WO2020107731A1 - 压缩机弱磁控制装置、空调、方法及存储介质 - Google Patents

压缩机弱磁控制装置、空调、方法及存储介质 Download PDF

Info

Publication number
WO2020107731A1
WO2020107731A1 PCT/CN2019/076423 CN2019076423W WO2020107731A1 WO 2020107731 A1 WO2020107731 A1 WO 2020107731A1 CN 2019076423 W CN2019076423 W CN 2019076423W WO 2020107731 A1 WO2020107731 A1 WO 2020107731A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
weakening control
field weakening
main circuit
circuit unit
Prior art date
Application number
PCT/CN2019/076423
Other languages
English (en)
French (fr)
Inventor
丛安平
邵海柱
耿焱
时斌
张波
胡象辉
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP19883333.7A priority Critical patent/EP3799294A4/en
Priority to US16/767,075 priority patent/US11480374B2/en
Publication of WO2020107731A1 publication Critical patent/WO2020107731A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0086Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of compressor control, in particular to a compressor field weakening control device, air conditioner, method and storage medium.
  • the permanent magnet synchronous compressor When the permanent magnet synchronous compressor operates in the high-speed area, it is easy to enter the field weakening control area.
  • Id current that generates magnetic flux
  • Id changes will cause problems such as position estimation, resulting in system instability. Therefore, if the time for the compressor to enter the field weakening control can be delayed, the efficiency of the compressor and the stability of the system will be improved.
  • the present application provides a compressor field weakening control device, air conditioner, method, and storage medium to solve the problem that the compressor easily enters the field weakening control area when the compressor is running at high speed.
  • a compressor field weakening control device is provided.
  • the compressor field weakening control device includes a main circuit unit and a compressor, the main circuit unit provides power for the compressor, and further includes:
  • Compressor speed acquisition unit used to collect the compressor current and calculate the compressor speed ⁇ ;
  • the control unit is used to compare the compressor speed ⁇ with the compressor speed threshold ⁇ 1, and control the main circuit unit as follows according to the comparison result:
  • the output voltage of the main circuit unit is controlled at a fixed value V0; when the compressor speed ⁇ 1, the field weakening control is not entered temporarily, the output voltage of the main circuit unit is increased; When rising, the compressor enters the field weakening control.
  • the main circuit unit includes a rectifier, a power factor correction circuit, a smoothing circuit, and an inverter, the input end of the rectifier is alternating current, and the output end of the rectifier is connected to the power factor correction
  • the input end of the circuit is electrically connected
  • the power factor correction circuit is connected to the inverter through a smoothing circuit, and the output end of the inverter is electrically connected to the compressor;
  • the output voltage of the power factor correction circuit is controlled at a fixed value V0; when the compressor speed ⁇ 1, the field weakening control is not temporarily entered, and the output voltage of the power factor correction circuit is increased; when the power factor correction When the output voltage of the circuit cannot continue to rise, the compressor enters the field weakening control.
  • the smoothing circuit is a capacitor filter circuit.
  • an air conditioner including the aforementioned compressor field weakening control device.
  • a compressor field weakening control method including,
  • the main circuit unit includes a rectifier, a power factor correction circuit, a smoothing circuit, and an inverter, the input end of the rectifier is alternating current, and the output end of the rectifier is connected to the power factor correction
  • the input end of the circuit is electrically connected
  • the power factor correction circuit is connected to the inverter through a smoothing circuit, and the output end of the inverter is electrically connected to the compressor;
  • the output voltage of the power factor correction circuit is controlled at a fixed value V0; when the compressor speed ⁇ 1, the field weakening control is not temporarily entered, and the output voltage of the power factor correction circuit is increased; when the power factor correction When the output voltage of the circuit cannot continue to rise, the compressor enters the field weakening control.
  • the smoothing circuit is a capacitor filter circuit.
  • a computer-readable storage medium on which a computer program is stored, which implements the compressor field weakening control method as described above when the computer program is executed by a processor.
  • Fig. 1 is a block diagram of a circuit structure of a compressor field weakening control device according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram of a circuit structure of a main circuit unit in a compressor field weakening control device according to an exemplary embodiment.
  • the terms "include”, “include” or any other variant thereof are intended to cover non-exclusive inclusion, so that a structure, device, or device that includes a series of elements includes not only those elements, but also other items not explicitly listed Elements, or include elements inherent to such structures, devices, or equipment. Without further restrictions, the element defined by the sentence "including one" does not exclude that there are other identical elements in the structure, device or equipment that includes the element.
  • the embodiments in this document are described in a progressive manner. Each embodiment focuses on the differences from other embodiments. The same and similar parts between the embodiments can be referred to each other.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • the term “plurality” means two or more.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • a compressor field weakening control device includes: a main circuit unit and a compressor, the main circuit unit provides power for the compressor; and further includes:
  • Compressor speed acquisition unit used to collect the compressor current and calculate the compressor speed ⁇ ;
  • the control unit is used to compare the compressor speed ⁇ with the compressor speed threshold ⁇ 1, and control the main circuit unit as follows according to the comparison result:
  • the output voltage of the main circuit unit is controlled at a fixed value V0, which is generally about 20V higher than the input peak.
  • V0 the value of the main circuit unit
  • Different manufacturers can choose different values; when the compressor speed ⁇ 1, temporarily Without entering the field weakening control, increase the output voltage of the main circuit unit; when the voltage of the main circuit unit cannot continue to increase, the compressor enters the field weakening control.
  • the field weakening control is not entered temporarily, but the compressor drive voltage is increased until the compressor drive voltage cannot be increased any more. Before entering the field weakening control. In this way, the time for the compressor to enter the field weakening control is delayed to the greatest extent, the compressor is not entered into the field weakening control to the greatest extent, and the stability of the system is improved.
  • the main circuit unit includes a rectifier, a power factor correction circuit, a smoothing circuit, and an inverter.
  • the input end of the rectifier is alternating current, which performs full-wave rectification of the alternating current power supply; the rectifier The output of is connected electrically to the input of the power factor correction circuit, which is used to control the duty cycle of the PWM to increase the output voltage; the power factor correction circuit is connected to the inverter through a smoothing circuit
  • the inverter is used to invert direct current into alternating current to control the rotation speed of the compressor.
  • the smoothing circuit is a capacitor filter circuit.
  • the output voltage of the power factor correction circuit is controlled at a fixed value V0; when the compressor speed ⁇ 1, the field weakening control is not temporarily entered, and the output voltage of the power factor correction circuit is increased; when the power factor correction When the output voltage of the circuit cannot continue to rise, the compressor enters the field weakening control.
  • the compressor speed acquisition unit collects the compressor currents I U , I V , and I W (I U , I V , and I W represent the U, V, and W phase currents of the compressor, respectively), and then the coordinates are converted into i ⁇ , I ⁇ :
  • the speed of the press can be calculated.
  • an air conditioner including the aforementioned compressor field weakening control device.
  • a compressor field weakening control method including,
  • the main circuit unit includes a rectifier, a power factor correction circuit, a smoothing circuit, and an inverter, the input end of the rectifier is alternating current, and the output end of the rectifier is connected to the power factor correction
  • the input end of the circuit is electrically connected
  • the power factor correction circuit is connected to the inverter through a smoothing circuit, and the output end of the inverter is electrically connected to the compressor;
  • the output voltage of the power factor correction circuit is controlled at a fixed value V0; when the compressor speed ⁇ 1, the field weakening control is not temporarily entered, and the output voltage of the power factor correction circuit is increased; when the power factor correction When the output voltage of the circuit cannot continue to rise, the compressor enters the field weakening control.
  • the smoothing circuit is a capacitor filter circuit.
  • a computer-readable storage medium on which a computer program is stored, which implements the compressor field weakening control method as described above when the computer program is executed by a processor.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by the processor, the aforementioned three-phase inverter control method is implemented.
  • the above computer-readable storage media include read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic tape, and optical storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请属于压缩机控制领域,公开了一种压缩机弱磁控制装置,包括:主电路单元和压缩机,主电路单元为所述压缩机提供电源,还包括:压缩机转速获取单元,控制单元,用于比较压缩机转速ω与压缩机转速阈值ω1,并根据比较结果对主电路单元作如下控制:当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。以此方式,最大程度地延缓压缩机进入弱磁控制的时间,最大程度地保证压缩机不进入弱磁控制,提高系统的稳定性。本申请还公开了一种压缩机弱磁控制方法、存储介质及空调。

Description

压缩机弱磁控制装置、空调、方法及存储介质
本申请基于申请号为201811469185.5、申请日为2018.11.28的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及压缩机控制技术领域,特别涉及压缩机弱磁控制装置、空调、方法及存储介质。
背景技术
永磁同步压缩机运行在高速区域时,容易进入弱磁控制区,弱磁控制时,由于Id电流(Id:产生磁通的电流)的增大,容易导致整机的效率变低,同时由于Id的改变会导致位置推算等出现问题,造成系统的不稳定。因此,若能延缓压缩机进入弱磁控制的时间,将提高压缩机的效率及系统的稳定性。
发明内容
本申请提供了一种压缩机弱磁控制装置、空调、方法及存储介质,以解决压缩机在高速运转时容易进入弱磁控制区的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本申请的第一方面,提供了一种压缩机弱磁控制装置。
在一些可选实施例中,所述压缩机弱磁控制装置,包括:主电路单元和压缩机,所述主电路单元为所述压缩机提供电源,还包括:
压缩机转速获取单元,用于采集压缩机电流,并计算出压缩机转速ω;
控制单元,用于比较压缩机转速ω与压缩机转速阈值ω1,并根据比较结果对主电路单元作如下控制:
当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。
在一些可选实施例中,所述主电路单元包括整流器、功率因数校正电路、平波电路以及逆变器,所述整流器的输入端为交流电,所述整流器的输出端与所述功率因数校正电路的输入端电连接,所述功率因数校正电路通过平波电路连接至逆变器,所述逆变器的输出端与压缩机电连接;
当压缩机转速ω<ω1时,功率因数校正电路输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高功率因数校正电路输出电压;当功率因数校正电路输出电压无法继续升高时,压缩机进入弱磁控制。
在一些可选实施例中,所述平波电路为电容滤波电路。
根据本申请的第二方面,提供了一种空调,包含前述压缩机弱磁控制装置。
根据本申请的第三方面,提供了一种压缩机弱磁控制方法,包括,
采集压缩机电流,计算出压缩机转速ω;
设置压缩机转速阈值ω1,当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。
在一些可选实施例中,所述主电路单元包括整流器、功率因数校正电路、平波电路以及逆变器,所述整流器的输入端为交流电,所述整流器的输出端与所述功率因数校正电路的输入端电连接,所述功率因数校正电路通过平波电路连接至逆变器,所述逆变器的输出端与压缩机电连接;
当压缩机转速ω<ω1时,功率因数校正电路输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高功率因数校正电路输出电压;当功率因数校正电路输出电压无法继续升高时,压缩机进入弱磁控制。
在一些可选实施例中,所述平波电路为电容滤波电路。
根据本申请的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被处理器执行时实现如前述的压缩机弱磁控制方法。
本申请提供的技术方案可以包括以下有益效果:
通过设置一个压缩机转速阈值,当压缩机转速大于等于该阈值时,暂不进入弱磁控制,而是升高压缩机驱动电压,直到压缩机驱动电压无法再升高时,才进入弱磁控制。以此方式,最大程度地延缓压缩机进入弱磁控制的时间,最大程度地保证压缩机不进入弱磁控制,提高系统的稳定性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种压缩机弱磁控制装置的电路结构框图。
图2是根据一示例性实施例示出的一种压缩机弱磁控制装置中主电路单元的电路结构示意图。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结 构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本文中,除非另有说明,术语“多个”表示两个或两个以上。
本文中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
本文中,术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
如图1所示,一种压缩机弱磁控制装置,包括:主电路单元和压缩机,所述主电路单元为所述压缩机提供电源;还包括:
压缩机转速获取单元,用于采集压缩机电流,并计算出压缩机转速ω;
控制单元,用于比较压缩机转速ω与压缩机转速阈值ω1,并根据比较结果对主电路单元作如下控制:
当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0,该固定值V0一般比输入峰值高20V左右,不同厂家可以选取不同的值;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。
采用本实施例,通过设置一个压缩机转速阈值,当压缩机转速大于等于该阈值时,暂不进入弱磁控制,而是升高压缩机驱动电压,直到压缩机驱动电压无法再升高时,才进入弱磁控制。以此方式,最大程度地延缓压缩机进入弱磁控制的时间,最大程度地保证压缩机不进入弱磁控制,提高系统的稳定性。
具体地,如图2所示,所述主电路单元包括整流器、功率因数校正电路、平波电路以及逆变器,所述整流器的输入端为交流电,对交流电源进行全波整流;所述整流器的输出端与所述功率因数校正电路的输入端电连接,所述功率因数校正电路用于控制PWM的占空比,从而提高输出电压;所述功率因数校正电路通过平波电路连接至逆变器,所述逆变器用于将直流电逆变成交流电,从而控制压缩机的转速。如图所示,所述平波电路为电容滤波电路。
当压缩机转速ω<ω1时,功率因数校正电路输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高功率因数校正电路输出电压;当功率因数校正电路输出电压无法继续升高时,压缩机进入弱磁控制。
其中,通过压缩机电流计算出压缩机转速属于现有技术。例如,压缩机转速获取单元采集压缩机电流I U、I V、I W(I U、I V、I W分别代表压机的U,V,W相电流),然后 坐标转换,转换成i α、i β
通过公式:
Figure PCTCN2019076423-appb-000001
Figure PCTCN2019076423-appb-000002
有:
Figure PCTCN2019076423-appb-000003
根据转速计算公式:
Figure PCTCN2019076423-appb-000004
Figure PCTCN2019076423-appb-000005
可计算出压机转速。
其中,u α为旋转坐标系下,α轴电压;u β为旋转坐标系下,β轴电压;i α为旋转坐标系下,α轴电流;i β为旋转坐标系下,β轴电流;R s为压机相电阻,L s为压机相电感,e α为旋转坐标系下,α轴的反电势;e β为旋转坐标系下,β轴的反电势;T s为PWM的开关周期;θ(n)为转子磁通方向与α轴的夹角;K为速度常数。
根据本申请的第二方面,提供了一种空调,包含前述压缩机弱磁控制装置。
根据本申请的第三方面,提供了一种压缩机弱磁控制方法,包括,
采集压缩机电流,计算出压缩机转速ω;
设置压缩机转速阈值ω1,当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。
在一些可选实施例中,所述主电路单元包括整流器、功率因数校正电路、平波电路以及逆变器,所述整流器的输入端为交流电,所述整流器的输出端与所述功率因数校正电路的输入端电连接,所述功率因数校正电路通过平波电路连接至逆变器,所述逆变器的输出端与压缩机电连接;
当压缩机转速ω<ω1时,功率因数校正电路输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高功率因数校正电路输出电压;当功率因数校正电路输出电压无法继续升高时,压缩机进入弱磁控制。
在一些可选实施例中,所述平波电路为电容滤波电路。
根据本申请的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被处理器执行时实现如前述的压缩机弱磁控制方法。
在一些可选的实施例中,计算机可读存储介质存储有计算机程序,当计算机程序被处理器执行时实现前述的三相逆变器的控制方法。上述计算机可读存储介质包括只 读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁带和光存储设备等。
本申请并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (8)

  1. 一种压缩机弱磁控制装置,包括压缩机和主电路单元,所述主电路单元为所述压缩机提供电源,其特征在于,还包括:
    压缩机转速获取单元,用于采集压缩机电流,并计算出压缩机转速ω;
    控制单元,用于比较压缩机转速ω与压缩机转速阈值ω1,并根据比较结果对主电路单元作如下控制:
    当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。
  2. 根据权利要求1所述的压缩机弱磁控制装置,其特征在于:所述主电路单元包括整流器、功率因数校正电路、平波电路以及逆变器,所述整流器的输入端为交流电,所述整流器的输出端与所述功率因数校正电路的输入端电连接,所述功率因数校正电路通过平波电路连接至逆变器,所述逆变器的输出端与压缩机电连接;
    当压缩机转速ω<ω1时,功率因数校正电路输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高功率因数校正电路输出电压;当功率因数校正电路输出电压无法继续升高时,压缩机进入弱磁控制。
  3. 根据权利要求2所述的压缩机弱磁控制装置,其特征在于:所述平波电路为电容滤波电路。
  4. 一种空调,其特征在于:包括压缩机弱磁控制装置。
  5. 一种压缩机弱磁控制方法,其特征在于,包括,
    采集压缩机电流,计算出压缩机转速ω;
    设置压缩机转速阈值ω1,当压缩机转速ω<ω1时,主电路单元输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高主电路单元输出电压;当主电路单元电压无法继续升高时,压缩机进入弱磁控制。
  6. 根据权利要求5所述的压缩机弱磁控制方法,其特征在于:所述主电路单元包括整流器、功率因数校正电路、平波电路以及逆变器,所述整流器的输入端为交流电,所述整流器的输出端与所述功率因数校正电路的输入端电连接,所述功率因数校正电路通过平波电路连接至逆变器,所述逆变器的输出端与压缩机电连接;
    当压缩机转速ω<ω1时,功率因数校正电路输出电压控制在固定值V0;当压缩机转速ω≥ω1时,暂不进入弱磁控制,升高功率因数校正电路输出电压;当功率因数校正电路输出电压无法继续升高时,压缩机进入弱磁控制。
  7. 根据权利要求6所述的压缩机弱磁控制方法,其特征在于:所述平波电路为电容滤波电路。
  8. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序被处理器执行时实现如权利要求5至7中任意一项所述的压缩机弱磁控制方法。
PCT/CN2019/076423 2018-11-28 2019-02-28 压缩机弱磁控制装置、空调、方法及存储介质 WO2020107731A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19883333.7A EP3799294A4 (en) 2018-11-28 2019-02-28 COMPRESSOR, AIR CONDITIONER, STORAGE STORAGE PROCESS AND SUPPORT CONTROL UNIT
US16/767,075 US11480374B2 (en) 2018-11-28 2019-02-28 Device and method for field weakening control of compressor, air conditioner and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811469185.5 2018-11-28
CN201811469185.5A CN111238099A (zh) 2018-11-28 2018-11-28 压缩机弱磁控制装置、空调、方法及存储介质

Publications (1)

Publication Number Publication Date
WO2020107731A1 true WO2020107731A1 (zh) 2020-06-04

Family

ID=70854705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076423 WO2020107731A1 (zh) 2018-11-28 2019-02-28 压缩机弱磁控制装置、空调、方法及存储介质

Country Status (4)

Country Link
US (1) US11480374B2 (zh)
EP (1) EP3799294A4 (zh)
CN (1) CN111238099A (zh)
WO (1) WO2020107731A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322227A (zh) * 2021-12-30 2022-04-12 海信(山东)空调有限公司 压缩机的控制方法及装置、家用电器和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811880B (zh) * 2022-02-28 2024-04-05 青岛国创智能家电研究院有限公司 用于直流空调器除霜的方法及装置、直流空调器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817055A (zh) * 2016-09-30 2017-06-09 比亚迪股份有限公司 轨道交通牵引系统及其的永磁同步电机的控制方法和装置
WO2018078845A1 (ja) * 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置、空気調和機および電動機の駆動方法
CN108336941A (zh) * 2018-01-03 2018-07-27 广东美芝制冷设备有限公司 控制电路、控制方法、永磁同步电机、压缩机与存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157203A (ja) * 1987-12-14 1989-06-20 Nissan Motor Co Ltd 電動車両の速度制御装置
JP2003199382A (ja) * 2001-12-28 2003-07-11 Fujitsu General Ltd ブラシレスdcモータの制御方法
JP3971979B2 (ja) * 2002-09-13 2007-09-05 日立アプライアンス株式会社 空気調和装置
JP4476049B2 (ja) * 2004-06-30 2010-06-09 三洋電機株式会社 ブラシレスモータの制御装置
CN101025156B (zh) * 2006-02-24 2010-04-21 海尔集团公司 一种直流变频压缩机驱动装置和方法
CN101390281A (zh) * 2006-06-26 2009-03-18 三洋电机株式会社 电动机的驱动装置
JP5246508B2 (ja) 2009-05-28 2013-07-24 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
JP5493568B2 (ja) * 2009-08-06 2014-05-14 株式会社デンソー 電動機駆動装置及び電動機駆動装置の制御方法ならびに電動装置
CN102400899A (zh) * 2010-09-13 2012-04-04 海尔集团公司 空调压缩机的控制装置、控制方法、变频空调
KR20140095800A (ko) * 2013-01-25 2014-08-04 한라비스테온공조 주식회사 전동 압축기의 인버터 제어 방법 및 장치
JP5825319B2 (ja) * 2013-10-16 2015-12-02 ダイキン工業株式会社 電力変換装置ならびに空気調和装置
JP6349165B2 (ja) * 2014-06-27 2018-06-27 日立ジョンソンコントロールズ空調株式会社 昇圧回路、モータ駆動モジュール及び冷凍機器
JP6933469B2 (ja) * 2017-02-10 2021-09-08 株式会社コロナ モータ制御回路、モータ制御方法、及びプログラム
CN106918121A (zh) 2017-03-31 2017-07-04 广东美的制冷设备有限公司 空调器及其的控制方法和装置
CN107449192B (zh) * 2017-07-28 2019-12-20 广东美的制冷设备有限公司 变频压缩机的频率调节方法、装置及可读存储介质
CN107707165B (zh) * 2017-09-30 2020-08-14 广东美的制冷设备有限公司 压缩机的控制方法、压缩机系统及制冷设备
CN108258961B (zh) * 2018-01-03 2020-10-16 广东美芝制冷设备有限公司 电机控制方法及控制装置、永磁同步电机及存储介质
CN110492822B (zh) * 2019-08-22 2022-09-16 青岛海尔空调电子有限公司 变频空调器及其弱磁控制限制电压设定方法和控制方法
CN111628660B (zh) * 2020-06-05 2021-08-27 浙江鲲悟科技有限公司 压缩机变频调速系统及直流母线电压的控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817055A (zh) * 2016-09-30 2017-06-09 比亚迪股份有限公司 轨道交通牵引系统及其的永磁同步电机的控制方法和装置
WO2018078845A1 (ja) * 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置、空気調和機および電動機の駆動方法
CN108336941A (zh) * 2018-01-03 2018-07-27 广东美芝制冷设备有限公司 控制电路、控制方法、永磁同步电机、压缩机与存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3799294A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322227A (zh) * 2021-12-30 2022-04-12 海信(山东)空调有限公司 压缩机的控制方法及装置、家用电器和存储介质
CN114322227B (zh) * 2021-12-30 2023-09-15 海信空调有限公司 压缩机的控制方法及装置、家用电器和存储介质

Also Published As

Publication number Publication date
EP3799294A1 (en) 2021-03-31
US11480374B2 (en) 2022-10-25
CN111238099A (zh) 2020-06-05
EP3799294A4 (en) 2021-12-15
US20210207860A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
CN104079217B (zh) 电机控制装置和磁极位置估计方法
JP4693904B2 (ja) 電動機駆動装置及び圧縮機駆動装置
JP6325599B2 (ja) 同期機の運転方法
US8525450B2 (en) Power factor correction drive circuit topologies and control for switched reluctance machines
WO2020107731A1 (zh) 压缩机弱磁控制装置、空调、方法及存储介质
CN107800347B (zh) 交流电机控制方法、交流电机控制电路及空调器
WO2019227860A1 (zh) 永磁同步电机的永磁磁链的辨识方法及辨识装置
WO2013177862A1 (zh) 一种变速风机系统及其控制方法
Singh et al. A single sensor based PFC Zeta converter Fed BLDC motor drive for fan applications
CN104410341A (zh) 基于直流电压调节的低速转矩脉动抑制装置及抑制方法
JP4522273B2 (ja) モータ制御装置及びこれを有するモータ駆動システム
KR101911265B1 (ko) 병렬 운전 모터의 구동 장치 및 이를 포함하는 공기 조화기
CN204046485U (zh) 吸尘器及其控制电路
JP2009225596A (ja) 電動機の駆動装置、空気調和機、洗濯機、洗濯乾燥機、冷蔵庫、換気扇、ヒートポンプ給湯器
TWI587623B (zh) 同步電機控制電路及控制方法
CN104410340A (zh) 基于直流母线电压调节的高速转矩脉动抑制装置及其方法
CN105450144A (zh) 吸尘器及其控制电路
CN108923714B (zh) 验证方法、验证装置、驱动系统、同步电机和存储介质
WO2017187533A1 (ja) モータ駆動装置、電気掃除機及びハンドドライヤー
Farasat et al. Efficiency-optimized hybrid field oriented and direct torque control of induction motor drive
CN113315361B (zh) 一种变频器欠压保护值的自适应控制方法
Olarescu et al. Optimum torque control algorithm for wide speed range and four quadrant operation of stator flux oriented induction machine drive without regenerative unit
CN207835373U (zh) 一种自动调节发动机转速的控制系统
KR102554511B1 (ko) 사이리스터 기동 장치
JP3687043B2 (ja) 同期電動機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019883333

Country of ref document: EP

Effective date: 20201223

NENP Non-entry into the national phase

Ref country code: DE