WO2020108622A1 - 一种以酮类衍生物为核心的有机化合物及其制备方法和其应用 - Google Patents

一种以酮类衍生物为核心的有机化合物及其制备方法和其应用 Download PDF

Info

Publication number
WO2020108622A1
WO2020108622A1 PCT/CN2019/121992 CN2019121992W WO2020108622A1 WO 2020108622 A1 WO2020108622 A1 WO 2020108622A1 CN 2019121992 W CN2019121992 W CN 2019121992W WO 2020108622 A1 WO2020108622 A1 WO 2020108622A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
layer
general formula
Prior art date
Application number
PCT/CN2019/121992
Other languages
English (en)
French (fr)
Inventor
李崇
陈海峰
王芳
谢丹丹
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2020108622A1 publication Critical patent/WO2020108622A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the invention relates to the technical field of semiconductors, in particular to an organic compound with a ketone derivative as a core, a preparation method and an application thereof.
  • OLED display technology has been applied in the fields of smart phones and tablet computers, and it will further expand to large-scale application fields such as TVs.
  • Due to the huge gap between the external quantum efficiency and internal quantum efficiency of OLED it greatly restricts the development of OLED. Therefore, how to improve the light extraction efficiency of OLED has become a research hotspot.
  • Total reflection occurs at the interface between the ITO film and the glass substrate and at the interface between the glass substrate and the air.
  • the light exiting the OLED device to the external space accounts for about 20% of the total organic material film EL, and the remaining about 80% of the light It is mainly restricted to organic material films, ITO films and glass substrates in the form of guided waves.
  • an important class of methods for improving the external quantum efficiency of OLEDs is to form structures such as folds, photonic crystals, microlens displays (MLA), and the addition of surface covering layers on the light-emitting surface of the substrate.
  • the first two structures will affect the angular distribution of the radiation spectrum of the OLED.
  • the third structure has a complicated manufacturing process, a simple surface covering layer process, and a luminous efficiency improvement of more than 30%, which is of particular concern.
  • the absorption rate B can be calculated using the following formula:
  • the present invention provides an organic compound with a keto derivative as the core and its application.
  • the organic compound provided by the present invention is not easy to crystallize, it has good thermal stability and high glass transition temperature, and at the same time has a high refractive index and a low extinction coefficient, it can be effectively used with the CPL layer of the OLED device Improve the light extraction efficiency of OLED devices; and because the ketone derivatives have a deep HOMO level and a wide forbidden band (Eg) level, they can be used as hole blocking, electron transporting or light emitting layer materials for OLED devices.
  • the holes are transferred from the side of the light emitting layer to the side of the electron layer, which improves the recombination efficiency of holes and electrons in the light emitting layer, thereby improving the luminous efficiency and service life of the OLED device.
  • Z represents C(R 1 ) or a nitrogen atom; and Z at the connection site represents a carbon atom;
  • the a and b are independently represented as numbers 1, 2 or 3;
  • the X represents a single bond, an oxygen atom, a sulfur atom, or C(R 2 )(R 3 );
  • R 2 and R 3 independently represent a C 1-20 alkyl group, a substituted or unsubstituted C 6- 30 aryl, one of 5 to 30-membered heteroaryl containing one or more heteroatoms substituted or unsubstituted;
  • the i is represented as a number 0 or 1;
  • the A and B independently represent a hydrogen atom, a structure represented by the general formula (2) or the general formula (3); and at least one of the A and B is represented by the general formula (2) or the general formula (3) Description structure
  • X 1 represents an oxygen atom, a sulfur atom, or N(R 6 );
  • the Ar 1 and Ar 2 are independently represented as one of a substituted or unsubstituted C 6-30 arylene group and a substituted or unsubstituted 5-30 membered heteroarylene group containing one or more hetero atoms;
  • the Z 1 represents a nitrogen atom or C(R 4 ); the Z 1 at the connection site represents a carbon atom;
  • the R 1 and R 4 are independently represented as a hydrogen atom, a cyano group, a halogen, a C 1-20 alkyl group, a substituted or unsubstituted C 6-30 aryl group, one or more heteroatoms substituted or unsubstituted One of the substituted 5- to 30-membered heteroaryl groups;
  • the R 5 and R 6 represent one of a substituted or unsubstituted C 6-30 aryl group and a substituted or unsubstituted 5-30 membered heteroaryl group containing one or more hetero atoms;
  • the substituents which may be substituted by are optionally selected from halogen, cyano, C 1-20 alkyl, substituted or unsubstituted C 6-30 aryl, substituted or unsubstituted containing one or more heteroatoms One or more of 5-30 membered heteroaryl groups;
  • the hetero atom of the heteroaryl group is optionally selected from one or more of an oxygen atom, a sulfur atom, or a nitrogen atom.
  • the Ar 1 and Ar 2 independently represent substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted pyridylene, substituted or unsubstituted Naphthyridine, substituted or unsubstituted biphenylene, substituted or unsubstituted terphenylene, substituted or unsubstituted carbazolylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted Spirofluorenyl, substituted or unsubstituted azacarbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl;
  • R 2 and R 3 are independently represented as methyl, ethyl, propyl, isopropyl, t-butyl, pentyl, phenyl, naphthyl, biphenyl, terphenyl, pyridyl, Benzofuranyl, carbazolyl, benzothienyl or furanyl;
  • the R 1 and R 4 independently represent a hydrogen atom, a cyano group, a fluorine atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a substituted or unsubstituted phenyl group, and a substitution Or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted naphthyridyl, substituted or unsubstituted pyridyl, substituted or unsubstituted carbazole Group, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted furanyl, substituted or unsubstituted azacarbazolyl, substituted or unsubstituted benzocarbazolyl, substituted or un
  • R 5 and R 6 represent substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted naphthalene Pyridyl, substituted or unsubstituted pyridyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted furanyl, substituted or unsubstituted azacarbazolyl, Substituted or unsubstituted benzocarbazolyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyrene, substituted or unsubstituted phenanthrene, substituted or unsubstituted Benzothi
  • the substituent of the substitutable group is optionally selected from fluorine atom, cyano group, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, phenyl group, naphthyl group, biphenyl group, pyridyl , One or more of benzofuranyl, carbazolyl, benzothienyl or furanyl.
  • the general formula (1) can be expressed as a structure represented by the general formula (4)-general formula (9):
  • the second aspect of the present invention is to provide a method for preparing the above organic compound, having such characteristics
  • the boric acid compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the specific preparation method is as follows: 1) Dissolve raw material A and intermediate B in toluene to obtain a first mixed solution, wherein the amount of toluene used is 30-50 ml of toluene per gram of raw material A, and the raw material A and intermediate B The molar ratio is 1: (1.0 ⁇ 1.5);
  • the second mixed solution was reacted at 95 to 110°C for 10 to 24 hours, naturally cooled to room temperature, and the reaction solution was filtered. The filtrate was subjected to reduced-pressure rotary evaporation and passed through a neutral silica gel column to obtain the target product.
  • the third aspect of the present invention is to provide the application of the above-mentioned ketone derivatives as the core organic compound in the preparation of organic electroluminescent devices.
  • a fourth aspect of the present invention is to provide an organic electroluminescent device having such a characteristic that the organic electroluminescent device includes at least one functional layer, and the functional layer contains the organic compound with the ketone derivative as the core .
  • a fifth aspect of the present invention is to provide an organic electroluminescent device, including a hole blocking layer or an electron transport layer, having such characteristics that the hole blocking layer or the electron transport layer contains the ketone derivative as the core Organic compounds.
  • a sixth aspect of the present invention is to provide an organic electroluminescent device including a CPL layer having the characteristic that the CPL layer contains the organic compound having the ketone derivative as the core.
  • a seventh aspect of the present invention is to provide an organic electroluminescent device including a light-emitting layer having such a characteristic that the light-emitting layer contains the above-mentioned organic compound having a ketone derivative as a core.
  • An eighth aspect of the present invention is to provide an illumination or display element having such characteristics, including the above-mentioned organic electroluminescent device.
  • the compound provided by the invention takes ketone derivatives as the core and connects the benzoxazole, benzothiazole and benzimidazole branches, and the branches and the parent core have strong rigidity. After the film is formed, the density is high The film layer, so that the film layer has a higher stability, thereby increasing the service life of the device.
  • the compound of the present invention also has a lower evaporation temperature ( ⁇ 350°C), which not only ensures that the material is not decomposed for a long time on the mass production line, but also reduces the deformation of the evaporation Mask due to the thermal radiation of the evaporation temperature influences.
  • the compound of the present application uses benzoxazole, benzothiazole, and benzimidazole as branch chains.
  • Such branch chains contain more lone pairs of electrons, so they have higher polarizability and can be coupled with metal electrodes With the ordered grating structure, the current efficiency and light extraction efficiency of the organic electroluminescent device prepared from the prepared cover layer are improved, and the angle dependence is eased.
  • the material of the present invention is applied to the CPL layer in an OLED device, does not participate in electron and hole transport of the device, but has very high requirements on the thermal stability, film crystallinity, and light transmission (high refractive index) of the material.
  • ketone derivatives and benzoxazole thiazole, imidazole
  • high Tg temperature ensures that the material does not crystallize in the state of thin film
  • low evaporation temperature It is the premise that the material can be applied to mass production; the high refractive index is the most important factor that the material of the present invention can be applied to the CPL layer.
  • the invention is based on an organic compound of a ketone derivative and benzoxazole (thiazole, imidazole), with a refractive index n ⁇ 2.2 between 430 nm and 470 nm in the blue light region.
  • the material of the present invention is applied to the hole blocking layer, electron transport layer or light emitting layer of an OLED device, which can effectively block the transfer of holes or energy from the light emitting layer to the side of the electron layer. Improve the recombination efficiency of holes and electrons in the light-emitting layer, thereby improving the luminous efficiency and service life of the OLED device.
  • the present invention After being applied to the CPL layer of the OLED device, the present invention can effectively improve the light extraction efficiency of the OLED device.
  • the compounds of the present invention have good application effects and industrialization prospects in OLED light-emitting devices.
  • FIG. 1 is a schematic structural view of the materials listed in the present invention applied to an OLED device
  • 1 is a transparent substrate layer
  • 2 is an ITO anode layer
  • 3 is a hole injection layer
  • 4 is a hole transport
  • 5 is an electron blocking layer
  • 6 is a light emitting layer
  • 7 is an electron transporting or hole blocking layer
  • 8 is an electron injection layer
  • 9 is a cathode reflective electrode layer
  • 10 is a light extraction layer.
  • Example 1 The synthesis of intermediate B refers to patents CN106946859 and 2017113408614;
  • the intermediate B was prepared by the synthesis method of intermediate B-1-1, and the specific structure is shown in Table 1.
  • Elemental analysis structure (molecular formula C 51 H 30 N 2 O 4 ): theoretical value: C, 83.36; H, 4.12; N, 3.81; test value: C, 83.35; H, 4.14; N, 3.82.
  • HPLC-MS The molecular weight of the material is 734.22, and the measured molecular weight is 734.29.
  • the organic compound of the present invention is used as a CPL layer material in a light-emitting device, and has a high Tg (glass transition temperature) temperature and a high refractive index.
  • Tg glass transition temperature
  • refractive index The thermal performance and refractive index of the compound of the present invention and the existing material were tested, and the results are shown in Table 3.
  • the glass transition temperature Tg is determined by differential scanning calorimetry (DSC, DSC204F1 differential scanning calorimeter of Germany Netsch), and the heating rate is 10°C/min; the thermal weightlessness temperature Td is the temperature of 1% weight loss in a nitrogen atmosphere.
  • the measurement was carried out on the TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Japan.
  • the nitrogen flow rate was 20 mL/min; the refractive index was measured by an ellipsometer (US JA Woollam Co. model: ALPHA-SE), and the test was an atmospheric environment.
  • the organic compound of the present invention has a high glass transition temperature, a high refractive index, especially in the long wavelength range, and at the same time, the molecular structure contains rigid groups, which ensures the thermal stability of the material. Therefore, after the compound of the present application is applied to the CPL layer of an OLED device, the light extraction efficiency of the device can be effectively improved, and the long life of the OLED device is ensured.
  • the organic compound of the present invention is used as a hole blocking, electron transport, or light emitting layer material in a light emitting device.
  • the compounds prepared in the above examples of the present invention were tested for thermal performance, T1 energy level, and HOMO energy level. The test results are shown in Table 4:
  • the glass transition temperature Tg is determined by differential scanning calorimetry (DSC, DSC204F1 differential scanning calorimeter of Germany Netsch), and the heating rate is 10°C/min; the thermal weightlessness temperature Td is the temperature of 1% weight loss in a nitrogen atmosphere. Measured on the TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Japan, with a nitrogen flow rate of 20mL/min; the triplet energy level T1 was tested by Hitachi's F4600 fluorescence spectrometer, and the test condition of the material was 2* 10-5 toluene Solution; the highest occupied molecular orbital HOMO energy level is tested by the ionization energy test system (IPS3), which is tested for atmospheric environment.
  • IPS3 ionization energy test system
  • the organic compound of the present invention has a higher glass transition temperature, which can improve the phase stability of the material film and further improve the service life of the device.
  • the following rate of luminescence, the higher HOMO energy level can effectively block the transfer of holes to the side of the electron transport layer, effectively balance the balance of electrons and holes in the light-emitting layer, and improve the recombination efficiency of excitons.
  • Substrate layer/ITO anode layer/hole injection layer (HAT-CN, thickness 10nm)/hole transport layer (HT-1, thickness 60nm)/electron blocking layer (EB-1, thickness 20nm)/light emitting layer (GH1 GH2 and GD-1 are mixed at a weight ratio of 45:45:10, thickness 40nm)/hole blocking/electron transport layer (ET-1 and Liq, mixed at a weight ratio of 1:1, thickness 40nm)/electron Injection layer (LiF, thickness 1 nm)/cathode layer (Mg and Ag, mixed at a weight ratio of 9:1, thickness 15 nm)/CPL layer (Compound 1, thickness 70 nm).
  • the substrate layer 1 is washed with an ITO anode layer 2 (film thickness of 150 nm), that is, alkali washing, pure water washing, and drying, followed by ultraviolet-ozone washing to remove organic residues on the surface of the transparent ITO Thing.
  • an ITO anode layer 2 film thickness of 150 nm
  • a vacuum evaporation apparatus was used to deposit HAT-CN with a film thickness of 10 nm as the hole injection layer 3.
  • HAT-CN with a film thickness of 10 nm as the hole injection layer 3.
  • HT-1 with a thickness of 60 nm was deposited as a hole transport layer.
  • EB-1 with a thickness of 20 nm was deposited as an electron blocking layer.
  • the light-emitting layer 6 of the OLED light-emitting device is fabricated, and its structure includes GH-1 and GH-2 used as the host material for the OLED light-emitting layer 6, GD-1 as the doping material
  • the doping ratio is 10% by weight, and the film thickness of the light-emitting layer is 30 nm.
  • vacuum evaporation of the electron transport layer materials is ET-1 and Liq.
  • the thickness of the vacuum-evaporated film of this material is 40 nm, and this layer is the hole blocking/electron transport layer 7.
  • a lithium vapor (LiF) layer with a film thickness of 1 nm is formed by a vacuum evaporation device, and this layer is an electron injection layer 8.
  • a vacuum evaporation device was used to produce an Mg:Ag electrode layer with a thickness of 15 nm, and this layer was used as the cathode layer 9.
  • compound 1 of 70 nm was vacuum-evaporated as the CPL layer 10.
  • the detection data of the obtained electroluminescent device are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种以酮类衍生物为核心的有机化合物及其制备方法和应用,属于半导体技术领域,本发明提供化合物的结构如通式(1)所示:本发明还公开了上述化合物的制备方法及其应用。本发明提供的化合物具有较高的玻璃化温度和分子热稳定性;在可见光领域吸收低、折射率高,在应用于OLED器件的CPL层后,可有效提升OLED器件的光取出效率;本发明化合物还具有较深的HOMO能级和高的电子迁移率,可以作为OLED器件的空穴阻挡、电子传输层或发光层材料,平衡电子和空穴在发光层的平衡度,从而提升空穴和电子在发光层的复合效率,进而提升OLED器件的发光效率和使用寿命。

Description

一种以酮类衍生物为核心的有机化合物及其制备方法和其应用 技术领域
本发明涉及半导体技术领域,尤其涉及一种以酮类衍生物为核心的有机化合物及其制备方法和其应用。
背景技术
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展。但是,由于OLED的外量子效率和内量子效率之间存在巨大差距,极大地制约了OLED的发展。因此,如何提高OLED的光取出效率成为研究热点。ITO薄膜和玻璃衬底的界面以及玻璃衬底和空气的界面处会发生全反射,出射到OLED器件前向外部空间的光约占有机材料薄膜EL总量的20%,其余约80%的光主要以导波形式限制在有机材料薄膜、ITO薄膜和玻璃衬底中。可见常规OLED器件的出光效率较低(约为20%),这严重制约了OLED的发展和应用。如何减少OLED器件中的全反射效应、提高光耦合到器件前向外部空间的比例(出光效率)引起人们的广泛关注。
目前,实现提高OLED外量子效率的一类重要方法是在基底出光表面形成如褶皱、光子晶体、微透镜陈列(MLA)和添加表面覆盖层等结构。前两种结构会影响OLED的辐射光谱角度分布,第三种结构制作工艺复杂,使用表面覆盖层工艺简单,发光效率提高30%以上,尤为人们关注。根据光学原理,当光透射过折射率为n 1的物质到折射率为n 2的物质时(n 1>n 2),只有在arcsin(n 2/n 1)的角度内才能入射到折射率为n 2的物质里,吸收率B可以用以下的公式计算:
Figure PCTCN2019121992-appb-000001
设n 1=n 一般OLED有机材料=1.70,n 2=n 玻璃=1.46,则2B=0.49。假设向外传播的光全部被金属电极反射,则只有51%的光能被高折射率的有机膜和ITO层所波导,同样可以计算光从玻璃基底射出到空气时的透过率。因此从有机层发出的光射出器件的外部时,只有约17%的光能被人们所看见。因此,针对目前OLED器件光取出效率低的现状,需要在器件结构中增加一层CPL(capping layer、覆盖)层,即光提取材料,根据光学吸收、折射原理,此表面覆盖层材料的折射率应该越高越好。
目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
发明内容
针对现有技术存在的上述问题,本发明提供了一种以酮类衍生物为核心的有机化合物及其应用。本发明提供的有机化合物不易结晶,其具有良好的热稳定性和较高的玻璃化温度,同时具有较高的折射率和较低的消光系数,在用与OLED器件的CPL层后,可有效提升OLED器件的光取出效率;并且由于酮类衍生物具有较深的HOMO能级,宽的禁带(Eg)能级,可作为OLED器件的空穴阻挡、电子传输层或发光层材料,阻挡空穴从发光层一侧传递至电子层一侧,提高空穴和电子在发光层中的复合效率,从而提升OLED器件的发光效率和使用寿命。
本发明解决上述问题的具体技术方案如下:一种以酮类衍生物为核心的有机化合物,该化合物的结构如通式(1)所示:
Figure PCTCN2019121992-appb-000002
通式(1)中Z表示为C(R 1)或氮原子;且连接位点处的Z表示为碳原子;
所述a、b分别独立的表示为数字1、2或3;
所述X表示为单键、氧原子、硫原子或C(R 2)(R 3);R 2、R 3分别独立的表示为C 1-20的烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;
所述i表示为数字0或1;
所述A、B分别独立的表示为氢原子、通式(2)或通式(3)所示结构;且A、B中至少有一个表示为通式(2)或通式(3)所述结构;
Figure PCTCN2019121992-appb-000003
通式(2)和通式(3)中,X 1表示为氧原子、硫原子或N(R 6);
所述Ar 1、Ar 2分别独立的表示为取代或未取代的C 6-30亚芳基、含有一个或多个杂原子取代或未取代的5~30元亚杂芳基中的一种;
所述Z 1表示为氮原子或C(R 4);连接位点处的Z 1表示为碳原子;
所述R 1、R 4分别独立的表示为氢原子、氰基、卤素、C 1-20的烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;
所述R 5、R 6表示为取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;
所述可被取代基团的取代基任选自卤素、氰基、C 1-20的烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种或多种;
所述杂芳基的杂原子任选自氧原子、硫原子或氮原子中的一种或多种。
作为本发明的进一步改进,所述Ar 1、Ar 2分别独立的表示为取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚吡啶基、取代或未取代的亚萘啶基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚咔唑基、取代或未取代的亚芴基、取代或未取代的亚螺芴基、取代或未取代的亚氮杂咔唑基、取代或未取代亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基;
所述R 2、R 3分别独立的表示为甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、二联苯基、三联苯基、吡啶基、苯并呋喃基、咔唑基、苯并噻吩基或呋喃基;
所述R 1、R 4分别独立的表示为氢原子、氰基、氟原子、甲基、乙基、丙基、异丙基、叔丁基、戊基、取代或未取代的苯基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的呋喃基、取代或未取代的氮杂咔唑基、取代或未取代的苯并咔唑基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的芘基、取代或未取代的苯并菲基、取代或未取代的苯并噻吩基、取代或未取代 的芴基、取代或未取代的萘并咔唑基、取代或未取代的萘并呋喃基、取代或未取代的嘧啶基、取代或未取代的哒嗪基;
所述R 5、R 6表示为取代或未取代的苯基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的呋喃基、取代或未取代的氮杂咔唑基、取代或未取代的苯并咔唑基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的芘基、取代或未取代的苯并菲基、取代或未取代的苯并噻吩基、取代或未取代的萘并咔唑基、取代或未取代的芴基、取代或未取代的嘧啶基、取代或未取代的哒嗪基、取代或未取代的萘并呋喃基;
所述可取代基团的取代基任选自氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基、吡啶基、苯并呋喃基、咔唑基、苯并噻吩基或呋喃基中的一种或多种。
作为本发明的进一步改进,所述通式(1)可表示为通式(4)-通式(9)所示结构:
Figure PCTCN2019121992-appb-000004
作为本发明的进一步改进,所述化合物具体结构为:
Figure PCTCN2019121992-appb-000005
Figure PCTCN2019121992-appb-000006
Figure PCTCN2019121992-appb-000007
Figure PCTCN2019121992-appb-000008
Figure PCTCN2019121992-appb-000009
(524)中的任一种。
本发明的第二个方面是提供一种上述的有机化合物的制备方法,具有这样的特征,
Figure PCTCN2019121992-appb-000010
所述硼酸化合物为
Figure PCTCN2019121992-appb-000011
具体制备方法为:1)将原料A和中间体B溶解在甲苯中,得到第一混合溶液,其中,所述甲苯用量为每克原料A使用30-50ml甲苯,所述原料A与中间体B的摩尔比为1:(1.0~1.5);
2)向1)的第一混合溶液中加入Pd(PPh 3) 4和碳酸钠,得第二混合溶液,所述Pd(PPh 3) 4与原料A的摩尔比为(0.005~0.01):1,所述碳酸钠与原料A的摩尔比为(1.5~3.0):1;
3)在氮气保护下,将第二混合溶液于95~110℃,反应10~24小时,自然冷却至室温,并过滤反应溶液,将滤液进行减压旋蒸,过中性硅胶柱,得到目标产物。
本发明的第三个方面是提供上述以酮类衍生物为核心的有机化合物在制备有机电致发光器件中的应用。
本发明的第四个方面是提供一种有机电致发光器件,具有这样的特征,上述有机电致发光器件包括至少一层功能层,上述功能层含有上述以酮类衍生物为核心的有机化合物。
本发明的第五个方面是提供一种有机电致发光器件,包括空穴阻挡层或电子传输层,具有这样的特征,上述空穴阻挡层或电子传输层含有上述以酮类衍生物为核心的有机化合物。
本发明的第六个方面是提供一种有机电致发光器件,包括CPL层,具有这样的特征,上述CPL层含有上述以酮类衍生物为核心的有机化合物。
本发明的第七个方面是提供一种有机电致发光器件,包括发光层,具有这样的特征,上述发光层含有上 述以酮类衍生物为核心的有机化合物。
本发明的第八个方面是提供一种照明或显示元件,具有这样的特征,包括上述的有机电致发光器件。
上述方案的有益效果是:
本发明提供的化合物以酮类衍生物为核心,连接苯并噁唑、苯并噻唑、苯并咪唑支链,支链和母核均具有较强的刚性,材料成膜后,形成致密性高的膜层,从而使膜层具有较高的稳定性,从而提高器件的使用寿命。本发明申请化合物还具有较低的蒸镀温度(≤350℃),既保证了材料在量产线长时间蒸镀材料不分解,又降低了由于蒸镀温度的热辐射对蒸镀Mask的形变影响。
本发明申请化合物以苯并噁唑、苯并噻唑、苯并咪唑为支链,这类支链含有较多的孤对电子,因此具有较高的极化能力,且可以和金属电极耦合成无序光栅结构,因此由其所制备的覆盖层制备的有机电致发光装置的电流效率提高、光取出效率提高,角度依赖性得到缓解。
本发明材料在OLED器件中应用在CPL层,不参与器件的电子和空穴传输,但对材料的热稳定性、膜结晶性及光传输(高折射率)具有非常高的要求。如上分析,酮类衍生物和苯并噁唑(噻唑、咪唑)为刚性基团,提高了材料的稳定性;高的Tg温度,保证了材料在薄膜状态下不结晶;低的蒸镀温度,是材料可应用于量产的前提;高的折射率则是本发明材料能应用于CPL层的最主要因素。本发明基于酮类衍生物和苯并噁唑(噻唑、咪唑)的有机化合物,在蓝光区域430nm-470nm波长之间的折射率n≥2.2。
本发明材料由于具有深的HOMO能级,高电子迁移率,应用在OLED器件的空穴阻挡层、电子传输层或发光层,可有效阻挡空穴或能量从发光层传递至电子层一侧,提高空穴和电子在发光层中的复合效率,从而提升OLED器件的发光效率和使用寿命。本发明在应用于OLED器件的CPL层后,可有效提升OLED器件的光取出效率。综上,本发明所述化合物在OLED发光器件中具有良好的应用效果和产业化前景。
附图说明
图1为本发明所列举的材料应用于OLED器件的结构示意图;
附图中:1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输,5为电子阻挡层,6为发光层,7为电子传输或空穴阻挡层,8为电子注入层,9为阴极反射电极层,10为光取出层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1:中间体B的合成参考专利CN106946859和2017113408614;
以中间体B-1-1的合成为例:
Figure PCTCN2019121992-appb-000012
(1)在250mL三口瓶中,通入氮气,加入0.04mol原料C1,100ml的THF,0.05mol原料D1,0.0004mol四(三苯基膦)钯,搅拌,然后加入0.06mol K 2CO 3水溶液(2M),加热至80℃,回流反应10小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到中间体E1;HPLC纯度99.5%,收率78.5%。元素分析结构(分子式C 19H 12BrNO):理论值C,65.16;H,3.45;Br,22.82;N,4.00;测试值:C,65.18;H,3.44;Br,22.81;N,4.02。ESI-MS(m/z)(M +):理论值为349.01,实测值为349.12。
Figure PCTCN2019121992-appb-000013
(2)在500mL三口瓶中,通入氮气,加入0.05mol中间体E1溶解于300ml N,N-二甲基甲酰胺(DMF)中,再将0.06mol双(频哪醇根基)二硼、0.0005mol(1,1’-双(二苯基膦)二茂铁)二氯钯(II)以及0.125mol乙酸钾加入,搅拌混合物,将上述反应物的混合溶液于反应温度120-150℃下加热回流10小时;反应结束后,冷却并加入200ml水、且将混合物过滤并在真空烘箱中干燥。将所获得的残余物过硅胶柱分离纯化,得到化合物中间体B-1-1;HPLC纯度99.7%,收率81.2%。元素分析结构(分子式C 19H 14BNO 3):理论值C,72.42;H,4.48;B,3.43;N,4.44;测试值:C,72.43;H,4.47;B,3.45;N,4.42。ESI-MS(m/z)(M +):理论值为315.11,实测值为315.21。
以中间体B-1-1的合成方法制备中间体B,具体结构如表1所示。
Figure PCTCN2019121992-appb-000014
Figure PCTCN2019121992-appb-000015
Figure PCTCN2019121992-appb-000016
实施例2:化合物1的合成:
Figure PCTCN2019121992-appb-000017
在250ml的三口瓶中,通氮气保护下,加入0.01mol原料A1,0.012mol中间体B1,150ml甲苯搅拌混合,然后加入1×10 -4molPd(pph 3) 4,加热至105℃,回流反应24小时,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液进行减压旋蒸(-0.09MPa,85℃),过中性硅胶柱,得到目标产物,HPLC纯度99.17%,收率79.8%。元素分析结构(分子式C 51H 30N 2O 4):理论值:C,83.36;H,4.12;N,3.81;测试值:C,83.35;H,4.14;N,3.82。HPLC-MS:材料分子量为734.22,实测分子量734.29。
以与实施例1相同的方法制备下列化合物(所用原料均有烟台万润提供),所述化合物的制备如表2所示:
表2
Figure PCTCN2019121992-appb-000018
Figure PCTCN2019121992-appb-000019
Figure PCTCN2019121992-appb-000020
本发明的有机化合物在发光器件中使用作为CPL层材料,具有高的Tg(玻璃转化温度)温度和高折射率。对本发明化合物及现有材料分别进行热性能及折射率测试,结果如表3所示。
表3
Figure PCTCN2019121992-appb-000021
注:玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;折射率是由椭偏仪(美国J.A.Woollam Co.型号:ALPHA-SE)测量,测试为大气环境。
由表3数据可知,本发明的有机化合物具有高的玻璃转化温度,高折射率,尤其是长波长范围内,同时由于分子结构含有刚性基团,保证了材料的热稳定性。因此本发明申请化合物应用于OLED器件的CPL层后,可有效提高器件的光取出效率,并且保证了OLED器件的长寿命。
本发明的有机化合物在发光器件中使用作为空穴阻挡、电子传输或发光层材料。对本发明上述实施例制备的化合物分别进行热性能、T1能级、HOMO能级的测试,检测结果如表4所示:
表4
Figure PCTCN2019121992-appb-000022
Figure PCTCN2019121992-appb-000023
注:玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10 -5的甲苯溶液;最高占据分子轨道HOMO能级是由电离能测试系统(IPS3)测试,测试为大气环境。
由表4数据可知,本发明有机化合物具有较高玻璃化转变温度,可提高材料膜相态稳定性,进一步提高器件使用寿命,具有高的T1能级,可以阻挡发光层能量损失,从而提高器件的发光下列率,较高的HOMO能级,可以有效的阻挡空穴向电子传输层一侧传递,有效地平衡电子和空穴在发光层的平衡度,提升激子的复合效率。
以下通过器件实施例1-47和比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明器件实施例2-47和器件比较例1与器件实施例1相比器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是对器件2-33、44-47中的CPL层材料、器件34-43中的电子传输层材料或发光层材料做了变换。各实施例所得器件的结构组成如表5所示。各实施例所得器件的性能测试结果如表6所示。
器件实施例1
基板层/ITO阳极层/空穴注入层(HAT-CN,厚度10nm)/空穴传输层(HT-1,厚度60nm)/电子阻挡层(EB-1,厚度20nm)/发光层(GH1、GH2和GD-1按照45:45:10的重量比混掺,厚度40nm)/空穴阻挡/电子传输层(ET-1和Liq,按照1:1的重量比混掺,厚度40nm)/电子注入层(LiF,厚度1nm)/阴极层(Mg和Ag,按照9:1的重量比混掺,厚度15nm)/CPL层(化合物1,厚度70nm)。
具体制备过程如下:
如图1所示,基板层1,对ITO阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的HAT-CN作为空穴注入层3使用。接着蒸镀60nm厚度的HT-1作为空穴传输层。随后蒸镀20nm厚度的EB-1作为电子阻挡层。上述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层6,其结构包括OLED发光层6所使用GH-1、GH-2作为主体材料,GD-1作为掺杂材料,掺杂材料掺杂比例为10%重量比,发光层膜厚为30nm。在上述发光层6之后,继续真空蒸镀电子传输层材料为ET-1和Liq。该材料的真空蒸镀膜厚为40nm,此层为空穴阻挡/电子传输层7。在空穴阻挡/电子传输层7上,通过真空蒸镀装置,制作膜厚为1nm的氟化锂(LiF)层,此层为电子注入层8。在电子注入层8上,通过真空蒸镀装置,制作膜厚为15nm的Mg:Ag电极层,此层为阴极层9使用。在阴极层9上,真空蒸镀70nm的化合物1,作为CPL层10。如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率以及器件的寿命。
Figure PCTCN2019121992-appb-000024
Figure PCTCN2019121992-appb-000025
表5
Figure PCTCN2019121992-appb-000026
Figure PCTCN2019121992-appb-000027
Figure PCTCN2019121992-appb-000028
所得电致发光器件的检测数据见表6所示。
表6
Figure PCTCN2019121992-appb-000029
Figure PCTCN2019121992-appb-000030
由表6的结果可以看出本发明所述以酮类衍生物为核心的有机化合物应用于OLED发光器件制作后,与器件比较例1相比,光取出得到明显提升,相同电流密度下,器件亮度和器件效率都得到了提升,由于亮度及效率得到提升,OLED器件在定亮度下的功耗相对降低,使用寿命也得到提高。
综上,以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种以酮类衍生物为核心的有机化合物,其特征在于,该化合物的结构如通式(1)所示:
    Figure PCTCN2019121992-appb-100001
    通式(1)中Z表示为C(R 1)或氮原子;且连接位点处的Z表示为碳原子;
    所述a、b分别独立的表示为数字1、2或3;
    所述X表示为单键、氧原子、硫原子或C(R 2)(R 3);R 2、R 3分别独立的表示为C 1-20的烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;
    所述i表示为数字0或1;
    所述A、B分别独立的表示为氢原子、通式(2)或通式(3)所示结构;且A、B中至少有一个表示为通式(2)或通式(3)所述结构;
    Figure PCTCN2019121992-appb-100002
    通式(2)和通式(3)中,X 1表示为氧原子、硫原子或N(R 6);
    所述Ar 1、Ar 2分别独立的表示为取代或未取代的C 6-30亚芳基、含有一个或多个杂原子取代或未取代的5~30元亚杂芳基中的一种;
    所述Z 1表示为氮原子或C(R 4);连接位点处的Z 1表示为碳原子;
    所述R 1、R 4分别独立的表示为氢原子、氰基、卤素、C 1-20的烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;
    所述R 5、R 6表示为取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种;
    所述可被取代基团的取代基任选自卤素、氰基、C 1-20的烷基、取代或未取代的C 6-30芳基、含有一个或多个杂原子取代或未取代的5~30元杂芳基中的一种或多种;
    所述杂芳基的杂原子任选自氧原子、硫原子或氮原子中的一种或多种。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述Ar 1、Ar 2分别独立的表示为取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚吡啶基、取代或未取代的亚萘啶基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚咔唑基、取代或未取代的亚芴基、取代或未取代的亚螺芴基、取代或未取代的亚氮杂咔唑基、取代或未取代亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基;
    所述R 2、R 3分别独立的表示为甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、二联苯基、三 联苯基、吡啶基、苯并呋喃基、咔唑基、苯并噻吩基或呋喃基;
    所述R 1、R 4分别独立的表示为氢原子、氰基、氟原子、甲基、乙基、丙基、异丙基、叔丁基、戊基、取代或未取代的苯基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的呋喃基、取代或未取代的氮杂咔唑基、取代或未取代的苯并咔唑基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的芘基、取代或未取代的苯并菲基、取代或未取代的苯并噻吩基、取代或未取代的芴基、取代或未取代的萘并咔唑基、取代或未取代的萘并呋喃基、取代或未取代的嘧啶基、取代或未取代的哒嗪基;
    所述R 5、R 6表示为取代或未取代的苯基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的呋喃基、取代或未取代的氮杂咔唑基、取代或未取代的苯并咔唑基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的芘基、取代或未取代的苯并菲基、取代或未取代的苯并噻吩基、取代或未取代的萘并咔唑基、取代或未取代的芴基、取代或未取代的嘧啶基、取代或未取代的哒嗪基、取代或未取代的萘并呋喃基;
    所述可取代基团的取代基任选自氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基、吡啶基、苯并呋喃基、咔唑基、苯并噻吩基或呋喃基中的一种或多种。
  3. 根据权利要求1所述的有机化合物,其特征在于,所述通式(1)可表示为通式(4)-通式(9)所示结构:
    Figure PCTCN2019121992-appb-100003
  4. 根据权利要求1所述的有机化合物,其特征在于,所述化合物具体结构为:
    Figure PCTCN2019121992-appb-100004
    Figure PCTCN2019121992-appb-100005
    Figure PCTCN2019121992-appb-100006
    Figure PCTCN2019121992-appb-100007
    Figure PCTCN2019121992-appb-100008
    Figure PCTCN2019121992-appb-100009
    中的任一种。
  5. 一种含有权利要求1-4任一项所述的有机化合物的电致发光器件,其特征在于,所述有机电致发光器件的至少一层功能层含有如权利要求1-4任一项所述的以酮类衍生物为核心的有机化合物。
  6. 一种有机电致发光器件,包括空穴阻挡或电子传输层,其特征在于,所述有机电致发光器件的空穴阻挡层或电子传输层材料含有如权利要求1-4任一项所述以酮类衍生物为核心的有机化合物。
  7. 一种有机电致发光器件,包括CPL层,其特征在于,所述有机电致发光器件的CPL层材料含有如权利要求1-4任一项所述以酮类衍生物为核心的有机化合物。
  8. 一种有机电致发光器件,包括发光层,其特征在于,所述有机电致发光器件的发光层材料含有如权利要求1-4任一项所述以酮类衍生物为核心的有机化合物。
  9. 一种照明或显示元件,其特征在于,包括权利要求5-8任一项所述的有机电致发光器件。
PCT/CN2019/121992 2018-11-30 2019-11-29 一种以酮类衍生物为核心的有机化合物及其制备方法和其应用 WO2020108622A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811448356 2018-11-30
CN201811448356.6 2018-11-30
CN201910159386 2019-03-04
CN201910159386.3 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020108622A1 true WO2020108622A1 (zh) 2020-06-04

Family

ID=70854699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121992 WO2020108622A1 (zh) 2018-11-30 2019-11-29 一种以酮类衍生物为核心的有机化合物及其制备方法和其应用

Country Status (1)

Country Link
WO (1) WO2020108622A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021956A (zh) * 2017-04-28 2017-08-08 石家庄诚志永华显示材料有限公司 苯并恶唑衍生物及其应用
CN107057681A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有氧杂蒽结构的光电材料及其在oled领域的应用
CN108822088A (zh) * 2018-08-12 2018-11-16 瑞声科技(南京)有限公司 一种基于咪唑结构的化合物及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107057681A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有氧杂蒽结构的光电材料及其在oled领域的应用
CN107021956A (zh) * 2017-04-28 2017-08-08 石家庄诚志永华显示材料有限公司 苯并恶唑衍生物及其应用
CN108822088A (zh) * 2018-08-12 2018-11-16 瑞声科技(南京)有限公司 一种基于咪唑结构的化合物及其应用

Similar Documents

Publication Publication Date Title
CN109761967B (zh) 一种基于杂芳基胺类结构的有机化合物及其在oled上的应用
CN109824659B (zh) 一种基于杂芳基胺类结构的有机化合物及其应用
WO2019114478A1 (zh) 一种基于三嗪和苯并噁唑的有机化合物及其在有机电致发光器件上的应用
JP2019518716A (ja) トリアジン及びベンズイミダゾールをコアとする有機化合物及びその化合物を用いた有機エレクトロルミネッセンスデバイス
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
CN111253332A (zh) 一种有机化合物及其制备方法和在oled上的应用
CN112851653A (zh) 一种基于氮杂苯的有机化合物及其在oled上的应用
CN110964021A (zh) 一种以芴为核心的化合物、制备方法及其应用
WO2019233429A1 (zh) 一种以三芳胺结构为核心的化合物及其制备方法
WO2020182070A1 (zh) 一种以含有芘或者氮杂芘的三芳胺为核心的化合物及其应用
CN111662258A (zh) 一种含芘的有机化合物及其在oled上的应用
CN111253382B (zh) 一种以酮类衍生物为核心的有机化合物及其制备方法和其应用
CN110526901A (zh) 一种有机发光材料及其制备有机电致发光器件的应用
CN110878091A (zh) 一种基于三嗪和蒽酮类结构的有机化合物及其应用
CN110872286A (zh) 一种基于氮杂苯和苯并噁二唑的有机化合物及其应用
CN111662190A (zh) 一种含芘或氮杂芘的有机化合物及其应用
CN110642732B (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
CN111362813A (zh) 一种以三芳胺为核心的化合物及其应用
WO2023160121A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN111303149B (zh) 一种苯并五元环并稠杂环类有机化合物及其应用
CN110577488A (zh) 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用
CN110577523B (zh) 一种含三芳胺结构的化合物及其制备的有机电致发光器件
CN109535125B (zh) 一种以二苯并六元环为核心的化合物及其在oled上的应用
CN110845508A (zh) 一种以螺芴蒽酮为核心的化合物、制备方法及其应用
CN112479904B (zh) 一种以茚并蒽衍生物为核心的有机化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888795

Country of ref document: EP

Kind code of ref document: A1