WO2020108301A1 - 一种谐振驱动电路 - Google Patents

一种谐振驱动电路 Download PDF

Info

Publication number
WO2020108301A1
WO2020108301A1 PCT/CN2019/117896 CN2019117896W WO2020108301A1 WO 2020108301 A1 WO2020108301 A1 WO 2020108301A1 CN 2019117896 W CN2019117896 W CN 2019117896W WO 2020108301 A1 WO2020108301 A1 WO 2020108301A1
Authority
WO
WIPO (PCT)
Prior art keywords
power tube
transformer
capacitor
winding
circuit
Prior art date
Application number
PCT/CN2019/117896
Other languages
English (en)
French (fr)
Inventor
吴辉
马守栋
贺颖
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2020108301A1 publication Critical patent/WO2020108301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a resonance drive circuit, in particular to a resonance drive circuit applied to high-frequency and ultra-high-frequency occasions.
  • the loss problem caused by the switching tube drive in the power conversion topology is often involved.
  • the drive loss is basically caused by the drive resistance and the parasitic resistance on the drive line, so that the drive energy is wasted in vain, resulting in a decrease in the efficiency and performance of the switching converter.
  • the relational expression of the drive power is: (Where Cgs is the power source capacitance of the gate of the power transistor, Vgs is the source voltage of the gate of the power transistor, and f is the driving frequency), according to this expression, the higher the driving frequency, the greater the driving loss, which is difficult to meet the switching conversion The device works in high frequency and ultra high frequency applications.
  • the document "10MHz Isolated Synchronous Rectifier Class ⁇ 2 DC-DC Converter” provides a resonant drive circuit with voltage boost self-driving.
  • C1, resistor Rz and capacitor C2 which use a zener diode to provide a bias voltage to the driving voltage
  • the resonance voltage waveform is a sine wave.
  • the stable operation of the Zener diode requires the provision of a certain operating current, and there is a certain loss.
  • its voltage regulation value will be greatly affected by factors such as the difference of the Zener diode device, which has a greater impact on the power consumption and performance of the drive circuit It is difficult to widely apply in actual products, especially the consistency of mass production of products is difficult to guarantee.
  • the drive circuit For high-frequency and ultra-high-frequency switching converters, such as a half-bridge LLC converter, it needs to drive a group of bridge switch tubes, and because different types of power switch tubes have different turn-on thresholds, the drive circuit is required to It can provide two complementary driving voltages, and requires extremely low driving loss, and can flexibly set the bias voltage of the driving circuit according to the requirements.
  • the present invention provides a resonant drive circuit that uses a voltage-controlled oscillator to generate a resonant frequency to achieve adjustable drive signals.
  • a voltage-controlled oscillator By adding the same bias voltage to the drive voltage with an output mutual difference of 180°, the drive is realized
  • the intersection point of the voltage can be set by the bias voltage, and the drive circuit works in a resonant state, and the loss is extremely small, which can meet the low power consumption and high performance drive requirements of high-frequency and ultra-high frequency converters.
  • the concept of the present invention is to refract the input capacitance Ciss of the power tube in the switching converter through the transformer to the primary side to participate in LC resonance, where L is the primary excitation inductance of the transformer, and at the same time add an adjustable capacitor on the primary side of the transformer, thus generating resonance
  • the drive signal with adjustable frequency can ensure that the LC works in a resonance state, so that the drive loss is minimized.
  • the driving voltage produces an intersection at the set threshold and the driving voltage is symmetrical, and drives the power tube in the switching converter, thus reducing the dead zone of the driving voltage.
  • the performance of the switching converter is affected, and the bias voltage in the drive circuit can be flexibly configured according to the selected power tube, and the application range is wider.
  • a resonance drive circuit includes a voltage controlled oscillator, a transformer, a bias voltage circuit, a first power tube, a second power tube, a first input capacitor, a second input capacitor, a power stage voltage input terminal VIN, a power supply VCC, and ground GND;
  • the transformer includes a primary winding and two secondary windings, the primary winding of the transformer is connected in parallel at both ends of the output of the voltage controlled oscillator;
  • the first-named end of the first winding of the secondary side of the transformer is connected to the gate of the first power tube, the first-named end of the first winding of the secondary side of the transformer is connected to the source of the first power tube through the first output of the bias voltage circuit, and the first input capacitor is connected in parallel to the first Between the gate and the source of the power tube, the drain of the first power tube is connected to the voltage input terminal VIN of the power stage;
  • the second-named end of the secondary winding of the transformer is connected to the gate of the second power tube, the second-named end of the second winding of the secondary side of the transformer is connected to the source of the second power tube via the second output of the bias voltage circuit, and the second input capacitor is connected in parallel to the second Between the gate and the source of the power tube, the drain of the second power tube is connected to the source of the first power tube, and the source of the second power tube is connected to the ground GND.
  • the voltage controlled oscillator includes a negative resistance circuit and a variable capacitor, one input of the negative resistance circuit is connected to the power supply VCC, the other input of the negative resistance circuit is connected to the ground GND, and both ends of the variable capacitor are connected in parallel to the output of the negative resistance circuit At both ends, the output of the negative resistance circuit is the output of the voltage controlled oscillator.
  • the bias voltage circuit includes a bias circuit, a first diode, a second diode, a first capacitor, and a second capacitor.
  • the bias circuit is used to provide a bias voltage, and one end of the bias circuit is connected to the power supply VCC.
  • the other end of the bias circuit is connected to the anode of the first diode and the anode of the second diode
  • the cathode of the first diode is connected to the different-named end of the first winding of the secondary side of the transformer
  • the end of the first capacitor and the other end of the first capacitor is connected to the first
  • the cathode of the second diode is connected to the same-named end of the second winding of the secondary side of the transformer and the second capacitor
  • the other end of the second capacitor is connected to the source of the second power tube and the ground GND.
  • variable capacitor is a voltage controlled capacitor or a MOS varactor or a varactor diode.
  • the phases of the first winding and the second winding of the secondary side of the transformer are different from each other by 180°.
  • a resonant drive circuit of the present invention is applied to drive a full-bridge LLC converter, including a voltage controlled oscillator, a transformer, a bias voltage circuit, first to fourth power transistors, and first to The fourth input capacitor, power stage voltage input terminal VIN, power supply VCC, ground GND;
  • the transformer includes a primary winding and the first to fourth windings of the secondary side, the primary winding of the transformer is connected in parallel at both ends of the output of the voltage controlled oscillator;
  • the first-named end of the first winding of the secondary side of the transformer is connected to the gate of the first power tube, the first-named end of the first winding of the secondary side of the transformer is connected to the source of the first power tube through the first output of the bias voltage circuit, and the first input capacitor is connected in parallel to the first Between the gate and the source of the power tube, the drain of the first power tube is connected to the voltage input terminal VIN of the power stage;
  • the second-named end of the secondary winding of the transformer is connected to the gate of the second power tube, the second-named end of the second winding of the secondary side of the transformer is connected to the source of the second power tube via the second output of the bias voltage circuit, and the second input capacitor is connected in parallel to the second Between the gate and the source of the power tube, the drain of the second power tube is connected to the source of the first power tube, and the source of the second power tube is connected to the ground GND;
  • the third-named end of the third winding of the secondary side of the transformer is connected to the grid of the third power tube, the third-named end of the third winding of the secondary side of the transformer is connected to the source of the third power tube through the third output of the bias voltage circuit, and the third input capacitor is connected in parallel to the third Between the gate and the source of the power tube, the drain of the third power tube is connected to the voltage input terminal VIN of the power stage;
  • the fourth winding of the secondary side of the transformer is connected to the grid of the fourth power tube with the same name, the fourth winding of the secondary side of the transformer is connected to the source of the fourth power tube through the fourth output of the bias voltage circuit, and the fourth input capacitor is connected in parallel to the fourth Between the gate and the source of the power tube, the drain of the fourth power tube is connected to the source of the third power tube, and the source of the fourth power tube is connected to the ground GND.
  • the voltage controlled oscillator includes a negative resistance circuit and a variable capacitor, one input of the negative resistance circuit is connected to the power supply VCC, the other input of the negative resistance circuit is connected to the ground GND, and both ends of the variable capacitor are connected in parallel to the output of the negative resistance circuit At both ends, the output of the negative resistance circuit is the output of the voltage controlled oscillator.
  • the bias voltage circuit includes a bias circuit, first to fourth diodes, and first to fourth capacitors.
  • One end of the bias circuit is connected to the power supply VCC.
  • the bias circuit is used to provide a bias voltage.
  • One end is respectively connected to the anodes of the first to fourth diodes, the cathode of the first diode is connected to the different-named end of the first winding of the secondary side of the transformer, and the end of the first capacitor, and the other end of the first capacitor is connected to the source of the first power tube.
  • the cathode of the second diode is connected to the same-named end of the second winding of the secondary side of the transformer and the end of the second capacitor, the other end of the second capacitor is connected to the source of the second power tube, and the cathode of the third diode is connected to the same-named end of the third winding of the secondary side of the transformer
  • One end of the three capacitors, the other end of the third capacitor is connected to the source of the third power tube
  • the cathode of the fourth diode is connected to the different-named end of the fourth winding of the secondary side of the transformer, one end of the fourth capacitor, and the other end of the fourth capacitor is connected to the source of the fourth power tube pole.
  • variable capacitor is a voltage controlled capacitor or a MOS varactor or a varactor diode.
  • the phases of the first winding and the second winding of the secondary side of the transformer are 180° from each other, and the phases of the third winding and the fourth winding of the secondary side of the transformer are 180° from each other.
  • FIG. 1 is a schematic diagram of a self-driving RGD circuit in the prior art
  • FIG. 2 is a circuit schematic diagram of the first embodiment of the resonance drive circuit of the present invention.
  • FIG. 3 is a simulation result diagram of the first embodiment of the resonance driving circuit of the present invention.
  • FIG. 4 is a circuit schematic diagram of a second embodiment of the resonance drive circuit of the present invention.
  • FIG. 2 is a circuit schematic diagram of the first embodiment of the present invention.
  • Circuit specific circuit includes:
  • Transformer T1 a primary winding P1, secondary winding N1, secondary winding N2;
  • Bias voltage circuit bias circuit, diode D1, diode D2, capacitor C1, capacitor C2, bias circuit provides bias voltage Vbias;
  • Power supply VCC power supply control terminal Vc, power stage voltage input terminal VIN, ground GND.
  • An input terminal of the negative resistance circuit is connected to the power supply VCC, and the other input terminal of the negative resistance circuit is connected to the ground GND, which is used as a reference ground.
  • An output terminal of the negative resistance circuit is connected to one end of the variable capacitor Cx, and also serves as the first output terminal of the voltage controlled oscillator ,
  • the other output terminal of the negative resistance circuit is connected to the other end of the variable capacitor Cx, and at the same time serves as the second output terminal of the voltage controlled oscillator, and the voltage control terminal Vc is used to control the capacitance of the variable capacitor Cx;
  • the primary end of the primary winding P1 of the transformer T1 is connected to the first output of the voltage controlled oscillator, and the secondary end of the primary winding of the transformer T1 is connected to the second output of the voltage controlled oscillator; the primary winding N1 of the secondary side of the transformer T1
  • the end with the same name is connected to one end of the input capacitor Ciss1, the gate of the power tube S1, the different end of the first winding N1 on the secondary side of the transformer T1 is connected to the cathode of the diode D1, and is also connected to one end of the capacitor C1 and the other end of the capacitor C1 It is connected to the other end of the input capacitor Ciss1 and the source of the power tube S1, and the drain of the power tube S1 is connected to the power stage voltage input terminal VIN; the different end of the secondary winding N2 of the transformer T1 is connected to one end of the input capacitor Ciss2 and the power tube S2 gate, the same-named end of the second winding N2 on the secondary side
  • the negative resistance circuit can be composed of a single MOS tube or a cross-coupled MOS pair tube, and the technology is relatively mature, so it will not be described in detail.
  • variable capacitor Cx may be preferably composed of two ceramic capacitors with piezoelectric effect connected in series, and the DC bias voltage value of one of the capacitors is driven and controlled by the voltage control terminal Vc, and then the capacitance value can be changed;
  • variable capacitor Cx Another implementation mode of the capacitor may be in the form of a capacitor matrix, and the voltage is controlled by the voltage control terminal Vc to control the switches in the capacitor matrix to realize the switching of the capacitor into the circuit, thereby changing the capacitance value. In this way, the effect of variable capacitance is achieved.
  • the bias voltage is a bias voltage value Vbias required by the linear voltage stabilizing circuit or the buck-boost voltage in the prior art.
  • the resonance frequency f of the resonance drive circuit of this embodiment follows
  • Lm is the inductance of the magnetizing inductance Lm of the primary winding of the transformer T1
  • Cx is the capacitance of the variable capacitor Cx
  • Ciss1 is the capacitance of the input capacitor Ciss1
  • Ciss2 is the capacitance of the input capacitor Ciss2
  • N is the transformer T1 Turn ratio of primary and secondary windings
  • Cgs is the capacitance value of the input capacitor connected to the source of the power tube gate
  • Rg is the sum of the parasitic resistance of the driving circuit
  • Vgs is the source voltage of the power tube gate
  • f is the driving frequency
  • the higher the driving frequency the higher the driving loss.
  • the parasitic resistance Rg of the drive circuit in this embodiment is much smaller than that of the conventional resistance drive circuit. Resistance, so the resonant drive loss of this embodiment is much smaller than that of a conventional resistive drive circuit.
  • the resonance drive circuit of this embodiment refracts the input capacitance of the power tube through the secondary side of the transformer T1 to the primary side of the transformer T1 to participate in resonance.
  • variable capacitor Cx is added on the primary side of the transformer T1, which can pass the control voltage Vc To control the capacitance value of the variable capacitor Cx, and thus can control the resonance frequency of the voltage controlled oscillator, and realize the adjustment of the resonance frequency.
  • the bias voltage Vbias is used to provide the same bias voltage value for the two drive outputs of the secondary side of the transformer T1.
  • Vbias is the bias voltage value
  • VD2 is the forward voltage drop of diode D2
  • Vbias is the bias voltage value
  • VD1 is the forward voltage drop of the diode D1
  • the bias voltage Vibas provides energy to the capacitor C1 via the diode D1
  • the voltage at the capacitor C1 terminal provides a bias for driving the first winding N1 of the secondary side of the transformer T1 Voltage
  • the capacitor C1 and capacitor C2 basically do not consume energy, so the bias voltage Vbias basically does not need to provide energy to C1 and C2;
  • the bias voltage can be obtained by a linear regulator circuit or a buck-boost circuit, the specific bias
  • the value of the voltage can be configured according to the power tube.
  • the bias voltage circuit is used to generate the same bias voltage, and the two driving voltages output by the secondary winding of the transformer T1 are raised to make the secondary winding of the transformer T1 output.
  • the intersection point of the two-way drive voltage is at the set threshold, which can reduce the influence of the two-way drive voltage and the turn-on voltage threshold of the power tube on the performance of the switching converter;
  • Vg is the voltage waveform of the primary winding of the transformer
  • Vgs1 is the waveform at both ends of the input capacitor Ciss1
  • Vgs2 is the waveform at both ends of the input capacitor Ciss2
  • the primary and secondary turns ratio N of the transformer is 1, and the boost voltage is set It is 2.5V. It can be seen from the simulation results that the two driving voltages output by the secondary side of the transformer T1 have an intersection at 2.5V, that is, the driving voltage is increased, and the waveform of the two driving voltages is a sine wave, indicating that the circuit works in a resonant state, so the driving The loss of the circuit is extremely small.
  • FIG. 4 is a circuit schematic diagram of this embodiment.
  • This embodiment is an extension of the first embodiment, and is applied as a resonance drive in an LLC full-bridge converter. Compared with the first embodiment, the difference is that: There are 4 windings on the side, and the circuit is equipped with four power tubes.
  • the bias voltage circuit also includes a diode D3, a diode D4, a capacitor C3, and a capacitor C4.
  • An input terminal of the negative resistance circuit is connected to the power supply VCC, and the other input terminal of the negative resistance circuit is connected to the ground GND, which is used as a reference ground.
  • An output terminal of the negative resistance circuit is connected to one end of the variable capacitor Cx, and also serves as the first output terminal of the voltage controlled oscillator ,
  • the other output terminal of the negative resistance circuit is connected to the other end of the variable capacitor Cx, and at the same time serves as the second output terminal of the voltage controlled oscillator, and the variable capacitor Cx control terminal Vc serves as the input terminal of the voltage controlled oscillator;
  • the primary end of the primary winding P1 of the transformer T1 is connected to the first output end of the voltage controlled oscillator, and the secondary end of the primary winding P1 of the transformer T1 is connected to the second output end of the voltage controlled oscillator; the secondary side of the transformer T1 is first The same-named end of the winding is connected to one end of the input capacitor Ciss1, the gate of the power tube S1, the different-named end of the first winding N1 on the secondary side of the transformer T1 is connected to the cathode of the diode D1, and is also connected to one end of the capacitor C1 and the other end of the capacitor C1 One end is connected to the other end of the input capacitor Ciss1 and the source of the power tube S1; the different end of the second winding of the secondary side of the transformer T1 is connected to one end of the input capacitor Ciss2 and the source of the power tube S2, and the drain of the power tube S2 is connected to the power stage voltage Input terminal VIN; the same-named terminal of
  • the other end of the capacitor C3 is connected to the other end of the capacitor Ciss3, the ground GND, the source of the power tube S3, the power tube S3 drain level power stage voltage Input terminal VIN; the same-named end of the fourth winding N4 of the secondary side of the transformer T1 is connected to one end of the input capacitor Ciss4 and the gate of the power tube S4, and the different-named end of the fourth winding N4 of the secondary side of the transformer T1 is connected to the cathode of the diode D4, and at the same time Connected to one end of capacitor C4, the other end of capacitor C4 is connected to the other end of input capacitor Ciss4, the source of power tube S4, the drain of power tube S4 leveling power tube S3; diode D1, diode D2, diode D3 and diode The anodes of D4 are connected together and connected to one end of the bias voltage circuit Vbias, and the other end of the bias voltage circuit is connected to the power supply VCC.
  • the bias voltage circuit of this embodiment is a four-way output, which can ensure that the driving voltage output by the secondary winding of the transformer can obtain the same bias voltage to achieve the voltage rise, and the first winding of the secondary side of the transformer and the second side of the secondary side The phase difference between the two windings is 180°, and the phase difference between the third winding and the fourth winding on the secondary side of the transformer is 180°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种谐振驱动电路,通过利用变压器将功率管的输入电容折合到原边参与到压控振荡器的振荡,使得驱动电路工作在谐振状态,同时通过外部控制信号调节可变电容容值实现谐振频率可调,在变压器副边绕组上增加偏置电压,使得互差180°的驱动电压的交点可根据需求进行灵活设置,能够极大地降低功率管参数对开关变换器性能的影响。既能够让驱动电路工作在谐振状态且损耗最小,又能够灵活设置偏置电压使得驱动电路对开关变换器的性能影响降到最低,电路简单,实现容易,具有较强的应用价值。

Description

一种谐振驱动电路 技术领域
本发明涉及一种谐振驱动电路,特别涉及应用到高频、超高频场合的谐振驱动电路。
背景技术
随着技术不断地发展,开关变换器向着高频、高效率、高功率密度、低成本、低高度的方向发展。但是在开关变换器高频化过程中,经常涉及到功率变换拓扑中开关管驱动所带来的损耗问题。而常规的电阻型驱动电路,其驱动损耗基本上是由驱动电阻及驱动线路上的寄生电阻所损耗,使得驱动能量被白白浪费掉,从而导致开关变换器的效率及性能有所下降。对于常规的电阻型驱动电路,其驱动功率的关系表达式为:
Figure PCTCN2019117896-appb-000001
(其中,Cgs为功率管栅源极电容,Vgs为功率管栅源极电压,f为驱动频率),根据该表达式可知,驱动频率越高,其驱动损耗也就越大,难以满足开关变换器工作在高频、超高频场合的应用。
针对上述问题,文献《10MHz隔离型同步整流ClassΦ 2DC-DC变换器》给出了一种具有电压抬升自驱的谐振驱动电路,如图1所示,抬压电路包括稳压管Dz、电容C1、电阻Rz和电容C2,其利用稳压二极管来给驱动电压提供偏置电压,该谐振电压波形为正弦波。但是,稳压二极管稳定工作是需要提供一定的工作电流,存在一定的损耗,同时其稳压值会受稳压二极管器件差异等因素影响较大,对驱动电路的功耗及性能影响较大,难以广泛地应用实际产品中,特别是产品量产的一致性难以保证。
对于高频、超高频开关变换器,如半桥型LLC变换器,其需要对一组桥式开关管进行驱动,并且由于不同型号功率开关管的开启阈值有所差异,所以要求驱动电路既能提供两路互补的驱动电压,又要求其驱动损耗极低,还能根据要求灵活设置驱动电路的偏置电压。
发明内容
有鉴于此,本发明提供一种谐振驱动电路,利用压控振荡器来产生谐振频率,实现驱动信号可调,通过在输出互差为180°的驱动电压上增加相同的偏置电压, 实现驱动电压的交点可由偏置电压进行设置,且驱动电路工作在谐振状态,损耗极小,能够满足高频、超高频变换器的低功耗、高性能驱动要求。
本发明构思为:将开关变换器中功率管的输入电容Ciss经变压器折射到原边参与LC谐振,其中L为变压器的原边励磁电感,同时在变压器原边增加一个可调电容,这样产生谐振频率可调的驱动信号,能够保证该LC工作在谐振状态,使得驱动损耗最小。通过在变压器输出谐振驱动电压叠加上相同的偏置电压,使得驱动电压在所设置的阈值处产生交点且驱动电压对称,并对开关变换器中功率管进行驱动,如此减少驱动电压的死区对开关变换器的性能影响,并且驱动电路中的偏置电压可根据所选的功率管进行灵活配置,适用范围更广。
为了达到上述的目的,本发明通过以下技术措施实现的:
一种谐振驱动电路,包括压控振荡器、变压器、偏置电压电路、第一功率管、第二功率管、第一输入电容、第二输入电容、功率级电压输入端VIN、电源VCC、地GND;变压器包括一原边绕组和两副边绕组,变压器原边绕组并联在压控振荡器的输出的两端;
变压器副边第一绕组同名端连接第一功率管栅极,变压器副边第一绕组异名端经偏置电压电路第一输出连接至第一功率管源极,第一输入电容并联在第一功率管栅极与源极之间,第一功率管漏极连接功率级电压输入端VIN;
变压器副边第二绕组异名端连接第二功率管栅极,变压器副边第二绕组同名端经偏置电压电路第二输出连接至第二功率管源极,第二输入电容并联在第二功率管栅极与源极之间,第二功率管漏极连接第一功率管源极,第二功率管源极连接地GND。
优选地,压控振荡器包括一负阻电路、一可变电容,负阻电路的一输入连接电源VCC,负阻电路另一输入连接地GND,可变电容的两端并联在负阻电路输出的两端,负阻电路的输出即为压控振荡器的输出。
优选地,偏置电压电路包括偏置电路、第一二极管、第二二极管、第一电容、第二电容,偏置电路用于提供偏置电压,偏置电路一端连接电源VCC,偏置电路另一端连接第一二极管阳极和第二二极管阳极,第一二极管阴极连接变压器副边第一绕组异名端、第一电容一端,第一电容另一端连接第一功率管源极,第二二 极管阴极连接变压器副边第二绕组同名端、第二电容一端,第二电容另一端连接第二功率管源极与地GND。
优选地,可变电容为压控电容或MOS变容管或变容二极管。
优选地,变压器副边第一绕组和第二绕组的相位互差为180°。
作为本发明一种谐振驱动电路另一种具体实施方式,应用于全桥型LLC变换器的驱动,包括压控振荡器、变压器、偏置电压电路、第一至第四功率管、第一至第四输入电容、功率级电压输入端VIN、电源VCC、地GND;变压器包括一原边绕组和副边第一至第四绕组,变压器原边绕组并联在压控振荡器输出的两端;
变压器副边第一绕组同名端连接第一功率管栅极,变压器副边第一绕组异名端经偏置电压电路第一输出连接至第一功率管源极,第一输入电容并联在第一功率管栅极与源极之间,第一功率管漏极连接功率级电压输入端VIN;
变压器副边第二绕组异名端连接第二功率管栅极,变压器副边第二绕组同名端经偏置电压电路第二输出连接至第二功率管源极,第二输入电容并联在第二功率管栅极与源极之间,第二功率管漏极连接第一功率管源极,第二功率管源极连接地GND;
变压器副边第三绕组异名端连接第三功率管栅极,变压器副边第三绕组同名端经偏置电压电路第三输出连接至第三功率管源极,第三输入电容并联在第三功率管的栅极与源极之间,第三功率管的漏极连接功率级电压输入端VIN;
变压器副边第四绕组同名端连接第四功率管栅极,变压器副边第四绕组异名端经偏置电压电路第四输出连接至第四功率管源极,第四输入电容并联在第四功率管的栅极与源极之间,第四功率管漏极连接第三功率管源极,第四功率管源极连接地GND。
优选地,压控振荡器包括一负阻电路、一可变电容,负阻电路的一输入连接电源VCC,负阻电路另一输入连接地GND,可变电容的两端并联在负阻电路输出的两端,负阻电路的输出即为压控振荡器的输出。
优选地,偏置电压电路包括偏置电路、第一至第四二极管、第一至第四电容,偏置电路一端连接电源VCC,偏置电路用于提供偏置电压,偏置电路另一端分别连接第一至第四二极管的阳极,第一二极管阴极连接变压器副边第一绕组异名端、第一电容一端,第一电容另一端连接第一功率管源极,第二二极管阴极连接变压 器副边第二绕组同名端、第二电容一端,第二电容另一端连接第二功率管源极,第三二极管阴极连接变压器副边第三绕组同名端、第三电容一端,第三电容另一端连接第三功率管源极,第四二极管阴极连接变压器副边第四绕组异名端、第四电容一端,第四电容另一端连接第四功率管源极。
优选地,可变电容为压控电容或MOS变容管或变容二极管。
优选地,变压器副边第一绕组和第二绕组的相位互差为180°,变压器副边第三绕组和第四绕组的相位互差为180°。
本发明谐振驱动电路的有益效果为:
(1)将功率管的输入电容折合到原边与变压器的原边励磁电感参与LC谐振,同时增设可调电容,能够实现谐振驱动且谐振频率可调,能够满足变频控制的开关变换器更广泛的应用,并且驱动损耗能达到最小;
(2)通过在输出驱动电压上增加偏置电压,并可根据所选功率管的开启阈值进行偏置电压值的灵活配置,极大地减少驱动电压死区对开关变换器的性能影响,驱动电路适用性更加广泛。
附图说明
图1现有技术一种抬压自驱动RGD电路原理图;
图2为本发明谐振驱动电路第一实施例的电路原理图;
图3为本发明谐振驱动电路第一实施例的仿真结果图;
图4为本发明谐振驱动电路第二实施例的电路原理图。
具体实施方式
第一实施例
图2为本发明的第一实施例的电路原理图。
电路具体电路包括:
(1)压控振荡器:负阻电路、可变电容Cx;
(2)变压器T1:一原边绕组P1、副边绕组N1、副边绕组N2;
(3)偏置电压电路:偏置电路、二极管D1、二极管D2、电容C1、电容C2,偏置电路提供偏置电压Vbias;
功率管S1、及功率管S1的输入电容Ciss1、功率管S2、及功率管S2的输入电容Ciss2;
电源VCC、电源控制端Vc、功率级电压输入端VIN、地GND。
本发明实现谐振驱动的第一实施例的连接关系如下:
负阻电路一输入端连接电源VCC,负阻电路另一输入端连接地GND,作为参考地,负阻电路一输出端连接可变电容Cx的一端,同时作为压控振荡器的第一输出端,负阻电路的另一输出端连接可变电容Cx的另一端,同时作为压控振荡器的第二输出端,电压控制端Vc用于控制可变电容Cx的容值;
变压器T1原边绕组P1的同名端与压控振荡器的第一输出端相连,变压器T1原边绕组的异名端与压控振荡器的第二输出端相连;变压器T1副边第一绕组N1的同名端连接于输入电容Ciss1的一端、功率管S1栅极,变压器T1副边第一绕组N1的异名端连接于二极管D1的阴极,并同时与电容C1的一端相连,电容C1的另一端与输入电容Ciss1的另一端、功率管S1源极相连,功率管S1漏极连接功率级电压输入端VIN;变压器T1副边第二绕组N2的异名端连接于输入电容Ciss2的一端、功率管S2栅极,变压器T1副边第二绕组N2的同名端连接于二极管D2的阴极,并同时与电容C2的一端相连,电容C2的另一端连接于电容Ciss2的另一端、地GND、功率管S2源极,功率管S2的漏极连接功率管S1源极;二极管D1和二极管D2的阳极连接在一起,同时与偏置电路的输出Vbias相连,偏置电路的输入与电源VCC相连。
其中,负阻电路可由单MOS管或交叉耦合MOS对管构成,技术较为成熟,故不再赘述。
其中,可变电容Cx可优选由两个具有压电效应的陶瓷电容串联构成,通过电压控制端Vc驱动控制其中一个电容的直流偏置电压值,进而可实现改变电容容值;可变电容Cx的另一种实现方式可采用电容矩阵形式,通过电压控制端Vc控制电压从而控制电容矩阵中的开关来实现电容投切到电路中,进而实现改变电容容值。通过这种方式实现了可变电容的效果。
其中,偏置电压为由现有技术中的线性稳压电路或升降压电压产生所需的偏置电压值Vbias。
本电路的工作原理描述如下:
(1)根据电路连接关系可知,本实施例的谐振驱动电路的谐振频率f遵循
公式:
Figure PCTCN2019117896-appb-000002
其中,Lm为变压器T1原边绕组的励磁电感Lm的感量,Cx为可变电容Cx的容值,Ciss1为输入电容Ciss1的容值,Ciss2为输入电容Ciss2的容值,N为变压器T1的原副边绕组匝数比;
对于谐振驱动电路的驱动功率关系表达式可推导得到:
Figure PCTCN2019117896-appb-000003
其中,Cgs为功率管栅源极连接的输入电容的容值,Rg为驱动回路寄生电阻的总和,Vgs为功率管栅源极电压,f为驱动频率;
根据公式(2)可知,驱动频率越高,其驱动损耗也上升,相比于现有电阻型谐振驱动电路,因本实施例中驱动回路的寄生电阻Rg远小于常规电阻型驱动电路中的驱动电阻,故本实施例的谐振驱动损耗远小于常规的电阻型驱动电路的谐振驱动损耗。且本实施例的谐振驱动电路,将功率管的输入电容经变压器T1的副边折射到变压器T1的原边参与谐振,同时,在变压器T1原边增加了可变电容Cx,能够通过控制电压Vc来控制可变电容Cx的容值,进而能够控制压控振荡器的谐振频率,实现谐振频率可调。
本实施例利用偏置电压Vbias为变压器T1副边两路驱动输出提供相同的偏置电压值,偏置电压Vbias经过二极管D2给电容C2充电,使得电容C2上的电压值满足公式:VC2=Vbias-VD2    (3)
其中,Vbias为偏置电压值,VD2为二极管D2的正向导通压降;
当半桥功率管S2导通时,偏置电压经过二极管D1给电容C1充电,电容C1上的电压值满足公式:
VC1=Vbias-VD1   (4)
其中,Vbias为偏置电压值,VD1为二极管D1的正向导通压降,偏置电压Vibas经二极管D1为电容C1提供能量;电容C1端电压为变压器T1副边第一绕组N1驱动提供偏置电压;
在稳态时,电容C1和电容C2上基本不消耗能量,故偏置电压Vbias基本不需要给C1和C2提供能量;偏置电压可以由线性稳压电路或升降压电路获得,具体偏置电压取值可依据功率管进行配置,本实施例中,利用偏置电压电路产生同一偏置电压,并对变压器T1副边绕组输出的两路驱动电压进行电压抬升,使得 变压器T1副边绕组输出的两路驱动电压的交点在所设置的阈值上,能够减少两路驱动电压及功率管的开启电压阈值对开关变换器的性能影响;
需要说明的是,为了保证C1和C2上的电压稳定,体现出电压源特性,要求电容C1、电容C2的容值远大于输入电容Ciss1、输入电容Ciss2的容值,一般取约大100倍以上。为了验证方案的可行,对电路进行了仿真,仿真结果如图3所示。其中:Vg为变压器原边绕组电压波形,Vgs1为输入电容Ciss1两端的波形,Vgs2为输入电容Ciss2两端的波形,对应图2电路参数为:变压器原副边匝数比N为1,抬升电压设置为2.5V。通过仿真结果可知,变压器T1副边输出的两路驱动电压在2.5V有交点,即实现了驱动电压的抬升,并且两路驱动电压波形为正弦波,说明电路工作在谐振状态下,因此,驱动电路的损耗极小。
第二实施例
图4为本实施例的电路原理图,本实施例为第一实施例的一种拓展,应用为LLC全桥变换器中的谐振驱动,其与第一实施例相比,区别在于:变压器副边有4个绕组,电路设有四个功率管,偏置电压电路还包括二极管D3、二极管D4、电容C3、电容C4。
本发明实现谐振驱动的第二实施例的连接关系如下:
负阻电路一输入端连接电源VCC,负阻电路另一输入端连接地GND,作为参考地,负阻电路一输出端连接可变电容Cx的一端,同时作为压控振荡器的第一输出端,负阻电路的另一输出端连接可变电容Cx的另一端,同时作为压控振荡器的第二输出端,可变电容Cx控制端Vc作为压控振荡器的输入端;
变压器T1原边绕组P1的同名端与压控振荡器的输出第一输出端相连,变压器T1原边绕组P1的异名端与压控振荡器的第二输出端相连;变压器T1副边第一绕组的同名端连接于输入电容Ciss1的一端、功率管S1栅极,变压器T1副边第一绕组N1的异名端连接于二极管D1的阴极,并同时与电容C1的一端相连,电容C1的另一端与输入电容Ciss1的另一端、功率管S1源极相连;变压器T1副边第二绕组的异名端连接于输入电容Ciss2的一端、功率管S2源极,功率管S2漏极连接功率级电压输入端VIN;变压器T1副边第二绕组N2的同名端连接于二极管D2的阴极,并同时与电容C2的一端相连,电容C2的另一端连接于电容Ciss2的另一端、地GND、功率管S2源极,功率管S2漏极连接功率管S1源极; 变压器T1副边第三绕组N3的异名端连接于输入电容Ciss3的一端、功率管S1栅极,变压器T1副边第三绕组N3的同名端连接于二极管D3的阴极,并同时与电容C3的一端相连,电容C3的另一端连接于电容Ciss3的另一端、地GND、功率管S3源极,功率管S3漏极练级功率级电压输入端VIN;变压器T1副边第四绕组N4的同名端连接于输入电容Ciss4的一端、功率管S4栅极,变压器T1副边第四绕组N4的异名端连接于二极管D4的阴极,并同时与电容C4的一端相连,电容C4的另一端与输入电容Ciss4的另一端、功率管S4源极相连,功率管S4漏极练级功率管S3源极;二极管D1、二极管D2、二极管D3及二极管D4的阳极连接在一起,同时与偏置电压电路一端Vbias相连,偏置电压电路另一端与电源VCC相连。
本实施例的工作原理与第一实施例基本相同,故不再这里赘述。
需要说明的是,本实施例的偏置电压电路为四路输出,能够保证变压器副边绕组输出的驱动电压都能获得同一偏置电压实现电压抬升,且变压器副边第一绕组与副边第二绕组的相位互差为180°,变压器副边第三绕组和第四绕组的相位互差为180°。
以上仅是本发明优选的实施方式,本发明所属领域的技术人员还可以对上述具体实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体控制方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种谐振驱动电路,其特征在于:包括压控振荡器、变压器、偏置电压电路、第一功率管、第二功率管、第一输入电容、第二输入电容、功率级电压输入端VIN、电源VCC、地GND;变压器包括一原边绕组和两副边绕组,变压器原边绕组并联在压控振荡器输出的两端;
    变压器副边第一绕组同名端连接第一功率管栅极,变压器副边第一绕组异名端经偏置电压电路第一输出连接至第一功率管源极,第一输入电容并联在第一功率管栅极与源极之间,第一功率管漏极连接功率级电压输入端VIN;
    变压器副边第二绕组异名端连接第二功率管栅极,变压器副边第二绕组同名端经偏置电压电路第二输出连接至第二功率管源极,第二输入电容并联在第二功率管栅极与源极之间,第二功率管漏极连接第一功率管源极,第二功率管源极连接地GND。
  2. 根据权利要求1所述的谐振驱动电路,其特征在于:压控振荡器包括一负阻电路、一可变电容,负阻电路的一输入连接电源VCC,负阻电路另一输入连接地GND,可变电容的两端并联在负阻电路输出的两端,负阻电路的输出即为压控振荡器的输出。
  3. 根据权利要求1所述的谐振驱动电路,其特征在于:偏置电压电路包括偏置电路、第一二极管、第二二极管、第一电容、第二电容,偏置电路用于提供偏置电压,偏置电路一端连接电源VCC,偏置电路另一端连接第一二极管阳极和第二二极管阳极,第一二极管阴极连接变压器副边第一绕组异名端、第一电容一端,第一电容另一端连接第一功率管源极,第二二极管阴极连接变压器副边第二绕组同名端、第二电容一端,第二电容另一端连接第二功率管源极与地GND。
  4. 根据权利要求2所述的谐振驱动电路,其特征在于:可变电容为压控电容或MOS变容管或变容二极管。
  5. 根据权利要求1所述的谐振驱动电路,其特征在于:变压器副边第一绕组和第二绕组的相位互差为180°。
  6. 一种谐振驱动电路,其特征在于:包括压控振荡器、变压器、偏置电压电路、第一至第四功率管、第一至第四输入电容、功率级电压输入端VIN、电源 VCC、地GND;变压器包括一原边绕组和副边第一至第四绕组,变压器原边绕组并联在压控振荡器输出的两端;
    变压器副边第一绕组同名端连接第一功率管栅极,变压器副边第一绕组异名端经偏置电压电路第一输出连接至第一功率管源极,第一输入电容并联在第一功率管栅极与源极之间,第一功率管漏极连接功率级电压输入端VIN;
    变压器副边第二绕组异名端连接第二功率管栅极,变压器副边第二绕组同名端经偏置电压电路第二输出连接至第二功率管源极,第二输入电容并联在第二功率管栅极与源极之间,第二功率管漏极连接第一功率管源极,第二功率管源极连接地GND;
    变压器副边第三绕组异名端连接第三功率管栅极,变压器副边第三绕组同名端经偏置电压电路第三输出连接至第三功率管源极,第三输入电容并联在第三功率管的栅极与源极之间,第三功率管的漏极连接功率级电压输入端VIN;
    变压器副边第四绕组同名端连接第四功率管栅极,变压器副边第四绕组异名端经偏置电压电路第四输出连接至第四功率管源极,第四输入电容并联在第四功率管的栅极与源极之间,第四功率管漏极连接第三功率管源极,第四功率管源极连接地GND。
  7. 根据权利要求6所述的谐振驱动电路,其特征在于:压控振荡器包括一负阻电路、一可变电容,负阻电路的一输入连接电源VCC,负阻电路另一输入连接地GND,可变电容的两端并联在负阻电路输出的两端,负阻电路的输出即为压控振荡器的输出。
  8. 根据权利要求6所述的谐振驱动电路,其特征在于:偏置电压电路包括偏置电路、第一至第四二极管、第一至第四电容,偏置电路一端连接电源VCC,偏置电路另一端分别连接第一至第四二极管的阳极,第一二极管阴极连接变压器副边第一绕组异名端、第一电容一端,第一电容另一端连接第一功率管源极,第二二极管阴极连接变压器副边第二绕组同名端、第二电容一端,第二电容另一端连接第二功率管源极,第三二极管阴极连接变压器副边第三绕组同名端、第三电容一端,第三电容另一端连接第三功率管源极,第四二极管阴极连接变压器副边第四绕组异名端、第四电容一端,第四电容另一端连接第四功率管源极。
  9. 根据权利要求7所述的谐振驱动电路,其特征在于:可变电容为压控电容或MOS变容管或变容二极管。
  10. 根据权利要求6所述的谐振驱动电路,其特征在于:变压器副边第一绕组和第二绕组的相位互差为180°,变压器副边第三绕组和第四绕组的相位互差为180°。
PCT/CN2019/117896 2018-11-26 2019-11-13 一种谐振驱动电路 WO2020108301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811414648.8A CN109378963B (zh) 2018-11-26 2018-11-26 一种谐振驱动电路
CN201811414648.8 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020108301A1 true WO2020108301A1 (zh) 2020-06-04

Family

ID=65383536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117896 WO2020108301A1 (zh) 2018-11-26 2019-11-13 一种谐振驱动电路

Country Status (2)

Country Link
CN (1) CN109378963B (zh)
WO (1) WO2020108301A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378963B (zh) * 2018-11-26 2020-01-21 广州金升阳科技有限公司 一种谐振驱动电路
CN109768727B (zh) * 2019-03-19 2020-10-30 广东美的制冷设备有限公司 功率器件及电器
CN109889026B (zh) * 2019-03-20 2020-10-30 广东美的制冷设备有限公司 功率器件及电器
CN113436571B (zh) * 2020-03-18 2022-10-18 海信视像科技股份有限公司 显示装置及供电电路
CN114079367A (zh) * 2020-08-11 2022-02-22 比亚迪半导体股份有限公司 功率管驱动电路和功率管驱动方法
CN111917306A (zh) * 2020-08-21 2020-11-10 苏州浪潮智能科技有限公司 一种基于llc的电源开关切换驱动电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729444A (en) * 1994-05-27 1998-03-17 Agence Spatiale Europeenne High-efficiency DC-DC converter
CN102055342A (zh) * 2009-10-30 2011-05-11 世系动力公司 Llc变换器同步fet控制器及其操作方法
CN106026721A (zh) * 2016-07-19 2016-10-12 东南大学 一种采用SiC功率管的ZCS全桥变换器的栅驱动电路
CN106788408A (zh) * 2016-12-06 2017-05-31 天津北芯微科技有限公司 一种宽电压范围调谐增益恒定的lc‑vco
CN109378963A (zh) * 2018-11-26 2019-02-22 广州金升阳科技有限公司 一种谐振驱动电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441652B1 (en) * 1999-06-24 2002-08-27 Koninklijke Philips Electroanics N.V. High efficiency high frequency resonant gate driver for power converter
US6570777B1 (en) * 2001-12-06 2003-05-27 Eni Technology, Inc. Half sine wave resonant drive circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729444A (en) * 1994-05-27 1998-03-17 Agence Spatiale Europeenne High-efficiency DC-DC converter
CN102055342A (zh) * 2009-10-30 2011-05-11 世系动力公司 Llc变换器同步fet控制器及其操作方法
CN106026721A (zh) * 2016-07-19 2016-10-12 东南大学 一种采用SiC功率管的ZCS全桥变换器的栅驱动电路
CN106788408A (zh) * 2016-12-06 2017-05-31 天津北芯微科技有限公司 一种宽电压范围调谐增益恒定的lc‑vco
CN109378963A (zh) * 2018-11-26 2019-02-22 广州金升阳科技有限公司 一种谐振驱动电路

Also Published As

Publication number Publication date
CN109378963A (zh) 2019-02-22
CN109378963B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2020108301A1 (zh) 一种谐振驱动电路
US10027237B2 (en) Self-oscillating resonant power converter
Xu et al. 1-MHz self-driven ZVS full-bridge converter for 48-V power pod and DC/DC brick
CN105684287A (zh) 用于谐振转换器的栅驱动装置
WO2014155604A1 (ja) Dc/dcコンバータ
Zhang et al. A high-frequency dual-channel isolated resonant gate driver with low gate drive loss for ZVS full-bridge converters
CN103337964A (zh) 一种超高频隔离推挽谐振功率变换器
JP2002159178A (ja) スイッチング電源回路
CN113676057B (zh) 一种基于二次电流模拟的llc同步整流电路
Xu et al. A novel 5-level flying capacitor bridgeless PFC converter based on cost-effective low-voltage eGaN FETs
CN100521482C (zh) 开关电源电路
JP2002095252A (ja) 共振コンバータ
US11870332B2 (en) Power conversion circuit with transformer
US10075055B2 (en) Zero-voltage-switching scheme for phase shift converters
CN108631596A (zh) 一种复合谐振的宽范围功率变换器
TWI543513B (zh) 諧振轉換器
Chen et al. Very-high-frequency resonant boost converter with wide output power range and synchronous drive
CN113765342A (zh) 一种谐振驱动电路及其控制方法
CN108011601A (zh) 一种用于磁耦合谐振式无线电能传输的e类功率放大器
Barbosa et al. PWM soft-switched converters with a single active switch
Huang et al. Shared external driver for VHF converter with a synchronous rectifier based on matching network parameters optimization
CN111865093B (zh) 开关变换器及其变换方法
Xu et al. Study on Wide Dimming Range Solution for LLC LED Driver Based on an Accurate Time-Domain Analysis Considering the Parasitical Components
TW202241032A (zh) 藉雙重切換達到軟性切換之切換式電源電路及其控制電路
JP3528816B2 (ja) スイッチング電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891458

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19891458

Country of ref document: EP

Kind code of ref document: A1