the advanced pulsation phase. Therefore, the rotational position of the rotor 2a obtained by converting the output of the phase synchronization calculation unit 41 includes an error. Hereinafter, in the fourth embodiment, a method for eliminating this error will be described in detail.
 図9において、補正演算部60は、位相同期演算部41の出力である推定脈動位相40a及び推定脈動周波数40bに基づいて、推定ロータ位相60a及び推定ロータ周波数60bを演算して出力する。 In FIG. 9, the correction calculator 60 calculates and outputs the estimated rotor phase 60a and the estimated rotor frequency 60b based on the estimated pulsation phase 40a and the estimated pulsation frequency 40b which are the outputs of the phase synchronization calculation unit 41.
 次に、補正演算部60の詳細な構成を、図10を用いて説明する。図10は、実施の形態4に係る補正演算部の構成を示すブロック図である。実施の形態4に係る補正演算部60は、図10に示すように、ローパスフィルタ(Low Pass Filter:LPF)601と、ルックアップテーブル602と、減算器603と、換算部604とを有する。 Next, the detailed configuration of the correction calculation unit 60 will be described with reference to FIG. FIG. 10 is a block diagram showing the configuration of the correction calculation unit according to the fourth embodiment. As shown in FIG. 10, the correction calculation unit 60 according to the fourth embodiment has a low pass filter (LPF) 601, a lookup table 602, a subtractor 603, and a conversion unit 604.
 ローパスフィルタ601は、高域遮断特性を有し、推定脈動周波数40bを平滑化して平滑化脈動周波数60dを出力する。ルックアップテーブル602は、平滑化脈動周波数60dに基づき、位相補正量60eを出力する。減算器603は、推定脈動位相40aから位相補正量60eを減算し、その減算結果を補正後脈動位相60cとして出力する。換算部604は、補正後脈動位相60cを定数で換算して推定ロータ位相60aとし、平滑化脈動周波数60dを定数で換算して推定ロータ周波数60bとする。 The low-pass filter 601 has a high-frequency cutoff characteristic, smoothes the estimated pulsation frequency 40b, and outputs a smoothed pulsation frequency 60d. The look-up table 602 outputs the phase correction amount 60e based on the smoothed pulsation frequency 60d. The subtractor 603 subtracts the phase correction amount 60e from the estimated pulsation phase 40a, and outputs the subtraction result as the corrected pulsation phase 60c. The conversion unit 604 converts the corrected pulsation phase 60c with a constant to obtain an estimated rotor phase 60a, and converts the smoothed pulsation frequency 60d with a constant to obtain an estimated rotor frequency 60b.
 推定脈動周波数40bは、モータ2の磁気飽和と空間高調波の影響により脈動している。実施の形態3では、時間経過に応じて増幅器402のゲインを下げる方向へ切り替えることで、この脈動を低減する方法を述べた。しかしながら、ゲインの切り替えによって脈動が完全に除去できるわけではない。このため、更なる精度の改善を図るために、ローパスフィルタ601を用いて推定脈動周波数40bを平滑化する。 The estimated pulsation frequency 40b is pulsating due to the influence of magnetic saturation of the motor 2 and spatial harmonics. The third embodiment has described the method of reducing this pulsation by switching the gain of the amplifier 402 in the direction of decreasing with the passage of time. However, the pulsation cannot be completely eliminated by switching the gain. Therefore, in order to improve the accuracy further, the estimated pulsation frequency 40b is smoothed by using the low-pass filter 601.
 ローパスフィルタの種類としては、伝達関数が一時遅れ形式となるフィルタであってもよいし、入力信号を設定時間に渡って平均化する演算であってもよい。なお、ローパスフィルタの高域遮断性能が高いほど、推定脈動周波数40bの脈動を強力に除去できるが、平滑化脈動周波数60dの整定時間が長くなることに注意が必要である。言い換えると、初期推定の目標時間内に、平滑化脈動周波数60dが整定されるように、ローパスフィルタ601の特性を決定しなければならない。ここで、「初期推定の目標時間」とは、インバータ1が通電を開始してから定常推定が開始されるまでの時間である。 The type of low-pass filter may be a filter whose transfer function is in a temporary delay form, or may be a calculation for averaging an input signal over a set time. Note that the higher the high-frequency cutoff performance of the low-pass filter, the stronger the pulsation of the estimated pulsation frequency 40b can be removed, but it should be noted that the settling time of the smoothed pulsation frequency 60d becomes longer. In other words, the characteristics of the low-pass filter 601 must be determined so that the smoothed pulsation frequency 60d is settled within the target time of the initial estimation. Here, the “target time of initial estimation” is the time from the start of energization of the inverter 1 to the start of steady estimation.
 また、ルックアップテーブル602は、脈動抽出部30におけるハイパスフィルタ301,302の位相特性に応じて決定される。ルックアップテーブル602は、脈動抽出部30を通過した信号の位相が、信号の周波数に応じてどれだけ変化するかを示すデータを保持している。減算器603において、位相補正量60eは推定脈動位相40aから減算される。これにより、補正後脈動位相60cは、ハイパスフィルタ301,302で処理される前の二相電流の脈動の位相と正確に一致する。 Further, the lookup table 602 is determined according to the phase characteristics of the high pass filters 301 and 302 in the pulsation extraction unit 30. The lookup table 602 holds data indicating how much the phase of the signal that has passed through the pulsation extraction unit 30 changes according to the frequency of the signal. In the subtractor 603, the phase correction amount 60e is subtracted from the estimated pulsation phase 40a. As a result, the corrected pulsation phase 60c exactly matches the pulsation phase of the two-phase current before being processed by the high- pass filters 301 and 302.
 最後に、換算部604の目的を説明する。補正後脈動位相60cと、平滑化脈動周波数60dは、二相電流に重畳する脈動成分の位相及び周波数である。上記(11)式に示される通り、二相電流はロータ2aの回転角θに対して2倍の周波数で脈動している。従って、ロータ2aの回転位置及び回転周波数の情報を得るには、脈動電流の位相及び周波数を、それぞれ0.5倍すればよい。 Finally, the purpose of the conversion unit 604 will be explained. The corrected pulsation phase 60c and the smoothed pulsation frequency 60d are the phase and frequency of the pulsation component superimposed on the two-phase current. As shown in the above equation (11), the two-phase current pulsates at a frequency twice the rotation angle θ of the rotor 2a. Therefore, in order to obtain information on the rotational position and the rotational frequency of the rotor 2a, the phase and frequency of the pulsating current may be multiplied by 0.5, respectively.
 また、実施の形態4において、推定ロータ位相60a及び推定ロータ周波数60bの単位は、特に限定しない。また、換算部604においては、図示しない定常推定のアルゴリズムの構成に応じて、機械角と電気角との換算、度数法と弧度法との換算などが同時に行われてもよい。 Also, in the fourth embodiment, the units of the estimated rotor phase 60a and the estimated rotor frequency 60b are not particularly limited. Further, in the conversion unit 604, conversion of a mechanical angle and an electrical angle, conversion of a power method and a radian method, etc. may be performed at the same time depending on the configuration of an algorithm for steady estimation (not shown).
 以上説明したように、実施の形態4に係る制御器は、推定脈動周波数を平滑化するローパスフィルタを備える。これにより、推定脈動周波数に含まれる高調波が更に低減され、推定精度が向上する。また、実施の形態4に係る制御器は、ローパスフィルタの出力に基づき位相補正量を参照するルックアップテーブルを備え、ルックアップテーブルを参照して推定脈動位相を位相補正量で補正する。このルックアップテーブルは、脈動抽出部を構成するハイパスフィルタの周波数対位相特性に基づいて決定される。これにより、脈動抽出部での信号の位相進みが補正され、精確な脈動電流の位相が求められる。これにより、精度のよいロータの回転位置の情報が得られる。 As described above, the controller according to the fourth embodiment includes the low pass filter that smoothes the estimated pulsation frequency. Thereby, the harmonics included in the estimated pulsation frequency are further reduced, and the estimation accuracy is improved. Further, the controller according to the fourth embodiment includes a look-up table that refers to the phase correction amount based on the output of the low-pass filter, and refers to the look-up table to correct the estimated pulsation phase with the phase correction amount. This look-up table is determined based on the frequency-phase characteristics of the high-pass filter that constitutes the pulsation extraction unit. As a result, the phase advance of the signal in the pulsation extraction unit is corrected, and the accurate pulsation current phase is obtained. As a result, accurate information on the rotational position of the rotor can be obtained.
 なお、実施の形態4では、推定脈動周波数を平滑化し、ルックアップテーブルを用いて推定脈動位相を補正する方法を実施の形態3に適用した例を説明したが、これに限定されない。同様の補正を実施の形態2にも適用してもよく、同様の効果が得られる。 In the fourth embodiment, the example in which the method for smoothing the estimated pulsation frequency and correcting the estimated pulsation phase using the lookup table is applied to the third embodiment has been described, but the present invention is not limited to this. The same correction may be applied to the second embodiment, and the same effect can be obtained.
 また、実施の形態1から4では、モータ2はSynRMであると仮定して説明して来たが、別の種類のモータを用いてもよい。例えば、モータ2は、埋め込み型永久磁石同期モータ(Interior Permanent Magnet Synchronous Motor:IPMSM)であってもよい。前述の通り、実施の形態1から4では、回転中のモータ2へ直流電圧を印加したときに、突極性に起因してモータ電流に2倍周波数の脈動が生じることを利用して、ロータ2aの回転位置及び回転周波数の情報が推定される。従って、マグネットトルクだけでなくリラクタンストルクをも得られるように設計されたIPMSMであれば、実施の形態1から4による初期推定のアルゴリズムが応用できる。 Further, in the first to fourth embodiments, the description has been made assuming that the motor 2 is SynRM, but another type of motor may be used. For example, the motor 2 may be an embedded permanent magnet synchronous motor (Interior Permanent Magnet Synchronous Motor: IPMSM). As described above, in the first to fourth embodiments, when the DC voltage is applied to the rotating motor 2, the fact that the pulsation of double frequency is generated in the motor current due to the saliency is utilized to utilize the rotor 2a. The information of the rotation position and the rotation frequency of is estimated. Therefore, if the IPMSM is designed to obtain not only the magnet torque but also the reluctance torque, the initial estimation algorithm according to the first to fourth embodiments can be applied.
実施の形態5.
 次に、実施の形態4の制御器3Aにおける演算機能を実現するためのハードウェア構成について、図11及び図12の図面を参照して説明する。図11は、実施の形態4の制御器における演算機能を実現するハードウェア構成の一例を示すブロック図である。図12は、実施の形態4の制御器における演算機能を実現するハードウェア構成の別の例を示すブロック図である。
Embodiment 5.
Next, a hardware configuration for realizing the arithmetic function in the controller 3A of the fourth embodiment will be described with reference to the drawings of FIGS. 11 and 12. FIG. 11 is a block diagram showing an example of a hardware configuration that realizes the arithmetic function in the controller according to the fourth embodiment. FIG. 12 is a block diagram showing another example of the hardware configuration that realizes the arithmetic function in the controller of the fourth embodiment.
 実施の形態4の制御器3Aにおける演算機能の一部又は全部をソフトウェアで実現する場合には、図11に示されるように、演算を行うプロセッサ90、プロセッサ90によって読みとられるプログラムが保存されるメモリ91、及び信号の入出力を行うインタフェース92を含む構成とすることができる。 When a part or all of the arithmetic functions in the controller 3A according to the fourth embodiment are realized by software, as shown in FIG. 11, a processor 90 for performing arithmetic and a program read by the processor 90 are stored. It can be configured to include a memory 91 and an interface 92 for inputting and outputting signals.
 プロセッサ90は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ91には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 90 may be a computing unit such as a computing device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). In addition, the memory 91 includes a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (registered trademark) (Electrically EPROM). Examples include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs).
 メモリ91には、制御器3Aにおける演算機能の全部又は一部を実行するプログラムが格納されている。プロセッサ90は、インタフェース92を介して必要な情報を授受し、メモリ91に格納されたプログラムをプロセッサ90が実行することにより、インバータ1のPWM制御及び、モータ2の回転位置及び回転周波数を推定する初期推定を行うことができる。 The memory 91 stores a program that executes all or some of the arithmetic functions of the controller 3A. The processor 90 exchanges necessary information via the interface 92, and the processor 90 executes the program stored in the memory 91 to estimate the PWM control of the inverter 1 and the rotational position and rotational frequency of the motor 2. An initial estimate can be made.
 また、図11に示すプロセッサ90及びメモリ91は、図12のように処理回路93に置き換えてもよい。処理回路93は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。 The processor 90 and the memory 91 shown in FIG. 11 may be replaced with a processing circuit 93 as shown in FIG. The processing circuit 93 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
 以上の通り、実施の形態5では、実施の形態4の制御器3Aの演算機能を実現するためのハードウェア構成について説明したが、これに限定されない。実施の形態1から実施の形態3の制御器3についても、同様のハードウェア構成で実現できることは言うまでもない。 As described above, in the fifth embodiment, the hardware configuration for realizing the arithmetic function of the controller 3A of the fourth embodiment has been described, but the present invention is not limited to this. It goes without saying that the controller 3 of the first to third embodiments can also be realized with the same hardware configuration.
 また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Further, the configurations shown in the above embodiments are examples of the content of the present invention, and can be combined with another known technique, and the configurations are within the scope not departing from the gist of the present invention. It is also possible to omit or change a part of.
 1 インバータ、2 モータ、2a ロータ、3,3A 制御器、4 検出器、10A,10B,10C レグ、10a トランジスタ、10b ダイオード、12,13,14 接続点、20 座標変換部、20a α軸電流、20b β軸電流、30 脈動抽出部、301,302 ハイパスフィルタ、30a α軸脈動電流、30b β軸脈動電流、40,41 位相同期演算部、401 位相誤差演算部、402 増幅器、403 積分器、40a 推定脈動位相、40b 推定脈動周波数、40c ゲイン切り替え信号、40f 位相誤差、50 電圧制御部、60 補正演算部、601 ローパスフィルタ、602 ルックアップテーブル、603 減算器、604 換算部、60a 推定ロータ位相、60b 推定ロータ周波数、60c 補正後脈動位相、60d 平滑化脈動周波数、60e 位相補正量、90 プロセッサ、91 メモリ、92 インタフェース、93 処理回路、100,101 モータ駆動装置、110 電力源。 1 inverter, 2 motor, 2a rotor, 3,3A controller, 4 detector, 10A, 10B, 10C leg, 10a transistor, 10b diode, 12, 13, 14 connection point, 20 coordinate conversion unit, 20a α-axis current, 20b β-axis current, 30 pulsation extraction unit, 301, 302 high-pass filter, 30a α-axis pulsation current, 30b β-axis pulsation current, 40, 41 phase synchronization calculation unit, 401 phase error calculation unit, 402 amplifier, 403 integrator, 40a Estimated pulsation phase, 40b estimated pulsation frequency, 40c gain switching signal, 40f phase error, 50 voltage control unit, 60 correction calculation unit, 601 low pass filter, 602 lookup table, 603 subtractor, 604 conversion unit, 60a estimated rotor phase, 60b estimated rotor frequency, 60c post-correction pulsation phase, 60d smoothing pulsation frequency, 60e phase correction amount, 90 processor, 91 memory, 92 interface, 93 processing circuit, 100, 101 motor drive device, 110 power source.

Claims (10)

  1.  突極性を有する同期モータを駆動するインバータと、
     前記インバータの動作状態を制御する制御器と、
     前記同期モータの相電流を検出する検出器と、
     を備え、
     前記制御器は、
     前記インバータの出力電圧を決定する電圧制御部と、
     前記相電流を静止座標系の二相電流へ変換する座標変換部と、
     前記二相電流から脈動電流を抽出する脈動抽出部と、
     前記脈動電流の周波数及び位相を推定演算する位相同期演算部と、
     を備え、
     前記電圧制御部は、前記相電流の何れもゼロとならない電圧指令値を出力する、
     ことを特徴とするモータ駆動装置。
    An inverter that drives a synchronous motor having saliency;
    A controller for controlling the operating state of the inverter,
    A detector for detecting the phase current of the synchronous motor,
    Equipped with
    The controller is
    A voltage control unit that determines the output voltage of the inverter,
    A coordinate conversion unit for converting the phase current into a two-phase current in a stationary coordinate system,
    A pulsation extraction unit that extracts a pulsation current from the two-phase current,
    A phase synchronization calculation unit for estimating and calculating the frequency and phase of the pulsating current;
    Equipped with
    The voltage control unit outputs a voltage command value in which none of the phase currents becomes zero,
    A motor drive device characterized by the above.
  2.  前記電圧指令値は、直流電圧である、
     ことを特徴とする請求項1に記載のモータ駆動装置。
    The voltage command value is a DC voltage,
    The motor drive device according to claim 1, wherein:
  3.  前記電圧指令値の電圧ベクトルの方向は、前記同期モータの何れかの相と同一又は逆の方向である、
     ことを特徴とする請求項2に記載のモータ駆動装置。
    The direction of the voltage vector of the voltage command value is the same as or opposite to any phase of the synchronous motor,
    The motor drive device according to claim 2, wherein:
  4.  前記脈動抽出部は、前記二相電流の直流成分を除去する2つのハイパスフィルタを有し、
     2つの前記ハイパスフィルタは同一の特性である、
     ことを特徴とする請求項1から3の何れか1項に記載のモータ駆動装置。
    The pulsation extraction unit has two high-pass filters for removing the DC component of the two-phase current,
    The two high-pass filters have the same characteristics,
    The motor drive device according to claim 1, wherein the motor drive device is a motor drive device.
  5.  前記位相同期演算部は、
     前記脈動電流と推定脈動位相とに基づいて位相誤差を演算する位相誤差演算部と、
     前記位相誤差を増幅して推定脈動周波数を出力する増幅器と、
     前記推定脈動周波数を積分して前記推定脈動位相として出力する積分器と、
     を備えることを特徴とする請求項4に記載のモータ駆動装置。
    The phase synchronization calculation unit,
    A phase error calculation unit that calculates a phase error based on the pulsating current and the estimated pulsating phase,
    An amplifier that outputs the estimated pulsation frequency by amplifying the phase error,
    An integrator that integrates the estimated pulsation frequency and outputs the estimated pulsation phase,
    The motor drive device according to claim 4, further comprising:
  6.  前記インバータが通電を開始してから第1の時間が経過した後に、前記増幅器のゲインをゼロからゼロより大きい値へと切り替える、
     ことを特徴とする請求項5に記載のモータ駆動装置。
    Switching the gain of the amplifier from zero to a value greater than zero after a first time has elapsed since the inverter started to energize;
    The motor drive device according to claim 5, wherein:
  7.  前記インバータが通電を開始してから第2の時間が経過した後に、前記増幅器のゲインを小さくなる方向へ変更する、
     ことを特徴とする請求項5又は6に記載のモータ駆動装置。
    The gain of the amplifier is changed to a smaller value after a second time has elapsed from the start of energization of the inverter,
    The motor drive device according to claim 5, wherein the motor drive device is a motor drive device.
  8.  前記制御器は、
     前記推定脈動周波数を平滑化するローパスフィルタと、
     前記ローパスフィルタの出力に基づいて位相補正量を参照するルックアップテーブルと、
     を備え、
     前記位相補正量により前記推定脈動位相を補正して推定ロータ位相とし、前記ローパスフィルタの出力を定数倍したものを推定ロータ周波数とする、
     ことを特徴とする請求項5から7の何れか1項に記載のモータ駆動装置。
    The controller is
    A low-pass filter that smoothes the estimated pulsation frequency,
    A lookup table that refers to a phase correction amount based on the output of the low-pass filter,
    Equipped with
    An estimated rotor phase is obtained by correcting the estimated pulsating phase with the phase correction amount, and an estimated rotor frequency is obtained by multiplying the output of the low-pass filter by a constant number.
    The motor drive device according to claim 5, wherein the motor drive device is a motor drive device.
  9.  前記ルックアップテーブルは、前記ハイパスフィルタの周波数対位相特性に基づいて決定される、
     ことを特徴とする請求項8に記載のモータ駆動装置。
    The look-up table is determined based on the frequency-to-phase characteristic of the high pass filter,
    The motor drive device according to claim 8, wherein:
  10.  前記電圧制御部は、前記インバータの起動時に実行され、前記同期モータの回転位置及び周波数の推定が行われる初期推定の期間において、複数の前記相電流の何れもゼロとならない電圧指令値を出力する
     ことを特徴とする請求項1から9の何れか1項に記載のモータ駆動装置。
    The voltage controller outputs a voltage command value that is executed at the time of starting the inverter and does not become zero in any of the plurality of phase currents during an initial estimation period in which the rotational position and the frequency of the synchronous motor are estimated. The motor drive device according to claim 1, wherein the motor drive device is a motor drive device.
PCT/JP2018/044296 2018-11-30 2018-11-30 Motor driving device WO2020110315A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020557526A JP7145968B2 (en) 2018-11-30 2018-11-30 motor drive
DE112018008176.1T DE112018008176T5 (en) 2018-11-30 2018-11-30 MOTOR DRIVING DEVICE
PCT/JP2018/044296 WO2020110315A1 (en) 2018-11-30 2018-11-30 Motor driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044296 WO2020110315A1 (en) 2018-11-30 2018-11-30 Motor driving device

Publications (1)

Publication Number Publication Date
WO2020110315A1 true WO2020110315A1 (en) 2020-06-04

Family

ID=70852765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044296 WO2020110315A1 (en) 2018-11-30 2018-11-30 Motor driving device

Country Status (3)

Country Link
JP (1) JP7145968B2 (en)
DE (1) DE112018008176T5 (en)
WO (1) WO2020110315A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091339A1 (en) * 2020-10-30 2022-05-05 三菱電機株式会社 Driving system
WO2023037590A1 (en) * 2021-09-10 2023-03-16 日立Astemo株式会社 Motor drive device and electric vehicle
WO2024009558A1 (en) * 2022-07-06 2024-01-11 住友電気工業株式会社 Winding switching device and winding switching system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336866A (en) * 2003-05-06 2004-11-25 Denso Corp Sensorless drive device of synchronous motor
JP2007097275A (en) * 2005-09-28 2007-04-12 Fuji Electric Fa Components & Systems Co Ltd Synchronous motor drive unit
JP2012120297A (en) * 2010-11-30 2012-06-21 Aisin Aw Co Ltd Rotary electric machine control device
JP2016019359A (en) * 2014-07-08 2016-02-01 東芝シュネデール・インバータ株式会社 Primary resistance identification method of permanent magnet type motor, and inverter apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336866A (en) * 2003-05-06 2004-11-25 Denso Corp Sensorless drive device of synchronous motor
JP2007097275A (en) * 2005-09-28 2007-04-12 Fuji Electric Fa Components & Systems Co Ltd Synchronous motor drive unit
JP2012120297A (en) * 2010-11-30 2012-06-21 Aisin Aw Co Ltd Rotary electric machine control device
JP2016019359A (en) * 2014-07-08 2016-02-01 東芝シュネデール・インバータ株式会社 Primary resistance identification method of permanent magnet type motor, and inverter apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091339A1 (en) * 2020-10-30 2022-05-05 三菱電機株式会社 Driving system
JPWO2022091339A1 (en) * 2020-10-30 2022-05-05
WO2023037590A1 (en) * 2021-09-10 2023-03-16 日立Astemo株式会社 Motor drive device and electric vehicle
WO2024009558A1 (en) * 2022-07-06 2024-01-11 住友電気工業株式会社 Winding switching device and winding switching system

Also Published As

Publication number Publication date
JPWO2020110315A1 (en) 2021-06-10
JP7145968B2 (en) 2022-10-03
DE112018008176T5 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP5155344B2 (en) Electric motor magnetic pole position estimation device
JP4928855B2 (en) Sensorless control device for synchronous machine
JP6232868B2 (en) Motor drive device and vacuum pump
US20170264227A1 (en) Inverter control device and motor drive system
WO2020110315A1 (en) Motor driving device
US10608560B2 (en) Motor controller and a motor system
JP5709932B2 (en) Synchronous machine controller
WO2020217764A1 (en) Power conversion device, and electric vehicle system provided therewith
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP6135713B2 (en) Motor control device, magnetic flux command generation device, and magnetic flux command generation method
JP6579195B2 (en) Power control method and power control apparatus
JP2011250630A (en) Control device of induction motor, and control method of the same
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP7053955B2 (en) Rotating machine control device
JP7196469B2 (en) Controller for synchronous reluctance motor
JP6372424B2 (en) Power converter and current detection method
KR20150062422A (en) Apparatus for controlling inverter
JP4007142B2 (en) Electric motor control device
JP3882728B2 (en) Electric motor control device
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP2018125955A (en) Motor controller
JP2018121421A (en) Control apparatus of synchronous motor
JP5325556B2 (en) Motor control device
JP4038412B2 (en) Vector control inverter device
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557526

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18941894

Country of ref document: EP

Kind code of ref document: A1