WO2020107508A1 - 拼接测量装置和方法 - Google Patents

拼接测量装置和方法 Download PDF

Info

Publication number
WO2020107508A1
WO2020107508A1 PCT/CN2018/119375 CN2018119375W WO2020107508A1 WO 2020107508 A1 WO2020107508 A1 WO 2020107508A1 CN 2018119375 W CN2018119375 W CN 2018119375W WO 2020107508 A1 WO2020107508 A1 WO 2020107508A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment mechanism
plane mirror
mirror
angle
adjusted
Prior art date
Application number
PCT/CN2018/119375
Other languages
English (en)
French (fr)
Inventor
徐富超
贾辛
甘大春
邢廷文
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to US16/626,864 priority Critical patent/US11365964B2/en
Publication of WO2020107508A1 publication Critical patent/WO2020107508A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02085Combining two or more images of different regions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image

Definitions

  • the invention belongs to the field of optical detection, and relates to a device and method for splicing and measuring the shape of a concave spherical surface.
  • a lithographic lens is a complex optical system composed of dozens of lenses. Some mirrors have large apertures, making it difficult to develop corresponding standard lenses.
  • the stitching measurement is to plan a mirror surface into multiple small sub-apertures, and measure each sub-aperture one by one, and then combine the surface shape of the sub-aperture into the entire mirror surface shape by an algorithm.
  • an automatic splicing interferometer has been proposed to realize automatic splicing measurement of optical components, but the detection accuracy is low, and it is only used as a process detection instrument in high-precision lens processing.
  • the main reason for its low accuracy is that during the splicing measurement, the outer ring area of the test piece needs to be tilted by a certain angle to match the state of the standard mirror, and this tilt will deform the test piece, and the amount of deformation is directly substituted into the test result Medium, can not achieve high-precision detection purposes. Therefore, there is an urgent need for an improved splicing measurement device.
  • a splicing measurement device which is suitable for splicing measurement of a concave spherical surface.
  • the splicing measurement device includes: an interferometer, a reference lens, a first planar mirror, and a second planar reflection A mirror, a first adjustment mechanism, a second adjustment mechanism, a test object with a concave spherical surface, a motion table, and a control mechanism, the first planar mirror is mounted on the first adjustment mechanism, and the first adjustment mechanism is configured to change the first planar mirror
  • the second plane mirror is installed on the second adjustment mechanism, the second adjustment mechanism is configured to change the position of the second plane mirror; the test piece is placed on the motion table, the motion table is configured to change the test piece
  • the first planar mirror and the second planar reflection The angle between the mirrors can be adjusted so that the light incident on the object under test is inclined at a first angle relative to the light emitted from the reference lens, thereby avoiding tilting the object under test.
  • the first adjustment mechanism is configured to cause the first planar mirror to translate in the first direction, the second direction, the third direction, and rotate about the second direction; wherein, the The first direction, the second direction, and the third direction are perpendicular to each other; the second adjustment mechanism is configured such that the second planar mirror is along the first direction, the second direction, the first Translation in three directions and rotation around the second direction; and the motion table is configured to translate and rotate the object under test in the first direction and the third direction and around the third direction.
  • the first adjustment mechanism and the second adjustment mechanism when measuring the outer ring sub-aperture of the device under test, respectively adjust the first adjustment mechanism according to the control signal sent by the control mechanism
  • the plane mirror and the second plane mirror are positioned so that the angle between the first and second plane mirrors is adjusted to a second angle, and the second angle is half of the first angle;
  • the control signal sent by the control mechanism adjusts the position of the object under test so that the center of the object under test moves to the first focus, the first focus is adjusted by the first planar mirror and the first Two plane mirrors are formed by reflection.
  • the first planar mirror is adjusted to be close to the focal point of the reference lens and is substantially perpendicular to the edge light emitted from the reference lens.
  • the second plane mirror is adjusted to reflect all light reflected by the first plane mirror to the test object.
  • the second planar mirror is adjusted so as not to block the measurement beam from being emitted onto the first planar mirror.
  • the motion stage when measuring the central sub-aperture of the test piece, adjusts the position of the test piece according to the control signal issued by the control mechanism, so that the spherical center of the test piece and the reference The focal points of the lenses coincide; the first adjustment mechanism and the second adjustment mechanism adjust the positions of the first plane mirror and the second plane mirror according to the control signals sent by the control mechanism, respectively, so that the first plane mirror and the second plane mirror leave Light path.
  • the first plane mirror and the second plane mirror are respectively adjusted to be located on both sides of the optical path or on the same side of the optical path.
  • the splicing measurement method includes the following steps: step (1): according to the reference lens and the measured The parameters of the device are used to calculate the number and position of the sub-apertures, the first angle of measurement beam tilt when measuring the sub-aperture of the outer ring and the angle between the adjacent sub-apertures of the outer ring, so that the device under test can be completely covered by the sub-aperture ; Step (2): adjust the position of the test piece through the motion table according to the control signal sent by the control mechanism, so that the center of the ball of the test piece coincides with the focus of the reference lens, and according to the control issued by the control mechanism The signal adjusts the positions of the first plane mirror and the second plane mirror by the first adjustment mechanism and the second adjustment mechanism, respectively, so that the first plane mirror and the second plane mirror leave the optical path, and then uses the control mechanism to control the interferometer measurement center.
  • step (3) according to the control signal sent by the control mechanism, the position of the first plane mirror and the second plane mirror are adjusted by the first adjusting mechanism and the second adjusting mechanism, respectively, so that the first The angle between the mirror and the second plane mirror is adjusted so that the light incident on the DUT is inclined at a first angle relative to the light emitted from the reference lens, and the motion table is used according to the control signal from the control mechanism Adjusting the position of the test piece so that the center of the ball of the test piece moves to the first focus, which is formed by the reflection of the first plane mirror and the second plane mirror after the focus of the reference lens is adjusted, Then use the control mechanism to control the interferometer to measure the shape of the first sub-aperture of the outer ring; step (4): use the motion table according to the control signal sent by the control mechanism to rotate the outer ring around the direction perpendicular to the plane of the motion table The angle between the adjacent sub-apertures, and the interferometer is controlled by the control mechanism to sequentially measure the surface
  • step (3) the angle between the first planar mirror and the second planar mirror is adjusted to a second angle, and the second angle is the first Half of an angle.
  • the first planar mirror is adjusted to be close to the focal point of the reference lens and is substantially perpendicular to the edge light emitted from the reference lens.
  • step (3) the second plane mirror is adjusted to reflect all light rays reflected by the first plane mirror to the test object.
  • step (3) the second planar mirror is adjusted so as not to block the measurement beam from being emitted onto the first planar mirror.
  • FIG. 1 is a schematic diagram of the outer ring sub-aperture measured by a splicing measurement device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of sub-aperture planning according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the optical path of the splicing measurement device shown in FIG. 1;
  • FIG. 4 is a partial enlarged view of the optical path shown in FIG. 3;
  • FIG. 5 is a schematic diagram of a central sub-aperture measured by a splicing measurement device according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the optical path of the splicing measurement device shown in FIG. 5.
  • the splicing measurement device includes an interferometer 101, a reference lens, a plane mirror 103, a plane mirror 104, an adjustment mechanism 105, an adjustment mechanism 106, a concave spherical object to be measured 107, a motion stage 108, and a control mechanism.
  • the reference lens is a spherical standard mirror 102
  • the control mechanism is a computer 109.
  • the plane mirror 103 is installed on an adjustment mechanism 105, which can translate and rotate the plane mirror 103 in the X, Y, and Z directions, and the Y axis coordinate system is the coordinate of the adjustment mechanism 105
  • Plane mirror 104 is installed on the adjustment mechanism 106, the adjustment mechanism 106 can make the plane mirror 104 translate and rotate in the X, Y, Z direction and around the Y direction, wherein the XYZ coordinate system is the coordinate system of the adjustment mechanism 106; concave spherical surface
  • the test object 107 is mounted on a moving table 108, which can make the concave spherical test object 107 translate in X, Z and rotate around the Z direction, where the XYZ coordinate system is the coordinate system of the moving table 108.
  • the computer 109 communicates with the interferometer 101, the adjustment mechanism 105, the adjustment mechanism 106, and the motion table 108 for sending out control signals.
  • the mechanism 105 and 106 can be adjusted so that the plane mirrors 103 and 104 have a certain angle, so that the light incident on the concave spherical object to be measured 107
  • the angle ⁇ y is inclined with respect to the light emitted from the spherical standard mirror 102.
  • Step (1) Plan the position of the aperture and the optical path.
  • the concave spherical object to be measured 107 can be completely covered by the sub-aperture.
  • the radius of curvature of the spherical standard mirror 102 is 354 mm
  • the diameter is 300 mm
  • the radius of curvature of the concave spherical test object 107 is 296 mm
  • the diameter is 293 mm
  • the planning scheme of the sub-aperture is: Seven sub-apertures are used, one at the center and six at the outer ring.
  • the angle ⁇ z between adjacent sub-apertures of the outer ring is 60 degrees
  • the measurement beam tilt angle ⁇ y is 6 degrees.
  • the thick solid line represents the concave spherical object under test 107
  • the thick dotted line represents the corresponding region of the central subaperture
  • the thin dotted line represents the corresponding region of the outer ring subaperture
  • the black dots represent the centers of each subaperture.
  • Step (2) Measure the surface shape of the central sub-aperture.
  • the computer 109 controls the motion stage 108 to adjust the position of the concave spherical test object 107 so that the focus O of the spherical standard mirror 102 coincides with the spherical center of the concave spherical test object 107, and the computer 109 controls the adjustment
  • the mechanisms 105 and 106 adjust both the plane mirrors 103 and 104 away from the optical path, and then the computer 109 controls the interferometer 101 to measure the shape of the central sub-aperture.
  • the computer 109 controls the adjustment mechanism 105 to adjust the plane mirror 103 to the left of the optical path, and the computer 109 controls the adjustment mechanism 106 to adjust the plane mirror 104 to the right of the optical path.
  • the computer 109 controls the adjustment mechanisms 105 and 106 to adjust to the left or right of the optical path.
  • the computer 109 controls the adjustment mechanism 105 to adjust the plane mirror 103 to the right side of the optical path, and the computer 109 controls the adjustment mechanism 106 to adjust the plane mirror 104 to the left side of the optical path.
  • FIG. 6 is a schematic diagram of the optical path of the splicing measurement device shown in FIG. 5.
  • the measurement beam emitted from the spherical standard mirror 102 is incident on the concave spherical object under test 107 and then returns along the original path.
  • the focal point O of the measurement beam coincides with the spherical center of the concave spherical object under test 107.
  • Step (3) Measure the surface shape of the first sub-aperture of the outer ring.
  • the computer 109 controls the adjustment mechanisms 105 and 106 to adjust the positions of the plane mirrors 103 and 104 so that the angle between the plane mirrors 103 and 104 is adjusted, so that the incident on the concave spherical object to be measured 107 Of light is inclined at an angle ⁇ y with respect to the light emitted from the spherical standard mirror 102. Furthermore, the computer 109 controls the motion stage 108 to adjust the position of the test object 107 so that the center of the test object 107 moves to the focus O1, where the focus O1 is the flat mirror 103 and the flat mirror 103 after the focus O of the spherical standard mirror 102 is adjusted 104 reflection formed. Then, the computer 109 controls the interferometer 101 to measure the surface shape of the first sub-aperture of the outer ring.
  • the computer 109 controls the adjustment mechanism 105 to adjust the position of the plane mirror 103 so that the plane mirror 103 is close to the focal point O and is substantially perpendicular to the edge light emitted by the spherical standard mirror 102, thereby allowing The size of the flat mirror 104 is minimized.
  • the computer 109 controls the adjustment mechanism 106 to adjust the position of the plane mirror 104 so that the angle between the plane mirror 104 and the plane mirror 103 is ⁇ y/2 degrees. As shown in FIG. 1, the angle between the plane mirror 104 and the plane mirror 103 is 3 degrees.
  • the position of the plane mirror 104 is set so as not to block the measurement beam incident on the plane mirror 103.
  • the position of the plane mirror 104 is set to allow all the light reflected by the plane mirror 103 to be incident on the concave spherical object to be measured 107.
  • FIG. 3 is a schematic diagram of the optical path of the splicing measurement device shown in FIG. 1;
  • FIG. 4 is a partially enlarged view of the optical path shown in FIG.
  • the measuring beam emitted from the spherical standard mirror 102 is reflected by the plane mirrors 103 and 104 in sequence, and then enters the concave spherical object under test 107 with an angle of ⁇ y relative to the measuring beam emitted from the spherical standard mirror 102. Go up, and then return along the original path.
  • the tilt of the measuring beam is achieved by adjusting the angle between the reflections of the two planes, thereby eliminating the need to tilt the concave spherical test object, avoiding deformation errors caused by tilting the test object, achieving high-precision splicing detection, and reducing The difficulty of designing tooling for test piece
  • Step (4) successively measure the remaining sub-aperture profiles of the outer ring.
  • the computer 109 controls the motion stage 108 so that the measured object 107 sequentially rotates the angle ⁇ z of the adjacent sub-aperture of the outer ring around the Z-axis direction, and then the computer 109 controls the interferometer 101 to sequentially measure the surface shape of the outer ring sub-aperture until all Until the sub-aperture is measured.
  • the test object 107 is sequentially rotated by 60 degrees around the Z-axis direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种拼接测量装置,适于对凹球面的面形进行拼接测量,该拼接测量装置包括:干涉仪(101)、参考透镜(102)、第一平面反射镜(103)、第二平面反射镜(104)、第一调整机构(105)、第二调整机构(106)、凹球面的被测件(107)、运动台(108)和控制机构(109),第一平面反射镜(103)安装在第一调整机构(105)上,第一调整机构(105)配置成改变第一平面反射镜(103)的位置;第二平面反射镜(104)安装在第二调整机构(106)上,第二调整机构(106)配置成改变第二平面反射镜(104)的位置;被测件(107)放置在运动台(108)上,运动台(108)配置成改变被测件(107)的位置;控制机构(109)与干涉仪(101)、第一调整机构(105)、第二调整机构(106)和运动台(108)相连通以发出控制信号,借助于第一调整机构(105)和第二调整机构(106),第一平面反射镜(103)和第二平面反射镜(104)之间的夹角能被调节以使得入射到被测件(107)上的光线相对于从参考透镜(102)射出的光线倾斜第一角度,从而避免倾斜被测件(107)。

Description

拼接测量装置和方法
相关申请的交叉引用
本申请要求于2018年11月28日提交的、申请号为201811434724.1、发明名称为“拼接测量装置和方法”的中国专利申请的优先权,该申请的全部内容在此通过引用并入本文。
技术领域
本发明属于光学检测领域,涉及一种对凹球面的面形进行拼接测量的装置和方法。
背景技术
光刻镜头是一个由几十片镜片组成的复杂的光学系统,部分镜面口径大,对应的标准镜头研制困难。拼接测量通过将一个镜面规划为多个小的子孔径,并逐个子孔径测量,然后再将子孔径的面形通过算法组合成整个镜面的面形。在相关技术中,已提出了一种自动拼接干涉仪,实现了对光学元件的自动拼接测量,但检测精度低,只作为高精度镜片加工中的过程检测仪器。其精度低的最主要原因是在拼接测量过程中,被测件的外环区域需要倾斜一定的角度去匹配标准镜的状态,而这种倾斜会使得被测件变形,变形量直接代入检测结果中,无法达到高精度检测目的。因此,亟须一种改进的拼接测量装置。
发明内容
根据本发明的一个方面,提供了一种拼接测量装置,适于对凹球面的面形进行拼接测量,所述拼接测量装置包括:干涉仪、参考透镜、第一平面反射镜、第二平面反射镜、第一调整机构、第二调整机构、凹球面的被测件、运动台和控制机构,第一平面反射镜安装在第一调整机构上,第一调整机构配置成改变第一平面反射镜的位置;第二平面反射镜安装在第二调整机构上,第二调整机构配置成改变第二平面反射镜的位置;被测件放置在运动台上,运动台配置成改变所述被测件的位置;控制机构与干涉仪、第一调整机构、第二调整机构和运动台相连通以发出控制信号,借助于第一调整机构和第二调整机构,第一平面反射镜和第二平面反射镜之间的夹角能被调节以使得入射到被测件上的光线相对于从参考透镜射出的光线倾斜第一角度,从而避免倾斜被测件。
根据本发明的一个示例性实施例,所述第一调整机构配置成使得所述第一平面反射镜沿第一方向、第二方向、第三方向平移和绕第二方向旋转;其中,所述第一方向、所述第二方向和所述第三方向相互垂直;所述第二调整机构配置成使得所述第二平面反射镜沿所述第 一方向、所述第二方向、所述第三方向平移和绕所述第二方向旋转;以及所述运动台配置成使被测件沿所述第一方向和所述第三方向平移和绕所述第三方向旋转。
根据本发明的一个示例性实施例,在测量所述被测件的外环子孔径时,所述第一调整机构和第二调整机构根据所述控制机构发出的控制信号分别调整所述第一平面反射镜和第二平面反射镜的位置,使得第一和第二平面反射镜之间的夹角被调整成第二角度,并且第二角度是第一角度的一半;所述运动台根据所述控制机构发出的控制信号调整被测件的位置,使得被测件的球心移动到第一焦点,所述第一焦点由所述参考透镜的焦点被调整后的第一平面反射镜和第二平面反射镜反射形成。
根据本发明的一个示例性实施例,所述第一平面反射镜被调整成靠近所述参考透镜的焦点并大致垂直于从所述参考透镜射出的边缘光线。
根据本发明的一个示例性实施例,所述第二平面反射镜被调整成能够将经所述第一平面反射镜反射的全部光线反射到待测件上。
根据本发明的一个示例性实施例,所述第二平面反射镜被调整成不阻挡测量光束射出到所述第一平面反射镜上。
根据本发明的一个示例性实施例,在测量被测件的中心子孔径时,所述运动台根据所述控制机构发出的控制信号调整被测件的位置,使得被测件的球心与参考透镜的焦点重合;所述第一调整机构和所述第二调整机构分别根据所述控制机构发出的控制信号调整第一平面镜和第二平面镜的位置,使得所述第一平面镜和第二平面镜离开光路。
根据本发明的一个示例性实施例,所述第一平面镜和第二平面镜分别被调整成位于光路的两侧,或者位于光路的同一侧。
根据本发明的另一方面,提供了一种使用上述实施例中任一个所述的拼接测量装置的拼接测量方法,所述拼接测量方法包括如下步骤:步骤(1):根据参考透镜和被测件的参数来计算子孔径的个数和位置、测量外环子孔径时测量光束倾斜的第一角度和外环相邻子孔径的夹角,以使得被测件能被所述子孔径完全覆盖;步骤(2):根据所述控制机构发出的控制信号通过所述运动台调整被测件的位置,使得被测件的球心与参考透镜的焦点重合,并根据所述控制机构发出的控制信号分别利用所述第一调整机构和所述第二调整机构调整第一平面镜和第二平面镜的位置,使得所述第一平面镜和第二平面镜离开光路,然后利用控制机构控制干涉仪测量中心子孔径的面形;步骤(3):根据所述控制机构发出的控制信号分别利用第一调整机构和第二调整机构调整所述第一平面反射镜和第二平面反射镜的位置,使得第一和第二平面反射镜之间的夹角被调整,从而使得入射到被测件上的光线相对于从参考透镜射出的光线倾斜第一角度,并根据所述控制机构发出的控制信号利用运动台调整被测件的位 置,使得被测件的球心移动到第一焦点,所述第一焦点由所述参考透镜的焦点被调整后的第一平面反射镜和第二平面反射镜反射形成,然后利用控制机构控制干涉仪测量外环第1个子孔径的面形;步骤(4):根据控制机构发出的控制信号利用运动台使得被测件绕垂直于运动台所在平面的方向依次转动外环相邻子孔径的夹角,并利用控制机构控制干涉仪依次测量外环子孔径的面形,直到外环所有的子孔径被测量完为止。
根据本发明的一个示例性实施例,在步骤(3)中,第一平面反射镜和第二平面反射镜之间的夹角被调整成第二角度,并且所述第二角度是所述第一角度的一半。
根据本发明的一个示例性实施例,在步骤(3)中,所述第一平面反射镜被调整成靠近所述参考透镜的焦点并大致垂直于从所述参考透镜射出的边缘光线。
根据本发明的一个示例性实施例,在步骤(3)中,所述第二平面反射镜被调整成能够将经所述第一平面反射镜反射的全部光线反射到待测件上。
根据本发明的一个示例性实施例,在步骤(3)中,所述第二平面反射镜被调整成不阻挡测量光束射出到所述第一平面反射镜上。
与相关技术相比,本发明的优点在于:
1)在拼接测量中无需倾斜被测件,从而避免因倾斜被测件带来的变形误差,实现高精度的拼接检测。
2)在拼接测量中无需倾斜被测件,从而降低了被测件工装的设计难度。
附图说明
下面结合附图和实施例对申请作进一步描述,其中:
图1为根据本发明的一个实施例的拼接测量装置测量外环子孔径的示意图;
图2为根据本发明的一个实施例的子孔径的规划的示意图;
图3为图1所示的拼接测量装置的光路的示意图;
图4为图3所示的光路的局部放大图;
图5为根据本发明的一个实施例的拼接测量装置测量中心子孔径的示意图;
图6为图5所示的拼接测量装置的光路的示意图。
具体实施方式
如图1所示,拼接测量装置包括干涉仪101、参考透镜、平面反射镜103、平面反射镜104、调整机构105、调整机构106、凹球面被测件107、运动台108和控制机构。如图1所示,参考透镜为球面标准镜102,控制机构为计算机109。如图1所示,平面反射镜103安 装在调整机构105上,调整机构105可使平面反射镜103沿X、Y、Z方向平移和绕Y方向旋转,其中XYZ坐标系为调整机构105的坐标系;平面反射镜104安装在调整机构106上,调整机构106可使平面反射镜104沿X、Y、Z方向平移和绕Y方向旋转,其中XYZ坐标系为调整机构106的坐标系;凹球面被测件107安装在运动台108上,运动台108可使凹球面被测件107沿X、Z平移和绕Z方向旋转,其中XYZ坐标系为运动台108的坐标系。计算机109与干涉仪101、调整机构105、调整机构106和运动台108相连通以用于发出控制信号。在一个实施例中,当需要测量外环子孔径时,可以通过调整机构105和106使得平面反射镜103和104之间具有一定的夹角,从而使得入射到凹球面被测件107上的光线相对于从球面标准镜102射出的光线倾斜角度θy。
下面将结合图1-6来描述使用本发明实施例的拼接测量装置进行拼接测量的方法。
步骤(1):规划孔径的位置和光路。
根据球面标准镜102和凹球面被测件107的参数,规划各子孔径的个数和位置、计算测量外环子孔径时测量光束倾斜的角度θy、外环相邻子孔径的夹角θz,使得凹球面被测件107能够被子孔径完全覆盖。
在一个实施例中,如图2所示,球面标准镜102的曲率半径为354mm,口径为300mm,凹球面被测件107的曲率半径为296mm,口径为293mm,子孔径的规划方案为:共采用7个子孔径,中心位置设置1个,外环位置设置6个,外环相邻子孔径的夹角θz为60度,测量光束倾斜角度θy为6度。在图2中,粗实线代表凹球面被测件107,粗虚线代表中心子孔径对应区域,细虚线代表外环子孔径的对应区域,黑点代表各子孔径的中心。
步骤(2):测量中心子孔径的面形。
搭建如图5所示的测量平台,计算机109控制运动台108调整凹球面被测件107的位置,使得球面标准镜102的焦点O与凹球面被测件107的球心重合,计算机109控制调整机构105和106将平面反射镜103和104都调整为离开光路,然后计算机109控制干涉仪101测量中心子孔径的面形。
如图5所示,计算机109控制调整机构105将平面反射镜103调整到光路的左侧,并且计算机109控制调整机构106将平面反射镜104调整到光路的右侧。在另一个实施例中,计算机109控制调整机构105和106都调整到光路的左侧或右侧。在另一个实施例中,计算机109控制调整机构105将平面反射镜103调整到光路的右侧,计算机109控制调整机构106将平面反射镜104调整到光路的左侧。
图6为图5所示的拼接测量装置的光路的示意图。如图6所示,从球面标准镜102射出的测量光束入射到凹球面被测件107上,然后再沿原路径返回,测量光束的焦点O与凹球面 被测件107的球心重合。
步骤(3):测量外环的第一个子孔径的面形。
如图1所示,计算机109控制调整机构105和106调整平面反射镜103和104的位置,使得平面反射镜103和104之间的夹角被调整,从而使得入射到凹球面被测件107上的光线相对于从球面标准镜102射出的光线倾斜角度θy。而且,计算机109控制运动台108调整被测件107的位置,使得被测件107的球心移动到焦点O1,其中,焦点O1由球面标准镜102的焦点O被调整后的平面反射镜103和104反射形成。然后,计算机109控制干涉仪101测量外环第1个子孔径的面形。
在一个实施例中,如图1所示,计算机109控制调整机构105调整平面反射镜103的位置,使得平面反射镜103靠近焦点O,且大致垂直于球面标准镜102射出的边缘光线,从而允许平面反射镜104的尺寸最小化。计算机109控制调整机构106调整平面反射镜104的位置,使得平面反射镜104与平面反射镜103的夹角为θy/2度。如图1所示,平面反射镜104与平面反射镜103的夹角为3度。在一个实施例中,平面反射镜104的位置被设置为不阻挡入射到平面反射镜103上的测量光束。在一个实施例中,平面反射镜104的位置被设置为允许被平面反射镜103反射后的光线全部入射到凹球面被测件107上。
图3为图1所示的拼接测量装置的光路的示意图;图4为图3所示的光路的局部放大图。如图3和4所示,从球面标准镜102射出的测量光束依次经平面反射镜103和104反射后,以相对于从球面标准镜102射出的测量光束倾斜θy入射到凹球面被测件107上,然后再沿原路径返回。这样,通过调整两个平面反射的夹角来实现测量光束的倾斜,从而无需倾斜凹球面被测件,避免因倾斜被测件带来的变形误差,实现高精度的拼接检测,并降低了被测件工装的设计难度
步骤(4):依次测量外环的其余子孔径面形。
计算机109控制运动台108,使得被测件107绕Z轴方向依次转动外环相邻子孔径的夹角θz,然后计算机109控制干涉仪101依次测量外环子孔径的面形,直到外环所有的子孔径被测量完为止。在图示的实施例中,被测件107绕Z轴方向依次转动60度。
本发明未详细阐述部分属于本领域技术人员的公知技术。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。

Claims (13)

  1. 一种拼接测量装置,适于对凹球面的面形进行拼接测量,其特征在于,所述拼接测量装置包括:
    干涉仪(101)、参考透镜(102)、第一平面反射镜(103)、第二平面反射镜(104)、第一调整机构(105)、第二调整机构(106)、凹球面的被测件(107)、运动台(108)和控制机构(109),
    第一平面反射镜安装在第一调整机构上,第一调整机构配置成改变第一平面反射镜的位置;
    第二平面反射镜安装在第二调整机构上,第二调整机构配置成改变第二平面反射镜的位置;
    被测件放置在运动台上,运动台配置成改变所述被测件的位置;
    控制机构与干涉仪、第一调整机构、第二调整机构和运动台相连通以发出控制信号,
    借助于第一调整机构和第二调整机构,第一平面反射镜和第二平面反射镜之间的夹角能被调节以使得入射到被测件上的光线相对于从参考透镜射出的光线倾斜第一角度(θy),从而避免倾斜被测件。
  2. 根据权利要求1所述的拼接测量装置,其特征在于,所述第一调整机构配置成使得所述第一平面反射镜沿第一方向、第二方向、第三方向平移和绕第二方向旋转;其中,所述第一方向、所述第二方向和所述第三方向相互垂直;
    所述第二调整机构配置成使得所述第二平面反射镜沿所述第一方向、所述第二方向、所述第三方向平移和绕所述第二方向旋转;以及
    所述运动台配置成使被测件沿所述第一方向和所述第三方向平移和绕所述第三方向旋转。
  3. 根据权利要求1或2所述的拼接测量装置,其特征在于,在测量所述被测件的外环子孔径时,所述第一调整机构和第二调整机构根据所述控制机构发出的控制信号分别调整所述第一平面反射镜和第二平面反射镜的位置,使得第一和第二平面反射镜之间的夹角被调整成第二角度(θy/2),并且第二角度是第一角度的一半;
    所述运动台根据所述控制机构发出的控制信号调整被测件的位置,使得被测件的球心移动到第一焦点(O1),所述第一焦点由所述参考透镜的焦点(O)被调整后的第一平面反射 镜和第二平面反射镜反射形成。
  4. 根据权利要求3所述的拼接测量装置,其特征在于,所述第一平面反射镜被调整成靠近所述参考透镜的焦点并大致垂直于从所述参考透镜射出的边缘光线。
  5. 根据权利要求4所述的拼接测量装置,其特征在于,所述第二平面反射镜被调整成能够将经所述第一平面反射镜反射的全部光线反射到待测件上。
  6. 根据权利要求5所述的拼接测量装置,其特征在于,所述第二平面反射镜被调整成不阻挡测量光束射出到所述第一平面反射镜上。
  7. 根据权利要求1或2所述的拼接测量装置,其特征在于,在测量被测件的中心子孔径时,所述运动台根据所述控制机构发出的控制信号调整被测件的位置,使得被测件的球心与参考透镜的焦点(O)重合;
    所述第一调整机构和所述第二调整机构分别根据所述控制机构发出的控制信号调整第一平面镜和第二平面镜的位置,使得所述第一平面镜和第二平面镜离开光路。
  8. 根据权利要求7所述的拼接测量装置,其特征在于,所述第一平面镜和第二平面镜分别被调整成位于光路的两侧,或者位于光路的同一侧。
  9. 一种使用权利要求1-8中任一项所述的拼接测量装置的拼接测量方法,其特征在于,所述拼接测量方法包括如下步骤:
    步骤(1):根据参考透镜和被测件的参数来计算子孔径的个数和位置、测量外环子孔径时测量光束倾斜的第一角度(θy)和外环相邻子孔径的夹角(θz),以使得被测件能被所述子孔径完全覆盖;
    步骤(2):根据所述控制机构发出的控制信号通过所述运动台调整被测件的位置,使得被测件的球心与参考透镜的焦点(O)重合,并根据所述控制机构发出的控制信号分别利用所述第一调整机构和所述第二调整机构调整第一平面镜和第二平面镜的位置,使得所述第一平面镜和第二平面镜离开光路,然后利用控制机构控制干涉仪测量中心子孔径的面形;
    步骤(3):根据所述控制机构发出的控制信号分别利用第一调整机构和第二调整机构调整所述第一平面反射镜和第二平面反射镜的位置,使得第一和第二平面反射镜之间的夹角被 调整,从而使得入射到被测件上的光线相对于从参考透镜射出的光线倾斜第一角度(θy),并根据所述控制机构发出的控制信号利用运动台调整被测件的位置,使得被测件的球心移动到第一焦点(O1),所述第一焦点由所述参考透镜的焦点(O)被调整后的第一平面反射镜和第二平面反射镜反射形成,然后利用控制机构控制干涉仪测量外环第1个子孔径的面形;
    步骤(4):根据控制机构发出的控制信号利用运动台使得被测件绕垂直于运动台所在平面的方向依次转动外环相邻子孔径的夹角,并利用控制机构控制干涉仪依次测量外环子孔径的面形,直到外环所有的子孔径被测量完为止。
  10. 根据权利要求9所述的拼接测量方法,其特征在于,在步骤(3)中,第一平面反射镜和第二平面反射镜之间的夹角被调整成第二角度(θy/2),并且所述第二角度是所述第一角度的一半。
  11. 根据权利要求10所述的拼接测量方法,其特征在于,在步骤(3)中,所述第一平面反射镜被调整成靠近所述参考透镜的焦点并大致垂直于从所述参考透镜射出的边缘光线。
  12. 根据权利要求11所述的拼接测量方法,其特征在于,在步骤(3)中,所述第二平面反射镜被调整成能够将经所述第一平面反射镜反射的全部光线反射到待测件上。
  13. 根据权利要求12所述的拼接测量方法,其特征在于,在步骤(3)中,所述第二平面反射镜被调整成不阻挡测量光束射出到所述第一平面反射镜上。
PCT/CN2018/119375 2018-11-28 2018-12-05 拼接测量装置和方法 WO2020107508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/626,864 US11365964B2 (en) 2018-11-28 2018-12-05 Stitching-measurement device and stitching-measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811434724.1A CN109341587B (zh) 2018-11-28 2018-11-28 拼接测量装置和方法
CN201811434724.1 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020107508A1 true WO2020107508A1 (zh) 2020-06-04

Family

ID=65318959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119375 WO2020107508A1 (zh) 2018-11-28 2018-12-05 拼接测量装置和方法

Country Status (3)

Country Link
US (1) US11365964B2 (zh)
CN (1) CN109341587B (zh)
WO (1) WO2020107508A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798840A (zh) * 2019-02-26 2019-05-24 中国科学院光电技术研究所 在拼接干涉仪中检测透镜面形的检测装置
GB2627770A (en) * 2023-02-28 2024-09-04 Mbryonics Ltd An optical metrology system and methods for the measurement of optical surfaces

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013027A (zh) * 2007-01-31 2007-08-08 中国人民解放军国防科学技术大学 大口径大相对孔径非球面镜中高频误差检测装置与方法
CN101339008A (zh) * 2008-08-27 2009-01-07 中国科学院光电技术研究所 一种检测大口径抛物面镜k值系数的装置
CN101571383A (zh) * 2009-05-05 2009-11-04 中国科学院长春光学精密机械与物理研究所 测量球面拼接望远镜子镜间相对曲率半径差的检测装置
CN103575233A (zh) * 2013-11-20 2014-02-12 西安工业大学 大口径大相对孔径抛物面反射镜面形误差的检测方法
CN104374334A (zh) * 2014-11-17 2015-02-25 中国航空工业第六一八研究所 自由曲面形貌三维测量方法及装置
DE102014118151A1 (de) * 2014-12-08 2016-06-09 Universität Kassel Weißlicht-Interferenzmikroskop und Verfahren zum Betreiben eines Weißlicht-Interferenzmikroskops
JP6232207B2 (ja) * 2013-05-12 2017-11-15 夏目光学株式会社 面形状測定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218403B2 (en) * 2002-06-26 2007-05-15 Zygo Corporation Scanning interferometer for aspheric surfaces and wavefronts
JP2010133860A (ja) * 2008-12-05 2010-06-17 Canon Inc 形状算出方法
CN201497488U (zh) * 2009-07-31 2010-06-02 哈尔滨理工大学 子孔径拼接干涉测量非球面偏置误差修正的装置
CN101709955B (zh) * 2009-11-24 2011-02-23 中国科学院长春光学精密机械与物理研究所 子孔径拼接干涉检测光学非球面面形的装置
CN102788563B (zh) * 2012-08-31 2014-09-10 中国科学院光电技术研究所 一种在平面子孔径拼接测量中调整被测镜倾斜的装置和方法
CA2887052C (en) * 2012-10-12 2020-07-07 Thorlabs, Inc. Compact, low dispersion, and low aberration adaptive optics scanning system
CN103776389A (zh) * 2014-01-10 2014-05-07 浙江大学 一种高精度非球面组合干涉检测装置与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013027A (zh) * 2007-01-31 2007-08-08 中国人民解放军国防科学技术大学 大口径大相对孔径非球面镜中高频误差检测装置与方法
CN101339008A (zh) * 2008-08-27 2009-01-07 中国科学院光电技术研究所 一种检测大口径抛物面镜k值系数的装置
CN101571383A (zh) * 2009-05-05 2009-11-04 中国科学院长春光学精密机械与物理研究所 测量球面拼接望远镜子镜间相对曲率半径差的检测装置
JP6232207B2 (ja) * 2013-05-12 2017-11-15 夏目光学株式会社 面形状測定装置
CN103575233A (zh) * 2013-11-20 2014-02-12 西安工业大学 大口径大相对孔径抛物面反射镜面形误差的检测方法
CN104374334A (zh) * 2014-11-17 2015-02-25 中国航空工业第六一八研究所 自由曲面形貌三维测量方法及装置
DE102014118151A1 (de) * 2014-12-08 2016-06-09 Universität Kassel Weißlicht-Interferenzmikroskop und Verfahren zum Betreiben eines Weißlicht-Interferenzmikroskops

Also Published As

Publication number Publication date
CN109341587B (zh) 2021-03-23
US20210278201A1 (en) 2021-09-09
US11365964B2 (en) 2022-06-21
CN109341587A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
EP2177870B1 (en) Optical wave interference measuring apparatus
CN110554512B (zh) 高精度二次离轴椭球面反射镜光轴引出方法及其光学系统
TWI427433B (zh) 測量設備、曝光設備,以及裝置製造方法
WO2020107508A1 (zh) 拼接测量装置和方法
US20150185324A1 (en) Laser radar tracking systems
CN115202061A (zh) 一种大口径望远镜的主光学系统装调对准方法
US6115175A (en) UV image forming optical system
JP2008089356A (ja) 非球面測定用素子、該非球面測定用素子を用いた光波干渉測定装置と方法、非球面の形状補正方法、およびシステム誤差補正方法
CN113739719B (zh) 一种高精度施密特校正板的面形检测系统及方法
CN112964455B (zh) 大数值孔径物镜的波像差拼接测量装置及测量方法
US11333487B2 (en) Common path mode fiber tip diffraction interferometer for wavefront measurement
JP3702733B2 (ja) 光学検査装置のアライメント方法およびその機構
KR101118498B1 (ko) 투영 광학계 및 그 투영 광학계를 구비한 노광 장치
JPH04354320A (ja) 面位置検出装置及びそれを用いた半導体素子の製造方法
JPS6212269Y2 (zh)
US7173686B2 (en) Offner imaging system with reduced-diameter reflectors
JPH11211426A (ja) 面形状測定装置
TWI839895B (zh) 量測光學元件之厚度的方法、干涉量測裝置及電腦程式
CN113721346B (zh) 一种透镜组件及具有其的激光位移传感器
US20220334342A1 (en) Optical lens, manufacturing method of optical lens, and camera module
WO2024202476A1 (ja) レンズ測定方法及びレンズ測定装置
CN110764272B (zh) 一种利用透镜共焦点调节离轴抛物面镜系统的方法
JPH11337306A (ja) 干渉計測装置
CN118623909A (zh) 采用cgh补偿器的自由曲面离轴反射镜组件光轴标定方法
JP4264770B2 (ja) 光路偏向部材を有する光学系の位置合わせ方法および該光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941826

Country of ref document: EP

Kind code of ref document: A1