WO2020107393A1 - 云台的控制方法、云台及无人飞行器 - Google Patents

云台的控制方法、云台及无人飞行器 Download PDF

Info

Publication number
WO2020107393A1
WO2020107393A1 PCT/CN2018/118517 CN2018118517W WO2020107393A1 WO 2020107393 A1 WO2020107393 A1 WO 2020107393A1 CN 2018118517 W CN2018118517 W CN 2018118517W WO 2020107393 A1 WO2020107393 A1 WO 2020107393A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
active
pan
tilt
joint angle
Prior art date
Application number
PCT/CN2018/118517
Other languages
English (en)
French (fr)
Inventor
王映知
刘帅
何昌昕
杨勇
陈汉平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/118517 priority Critical patent/WO2020107393A1/zh
Priority to CN201880010725.5A priority patent/CN110291013B/zh
Publication of WO2020107393A1 publication Critical patent/WO2020107393A1/zh
Priority to US17/321,438 priority patent/US20210271221A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • F16M2200/042Balancing means for balancing rotational movement of the head for panning movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target

Definitions

  • the invention relates to the technical field of control, in particular to a control method of a gimbal, a gimbal and an unmanned aerial vehicle.
  • Unmanned aerial vehicles can be installed with two gimbals. In some application scenarios, it is necessary to maintain the two gimbals in the same orientation through linkage control to meet the needs of users in multiple scenarios.
  • the camera mounted on the gimbal on the 1st position is used to macroscopically view the external environment and aim at the object to be photographed, and the camera mounted on the gimbal on the 2nd position is used to zoom in to view the details of the object being photographed.
  • the existing dual-camera linkage control has the problems of low control accuracy and slow speed jamming.
  • the embodiment of the present invention discloses a gimbal control method, a gimbal and an unmanned aerial vehicle, which are used to increase the adjustment speed of the driven gimbal and reduce the attitude difference between the driven gimbal and the active gimbal.
  • an embodiment of the present invention provides a method for controlling a gimbal, the gimbal includes an active gimbal and a slave gimbal, the active gimbal and the slave gimbal are in a linkage control mode, and the method include:
  • an embodiment of the present invention further provides a pan/tilt control method.
  • the pan/tilt includes an active pan/tilt and a driven pan/tilt, and the active pan/tilt and the driven pan/tilt are in a linkage control mode.
  • Methods include:
  • embodiments of the present invention also provide a gimbal, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes an active gimbal and a driven gimbal.
  • the gimbal is used as an active gimbal.
  • the gimbal includes : Input device, output device, memory and processor;
  • the memory is used to store program codes
  • the processor calls the program code, and when the program code is executed, controls the input device to obtain a target posture parameter of the target posture of the active gimbal, the target posture is the Attitude to movement;
  • the embodiments of the present invention also provide a gimbal, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes an active gimbal and a slave gimbal, and the gimbal is used as a slave gimbal.
  • the memory is used to store program codes
  • the processor calls the program code, and when the program code is executed, controls the input device to receive a target posture parameter of a target posture of the active gimbal, where the target posture is the Attitude to movement;
  • the processor controls the driven pan/tilt to adjust to the target posture according to the target posture parameter.
  • an embodiment of the present invention further provides an unmanned aerial vehicle, including: a fuselage; a power system, installed on the fuselage, for providing power to the movable platform; a load, installed on the fuselage, The load includes an active pan-tilt head and a slave pan-tilt head; wherein, the active pan-tilt head is any kind of active pan-tilt head provided by an embodiment of the present invention, and the slave pan-tilt head is any one of the embodiments provided by the present invention
  • the active pan-tilt head is any kind of active pan-tilt head provided by an embodiment of the present invention
  • the slave pan-tilt head is any one of the embodiments provided by the present invention
  • the gimbal control method, the gimbal and the unmanned aerial vehicle provided by the embodiments of the present invention after obtaining the target attitude parameters of the target attitude of the active gimbal, are sent to the driven gimbal.
  • the target attitude is adjusted instead of adjusting according to the current measured attitude of the active gimbal, so it can be synchronized with the active gimbal more quickly, reducing the attitude difference between the driven gimbal and the active gimbal.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle system disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an unmanned aerial vehicle disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the gimbal disclosed in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of path selection disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic view of the structure of the gimbal disclosed in the embodiment of the present invention.
  • FIG. 8 is a schematic view of the structure of a gimbal disclosed in an embodiment of the present invention.
  • FIG. 1 it is a system structure diagram of an embodiment of the present invention, including an active pan/tilt, a slave pan/tilt, and a communication module; wherein the active pan/tilt is a position 1 pan/tilt, and the driven pan/tilt is 2 Position pan/tilt; in practical applications, unmanned aerial vehicles can be drones, sometimes also referred to as aircraft; the number of pan/tilts mounted on the plane can exceed two, such as an active pan/tilt and more than one
  • the slave pan-tilt heads and slave pan-tilt heads are processed in a similar manner, so in this embodiment of the present invention, one slave pan-tilt head is used as an example, and it should not be understood that there must be only one slave pan-tilt head.
  • the communication module shown in FIG. 1 may be a module of the active pan/tilt, or a module independent of the active pan/tilt.
  • the function of the communication module mainly includes forwarding the data sent from
  • FIG. 2 is an overall schematic diagram of an aircraft mounting two gimbals, that is, an aircraft with dual gimbals; cameras or measuring devices can be mounted on the gimbal, and the above cameras can be visible light cameras, infrared
  • the above measurement device may be a laser radar, a millimeter wave radar, or an ultrasonic radar.
  • the above-mentioned gimbal can also mount other devices.
  • the camera mounted on the No. 1 pan/tilt is used to macroscopically view the external environment and aim at the target
  • the camera mounted on the No. 2 pan/tilt is used to zoom in to view the details of the target.
  • the embodiments of the present invention include an active pan-tilt head and a driven pan-tilt head.
  • the control method of the pan-tilt head provided by the embodiment of the present invention is to send the target posture parameter of the target posture of the active pan-tilt head to the driven pan-tilt head.
  • Adjusting the target attitude of the active pan/tilt instead of adjusting it based on the current measurement attitude of the active pan/tilt can make the driven pan/tilt synchronize with the active pan/tilt faster, reducing the difference between the driven pan/tilt and the active pan/tilt Difference in posture.
  • An embodiment of the present invention provides a method for controlling a gimbal.
  • the gimbal includes an active gimbal and a slave gimbal.
  • the active gimbal and the slave gimbal are in a linkage control mode.
  • the above method include:
  • the target posture parameter of the target posture of the active pan/tilt is the posture to which the active pan/tilt will move;
  • the execution subject of this embodiment is an active pan-tilt, and the communication module serves as a data forwarding component to forward the data sent from the active pan-tilt to the driven pan-tilt.
  • the attitude of the gimbal can be expressed using parameters including Euler angles.
  • the target attitude is the attitude to which the active gimbal will move.
  • the target posture can be set by the internal program of the drone, or the target posture can also come from an external device, for example: receiving the target posture input by the remote control terminal, which can be a mobile phone, a remote control or any suitable gimbal Target gesture input device.
  • the above-mentioned target posture parameter may be the target posture parameter itself, or it may be an instruction carrying the target posture parameter for adjusting the driven gimbal to the target posture.
  • the embodiment of the present invention does not limit this uniquely.
  • the driven pan and tilt can be adjusted with the target attitude of the active pan and tilt, rather than the current measurement of the active pan and tilt.
  • the attitude is adjusted for the goal, so it can be synchronized with the active pan-tilt faster, reducing the difference in attitude between the driven pan-tilt and the active pan-tilt.
  • the above method further includes:
  • the above adjustment of the joint angle data of the driven gimbal to be the same as the current joint angle data of the active gimbal, so that the slave gimbal avoids the slave during the adjustment of the slave gimbal to the target posture
  • the mechanical limits of the gimbal include:
  • the slave pan-tilt head is adjusted to the active pan-tilt head according to a predetermined movement direction
  • the current joint angle data corresponds to the posture, wherein the predetermined direction of movement is opposite to the direction of the posture movement of the driven gimbal with the shortest path in the radial direction of the current joint angle data of the active gimbal.
  • the current joint angle data of the active gimbal includes: at least one of the joint angle of the active gimbal yaw axis motor, the joint angle of the pitch axis motor, and the joint angle of the roll axis motor.
  • the gimbal shown in Figure 4 contains three rotating shaft mechanisms.
  • the rotating shaft mechanism includes motors, which are a yaw axis (corresponding to yaw or yaw) motor, a roll axis (corresponding to roll) motor, and a pitch axis (corresponding to pitch). ) Motor; optionally, the joint angle parameter contains three parts, namely the yaw axis joint angle, roll axis joint angle and pitch axis joint angle.
  • the joint angle of the yaw axis motor when rotating clockwise corresponds to a positive value, and the counterclockwise rotation corresponds to a negative joint angle;
  • the clockwise rotation of the roll motor corresponds to a positive value, and the counterclockwise rotation corresponds to Is a negative value;
  • the corresponding joint angle when the pitch axis motor rotates upward is a positive value, and the corresponding joint angle when it rotates downward is a negative value.
  • the rotation mechanism of the gimbal is not limited to three, but may be single-axis, dual-axis or other forms.
  • the gimbal will select the shortest path to move to the target posture when performing posture adjustment.
  • the gimbal sets corresponding mechanical limits in one or more of the yaw direction, roll direction, and pitch direction, so that the gimbal cannot rotate unrestrictedly in this direction.
  • the gimbal may have a mechanical limit during the shortest path from the current posture to the target posture, causing the gimbal to be stuck in the limit posture.
  • the joint angle of the current yaw motor of the gimbal is 178°, and the command is -178°, then the actual motion path of the gimbal is 178>179>180>-179>-178, not 178>177>176> ...>1>0>-1>-2>....>-177>-178.
  • some gimbals have mechanical limits. For example, if there is a mechanical limit at 180° in the motion path exemplified above, there is a problem of being stuck when moving to the target posture with the shortest path. When the follower gimbal (position 2 gimbal) moves to the mechanical limit position when it enters the dual-camera linkage control, it will continue to hit the limit position and cannot be adjusted to the specified posture in time.
  • the active pan/tilt sends the current joint angle data of the active pan/tilt to the driven pan/tilt, so that the joint angle data of the driven pan/tilt is adjusted to be the same as the current joint angle data of the active pan/tilt, and the driven pan/tilt can Avoid the mechanical limit of the follower gimbal during the target attitude adjustment.
  • the driven pan-tilt head is adjusted to the current position of the active pan-tilt head according to a predetermined movement direction
  • the joint angle data corresponds to the posture, wherein the predetermined direction of motion is opposite to the direction of the posture movement of the current joint angle data of the radial active gimbal with the shortest path of the driven gimbal in the shortest path.
  • the left picture is a schematic diagram of the rotation of the active gimbal yaw motor
  • the right picture is a diagram of the rotation of the driven gimbal yaw motor.
  • the current yaw attitude of the active gimbal corresponds to the current yaw motor current Joint angle is 0 degrees
  • the current yaw attitude of the driven gimbal corresponds to the current articulation angle of the yaw motor is 350 degrees
  • the driven gimbal uses the shortest path to the radial direction
  • the current joint angle data of the active gimbal corresponds to the attitude movement
  • the direction is 350>351>...>359>360 degrees (as shown in the solid bold arrow direction in Figure 5).
  • the rotation path of No. 1 gimbal is 0>1>...>89>90 degrees (the direction of the solid line arrow on the left side of FIG. 5), and the No. 2 gimbal
  • the shortest path is 360 degrees>361>...>450 degrees (the direction of the dotted arrow on the right side of FIG.
  • this path will pass the mechanical limit position, for example, It is 380 degrees; the other path is 360 degrees>359....>90 degrees (the direction of the solid arrow on the right side of Figure 5); the shortest path will be stuck through the mechanical limit, so the follower PTZ is biased After the joint angle of the aeromotor is adjusted from 360 degrees to 380 degrees, it will be stuck at the limit position, or another path needs to be adopted to move to the target posture, which cannot be adjusted to the specified posture in time, resulting in an unfriendly user experience.
  • the above-mentioned linkage control of the yaw attitudes of the active and pan-tilt heads is taken as an example for illustrative description, and should not be construed as limiting the present invention.
  • the active gimbal sends the joint gimbal angle data of the active gimbal to 0° to the slave gimbal.
  • the slave gimbal learns that the joint angle of the slave gimbal is 350°.
  • the absolute value of the difference between the current joint angle data and the current joint angle data of the driven gimbal is greater than 180°, then the driven gimbal will not move clockwise from 350° to 360° in the shortest path to maintain the orientation of the active gimbal It is consistent, and the counterclockwise rotation of the direction opposite to the shortest path to 0° joint angle position is consistent with the active gimbal; that is, the joint angle calibration of the driven gimbal and the active gimbal.
  • the active gimbal shown in FIG. 5 should be rotated to the direction where the joint angle is 90°, then the driven gimbal can be rotated to 90° in the direction of the dotted line.
  • the pan-tilt head first rotates to 0° in the solid line direction and then to 90° in the dashed line direction.
  • the driven pan/tilt can first rely on the joint angle of the driven pan/tilt at 350° Determine the direction of rotation is counterclockwise (the direction of the solid arrow), and then determine that the angle of counterclockwise rotation is to the joint angle of 90°. In this process, the driven gimbal rotates to 90° in the solid line direction, no need to turn first To 0°.
  • the joint gimbal data of the active gimbal and the target posture are sent separately, then the slave gimbal can first perform joint angle calibration and then perform posture linkage.
  • the joint angle data of the active gimbal and the target posture are sent together, then the driven gimbal can use the difference between the joint angle of the active gimbal and the joint gimbal of the driven gimbal to be greater than 180 ° to determine the rotation direction of the follower gimbal, and then directly turn to the joint angle corresponding to the target posture.
  • the dead zone is the minimum threshold value required for the angle difference between the active pan-tilt and the driven pan-tilt to be transferred from the active pan-tilt to the driven pan-tilt.
  • the gimbal's measurement attitude still has a certain range of jitter.
  • the slave pan/tilt position 2 pan/tilt
  • the slave pan/tilt receives the measured attitude of the jitter within a certain range as the target attitude, then the slave pan/tilt is also jittery.
  • Dead zone protection means that the angle control command will be sent to the gimbal only when the measured attitude difference between the two gimbals is 1° or more.
  • this embodiment removes the limitation of the dead zone, and sends the parameters corresponding to the target attitude of the active pan/tilt, instead of the measured attitude, to the driven pan/tilt, thereby improving the control accuracy.
  • the above-mentioned target posture parameters for obtaining the target posture of the active gimbal include:
  • the target attitude parameter of the target attitude of the predetermined accuracy of the active pan/tilt is obtained, and the predetermined accuracy is higher than the attitude measurement accuracy of the active pan/tilt.
  • the reason for the slow rotation may be application scenarios such as unmanned aerial vehicle slow flight. It can be understood that under the support of communication capabilities (mainly bandwidth), the higher the above predetermined accuracy, the better the control accuracy when the gimbal rotates slowly.
  • the predetermined accuracy includes that: the data type of the target posture parameter is a floating-point (float type) data type.
  • the above method further includes:
  • the flag bit of the active pan-tilt in a predetermined mode is sent to the driven pan-tilt, and when the active pan-tilt is in a predetermined mode to adjust the posture, the slave pan-tilt is moved to a predetermined position.
  • the aforementioned predetermined position includes the zero position of the joint angle of the driven gimbal.
  • only the active gimbal may receive the calibration command, which will cause the slave gimbal to follow the target attitude of the No. 1 PTZ and make unnecessary adjustments; for example: only the No. 1 PTZ receives the calibration command ; No. 2 still receives the gimbal's target attitude following No. 1 gimbal.
  • This embodiment can avoid unnecessary linkage of the slave PTZ, thereby improving user experience.
  • the above predetermined mode includes:
  • Compass calibration mode and/or gimbal automatic calibration mode Compass calibration mode and/or gimbal automatic calibration mode.
  • the implementation of the present invention also provides another control method of the gimbal.
  • the gimbal includes an active gimbal and a slave gimbal.
  • the active gimbal and the slave gimbal are in a linkage control mode, as shown in FIG. 6,
  • the above methods include:
  • the target posture is a posture to which the active pan-tilt will move;
  • the execution subject of this embodiment is a slave pan-tilt.
  • parameters and corresponding control content received by the slave pan-tilt please refer to the description about the active pan-tilt in the foregoing, which will not be repeated here.
  • the above method further includes:
  • Adjust the joint angle data of the driven gimbal to be the same as the current joint angle data of the active gimbal, so as to avoid the mechanical limit of the driven gimbal during the adjustment of the driven gimbal to the target posture Bit.
  • the articulation angle data of the driven gimbal is adjusted to be the same as the current articulation angle data of the active gimbal, so that the slave gimbal avoids the slave cloud during the process of adjusting the attitude of the slave gimbal to the target
  • the mechanical limits of the table include:
  • the driven pan-tilt head adjusts to the current position of the active pan-tilt head according to a predetermined movement direction
  • the joint angle data corresponds to the posture, wherein the predetermined direction of movement is opposite to the direction of the posture movement of the driven gimbal in the shortest radial direction with respect to the current joint angle data of the active gimbal.
  • the current joint angle data of the active gimbal includes: at least one of the joint angle of the active gimbal yaw axis motor, the joint angle of the pitch axis motor, and the joint angle of the roll axis motor.
  • the above method further includes:
  • different gimbals may be in different control modes, for example: No. 1 gimbal is in airplane and gimbal mode, No. 2 gimbal is in gimbal and airplane mode; in this case, gimbal 1
  • the station first turns the plane to follow the No. 1 PTZ, and then the No. 2 PTZ will superimpose the instructions to follow the No. 1 PTZ, on the basis of the instructions to follow the aircraft, causing the No. 2 position to obviously not keep up, and there is overshoot at the arrival position phenomenon.
  • the No. 2 gimbal receives the command to follow the No. 1 gimbal, it will be directly superimposed on the current command of the No. 2 gimbal. If the No.
  • the embodiment of the present application controls the slave pan-tilt to exit the pan-tilt and unmanned aerial vehicle mode in the dual pan-tilt linkage control mode.
  • the above-mentioned target posture parameters for receiving the target posture of the active gimbal include:
  • the predetermined accuracy being higher than the attitude measurement accuracy of the active pan/tilt.
  • the data type of the target attitude parameter is a floating-point data type.
  • the above method further includes:
  • the aforementioned predetermined position includes the zero position of the joint angle of the driven gimbal.
  • the above predetermined pattern includes:
  • Compass calibration mode and/or gimbal automatic calibration mode Compass calibration mode and/or gimbal automatic calibration mode.
  • the embodiments of the present invention also provide two types of gimbals, which are respectively used as an active gimbal or a passive gimbal; for subsequent device embodiments of the gimbal, reference may be made to the description of the previous method embodiments.
  • An embodiment of the present invention also provides a gimbal, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes an active gimbal and a driven gimbal.
  • the gimbal is used as an active gimbal.
  • the PTZ includes: an input device 701, an output device 702, a memory 703, and a processor 704;
  • the above memory 703 is used to store program codes
  • the processor 704 calls the program code, and when the program code is executed, the input device 701 is controlled to obtain a target posture parameter of a target posture of the active pan/tilt, the target posture is a posture to which the active pan/tilt is to be moved. ;
  • the output device 702 is controlled to send the target posture parameter to the driven pan-tilt head, so that the driven pan-tilt head adjusts to the target posture.
  • the driven gimbal can be adjusted with the target attitude of the active gimbal instead of the current attitude of the active gimbal Adjusting for the goal, so that it can be synchronized with the active PTZ faster, reducing the difference in attitude between the driven PTZ and the active PTZ.
  • the processor 704 is further configured to control the output device 702 to send the current joint angle data of the active pan/tilt to the driven pan/tilt, so that the joint angle data of the driven pan/tilt is adjusted to The current joint angle data of the active gimbal is the same, so as to avoid the mechanical limit of the driven gimbal during the adjustment of the driven gimbal to the target posture.
  • the adjustment of the joint gimbal data of the driven gimbal to be the same as the current joint angle data of the active gimbal, so as to avoid the process of adjusting the slave gimbal to the target posture
  • the mechanical limit of the follower gimbal including:
  • the slave pan-tilt head is adjusted to the active pan-tilt head according to a predetermined movement direction
  • the current joint angle data corresponds to the posture, wherein the predetermined direction of movement is opposite to the direction of the posture movement of the driven gimbal with the shortest path in the radial direction of the current joint angle data of the active gimbal.
  • the current joint angle data of the active gimbal includes: at least one of the joint angle of the active gimbal yaw axis motor, the joint angle of the pitch axis motor, and the joint angle of the roll axis motor.
  • processor 704 is also used to control the active gimbal to exit the gimbal and unmanned aerial vehicle mode.
  • the processor 704 controlling the input device 701 to obtain the target pose parameter of the active pan/tilt's target pose includes: controlling the input device 701 to obtain the target precision's target pose target of the active pan/tilt For the attitude parameter, the predetermined accuracy is higher than the attitude measurement accuracy of the active gimbal.
  • the data type of the target attitude parameter is a floating-point data type.
  • the processor 704 is further configured to control the output device 702 to send the flag bit of the active pan-tilt in a predetermined mode to the slave pan-tilt, when the active pan-tilt is in a predetermined mode to adjust the posture Next, the follower head is moved to a predetermined position.
  • the predetermined position includes the zero position of the joint angle of the driven gimbal.
  • the predetermined pattern includes:
  • Compass calibration mode and/or gimbal automatic calibration mode Compass calibration mode and/or gimbal automatic calibration mode.
  • An embodiment of the present invention also provides another gimbal, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes an active gimbal and a slave gimbal.
  • the gimbal is used as a slave gimbal, as shown in FIG. 8 ,
  • the gimbal includes: an input device 801, a memory 802, and a processor 803;
  • the memory 802 is used to store program codes
  • the processor 803 calls the program code, and when the program code is executed, controls the input device 801 to receive a target posture parameter of a target posture of the active cloud platform, the target posture is the active cloud The posture that the stage will move to;
  • the processor 803 controls the slave PTZ to adjust to the target posture according to the target posture parameter.
  • processor 803 is further used to control the input device to receive the current joint angle data of the active gimbal;
  • the processor 803 is further configured to control the adjustment of the joint angle data of the driven gimbal to be the same as the current joint angle data of the active gimbal, so as to avoid the adjustment of the driven gimbal to the target posture Turn on the mechanical limit of the driven gimbal.
  • the processor 803 controls the slave gimbal joint angle data to be adjusted to be the same as the current gimbal angle data of the active gimbal, so as to prevent the slave gimbal from adjusting to the target posture during the adjustment process
  • the mechanical limit for opening the driven gimbal includes:
  • the absolute value of the difference between the current joint angle data of the active gimbal and the current joint angle data of the driven gimbal is greater than 180°, it is adjusted to the current joint angle of the active gimbal according to a predetermined movement direction
  • the data corresponds to the posture, wherein the predetermined direction of motion is opposite to the direction of the posture movement of the slave gimbal in the shortest path to the current joint angle data of the active gimbal.
  • the current joint angle data of the active gimbal includes: at least one of the joint angle of the active gimbal yaw axis motor, the joint angle of the pitch axis motor, and the joint angle of the roll axis motor.
  • processor 803 is also used to control the slave PTZ to exit the PTZ and UAV mode.
  • the processor 803 controls the input device 801 to receive the target posture parameter of the active gimbal's target posture receiving the target posture parameter of the active gimbal's target posture includes: specifically used to control the input device 801 Receiving the target attitude parameter of the target attitude of the active pan/tilt with a predetermined accuracy, the predetermined accuracy being higher than the attitude measurement accuracy of the active pan/tilt.
  • the data type of the target attitude parameter is a floating-point data type.
  • the processor 803 is further used to control the input device 801 to receive the flag bit that the active gimbal is in a predetermined mode
  • the processor 803 is further configured to move to a predetermined position when it is determined that the active gimbal is in a predetermined mode to adjust the attitude according to the flag.
  • the predetermined position includes the zero position of the joint angle of the driven gimbal.
  • the predetermined pattern includes:
  • Compass calibration mode and/or gimbal automatic calibration mode Compass calibration mode and/or gimbal automatic calibration mode.
  • An embodiment of the present invention also provides an unmanned aerial vehicle, including: a fuselage; a power system, installed on the fuselage, for providing power to the movable platform; a load, installed on the fuselage, as shown As shown in 2, the load includes an active pan-tilt and a slave pan-tilt; wherein, the above-mentioned active pan-tilt is any one of the pan-tilts used as the active pan-tilt provided by the embodiment of the present invention; the above-mentioned driven cloud is an implementation of the present invention Any one of the examples provides a gimbal used as a slave cloud.
  • An embodiment of the present invention also discloses a readable storage medium that stores the program code of the method embodiment provided with reference to the embodiments of the present invention.
  • the program may be stored in a computer-readable storage medium, and the storage medium may include: Flash disk, read-only memory (ROM), random access memory (RAM), magnetic disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Studio Devices (AREA)

Abstract

一种云台的控制方法、云台及无人飞行器。其中,所述云台包括主动云台和从动云台,所述主动云台与所述从动云台处于联动控制模式,所述方法包括:获得所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;向所述从动云台发送所述目标姿态参数,使所述从动云台向所述目标姿态调整。在获得主动云台的目标姿态的目标姿态参数后,发送给从动云台,可以缩小从动云台与主动云台之间的姿态差异,提高控制精度。

Description

云台的控制方法、云台及无人飞行器 技术领域
本发明涉及控制技术领域,尤其涉及一种云台的控制方法、云台及无人飞行器。
背景技术
无人飞行器可安装两个云台,在一些应用场景下,需要通过联动控制保持两个云台处于同一个朝向,以满足用户多种场景下的需要。例如:1号位云台挂载的相机用来宏观上查看外界环境以及对准被拍摄目标,2号位云台挂载的相机用来放大查看被拍摄目标的细节。现有的双云台联动控制存在控制精度低,慢速卡顿的问题。
发明内容
本发明实施例公开了一种云台的控制方法、云台及无人飞行器,用于提高从动云台的调整速度,缩小从动云台与主动云台之间的姿态差异。
一方面本发明实施例提供了一种云台的控制方法,所述云台包括主动云台和从动云台,所述主动云台与所述从动云台处于联动控制模式,所述方法包括:
获得所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
向所述从动云台发送所述目标姿态参数,以使所述从动云台向所述目标姿态调整。
二方面本发明实施例还提供了一种云台的控制方法,所述云台包括主动云台和从动云台,所述主动云台与所述从动云台处于联动控制模式,所述方法包括:
接收所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
依据所述目标姿态参数向所述目标姿态调整。
三方面本发明实施例还提供了一种云台,应用于无人飞行器,所述无人飞行器包括主动云台和从动云台,所述云台作为主动云台使用,所述云台包括: 输入器件、输出器件、存储器以及处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当所述程序代码被执行时,控制所述输入器件获得所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
控制所述输出器件向所述从动云台发送所述目标姿态参数,使所述从动云台向所述目标姿态调整。
四方面本发明实施例还提供了一种云台,应用于无人飞行器,所述无人飞行器包括主动云台和从动云台,所述云台作为从动云台使用,所述云台包括:输入器件、存储器以及处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当所述程序代码被执行时,控制所述输入器件接收所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
所述处理器控制所述从动云台依据所述目标姿态参数向所述目标姿态调整。
五方面本发明实施例还提供了一种无人飞行器,包括:机身;动力系统,安装在所述机身,用于为所述可移动平台提供动力;负载,安装在所述机身,所述负载包括主动云台以及从动云台;其中,所述主动云台为本发明实施例提供的任意一种主动云台,所述从动云台为本发明实施例提供的任意一项的从动云台。
本发明实施例提供的云台的控制方法、云台及无人飞行器,在获得主动云台的目标姿态的目标姿态参数后,发送给从动云台,那么从动云台可以依据主动云台的目标姿态进行调整,而不是依据主动云台当前的测量姿态为目标进行调整,因而可以更快地与主动云台保持同步,缩小了从动云台与主动云台之间的姿态差异。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是本发明实施例公开的无人飞行器系统结构示意图;
图2是本发明实施例公开的无人飞行器结构示意图;
图3是本发明实施例公开的方法流程示意图;
图4是本发明实施例公开的云台结构示意图;
图5是本发明实施例公开的路径选择示意图;
图6是本发明实施例公开的方法流程示意图;
图7是本发明实施例公开的云台结构示意图
图8是本发明实施例公开的云台结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,是本发明实施例的一个系统结构图,包括主动云台、从动云台,还可以包含通信模块;其中主动云台为1号位云台,从动云台为2号位云台;在实际应用中,无人飞行器可以是无人机有时候也会简称为飞机;该飞机挂载的云台数量可以超过两个,例如1个主动云台以及多于1个的从动云台,从动云台的处理方式均是类似的,所以本发明实施例中以其中1个从动云台作为示例,不应理解为从动云台必须只有1个。图1所示的通信模块可以是主动云台的一个模块,也可以是独立于主动云台之外的模块。该通信模块的功能主要包括将主动云台发出的数据转发给从动云台。
结合图1,请参阅图2所示,是挂载两个云台的飞机整体示意图,即具有双云台的飞机;云台上可挂载摄像机或测量装置,上述摄像机可为可见光摄像机、红外摄像机,上述测量装置可为激光雷达、毫米波雷达、超声波雷达。在不冲突的情况下,上述云台还可挂载其他设备。
在一些应用场景下,需要通过联动控制保持两个云台处于同一个朝向,以满足用户多种场景下的需要。例如:1号位云台挂载的摄像机用来宏观上查看外界环境以及对准被拍摄目标,2号位云台挂载的摄像机用来放大查看被拍摄目标的细节。本发明实施例包括主动云台和从动云台,本发明实施例提供的云台的控制方法是将主动云台的目标姿态的目标姿态参数发送给从动云台,从动 云台可以依据主动云台的目标姿态进行调整,而不是依据主动云台当前的测量姿态为目标进行调整,可以使得从动云台更快地与主动云台保持同步,缩小从动云台与主动云台之间的姿态差异。
本发明实施例提供了一种云台的控制方法,上述云台包括主动云台和从动云台,上述主动云台与上述从动云台处于联动控制模式,如图3所示,上述方法包括:
301:获得上述主动云台的目标姿态的目标姿态参数,上述目标姿态为上述主动云台将要运动到的姿态;
本实施例的执行主体是主动云台,通信模块作为数据的转发部件,将主动云台发出的数据转发给从动云台。
云台的姿态可以使用包括欧拉角在内的参数来表示,目标姿态是主动云台将要运动到的姿态。目标姿态可以是由无人机内部程序设定的,或者,目标姿态也可以来源于外部设备,例如:接收遥控端输入的目标姿态,该遥控端可为手机、遥控器或任意合适的云台目标姿态输入设备。
302:向上述从动云台发送上述目标姿态参数,以使上述从动云台向上述目标姿态调整。
上述目标姿态参数可以是目标姿态参数本身,也可以是承载有使从动云台向目标姿态调整的目标姿态参数的指令。本发明实施例对此不作唯一性限定。
本实施例,在获得主动云台的目标姿态的目标姿态参数后,发送给从动云台,那么从动云台可以以主动云台的目标姿态进行调整,而不是以主动云台当前的测量姿态为目标进行调整,因而可以更快地与主动云台保持同步,缩小了从动云台与主动云台之间的姿态差异。
进一步地,上述方法还包括:
向上述从动云台发送上述主动云台当前的关节角数据,使所述从动云台的关节角数据调整至与所述主动云台当前的关节角数据相同,以使上述从动云台向上述目标姿态调整过程中避开上述从动云台的机械限位。
更具体地,上述使所述从动云台的关节角数据调整至与所述主动云台当前的关节角数据相同,以使上述从动云台向上述目标姿态调整过程中避开上述从动云台的机械限位,包括:
所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,使所述从动云台按照预定运动方向调整至所述主动云台当前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
更具体地,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
如图4所示的云台包含三个转轴机构,上述转轴机构包含电机,分别为yaw轴(对应偏航或称为航向)电机,roll轴(对应横滚)电机,以及pitch轴(对应俯仰)电机;可选的,关节角参数包含3个部分,分别为偏航轴关节角,横滚轴关节角和俯仰轴关节角。其中,yaw轴电机顺时针旋转时对应的关节角为正值,逆时针旋转时对应的为关节角为负值;roll轴电机顺时针旋转时对应的关节角为正值,逆时针旋转时对应的为负值;pitch轴电机向上旋转时对应的关节角为正值,向下旋转时对应的关节角为负值。可选的,云台的转轴机构不限于三个,也可以是单轴、双轴或其他形式。
按照目前云台的控制策略,云台在进行姿态调整时会挑最短路径运动到目标姿态。然而通常情况下,云台在偏航方向、横滚方向、俯仰方向中的一个或者多个方向设置了相应的机械限位,使得云台在该方向上不能无限制的转动。那么,云台以最短路径从当前姿态向目标姿态运动的过程中可能会存在机械限位,导致云台被卡在限位姿态。例如:当前云台的偏航电机的关节角为178°,命令是-178°,则云台实际的运动路径是178>179>180>-179>-178,而不是178>177>176>…>1>0>-1>-2>….>-177>-178。然而,有些云台具有机械限位,例如前面举例的运动路径中如果在180°存在机械限位,那么以最短路径运动到目标姿态会存在被卡住的问题。从动云台(2号位云台)在进入双云台联动控制的情况下运动到机械限位的位置处时,会一直往限位位置撞无法及时调整到指定姿态。
本实施例中,主动云台向从动云台发送主动云台当前的关节角数据,使从动云台关节角数据调整至与主动云台当前关节角数据相同,可以使从动云台向目标姿态调整过程中避开从动云台的机械限位。
更具体地,当主动云台的当前关节角数据与从动云台的当前关节角数据之差的绝对值大于180°时,使从动云台按照预定运动方向调整至所述主动云台 当前关节角数据对应姿态,其中,预定运动方向与从动云台以最短路径向主动云台当前关节角数据对应姿态运动的方向相反。
下面以云台偏航方向的姿态为例,对从动云台避开机械限位进行说明。
如图5所示,左图为主动云台偏航电机转动示意图,右图为从动云台偏航电机的转动示意图,示例的,所述主动云台的当前偏航姿态对应偏航电机当前的关节角为0度,所述从动云台的当前偏航姿态对应偏航电机当前的关节角为350度,从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向为350>351>….>359>360度(如图5所示实线粗体箭头方向)。若目标姿态对应的主动云台关节角为90度,则1号云台的转动路径为0>1>….>89>90度(图5左侧实线箭头方向),2号位云台往上述目标姿转动的路径有两条,其中最短路径为360度>361>….>450度(图5右侧的虚线箭头方向),这条路径会经过所述机械限位位置,例如可以是380度;另一条路径为360度>359….>90度的路径(图5右侧的实线箭头方向);其中最短路径会经过机械限位被卡住,因此从动云台的偏航电机的关节角从360度调整到380度后,会卡在限位位置处,或者需要重新采用另外一条路径运动到目标姿态,从而无法及时调整到指定姿态,造成不友好的用户体验。需要说明的是,上述以主动云台和从动云台偏航姿态的联动控制为例进行了示意性说明,不应理解为对本发明的限制。
本实施例采用的实现方式中,主动云台将主动云台的关节角数据即0°发送给从动云台,从动云台获知从动云台的关节角为350°,主动云台的当前关节角数据与从动云台的当前关节角数据之差的绝对值大于180°,那么从动云台不会以最短路径从350°顺时针运动到360°以与主动云台的朝向保持一致,而以与最短路径相反的运动方向逆时针转动一周到0°关节角位置与主动云台保持一致;即:从动云台与主动云台进行关节角校准。随后,在接收到目标姿态,如图5所示的主动云台要转动到90°关节角所在方向,则从动云台可以采用与虚线方向转动到90°。在该流程中,从动云台先以实线方向转动到0°,然后以虚线方向转动到90°。
另外,如果主动云台将主动云的关节角0°以及目标姿态(90°)关节角方向一起发送给从动云台,那么从动云台可以首先依据从动云台的关节角是350°确定转动方向是逆时针方向(实线箭头方向),然后确定逆时针转动的 角度是到关节角为90°,该流程中,从动云台以实线方向转动到90°,不需要先转动到0°。
以上两种方式的前一种方式,主动云台的关节角数据和目标姿态分开发送,那么从动云台可以先执行关节角校准,然后进行姿态联动。以上两种方式的后一种方式,主动云台的关节角数据和目标姿态一同发送,那么从动云台可以以主动云台的关节角与从动云台关节角之间的差值大于180°来确定从动云台的转动方向,然后直接转动到目标姿态对应的关节角。
向上述从动云台发送上述目标姿态参数,在上述目标姿态参数向上述从动云台发送过程中,若存在死区则在不考虑上述死区的情况下被转发,使上述从动云台向上述目标姿态调整;上述死区为参数从上述主动云台向上述从动云台转发需要上述主动云台与上述从动云台之间角度差的最小阈值。
当无人飞行器悬停或者机动飞行的时候,由于机身震动等原因,即使无外部设备控制云台运动,云台的测量姿态仍然有一定范围内的抖动。然而,如果从动云台(2号位云台)接收到该一定范围内抖动的测量姿态作为目标姿态,那么从动云台也是抖动的。此前,为了抑制着这种抖动的现象,有的无人飞行器会添加死区保护。死区保护是指:只有在两个云台的测量姿态差1°及以上的时候,才会发送角度控制命令给云台。然而当飞机暴力飞行等场景下时,会有虽然未控制云台运动,但是姿态差异大于1度的情况,使得画面抖动感较强。为了解决该问题,本实施例去掉了死区的限制,并通过将主动云台的目标姿态,而非测量姿态对应的参数发送给从动云台,提高了控制精度。
进一步地,上述获得主动云台的目标姿态的目标姿态参数包括:
获得上述主动云台的预定精度的目标姿态的目标姿态参数,上述预定精度高于上述主动云台的姿态测量精度。
目前云台慢速转动时候存在精度不够的问题,慢速转动的原因可能是无人飞行器慢速飞行等应用场景。可以理解的是在通信能力(主要是带宽)支持的情况下,以上预定精度越高越能改善云台慢速转动时的控制精度。
可选地,上述预定精度包括:上述目标姿态参数的数据类型为浮点型(float类型)数据类型。
进一步地,上述方法还包括:
向所述从动云台发送所述主动云台处于预定模式的标志位,当所述主动云台处于预定模式调整姿态的情况下,使所述从动云台运动到预定位置。
更具体地,上述预定位置包括,从动云台的关节角零位。
在联动控制模式下,可能只有主动云台接收到校准指令,这会导致从动云台跟随1号位云台的目标姿态而进行非必要调整;例如:只有1号位云台接收到校准指令;2号位仍然收到1号位云台的目标姿态跟随1号位云台。本实施例可以避免从动云台的不必要联动,从而提高用户体验。
可选地,上述预定模式包括:
指南针校准模式和/或云台自动校准模式。
可以理解的是,如果有其他任何发送给主动云台但是不发送给从动云台的姿态调整指令的模式,均可以采用本实施例方案,以上指南针校准模式和云台自动校准模式的举例不应理解为对本发明实施例的唯一性限定。
本发明实施了还提供了另一种云台的控制方法,上述云台包括主动云台和从动云台,上述主动云台与上述从动云台处于联动控制模式,如图6所示,上述方法包括:
601:接收上述主动云台的目标姿态的目标姿态参数,上述目标姿态为上述主动云台将要运动到的姿态;
602:依据上述目标姿态参数向上述目标姿态调整。
本实施例执行主体为从动云台,从动云台所收到的参数以及相应的控制内容可以参考前文中关于主动云台的说明,在此不再赘述。
进一步地,上述方法还包括:
接收上述主动云台当前的关节角数据;
所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位。
更具体地,所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位包括:
所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,所述从动云台按照预定运动方向调整至所述主动云台当 前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
更具体地,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
进一步地,上述方法还包括:
控制上述从动云台退出云台跟无人飞行器模式。
联动控制模式下,不同云台可能处于不同的控制模式,例如:1号位云台处于飞机跟云台模式,2号位云台处于云台跟飞机模式;此种情况下,1号位云台先转飞机跟随1号位云台,然后2号位云台在跟随飞机的指令基础上会叠加跟随1号位云台的指令导致2号位明显跟不上,且到达位置处有超调现象。另外,当2号位云台接收到跟随1号位云台的指令时,会直接叠加到2号位云台当前命令上面,如果2号位云台不主动退出云台跟飞机模式,会导致云台控制不稳定的问题。为解决上述技术问题,本申请实施例在双云台联动控制模式下,控制从动云台退出云台跟无人飞行器模式。
更具体地,上述接收主动云台的目标姿态的目标姿态参数包括:
接收上述主动云台的预定精度的目标姿态的目标姿态参数,上述预定精度高于上述主动云台的姿态测量精度。
更具体地,上述目标姿态参数的数据类型为浮点型数据类型。
进一步地,上述方法还包括:
接收所述主动云台处于预定模式的标志位,根据所述标志位确定所述主动云台处于预定模式调整姿态的情况下,则运动到预定位置。
更具体地,上述预定位置包括,从动云台的关节角零位。
更具体地,上述预定模式包括:
指南针校准模式和/或云台自动校准模式。
基于前文方法实施例的说明,相应地本发明实施例还提供了两种云台,分别作为主动云台或被动云台使用;后续关于云台的装置实施例可以参考前文方法实施例的说明。
本发明实施例还提供了一种云台,应用于无人飞行器,所述无人飞行器包括主动云台和从动云台,所述云台作为主动云台使用,如图7所示,所述云台 包括:输入器件701、输出器件702、存储器703以及处理器704;
上述存储器703,用于存储程序代码;
上述处理器704,调用上述程序代码,当上述程序代码被执行时,控制上述输入器件701获得所述主动云台的目标姿态的目标姿态参数,上述目标姿态为上述主动云台将要运动到的姿态;
控制上述输出器件702向所述从动云台发送上述目标姿态参数,使上述从动云台向上述目标姿态调整。
本实施例,在获得主动云台的目标姿态的目标姿态参数后,发送给从动云台,那么从动云台可以以主动云台的目标姿态进行调整,而不是以主动云台当前的姿态为目标进行调整,因而可以更快地与主动云台保持同步,缩小了从动云台与主动云台之间的姿态差异。
进一步地,所述处理器704还用于控制所述输出器件702向所述从动云台发送所述主动云台当前的关节角数据,使所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位。
更具体地,所述使所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位,包括:
所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,使所述从动云台按照预定运动方向调整至所述主动云台当前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
更具体地,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
进一步地,所述处理器704还用于控制所述主动云台退出云台跟无人飞行器模式。
更具体地,所述处理器704控制所述输入器件701获得所述主动云台的目标姿态的目标姿态参数包括:控制所述输入器件701获得所述主动云台的预定精度的目标姿态的目标姿态参数,所述预定精度高于所述主动云台的姿态测量精度。
更具体地,所述目标姿态参数的数据类型为浮点型数据类型。
进一步地,所述处理器704还用于控制所述输出器件702向所述从动云台发送所述主动云台处于预定模式的标志位,当所述主动云台处于预定模式调整姿态的情况下,使所述从动云台运动到预定位置。
更具体地,所述预定位置包括,从动云台的关节角零位。
更具体地,所述预定模式包括:
指南针校准模式和/或云台自动校准模式。
本发明实施例还提供了另一种云台,应用于无人飞行器,所述无人飞行器包括主动云台和从动云台,所述云台作为从动云台使用,如图8所示,所述云台包括:输入器件801、存储器802以及处理器803;
所述存储器802,用于存储程序代码;
所述处理器803,调用所述程序代码,当所述程序代码被执行时,控制所述输入器件801接收所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
所述处理器803控制所述从动云台依据所述目标姿态参数向所述目标姿态调整。
进一步地,所述处理器803还用于控制所述输入器件接收所述主动云台当前的关节角数据;
所述处理器803还用于在控制所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位。
更具体地,所述处理器803控制所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位包括:
具体用于控制所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,按照预定运动方向调整至所述主动云台当前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
更具体地,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
进一步地,所述处理器803还用于控制所述从动云台退出云台跟无人飞行器模式。
更具体地,所述处理器803控制所述输入器件801接收所述主动云台的目标姿态的目标姿态参数接收主动云台的目标姿态的目标姿态参数包括:具体用于控制所述输入器件801接收所述主动云台的预定精度的目标姿态的目标姿态参数,所述预定精度高于所述主动云台的姿态测量精度。
更具体地,所述目标姿态参数的数据类型为浮点型数据类型。
进一步地,所述处理器803还用于控制所述输入器件801接收所述主动云台处于预定模式的标志位;
所述处理器803还用于根据所述标志位确定所述主动云台处于预定模式调整姿态的情况下,则运动到预定位置。
更具体地,所述预定位置包括,从动云台的关节角零位。
更具体地,所述预定模式包括:
指南针校准模式和/或云台自动校准模式。
本发明实施例还提供了一种无人飞行器,包括:机身;动力系统,安装在所述机身,用于为所述可移动平台提供动力;负载,安装在所述机身,如图2所示,所述负载包括主动云台和从动云台;其中,上述主动云台为本发明实施例提供的任意一项作为主动云台使用的云台;上述从动云为本发明实施例提供的任意一项作为从动云使用的云台。
本发明实施例还公开了一种可读存储介质,该可读存储介质存储了参考本发明实施例提供的方法实施例的程序代码。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(read-only memory,ROM)、随机存取器(random access memory,RAM)、磁盘等。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看上述附图、公开内容、以及所附权利要求书,可理解并实现上述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相 互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。

Claims (39)

  1. 一种云台的控制方法,其特征在于,所述云台包括主动云台和从动云台,所述主动云台与所述从动云台处于联动控制模式,所述方法包括:
    获得所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
    向所述从动云台发送所述目标姿态参数,以使所述从动云台向所述目标姿态调整。
  2. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    向所述从动云台发送所述主动云台当前的关节角数据,使所述从动云台的关节角数据调整至与所述主动云台当前的关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位。
  3. 根据权利要求2所述方法,其特征在于,所述使所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位,包括:
    所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,使所述从动云台按照预定运动方向调整至所述主动云台当前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
  4. 根据权利要求2所述方法,其特征在于,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
  5. 根据权利要求1至4任意一项所述方法,其特征在于,所述获得所述主动云台的目标姿态的目标姿态参数包括:
    获得所述主动云台的预定精度的目标姿态的目标姿态参数,所述预定精度高于所述主动云台的姿态测量精度。
  6. 根据权利要求1所述方法,其特征在于,所述目标姿态参数的数据类型为浮点型数据类型。
  7. 根据权利要求1至4任意一项所述方法,其特征在于,所述方法还包括:
    向所述从动云台发送所述主动云台处于预定模式的标志位,当所述主动云台处于预定模式调整姿态的情况下,使所述从动云台运动到预定位置。
  8. 根据权利要求7所述方法,其特征在于,所述预定位置包括,从动云台的关节角零位。
  9. 根据权利要求7所述方法,其特征在于,所述预定模式包括:
    指南针校准模式和/或云台自动校准模式。
  10. 一种云台的控制方法,其特征在于,所述云台包括主动云台和从动云台,所述主动云台与所述从动云台处于联动控制模式,所述方法包括:
    接收所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
    依据所述目标姿态参数向所述目标姿态调整。
  11. 根据权利要求10所述方法,其特征在于,所述方法还包括:
    接收所述主动云台当前的关节角数据;
    所述从动云台的关节角数据调整至与所述主动云台当前的关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位。
  12. 根据权利要求11所述方法,其特征在于,所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位包括:
    所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,所述从动云台按照预定运动方向调整至所述主动云台当 前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
  13. 根据权利要求11所述方法,其特征在于,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
  14. 根据权利要求10至13任意一项所述方法,其特征在于,所述方法还包括:
    控制所述从动云台退出云台跟无人飞行器模式。
  15. 根据权利要求10至13任意一项所述方法,其特征在于,所述接收主动云台的目标姿态的目标姿态参数包括:
    接收所述主动云台的预定精度的目标姿态的目标姿态参数,所述预定精度高于所述主动云台的姿态测量精度。
  16. 根据权利要求10所述方法,其特征在于,所述目标姿态参数的数据类型为浮点型数据类型。
  17. 根据权利要求10至13任意一项所述方法,其特征在于,所述方法还包括:
    接收所述主动云台处于预定模式的标志位,根据所述标志位确定所述主动云台处于预定模式调整姿态的情况下,则运动到预定位置。
  18. 根据权利要求17所述方法,其特征在于,所述预定位置包括,从动云台的关节角零位。
  19. 根据权利要求17所述方法,其特征在于,所述预定模式包括:
    指南针校准模式和/或云台自动校准模式。
  20. 一种云台,其特征在于,应用于无人飞行器,所述无人飞行器包括主动云台和从动云台,所述云台作为主动云台使用,所述云台包括:输入器件、输出器件、存储器以及处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当所述程序代码被执行时,控制所述输入器件获得所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
    控制所述输出器件向所述从动云台发送所述目标姿态参数,使所述从动云台向所述目标姿态调整。
  21. 根据权利要求20所述云台,其特征在于,
    所述处理器还用于控制所述输出器件向所述从动云台发送所述主动云台当前的关节角数据,使所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位。
  22. 根据权利要求21所述云台,其特征在于,所述使所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位,包括:
    所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,使所述从动云台按照预定运动方向调整至所述主动云台当前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
  23. 根据权利要求21所述云台,其特征在于,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
  24. 根据权利要求20至23任意一项所述云台,其特征在于,
    所述处理器控制所述输入器件获得所述主动云台的目标姿态的目标姿态参 数包括:控制所述输入器件获得所述主动云台的预定精度的目标姿态的目标姿态参数,所述预定精度高于所述主动云台的姿态测量精度。
  25. 根据权利要求20所述云台,其特征在于,
    所述目标姿态参数的数据类型为浮点型数据类型。
  26. 根据权利要求20至23任意一项所述云台,其特征在于,
    所述处理器还用于控制所述输出器件向所述从动云台发送所述主动云台处于预定模式的标志位,当所述主动云台处于预定模式调整姿态的情况下,使所述从动云台运动到预定位置。
  27. 根据权利要求26所述云台,其特征在于,
    所述预定位置包括,从动云台的关节角零位。
  28. 根据权利要求26所述云台,其特征在于,所述预定模式包括:
    指南针校准模式和/或云台自动校准模式。
  29. 一种云台,其特征在于,应用于无人飞行器,所述无人飞行器包括主动云台和从动云台,所述云台作为从动云台使用,所述云台包括:输入器件、存储器以及处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当所述程序代码被执行时,控制所述输入器件接收所述主动云台的目标姿态的目标姿态参数,所述目标姿态为所述主动云台将要运动到的姿态;
    所述处理器控制所述从动云台依据所述目标姿态参数向所述目标姿态调整。
  30. 根据权利要求29所述云台,其特征在于,
    所述处理器还用于控制所述输入器件接收所述主动云台当前的关节角数据;
    所述处理器还用于控制所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从 动云台的机械限位。
  31. 根据权利要求30所述云台,其特征在于,
    所述处理器在控制所述从动云台关节角数据调整至与所述主动云台当前关节角数据相同,以使所述从动云台向所述目标姿态调整过程中避开所述从动云台的机械限位包括:
    所述主动云台的当前关节角数据与所述从动云台的当前关节角数据之差的绝对值大于180°时,按照预定运动方向调整至所述主动云台当前关节角数据对应姿态,其中,所述预定运动方向与所述从动云台以最短路径向所述主动云台当前关节角数据对应姿态运动的方向相反。
  32. 根据权利要求30所述云台,其特征在于,所述主动云台当前的关节角数据包括:所述主动云台偏航轴电机的关节角、俯仰轴电机的关节角、横滚轴电机的关节角中的至少一个。
  33. 根据权利要求29至32任意一项所述云台,其特征在于,
    所述处理器还用于控制所述从动云台退出云台跟无人飞行器模式。
  34. 根据权利要求29至32任意一项所述云台,其特征在于,
    所述处理器控制所述输入器件接收所述主动云台的目标姿态的目标姿态参数接收主动云台的目标姿态的目标姿态参数包括:
    控制所述输入器件接收所述主动云台的预定精度的目标姿态的目标姿态参数,所述预定精度高于所述主动云台的姿态测量精度。
  35. 根据权利要求29所述云台,其特征在于,所述目标姿态参数的数据类型为浮点型数据类型。
  36. 根据权利要求29至32任意一项所述云台,其特征在于,
    所述处理器还用于控制所述输入器件接收所述主动云台处于预定模式的标志位;
    所述处理器还用于在所述从动云台根据所述标志位确定所述主动云台处于预定模式调整姿态的情况下,控制所述从动云台运动到预定位置。
  37. 根据权利要求36所述云台,其特征在于,所述预定位置包括,从动云台的关节角零位。
  38. 根据权利要求36所述云台,其特征在于,所述预定模式包括:
    指南针校准模式和/或云台自动校准模式。
  39. 一种无人飞行器,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于为所述可移动平台提供动力;
    负载,安装在所述机身,所述负载包括主动云台和从动云台;
    其中,所述主动云台为权利要求20至28任意一项所述的云台,所述从动云台为权利要求29至38任意一项所述的云台。
PCT/CN2018/118517 2018-11-30 2018-11-30 云台的控制方法、云台及无人飞行器 WO2020107393A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/118517 WO2020107393A1 (zh) 2018-11-30 2018-11-30 云台的控制方法、云台及无人飞行器
CN201880010725.5A CN110291013B (zh) 2018-11-30 2018-11-30 云台的控制方法、云台及无人飞行器
US17/321,438 US20210271221A1 (en) 2018-11-30 2021-05-15 Gimbal control method, gimbal, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118517 WO2020107393A1 (zh) 2018-11-30 2018-11-30 云台的控制方法、云台及无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/321,438 Continuation US20210271221A1 (en) 2018-11-30 2021-05-15 Gimbal control method, gimbal, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020107393A1 true WO2020107393A1 (zh) 2020-06-04

Family

ID=68001283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118517 WO2020107393A1 (zh) 2018-11-30 2018-11-30 云台的控制方法、云台及无人飞行器

Country Status (3)

Country Link
US (1) US20210271221A1 (zh)
CN (1) CN110291013B (zh)
WO (1) WO2020107393A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402614B1 (ko) * 2017-03-08 2022-05-27 엘지이노텍 주식회사 액체 렌즈를 포함하는 카메라 모듈, 이를 포함하는 광학 기기
CN113928581B (zh) * 2021-09-30 2022-08-23 北京远度互联科技有限公司 吊舱控制方法、装置、吊舱、无人机及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718385A (zh) * 2009-12-15 2010-06-02 山东神戎电子股份有限公司 分体式智能随动云台
CN201707536U (zh) * 2009-12-15 2011-01-12 山东神戎电子股份有限公司 分体式智能随动云台
CN104574359A (zh) * 2014-11-03 2015-04-29 南京邮电大学 一种基于主从摄像机的学生跟踪定位方法
CN104574425A (zh) * 2015-02-03 2015-04-29 中国人民解放军国防科学技术大学 一种基于旋转模型的主从摄像机系统的标定以及联动方法
CN108475074A (zh) * 2017-04-10 2018-08-31 深圳市大疆创新科技有限公司 云台随动控制方法及控制设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201608828U (zh) * 2010-01-13 2010-10-13 山东神戎电子股份有限公司 高精度激光照明器智能随动监控装置
CN101916119B (zh) * 2010-07-28 2012-06-13 山东神戎电子股份有限公司 分体式云台的自动跟随控制方法
US9482530B2 (en) * 2013-11-05 2016-11-01 Raytheon Company Nadir/zenith inertial pointing assistance for two-axis gimbals
JP6553867B2 (ja) * 2014-11-27 2019-07-31 日本航空電子工業株式会社 カメラスタビライザ
WO2019100249A1 (zh) * 2017-11-22 2019-05-31 深圳市大疆创新科技有限公司 云台的控制方法、云台以及无人飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718385A (zh) * 2009-12-15 2010-06-02 山东神戎电子股份有限公司 分体式智能随动云台
CN201707536U (zh) * 2009-12-15 2011-01-12 山东神戎电子股份有限公司 分体式智能随动云台
CN104574359A (zh) * 2014-11-03 2015-04-29 南京邮电大学 一种基于主从摄像机的学生跟踪定位方法
CN104574425A (zh) * 2015-02-03 2015-04-29 中国人民解放军国防科学技术大学 一种基于旋转模型的主从摄像机系统的标定以及联动方法
CN108475074A (zh) * 2017-04-10 2018-08-31 深圳市大疆创新科技有限公司 云台随动控制方法及控制设备

Also Published As

Publication number Publication date
CN110291013A (zh) 2019-09-27
CN110291013B (zh) 2021-12-17
US20210271221A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US20200293046A1 (en) Method for switching operation mode of gimbal, and controller and image stabilization device
WO2018072657A1 (zh) 图像处理的方法、处理图像的装置、多目摄像装置以及飞行器
WO2018120132A1 (zh) 控制方法、装置、设备及无人飞行器
US20200378760A1 (en) Hover control
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
US20200271269A1 (en) Method of controlling gimbal, gimbal, and unmanned aerial vehicle
US20200319642A1 (en) Gimbal control method and device, gimbal, and unmanned aerial vehicle
US11245848B2 (en) Method of controlling gimbal, gimbal and UAV
WO2019061295A1 (zh) 一种视频处理方法、设备、无人机及系统
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2021212445A1 (zh) 拍摄方法、可移动平台、控制设备和存储介质
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
US11061412B2 (en) Information processing device and information processing method
WO2020087349A1 (zh) 无人机及其云台控制方法
US20210120171A1 (en) Determination device, movable body, determination method, and program
WO2018059398A1 (zh) 多旋翼飞行器的控制方法、装置和系统
WO2023036259A1 (zh) 一种无人机拍摄方法、装置、无人机及存储介质
WO2020107393A1 (zh) 云台的控制方法、云台及无人飞行器
WO2019134124A1 (zh) 控制方法、无人机、遥控设备以及非易失性存储介质
WO2021217408A1 (zh) 无人机系统及其控制方法和装置
US11620913B2 (en) Movable object application framework
WO2023041014A1 (zh) 一种图像获取方法、装置、飞行器和存储介质
CN113942656A (zh) 云台的控制方法、云台及无人飞行器
WO2018214015A1 (zh) 一种航向修正方法、设备及飞行器
US11265456B2 (en) Control device, photographing device, mobile object, control method, and program for image acquisition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941398

Country of ref document: EP

Kind code of ref document: A1