WO2020107818A1 - 一种高结合力防扩散综合阻燃防火涂料及其制造方法 - Google Patents
一种高结合力防扩散综合阻燃防火涂料及其制造方法 Download PDFInfo
- Publication number
- WO2020107818A1 WO2020107818A1 PCT/CN2019/087322 CN2019087322W WO2020107818A1 WO 2020107818 A1 WO2020107818 A1 WO 2020107818A1 CN 2019087322 W CN2019087322 W CN 2019087322W WO 2020107818 A1 WO2020107818 A1 WO 2020107818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- functional
- prepared
- retardant
- flame
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/003—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/221—Oxides; Hydroxides of metals of rare earth metal
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Definitions
- the invention relates to the application field of high-temperature materials, in particular to a high-binding force anti-diffusion integrated flame-retardant fire-retardant paint and a manufacturing method thereof.
- Fire retardant coatings are generally used on the surface of flammable substrates, which can reduce the flammability of the surface of the coated material, retard the rapid spread of fire, and improve the fire resistance of the coated material.
- Flame retardant fire retardant coating targets are mainly divided into solvent-based coatings and water-based coatings.
- the present invention aims to provide a high-bonding anti-diffusion comprehensive flame-retardant fire-retardant paint with good weather resistance, high temperature resistance, flame resistance, flame retardant, good binding force and long service life and Its manufacturing method.
- a high-binding anti-diffusion integrated flame retardant fire-retardant paint which consists of three functional components and deionized water that accounts for 30%-35% of the total weight of the paint Composition, in which the first functional component A is modified with 8 parts to 10 parts of pentaerythritol rosin ester, with 30 parts to 35 parts of acrylic resin, 15 parts to 20 parts of acrylonitrile, and 15 parts to 20 parts of styrene as raw materials
- the second functional component B consists of 40-45 parts of activated silica gel particles modified by hydrochloric acid, hydrofluoric acid and sodium dodecyl sulfonate.
- the composition of the yttrium oxide to improve the softening point of silica gel is 5-8 parts, and the lanthanum oxide is 5-8 parts;
- the third functional component C is magnesium hydroxide 8-10 parts;
- the composition relationship of the four components is: component C In the form of solid powder and granules with component B, they are dispersed in the molecular mass of colloidal particles of component A at a mass ratio of 50%-70%, and the rest is turbid in deionized water.
- a method for manufacturing a high-binding anti-diffusion integrated flame-retardant and fire-retardant coating includes the following steps:
- auxiliary materials prepare sufficient amount of deionized water, sufficient solute mass fraction of 10% dilute hydrochloric acid, and sufficient solute mass fraction of 10% hydrofluoric acid aqueous solution;
- step 1 Use the acrylic resin prepared in step 1) step 1 as raw material, ferrous chloride as initiator, disodium EDTA as auxiliary agent, and sodium dodecyl sulfonate 1 part -1.5 parts as emulsifier to prepare matrix latex;
- Step 1 1.5 to 1.8 times the total weight of the matrix latex 1)
- Step 2 Prepare the deionized water as the diluent, stir the mixture of the matrix latex and deionized water evenly until the matrix latex is completely dissolved in the deionized water, ie Obtain the required matrix glue emulsion;
- step 1 Take the acrylonitrile and styrene prepared in the step 1) step 1 as the raw materials, mix the yttrium oxide, lanthanum oxide, and magnesium hydroxide prepared in the step 1) step 1, then melt and stir evenly to obtain an organic turbid liquid, the organic
- the turbid liquid is the functional additive;
- step 2 Completely immerse the silica gel prepared in step 1) step 1 in the dilute hydrochloric acid prepared in step 1) step 2, keep it for 5h-6h, and then take out the silica gel.
- step 2 immerse in acid
- step 2 immerse in acid
- step 2 immerse in acid
- step 2 immerse in acid
- step 2 immerse in acid
- step 2 immerse in acid
- step 2 immerse in step 2
- the reactants are taken out after holding for 2h-3h, and the reactants are taken out using deionization Wash to PH neutrality with water to obtain functional mixed rubber particles;
- Step 1 Prepared pentaerythritol rosin ester.
- the drop rate of pentaerythritol rosin ester is G/500s-G/600s. After the addition is completed, keep the temperature at 200-220°C until the water content is the total mass of the product.
- the present invention has the following advantages: (1)
- the core idea of the present invention is to use inorganic silica gel polycondensates (such materials are currently only used in the field of aerospace and electronic products) that have not been applied in this technical field ( With lanthanum oxide and yttrium oxide) to obtain an inorganic glue with a softening point of 500°C-600°C.
- the synthesis of inorganic glue is done by eutectic co-coagulation or simultaneous pressure heating.
- the present invention uses double acid leaching (hydrochloric acid With hydrofluoric acid) and then modified by sodium dodecyl sulfonate to activate the hydrogen bond in the silica gel body, and the yttrium oxide and lanthanum oxide mixed in the acrylonitrile and styrene matrix in the molten state due to the structural similarity
- Polycondensation with silica gel improves the softening point of silica gel itself, and at the same time builds one of the core flame-retardant functional components of the present invention-inorganic adhesive.
- the present invention is based on ASA resin that has not yet been applied in the technical field.
- the structure is built, and the technical purpose of thermal insulation and fixed functional components is achieved by using the structural characteristics of ASA resin with multiple pores and loose space frames.
- ASA is related to coatings.
- the basic characteristics are good weather resistance (even if it is exposed to ultraviolet rays, moisture, heat, cold and impact for a long time, it can still maintain its color stability), and it has good self-cleaning (it is an antistatic material that can reduce the surface accumulation Dust) two characteristics, at the same time, it also has the advantages of high miscibility (due to its porous structure and flexible base structure, it is easier to form physical structures with other incompatible functions to form stable structures), During the synthesis process, a large proportion of functional mixtures are physically and effectively doped. On the one hand, the functional mixtures can be fully, uniformly and dispersedly mixed in the matrix, on the other hand, the spatial structure of the ASA resin can be maximized.
- Another important support of the functional component of the present invention is the magnesium hydroxide that has been used in the prior art. This functional component releases bound water when it is decomposed by heat and absorbs a large amount of latent heat. Reducing the surface temperature of the synthetic material it fills in the flame has the effect of inhibiting the decomposition of the polymer and cooling the combustible gas produced.
- Another principle of the present invention is that the principle of flame retardant is to use the characteristics of polymers that do not burn or release toxic gases at high temperatures, melt into fluids at high temperatures, and cover the surface of the burning area under the combined action of gravity and thermal expansion and contraction , Fundamentally isolating oxidation, so the two flame retardant functional ingredients are not repeated flame retardant (most flame retardant materials in the prior art actually use the principle of repeated flame retardant, and the functional overlap area is very large), but It does not interfere with each other and can do its own thing, so it can cope with more and harsher combustion environment.
- both functional components are inorganic components, which are non-flammable, non-toxic and have excellent environmental performance.
- the present invention uses a variety of different functional components, the most rare thing is to pass these different functional components through the matrix, the inclusive ASA resin is fully cured in the synthesis and does not affect the ASA resin itself
- the polymerization reaction and residual hydrogen bonding The molecular group formed by the chain reaction can cure part of the functional components in the molecular shell structure, and the other part of the functional components is adhered and cured on the surface of the molecular shell structure (using the electrostatic attraction of the residual hydrogen bond), which finally makes the entire final coating function
- the components exist in a glued state, and due to the modification with pentaerythritol rosin ester, the basic mechanical properties of the ASA resin are enhanced, and the bonding strength with the wall surface is increased after use. Therefore, the invention finally has the characteristics of good weather resistance, high temperature resistance, flame resistance, flame retardancy, good binding force and long service life.
- the present invention has the following advantages: (1)
- the core idea of the present invention is to use inorganic silica gel polycondensates (such materials are currently only used in the field of aerospace and electronic products) that have not been applied in this technical field ( With lanthanum oxide and yttrium oxide) to obtain an inorganic glue with a softening point of 500°C-600°C.
- the synthesis of inorganic glue is done by eutectic co-coagulation or simultaneous pressure heating.
- the present invention uses double acid leaching (hydrochloric acid With hydrofluoric acid) and then modified by sodium dodecyl sulfonate to activate the hydrogen bond in the silica gel body, and the yttrium oxide and lanthanum oxide mixed in the acrylonitrile and styrene matrix in the molten state due to the structural similarity
- Polycondensation with silica gel improves the softening point of silica gel itself, and at the same time builds one of the core flame-retardant functional components of the present invention-inorganic adhesive.
- the present invention is based on ASA resin that has not yet been applied in the technical field.
- the structure is built, and the technical purpose of thermal insulation and fixed functional components is achieved by using the structural characteristics of ASA resin with multiple pores and loose space frames.
- ASA is related to coatings.
- the basic characteristics are good weather resistance (even if it is exposed to ultraviolet rays, moisture, heat, cold and impact for a long time, it can still maintain its color stability), and it has good self-cleaning (it is an antistatic material that can reduce the surface accumulation Dust) two characteristics, at the same time, it also has the advantages of high miscibility (due to its porous structure and flexible base structure, it is easier to form physical structures with other incompatible functions to form stable structures), During the synthesis process, a large proportion of functional mixtures are physically and effectively doped.
- the functional mixtures can be fully, uniformly and dispersedly mixed in the matrix, on the other hand, the spatial structure of the ASA resin can be maximized. Finally, it also leaves sufficient space for the matrix to modify and enhance the mechanical properties.
- Another important support of the functional component of the present invention is the magnesium hydroxide that has been used in the prior art. This functional component releases bound water when it is decomposed by heat and absorbs a large amount of latent heat. Reducing the surface temperature of the synthetic material it fills in the flame has the effect of inhibiting the decomposition of the polymer and cooling the combustible gas produced.
- Another principle of the present invention is that the principle of flame retardant is to use the characteristics of polymers that do not burn or release toxic gases at high temperatures, melt into fluids at high temperatures, and cover the surface of the burning area under the combined action of gravity and thermal expansion and contraction , Fundamentally isolating oxidation, so the two flame retardant functional ingredients are not repeated flame retardant (most flame retardant materials in the prior art actually use the principle of repeated flame retardant, and the functional overlap area is very large), but It does not interfere with each other and can do its own thing, so it can cope with more and harsher combustion environment.
- both functional components are inorganic components, which are non-flammable, non-toxic and have excellent environmental performance.
- the present invention uses a variety of different functional components, the most rare thing is to pass these different functional components through the matrix, the inclusive ASA resin is fully cured in the synthesis and does not affect the ASA resin itself
- the polymerization reaction and residual hydrogen bonding The molecular group formed by the chain reaction can cure part of the functional components in the molecular shell structure, and the other part of the functional components is adhered and cured on the surface of the molecular shell structure (using the electrostatic attraction of the residual hydrogen bond), which finally makes the entire final coating function
- the components exist in a glued state, and due to the modification with pentaerythritol rosin ester, the basic mechanical properties of the ASA resin are enhanced, and the bonding strength with the wall surface is increased after use. Therefore, the invention finally has the characteristics of good weather resistance, high temperature resistance, flame resistance, flame retardancy, good binding force and long service life.
- Example 1 A high-binding anti-diffusion integrated flame retardant fire-retardant paint, which is composed of three functional components and 35% deionized water, and the first functional component A is Grafted copolymer of acrylic acid and acrylonitrile and styrene prepared from acrylic acid resin 30Kg, acrylonitrile 20Kg, styrene 20Kg modified by pentaerythritol rosin ester 10Kg; the second functional component B consists of hydrochloric acid, hydrogen It is composed of 45Kg of activated silica gel particles comprehensively modified by fluoric acid and sodium dodecyl sulfonate, 8Kg of yttrium oxide and 8Kg of lanthanum oxide to enhance the softening point of silica gel; the third functional component C is 10Kg of magnesium hydroxide;
- the composition relationship is as follows: component C and component B are dispersed in the molecular mass of the component A colloidal particles in the form of solid powder and
- the manufacturing method of the above high-binding anti-diffusion integrated flame retardant fire-retardant coating includes the following steps:
- Preparation of raw materials Prepare 8Kg of yttrium oxide, 8Kg of lanthanum oxide, 45Kg of silica gel of 200 mesh-400 mesh, 10Kg of magnesium hydroxide, 10Kg of pentaerythritol rosin ester, 30Kg of acrylic resin, 20Kg of acrylonitrile, 20Kg of styrene, dodecyl sulfon Sodium 5Kg, tert-butyl hydrogen peroxide 0.5Kg, sodium persulfate 0.5Kg, disodium EDTA 5Kg, ferrous chloride 5Kg;
- auxiliary materials prepare sufficient amount of deionized water, sufficient solute mass fraction of 10% dilute hydrochloric acid, and sufficient solute mass fraction of 10% hydrofluoric acid aqueous solution;
- step 1 Taking the acrylic resin prepared in step 1) step 1 as raw materials, using ferrous chloride as the initiator, using disodium EDTA as an auxiliary in the embodiment of the present invention, and using 1.5 kg of sodium dodecyl sulfonate as an emulsifier, Preparation of matrix latex;
- Step 2 Stage 1) 1.8 times the total weight of the matrix latex 1) Step 2 Prepare the deionized water as the diluent, and stir the mixture of the matrix latex and deionized water evenly until the matrix latex is completely dissolved in the deionized water.
- Matrix glue emulsion
- step 1 Take the acrylonitrile and styrene prepared in the step 1) step 1 as the raw materials, mix the yttrium oxide, lanthanum oxide, and magnesium hydroxide prepared in the step 1) step 1, then melt and stir evenly to obtain an organic turbid liquid, the organic
- the turbid liquid is the functional additive;
- step 2 Completely immerse the silica gel prepared in step 1) step 1 in the dilute hydrochloric acid prepared in step 1) step 2 and keep it for 6h, then take out the silica gel and use stage 1) step 2 after the complete rinsing to neutrality, the acid immersion After the silica gel particles are mixed with the remaining sodium dodecyl sulfonate, the mixture is completely immersed in the hydrofluoric acid aqueous solution prepared in step 1) step 2, and after 3 hours, the reactants are taken out, and the reactants are taken out and washed with deionized water to pH Neutral, obtain functional mixed colloidal particles;
- Step 1 Prepared pentaerythritol rosin ester.
- the drop acceleration rate of pentaerythritol rosin ester is G/600s. After the drop addition is completed, keep the temperature at 220°C until the water content is 35% of the total mass of the obtained substance, that is, get exercise.
- Viscous latex with a viscosity of 60 mm2/s. The viscous latex is the required high-binding anti-diffusion comprehensive flame retardant fire retardant coating.
- the water resistance can reach 150h in water without cracking, flaking, discoloration, flame retardant level V-0, and stain resistance according to the standard test after 5 cycles. Above level 1, the accelerated test of artificial aging resistance in 2000h does not crack, peel, powder 0, and discolor 0 (the same below).
- a high-binding anti-diffusion comprehensive flame-retardant fire-retardant paint which is composed of three functional components and deionized water that accounts for 30% of the total weight of the coating.
- the first functional component A is pentaerythritol rosin ester 8Kg modified, graft copolymer of acrylic acid with acrylonitrile and styrene prepared from acrylic resin 35Kg, acrylonitrile 15Kg, styrene 15Kg;
- the second functional component B consists of hydrochloric acid, hydrofluoric acid, ten
- the third functional component C is magnesium hydroxide 8Kg;
- the composition relationship of the four components is: Component C and component B are dispersed in the molecular mass of the coll
- a method for manufacturing a high-binding anti-diffusion integrated flame-retardant and fire-retardant coating includes the following steps:
- Preparation of raw materials Prepare 5Kg of yttrium oxide, 5Kg of lanthanum oxide, 40Kg of silica gel from 200 mesh to 400 mesh, magnesium hydroxide 8Kg, pentaerythritol rosin ester 8Kg, acrylic resin 35Kg, acrylonitrile 15Kg, styrene 15Kg, dodecyl Sodium sulfonate 4Kg, tert-butyl hydroperoxide 0.3Kg, sodium persulfate 0.3Kg, disodium EDTA 3Kg, ferrous chloride 3Kg;
- step 1 taking the acrylic resin prepared in step 1) step 1 as raw material, ferrous chloride as initiator, disodium EDTA as auxiliary agent, and sodium dodecyl sulfonate 1Kg as emulsifier to prepare matrix latex;
- Step 1 Stage 1) 1.5 times the total weight of the matrix latex 1) Step 2 Prepare the deionized water as the diluent, stir the mixture of the matrix latex and deionized water evenly until the matrix latex is completely dissolved in the deionized water Matrix glue emulsion;
- step 1) step 1 prepared silica gel is completely immersed in the stage 1)
- step 2 prepared dilute hydrochloric acid, hold for 5h, and then take out the silica gel, adopt the stage 1) step 2 prepared after completely rinsing to neutral, after acid pickling
- step 2 prepared after completely rinsing to neutral, after acid pickling
- the silica gel particles are mixed with the remaining sodium dodecyl sulfonate
- the mixture is completely immersed in the hydrofluoric acid aqueous solution prepared in step 1) step 2.
- the reactants are taken out, and the reactants are taken out and washed with deionized water to pH Neutral, obtain functional mixed colloidal particles;
- Step 1 Prepared pentaerythritol rosin ester.
- the drip acceleration rate of pentaerythritol rosin ester is G/500s.
- Viscous latex with a viscosity of 80mm2/s. The viscous latex is the required high-binding anti-diffusion comprehensive flame retardant fire retardant coating.
- the invention After two initiators and then modified with pentaerythritol rosin ester, polymerization reaction and residual hydrogen bonding chain reaction Only the formed molecular group can cure part of the functional components within the molecular shell structure, and the other part of the functional components can be bonded and cured on the surface of the molecular shell structure (using the electrostatic attraction of the residual hydrogen bond), and finally make the entire final coating functional component
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paints Or Removers (AREA)
- Polymerisation Methods In General (AREA)
Abstract
一种高结合力防扩散综合阻燃防火涂料,该阻燃防火涂料由三种功能组分及占涂料总重量30-35%的去离子水组成;其中第一功能组分A是经季戊四醇松香酯改性的以丙烯酸树脂、丙烯腈、苯乙烯为原料制备的丙烯酸与丙烯腈、苯乙烯的接枝共聚物;第二功能组分B由经盐酸、氢氟酸、十二烷基磺酸钠综合改性的活化硅胶粒与提升硅胶软化点的氧化钇、氧化镧组成;第三种功能组分C为氢氧化镁;其中,组分C与组分B以固体粉末、颗粒的形态按质量比50-70%弥散在组分A胶粒分子团中,其余部分浑浊在去离子水中。该阻燃防火涂料的制备方法包括如下步骤:生产前准备、基体胶乳液的制备、功能辅料的制备以及涂料合成。
Description
本发明涉及高温材料应用领域,尤其涉及一种高结合力防扩散综合阻燃防火涂料及其制造方法。
背景技术防火涂料,一般是用于可燃性基材表面,能降低被涂材料表面的可燃性、阻滞火灾的迅速蔓延,用以提高被涂材料耐火极限的一种特种涂料。施用于可燃性基材表面,用以改变材料表面燃烧特性,阻滞火灾迅速蔓延;或施用于建筑构件上,用以提高构件的耐火极限的特种涂料,又称阻燃防火涂料。阻燃防火涂料目标市面上主要分为溶剂型涂料和水性涂料两种。
其中,现行的水性防火涂料还有些性能需要改进提高,才能满足使用环境要求。目前使用情况较好的是溶剂型防火涂料,但由于这类涂料本身易燃,使用的火灾隐患也相当大,加之溶剂对人体会有不同程度的伤害,环保危害性大。无论是哪种涂料,在竖井、地沟、过道等空间狭窄或不易通风的场所使用时都应加强安全防护措施。从环保的角度考虑,目前还没有兼顾阻燃理化性能、耐候性能和环保性能的水性防火涂料。
目前防火材料中仅有氢氧化镁等少数材料被单独应用于阻燃防火技术领域,目前现有技术中还没有一种完全由无机材料构建阻燃功能成份的材料。综上所述,
市面上需要一种耐侯性好、耐高温、抗明火、阻燃、结合力好、使用寿命长的阻燃防火涂料及其制造方法。
为解决现有技术中存在的上述缺陷,本发明旨在提供一种耐侯性好、耐高温、抗明火、阻燃、结合力好、使用寿命长的高结合力防扩散综合阻燃防火涂料及其制造方法。
为了实现上述目的,本发明采用以下技术方案:一种高结合力防扩散综合阻燃防火涂料,该阻燃防火涂料由三种功能组份及占涂料总重量30%-35%的去离子水组成,其中第一种功能组份A是经季戊四醇松香酯8份-10份改性的,以丙烯酸树脂30份-35份、丙烯腈15份-20份、苯乙烯15份-20份为原料制备的丙烯酸与丙烯腈、苯乙烯的接枝共聚物;第二种功能组份B由经盐酸、氢氟酸、十二烷基磺酸钠综合改性的活化硅胶粒40份-45份与提升硅胶软化点的氧化钇5份-8份、氧化镧5份-8份组成;第三种功能组份C为氢氧化镁8份-10份;四种成份的组成关系为:组份C与组份B以固体粉末、颗粒的形态按质量比50%-70%弥散在组份A胶粒分子团中,其余部分混浊在去离子水中。
一种高结合力防扩散综合阻燃防火涂料的制造方法,包括以下步骤:
1)生产前准备
①原材料准备:按重量份准备氧化钇5份-8份、氧化镧5份-8份、200目-400目的硅胶40份-45份、氢氧化镁8份-10份、季戊四醇松香酯8份-10份、丙烯酸树脂30份-35份、丙烯腈15份-20份、苯乙烯15份-20份、十二烷基磺酸钠4份-5份、叔丁基过氧化氢0.3份-0.5份、过硫酸钠0.3份-0.5份、EDTA二钠3份-5份、氯化亚铁3份-5份;
②辅材准备:准备足量去离子水、足量溶质质量分数10%的稀盐酸、足量溶质质量分数10%的氢氟酸水溶液;
2)基体胶乳液的制备
①以阶段1)步骤①准备的丙烯酸树脂为原料,以氯化亚铁为引发剂,以EDTA二钠为助剂,以十二烷基磺酸钠1份-1.5份为乳化剂,制备基体胶乳;
②以基体胶乳总重量1.5倍-1.8倍的阶段1)步骤②准备的去离子水为稀释剂,将基体胶乳与去离子水的混合液均匀搅拌,至基体胶乳完全溶于去离子水中,即获得所需基体胶乳液;
3)功能辅料的准备
①以阶段1)步骤①准备的丙烯腈、苯乙烯为原料,混合阶段1)步骤①准备的氧化钇、氧化镧、氢氧化镁后,再热融并搅拌均匀,获得有机混浊液,该有机混浊液即为功能助剂;
②将阶段1)步骤①准备的硅胶完全浸入阶段1)步骤②准备的稀盐酸中,保持5h-6h,然后取出硅胶,采用阶段1)步骤②准备的完全漂洗至中性后,将酸浸后的硅胶粒与剩余十二烷基磺酸钠混合后再将混合物完全浸入阶段1)步骤②准备的氢氟酸水溶液中,保持2h-3h后再取出反应物,将反应物取出采用去离子水洗涤至PH中性,获得功能混合胶粒;
4)涂料合成
①在阶段2)获得的基体胶乳液中加入全部阶段3)步骤②准备的功能混合胶粒,搅拌均匀后获得预制混浊液;
②在步骤①获得的预制混浊液内按混浊液的质量G计,以G/1000s-G/1200s的速率滴加阶段3)步骤①准备的功能助剂,至滴加完成,获得基体原液;
③在步骤②获得的基体原液中,第一阶段以叔丁基过氧化氢进行引发聚合;第二阶段以过硫酸钠为引发剂进行二次引发聚合;在二次引发聚合完成后,开始滴加阶段1)步骤①准备的季戊四醇松香酯,季戊四醇松香酯的滴加速率为G/500s-G/600s,滴加完成后,以200-220℃的温度保温至水含量为获得物总质量的30%-35%,即获得运动粘度60mm2/s-80mm2/s的粘稠状乳胶液,该粘稠状乳胶液即为所需高结合力防扩散综合阻燃防火涂料。与现有技术相比较,本发明具有以下优点:(1)本发明的核心构思就是采用本技术领域还未应用(这类材料目前仅用于航空航天、电子产品领域)的无机硅胶缩聚物(与氧化镧、氧化钇),获得软化点在500℃-600℃的无机胶,正常情况下无机胶的合成都是通过共熔共凝或同时加压加热完成,本发明通过双重酸浸(盐酸与氢氟酸)后再经十二烷基磺酸钠改性使得硅胶体中的氢键活化,在熔融状态下混在丙烯腈、苯乙烯基体中的氧化钇、氧化镧由于结构的亲似性与硅胶发生缩聚,提升了硅胶本身的软化点,同时构建本发明的一个也是核心的阻燃功能组份——无机胶。(2)本发明以本技术领域还没全没有应用的ASA树脂为基础进行结构搭建,利用ASA树脂多气孔、空间框架疏松的结构特性实现保温、固定功能成份的技术目的,ASA与涂料相关的基础特性有耐侯性好(即使长期暴露于紫外线、湿汽、热、寒和冲击下,仍能保持其颜色稳定性)、自洁性较好(是一种防静电材料,能使表面少积灰尘)两种特性,同时它还具有高可混合性(由于其疏孔的空间结构和柔韧的基体共同构建的,较易与其它不相溶的功能形成稳定构物的物理特性)的优点,在其合成过程中合理、有效地物理掺杂大比例的功能混合物,这样做一方面功能混合物能充分、均匀、弥散地混在基体中,另一方面也能将ASA树脂的空间结构最大化利用,最后,也是为基体留下充分的机械性能改性增强的空间。(3)本发明的功能组份还有另一个重要支撑,就是现有技术中已有采用的氢氧化镁,这种功能组份是通过受热分解时释放出结合水,吸收大量的潜热,来降低它所填充的合成材料在火焰中的表面温度,具有抑制聚合物分解和对所产生的可燃气体进行冷却的作用。而本发明的另一个功能组份阻燃的原理则是利用聚合物高温下不燃也不释放毒性气体的特性,在高温下熔化成流体,在重力和热胀冷缩综合作用下覆盖燃区表面,从根本上隔绝氧化,因而两种阻燃功能成份并不是重复阻燃(现有技术中的大多数阻燃材料实际都是利用重复阻燃原理,功能上重合的区间很大),而是互不干涉、各行其用的,因而能应对更多、更恶劣地燃烧环境,同时两种功能成份都是无机成份,本身无燃烧、也无毒,环保性能优良。(4)本发明虽然应用了多种不同的功能组份,但最难得的是将这些不同功能的组份通过基体的、可包容的ASA树脂在合成中就全部固化并完全不影响ASA树脂本身的聚合,在阶段4)步骤③引发发应开始前各原料组份还是完全弥散混均、互不干扰的,两次引发后再以季戊四醇松香酯进行改性时,聚合反应及残余氢键的接链反应形成的分子团才能将部分功能组份固化在分子壳结构之内,另一部分功能组份粘合固化在分子壳结构表面(利用残余氢键的静电吸引),最终使得整个最终涂料功能组份以胶合的状态存在,又由于采用季戊四醇松香酯进行改性,增强了ASA树脂基础力学性能,同进在使用后增加与墙面的结合力。因此使本发明最终具有耐侯性好、耐高温、抗明火、阻燃、结合力好、使用寿命长的特性。
与现有技术相比较,本发明具有以下优点:(1)本发明的核心构思就是采用本技术领域还未应用(这类材料目前仅用于航空航天、电子产品领域)的无机硅胶缩聚物(与氧化镧、氧化钇),获得软化点在500℃-600℃的无机胶,正常情况下无机胶的合成都是通过共熔共凝或同时加压加热完成,本发明通过双重酸浸(盐酸与氢氟酸)后再经十二烷基磺酸钠改性使得硅胶体中的氢键活化,在熔融状态下混在丙烯腈、苯乙烯基体中的氧化钇、氧化镧由于结构的亲似性与硅胶发生缩聚,提升了硅胶本身的软化点,同时构建本发明的一个也是核心的阻燃功能组份——无机胶。(2)本发明以本技术领域还没全没有应用的ASA树脂为基础进行结构搭建,利用ASA树脂多气孔、空间框架疏松的结构特性实现保温、固定功能成份的技术目的,ASA与涂料相关的基础特性有耐侯性好(即使长期暴露于紫外线、湿汽、热、寒和冲击下,仍能保持其颜色稳定性)、自洁性较好(是一种防静电材料,能使表面少积灰尘)两种特性,同时它还具有高可混合性(由于其疏孔的空间结构和柔韧的基体共同构建的,较易与其它不相溶的功能形成稳定构物的物理特性)的优点,在其合成过程中合理、有效地物理掺杂大比例的功能混合物,这样做一方面功能混合物能充分、均匀、弥散地混在基体中,另一方面也能将ASA树脂的空间结构最大化利用,最后,也是为基体留下充分的机械性能改性增强的空间。(3)本发明的功能组份还有另一个重要支撑,就是现有技术中已有采用的氢氧化镁,这种功能组份是通过受热分解时释放出结合水,吸收大量的潜热,来降低它所填充的合成材料在火焰中的表面温度,具有抑制聚合物分解和对所产生的可燃气体进行冷却的作用。而本发明的另一个功能组份阻燃的原理则是利用聚合物高温下不燃也不释放毒性气体的特性,在高温下熔化成流体,在重力和热胀冷缩综合作用下覆盖燃区表面,从根本上隔绝氧化,因而两种阻燃功能成份并不是重复阻燃(现有技术中的大多数阻燃材料实际都是利用重复阻燃原理,功能上重合的区间很大),而是互不干涉、各行其用的,因而能应对更多、更恶劣地燃烧环境,同时两种功能成份都是无机成份,本身无燃烧、也无毒,环保性能优良。(4)本发明虽然应用了多种不同的功能组份,但最难得的是将这些不同功能的组份通过基体的、可包容的ASA树脂在合成中就全部固化并完全不影响ASA树脂本身的聚合,在阶段4)步骤③引发发应开始前各原料组份还是完全弥散混均、互不干扰的,两次引发后再以季戊四醇松香酯进行改性时,聚合反应及残余氢键的接链反应形成的分子团才能将部分功能组份固化在分子壳结构之内,另一部分功能组份粘合固化在分子壳结构表面(利用残余氢键的静电吸引),最终使得整个最终涂料功能组份以胶合的状态存在,又由于采用季戊四醇松香酯进行改性,增强了ASA树脂基础力学性能,同进在使用后增加与墙面的结合力。因此使本发明最终具有耐侯性好、耐高温、抗明火、阻燃、结合力好、使用寿命长的特性。
在此处键入附图说明描述段落。
实施例1:一种高结合力防扩散综合阻燃防火涂料,该阻燃防火涂料由三种功能组份及占涂料总重量35%的去离子水组成,其中第一种功能组份A是经季戊四醇松香酯10Kg改性的,以丙烯酸树脂30Kg、丙烯腈20Kg、苯乙烯20Kg为原料制备的丙烯酸与丙烯腈、苯乙烯的接枝共聚物;第二种功能组份B由经盐酸、氢氟酸、十二烷基磺酸钠综合改性的活化硅胶粒45Kg与提升硅胶软化点的氧化钇8Kg、氧化镧8Kg组成;第三种功能组份C为氢氧化镁10Kg;四种成份的组成关系为:组份C与组份B以固体粉末、颗粒的形态按质量比50%弥散在组份A胶粒分子团中,其余部分混浊在去离子水中。
上述高结合力防扩散综合阻燃防火涂料的制造方法,包括以下步骤:
1)生产前准备
①原材料准备:按重量份准备氧化钇8Kg、氧化镧8Kg、200目-400目的硅胶45Kg氢氧化镁10Kg、季戊四醇松香酯10Kg、丙烯酸树脂30Kg、丙烯腈20Kg、苯乙烯20Kg、十二烷基磺酸钠5Kg、叔丁基过氧化氢0.5Kg、过硫酸钠0.5Kg、EDTA二钠5Kg、氯化亚铁5Kg;
②辅材准备:准备足量去离子水、足量溶质质量分数10%的稀盐酸、足量溶质质量分数10%的氢氟酸水溶液;
2)基体胶乳液的制备
①以阶段1)步骤①准备的丙烯酸树脂为原料,以氯化亚铁为引发剂,以本发明的实施方式EDTA二钠为助剂,以十二烷基磺酸钠1.5Kg为乳化剂,制备基体胶乳;
②以基体胶乳总重量1.8倍的阶段1)步骤②准备的去离子水为稀释剂,将基体胶乳与去离子水的混合液均匀搅拌,至基体胶乳完全溶于去离子水中,即获得所需基体胶乳液;
3)功能辅料的准备
①以阶段1)步骤①准备的丙烯腈、苯乙烯为原料,混合阶段1)步骤①准备的氧化钇、氧化镧、氢氧化镁后,再热融并搅拌均匀,获得有机混浊液,该有机混浊液即为功能助剂;
②将阶段1)步骤①准备的硅胶完全浸入阶段1)步骤②准备的稀盐酸中,保持6h,然后取出硅胶,采用阶段1)步骤②准备的完全漂洗至中性后,将酸浸后的硅胶粒与剩余十二烷基磺酸钠混合后再将混合物完全浸入阶段1)步骤②准备的氢氟酸水溶液中,保持3h后再取出反应物,将反应物取出采用去离子水洗涤至PH中性,获得功能混合胶粒;
4)涂料合成
①在阶段2)获得的基体胶乳液中加入全部阶段3)步骤②准备的功能混合胶粒,搅拌均匀后获得预制混浊液;
②在步骤①获得的预制混浊液内按混浊液的质量G计,以G/1200s的速率滴加阶段3)步骤①准备的功能助剂,至滴加完成,获得基体原液;
③在步骤②获得的基体原液中,第一阶段以叔丁基过氧化氢进行引发聚合;第二阶段以过硫酸钠为引发剂进行二次引发聚合;在二次引发聚合完成后,开始滴加阶段1)步骤①准备的季戊四醇松香酯,季戊四醇松香酯的滴加速率为G/600s,滴加完成后,以220℃的温度保温至水含量为获得物总质量的35%,即获得运动粘度60mm2/s的粘稠状乳胶液,该粘稠状乳胶液即为所需高结合力防扩散综合阻燃防火涂料。
按本实施例生产的高结合力防扩散综合阻燃防火涂料使用后,耐水性可达浸水150h无开裂、剥落、变色,阻燃级别V-0,耐玷污性按标准试验5次循环后不高于1级,耐人工老化性能加速试验2000h不开裂、起皮、粉化0级、变色0级(下同)。
实施例2:
整体与实施例1一致,差异之处在于:
一种高结合力防扩散综合阻燃防火涂料,该阻燃防火涂料由三种功能组份及占涂料总重量30%的去离子水组成,其中第一种功能组份A是经季戊四醇松香酯8Kg改性的,以丙烯酸树脂35Kg、丙烯腈15Kg、苯乙烯15Kg为原料制备的丙烯酸与丙烯腈、苯乙烯的接枝共聚物;第二种功能组份B由经盐酸、氢氟酸、十二烷基磺酸钠综合改性的活化硅胶粒40Kg与提升硅胶软化点的氧化钇5Kg、氧化镧5Kg组成;第三种功能组份C为氢氧化镁8Kg;四种成份的组成关系为:组份C与组份B以固体粉末、颗粒的形态按质量比70%弥散在组份A胶粒分子团中,其余部分混浊在去离子水中。
一种高结合力防扩散综合阻燃防火涂料的制造方法,包括以下步骤:
1)生产前准备
①原材料准备:按重量份准备氧化钇5Kg、氧化镧5Kg、200目-400目的硅胶40Kg、氢氧化镁8Kg、季戊四醇松香酯8Kg、丙烯酸树脂35Kg、丙烯腈15Kg、苯乙烯15Kg、十二烷基磺酸钠4Kg、叔丁基过氧化氢0.3Kg、过硫酸钠0.3Kg、EDTA二钠3Kg、氯化亚铁3Kg;
2)基体胶乳液的制备
①以阶段1)步骤①准备的丙烯酸树脂为原料,以氯化亚铁为引发剂,以EDTA二钠为助剂,以十二烷基磺酸钠1Kg为乳化剂,制备基体胶乳;
②以基体胶乳总重量1.5倍的阶段1)步骤②准备的去离子水为稀释剂,将基体胶乳与去离子水的混合液均匀搅拌,至基体胶乳完全溶于去离子水中,即获得所需基体胶乳液;
3)功能辅料的准备
②将阶段1)步骤①准备的硅胶完全浸入阶段1)步骤②准备的稀盐酸中,保持5h,然后取出硅胶,采用阶段1)步骤②准备的完全漂洗至中性后,将酸浸后的硅胶粒与剩余十二烷基磺酸钠混合后再将混合物完全浸入阶段1)步骤②准备的氢氟酸水溶液中,保持2h后再取出反应物,将反应物取出采用去离子水洗涤至PH中性,获得功能混合胶粒;
4)涂料合成
①在阶段2)获得的基体胶乳液中加入全部阶段3)步骤②准备的功能混合胶粒,搅拌均匀后获得预制混浊液;
②在步骤①获得的预制混浊液内按混浊液的质量G计,以G/1000s的速率滴加阶段3)步骤①准备的功能助剂,至滴加完成,获得基体原液;
③在步骤②获得的基体原液中,第一阶段以叔丁基过氧化氢进行引发聚合;第二阶段以过硫酸钠为引发剂进行二次引发聚合;在二次引发聚合完成后,开始滴加阶段1)步骤①准备的季戊四醇松香酯,季戊四醇松香酯的滴加速率为G/500s,滴加完成后,以200℃的温度保温至水含量为获得物总质量的30%,即获得运动粘度80mm2/s的粘稠状乳胶液,该粘稠状乳胶液即为所需高结合力防扩散综合阻燃防火涂料。
本发明虽然应用了多种不同的功能组份,但最难得的是将这些不同功能的组份通过基体的、可包容的ASA树脂在合成中就全部固化并完全不影响ASA树脂本身的聚合,在阶段4)步骤③引发发应开始前各原料组份还是完全弥散混均、互不干扰的,两次引发后再以季戊四醇松香酯进行改性时,聚合反应及残余氢键的接链反应形成的分子团才能将部分功能组份固化在分子壳结构之内,另一部分功能组份粘合固化在分子壳结构表面(利用残余氢键的静电吸引),最终使得整个最终涂料功能组份以胶合的状态存在,又由于采用季戊四醇松香酯进行改性,增强了ASA树脂基础力学性能,同进在使用后增加与墙面的结合力。因此使本发明最终具有耐侯性好、耐高温、抗明火、阻燃、结合力好、使用寿命长的特性。
对所公开的实施例的上述说明,仅为了使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (2)
- [根据细则91更正 18.06.2019]
一种高结合力防扩散综合阻燃防火涂料,其特征在于:该阻燃防火涂料由三种功能组份及占涂料总重量30%-35%的去离子水组成,其中第一种功能组份A是经季戊四醇松香酯8份-10份改性的,以丙烯酸树脂30份-35份、丙烯腈15份-20份、苯乙烯15份-20份为原料制备的丙烯酸与丙烯腈、苯乙烯的接枝共聚物;第二种功能组份B由经盐酸、氢氟酸、十二烷基磺酸钠综合改性的活化硅胶粒40份-45份与提升硅胶软化点的氧化钇5份-8份、氧化镧5份-8份组成;第三种功能组份C为氢氧化镁8份-10份;四种成份的组成关系为:组份C与组份B以固体粉末、颗粒的形态按质量比50%-70%弥散在组份A胶粒分子团中,其余部分混浊在去离子水中。 - [根据细则91更正 18.06.2019]
根据权利要求1所述的一种高结合力防扩散综合阻燃防火涂料的制造方法,其特征在于包括以下步骤:1)生产前准备①原材料准备:按重量份准备氧化钇5份-8份、氧化镧5份-8份、200目-400目的硅胶40份-45份、氢氧化镁8份-10份、季戊四醇松香酯8份-10份、丙烯酸树脂30份-35份、丙烯腈15份-20份、苯乙烯15份-20份、十二烷基磺酸钠4份-5份、叔丁基过氧化氢0.3份-0.5份、过硫酸钠0.3份-0.5份、EDTA二钠3份-5份、氯化亚铁3份-5份;②辅材准备:准备足量去离子水、足量溶质质量分数10%的稀盐酸、足量溶质质量分数10%的氢氟酸水溶液;2)基体胶乳液的制备①以阶段1)步骤①准备的丙烯酸树脂为原料,以氯化亚铁为引发剂,以EDTA二钠为助剂,以十二烷基磺酸钠1份-1.5份为乳化剂,制备基体胶乳;②以基体胶乳总重量1.5倍-1.8倍的阶段1)步骤②准备的去离子水为稀释剂,将基体胶乳与去离子水的混合液均匀搅拌,至基体胶乳完全溶于去离子水中,即获得所需基体胶乳液;3)功能辅料的准备①以阶段1)步骤①准备的丙烯腈、苯乙烯为原料,混合阶段1)步骤①准备的氧化钇、氧化镧、氢氧化镁后,再热融并搅拌均匀,获得有机混浊液,该有机混浊液即为功能助剂;②将阶段1)步骤①准备的硅胶完全浸入阶段1)步骤②准备的稀盐酸中,保持5h-6h,然后取出硅胶,采用阶段1)步骤②准备的完全漂洗至中性后,将酸浸后的硅胶粒与剩余十二烷基磺酸钠混合后再将混合物完全浸入阶段1)步骤②准备的氢氟酸水溶液中,保持2h-3h后再取出反应物,将反应物取出采用去离子水洗涤至PH中性,获得功能混合胶粒;4)涂料合成①在阶段2)获得的基体胶乳液中加入全部阶段3)步骤②准备的功能混合胶粒,搅拌均匀后获得预制混浊液;②在步骤①获得的预制混浊液内按混浊液的质量G计,以G/1000s-G/1200s的速率滴加阶段3)步骤①准备的功能助剂,至滴加完成,获得基体原液;③在步骤②获得的基体原液中,第一阶段以叔丁基过氧化氢进行引发聚合;第二阶段以过硫酸钠为引发剂进行二次引发聚合;在二次引发聚合完成后,开始滴加阶段1)步骤①准备的季戊四醇松香酯,季戊四醇松香酯的滴加速率为G/500s-G/600s,滴加完成后,以200-220℃的温度保温至水含量为获得物总质量的30%-35%,即获得运动粘度60mm2/s-80mm2/s的粘稠状乳胶液,该粘稠状乳胶液即为所需高结合力防扩散综合阻燃防火涂料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811428732.5A CN109627892A (zh) | 2018-11-27 | 2018-11-27 | 一种高结合力防扩散综合阻燃防火涂料及其制造方法 |
CN201811428732.5 | 2018-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020107818A1 true WO2020107818A1 (zh) | 2020-06-04 |
Family
ID=66069376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/087322 WO2020107818A1 (zh) | 2018-11-27 | 2019-05-17 | 一种高结合力防扩散综合阻燃防火涂料及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109627892A (zh) |
WO (1) | WO2020107818A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109627892A (zh) * | 2018-11-27 | 2019-04-16 | 微山宏瑞电力科技有限公司 | 一种高结合力防扩散综合阻燃防火涂料及其制造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5994447A (en) * | 1996-12-10 | 1999-11-30 | Daihan Paint & Ink Co., Ltd. | Organic-inorganic complex composition for coating metal surface |
KR100783051B1 (ko) * | 2006-12-28 | 2007-12-07 | (주)디피아이 홀딩스 | 아크릴 실리카 혼성 에멀젼 수지의 제조 방법 및 수용성아크릴 실리카 혼성 도료 |
CN103382358A (zh) * | 2013-07-08 | 2013-11-06 | 吴江市物华五金制品有限公司 | 钢结构用防火涂料及其制备方法 |
CN104031202A (zh) * | 2014-06-17 | 2014-09-10 | 中国科学院化学研究所 | 聚丙烯酸油墨树脂及其制备方法 |
CN106459235A (zh) * | 2014-07-04 | 2017-02-22 | 罗门哈斯公司 | 一种用于制备具有胶态二氧化硅粒子的稳定聚合物分散液的方法 |
CN107098352A (zh) * | 2016-02-20 | 2017-08-29 | 金承黎 | 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法 |
CN107254204A (zh) * | 2017-06-28 | 2017-10-17 | 郑善 | 一种超薄防火水性涂料及其制备方法 |
CN109627892A (zh) * | 2018-11-27 | 2019-04-16 | 微山宏瑞电力科技有限公司 | 一种高结合力防扩散综合阻燃防火涂料及其制造方法 |
-
2018
- 2018-11-27 CN CN201811428732.5A patent/CN109627892A/zh not_active Withdrawn
-
2019
- 2019-05-17 WO PCT/CN2019/087322 patent/WO2020107818A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5994447A (en) * | 1996-12-10 | 1999-11-30 | Daihan Paint & Ink Co., Ltd. | Organic-inorganic complex composition for coating metal surface |
KR100783051B1 (ko) * | 2006-12-28 | 2007-12-07 | (주)디피아이 홀딩스 | 아크릴 실리카 혼성 에멀젼 수지의 제조 방법 및 수용성아크릴 실리카 혼성 도료 |
CN103382358A (zh) * | 2013-07-08 | 2013-11-06 | 吴江市物华五金制品有限公司 | 钢结构用防火涂料及其制备方法 |
CN104031202A (zh) * | 2014-06-17 | 2014-09-10 | 中国科学院化学研究所 | 聚丙烯酸油墨树脂及其制备方法 |
CN106459235A (zh) * | 2014-07-04 | 2017-02-22 | 罗门哈斯公司 | 一种用于制备具有胶态二氧化硅粒子的稳定聚合物分散液的方法 |
CN107098352A (zh) * | 2016-02-20 | 2017-08-29 | 金承黎 | 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法 |
CN107254204A (zh) * | 2017-06-28 | 2017-10-17 | 郑善 | 一种超薄防火水性涂料及其制备方法 |
CN109627892A (zh) * | 2018-11-27 | 2019-04-16 | 微山宏瑞电力科技有限公司 | 一种高结合力防扩散综合阻燃防火涂料及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109627892A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150159368A1 (en) | Intumescent coating compositions | |
KR20170105256A (ko) | 내화도장용 비발포 난연성 세라믹도료와 이를 이용한 내화도장공법 | |
CN101802119A (zh) | 粘合剂组合物及粘接方法 | |
CN104177697B (zh) | 灯具用抗冲击耐候阻燃聚丙烯树脂 | |
CN101747817A (zh) | 一种水性无卤钢结构超薄膨胀型防火涂料及其制备方法 | |
JP2013241584A (ja) | 難燃性水系塗料組成物、並びにそれを用いた難燃性塗膜及び建築板 | |
KR20130006015A (ko) | 친환경 무기질 불연 바인더의 조성물과 그 제조방법 및 용도 | |
JP3218359B2 (ja) | 発泡耐火性積層体とその形成方法 | |
CN116120811A (zh) | 一种水性丙烯酸树脂复合改性气凝胶隔热防火涂层及其制备方法 | |
KR101796032B1 (ko) | 수용성 무기 불연 발포 접착제 조성물 및 이의 제조방법 | |
WO2020107818A1 (zh) | 一种高结合力防扩散综合阻燃防火涂料及其制造方法 | |
WO2020140389A1 (zh) | 一种纯无机覆盖阻燃防火耐高温涂料添加物及其制造方法 | |
CN113683935A (zh) | 一种纯丙柔性真石漆乳液及其制备方法 | |
TW201335344A (zh) | 無機防火組合物、防火材料及其形成方法 | |
KR20160050402A (ko) | 이산화규소를 포함하는 불연성조성물 | |
CN111635686A (zh) | 用于内墙的防火涂料及其加工方法 | |
CN113652158B (zh) | 一种防火阻燃涂料及其制备方法 | |
CN104845488A (zh) | 一种耐冲击防火涂料及其制备方法 | |
JP2014037520A (ja) | 接着材及びそれを用いた積層シート、並びに積層構造体 | |
KR101437636B1 (ko) | 수성 세라믹 불연도료 조성물의 제조방법 | |
KR101391431B1 (ko) | 난연성 수지 조성물과 이로부터 얻어진 난연성 도막 및 난연성 수지의 도포방법 | |
CN104231771A (zh) | 一种轻质涂料 | |
CN104231770A (zh) | 一种防火涂料 | |
KR102721396B1 (ko) | 난연성과 내진동성을 갖는 하이브리드 수지 조성물 및 그 제조 방법 | |
CN115073118A (zh) | 一种石膏基阻燃复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19889212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19889212 Country of ref document: EP Kind code of ref document: A1 |