WO2020107336A1 - 焊接轨迹跟踪方法、装置及系统 - Google Patents

焊接轨迹跟踪方法、装置及系统 Download PDF

Info

Publication number
WO2020107336A1
WO2020107336A1 PCT/CN2018/118206 CN2018118206W WO2020107336A1 WO 2020107336 A1 WO2020107336 A1 WO 2020107336A1 CN 2018118206 W CN2018118206 W CN 2018118206W WO 2020107336 A1 WO2020107336 A1 WO 2020107336A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
scanning
coherent
coherent light
interference signal
Prior art date
Application number
PCT/CN2018/118206
Other languages
English (en)
French (fr)
Inventor
王星泽
闫静
舒远
Original Assignee
合刃科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合刃科技(深圳)有限公司 filed Critical 合刃科技(深圳)有限公司
Priority to CN201880068591.2A priority Critical patent/CN111344102A/zh
Priority to PCT/CN2018/118206 priority patent/WO2020107336A1/zh
Publication of WO2020107336A1 publication Critical patent/WO2020107336A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups

Definitions

  • the present invention relates to the field of computer technology, and in particular, to a welding trajectory tracking method, device, and system.
  • Laser welding In the traditional welding technology, laser welding is generally used. Laser welding has many advantages such as high energy density, small heating area, long welding distance, many types of weldable materials, and easy welding process automation. It has been gradually widely used in machinery manufacturing, aerospace, energy transportation, petrochemical and other industries . However, laser welding also has the characteristics of non-linearity, time-varying, and many interfering factors. The welding process will deform the welding seam and cause the welding torch to deviate from the welding seam. Therefore, it is necessary to automatically track the welding path of the welding seam during the welding process.
  • Grating projection is another method to obtain the surface profile of laser welding track.
  • the grating is projected onto the reference plane and the surface of the measured object respectively.
  • the grating will deform to varying degrees.
  • the object surface can be obtained at the corresponding point Height, and thus the outline shape of the three-dimensional object.
  • a welding trajectory tracking system includes a processor, a coherent optical scanner connected to the processor, a photosensitive element, and a laser welding device;
  • the coherent optical scanner is used to emit mutually coherent scanning beams and reference beams to perform coherent optical scanning on the welding area, and the coherent optical scanning includes at least one scanning line;
  • the photosensitive element is used to receive the interference signal of the reflected light of the scanning beam and the reference beam, and send the interference signal to the processor, where the interference signal corresponds to the scanning line;
  • the processor is used for determining the height information of the scanning line scanned by the coherent light according to the interference signal; determining the welding trajectory according to the height information of the at least one scanning line, and generating a welding control signal according to the welding trajectory;
  • the laser welding device is used for positioning the welding track according to the welding control signal.
  • the coherent light scanner includes a coherent light generator, a scanning device connected to the coherent light generator, and a transflective mirror provided in the light exit direction of the coherent light generator ;
  • the coherent light generator is used to generate a coherent light beam
  • the scanning device is used to control the exit direction of the coherent light beam of the coherent light generator to scan;
  • the transflective mirror is used to transmit coherent beams and reflect laser welding beams.
  • the system further includes a pre-positioned camera connected to the processor, for taking a picture of the surface of the welding object, and sending the taken picture to the processor
  • the processor is used to determine the welding area in the photographed picture.
  • the scanning beam emitted by the coherent light scanner and the laser welding beam emitted by the laser welding device are coaxial.
  • the processor is further configured to send a control signal to the coherent light scanner to adjust the wavelength of the coherent light emitted by the coherent light scanner.
  • a welding trajectory tracking method including:
  • Coherent optical scanning of the welding area by a coherent optical scanner the coherent optical scanner emits mutually coherent scanning beams and reference beams, and the coherent optical scanning includes at least one scanning line;
  • the welding trajectory is determined according to the height information of the at least one scanning line.
  • before the coherent light scanning of the welding area by the coherent light scanner further includes:
  • the surface of the welding object is photographed by a predetermined camera, and the welding area is determined in the photographed picture.
  • the coherent light scanning of the welding area by the coherent light scanner further includes:
  • the height information in the scan line includes one or more mutation parts
  • the determining the welding trajectory according to the height information of the at least one scanning line includes:
  • One or more welding traces are determined according to one or more abrupt changes in the height information of the at least one scan line.
  • a welding track tracking device including:
  • a scanning control module configured to perform coherent optical scanning on the welding area by a coherent optical scanner, the coherent optical scanner emits a mutually coherent scanning beam and a reference beam, and the coherent optical scanning includes at least one scanning line;
  • a signal receiving module configured to receive the interference signal of the reflected light of the scanning beam and the reference beam through the photosensitive element, the interference signal corresponding to the scanning line;
  • the signal processing module is used to determine the height information of the scanning line scanned by the coherent light according to the interference signal
  • the trajectory recognition module is used to determine the welding trajectory according to the height information of the at least one scanning line.
  • the device further includes a pre-positioning module, which is used to take a picture of the surface of the welding object by a pre-positioning camera, and determine the welding area in the photographed picture.
  • a pre-positioning module which is used to take a picture of the surface of the welding object by a pre-positioning camera, and determine the welding area in the photographed picture.
  • the scanning control module is further used to obtain the welding seam/welding spot extension direction in the welding area, and scan in the axial direction of the welding seam/welding spot extension direction.
  • the height information in the scan line includes one or more mutation parts
  • the trajectory recognition module is also used to determine one or more welding trajectories according to one or more mutation parts in the height information of the at least one scan line.
  • the interference factors on the reflected light such as the texture, material, reflection coefficient, and color spots on the surface of the welding area will not affect the welding trajectory
  • the detection has an effect.
  • the processor only needs to detect the welding trace according to the sudden change of the interference signal of the reflected light of the scanning beam and the reference beam on the scanning line with the position, so it is more accurate than the traditional laser triangulation method.
  • FIG. 1 is an architecture diagram of a welding trajectory tracking system in an embodiment
  • FIG. 2 is an architecture diagram of a welding trajectory tracking system in another embodiment
  • FIG. 3 is a schematic diagram of scan line distribution in an embodiment
  • FIG. 4 is a schematic diagram of determining the trajectory according to the intensity of the interference signal corresponding to the scan line in an embodiment
  • FIG. 5 is a schematic diagram of determining a trajectory according to the intensity of an interference signal corresponding to a scan line in an embodiment
  • FIG. 6 is a schematic diagram of determining multiple trajectories according to the intensity of the interference signal corresponding to the scan line in one embodiment
  • FIG. 7 is a flowchart of a welding trajectory tracking method according to an embodiment
  • FIG. 8 is a schematic diagram of a welding trajectory tracking device according to an embodiment
  • FIG. 9 is a schematic diagram of the composition of a computer system running the aforementioned welding trajectory tracking method in one embodiment.
  • the present invention In order to solve the technical problem that the welding trajectory tracking method in the prior art is affected by the color, material, roughness, optical properties and surface shape of the surface of the welding object, thereby resulting in a lower accuracy of the method of positioning the welding trajectory, the present invention In particular, a welding trajectory tracking system and a welding trajectory tracking method and device based on the welding trajectory tracking system are proposed.
  • the welding trajectory tracking system includes: a processor 10, a coherent light scanner 20 connected to the processor 10, a photosensitive element 30, and a laser welding device 40.
  • the coherent light scanner 20, the photosensitive element 30 and the laser welding device 40 can be integrated on the welding system, with the laser welding device 40 as the main body, the coherent light scanner 20 and the photosensitive element 30 is attached to the laser welding device 40 as an auxiliary tracking system, and the processor 10 is an independent computer system, such as a control host, a central control machine, and an operation terminal.
  • the coherent light scanner 20, the photosensitive element 30 and the laser welding device 40 are respectively connected to the processor 10 through corresponding communication lines.
  • a unified control bus, port and communication protocol may also be provided, and through unified control The bus, port, and communication protocol transmit control signals or control messages between the components of the coherent light scanner 20, the photosensitive element 30, and the laser welding device 40 and the processor 10.
  • the processor 10 can also be integrated on the laser welding device 40 as part of the welding system, exists in the form of a processor chip, and is connected with a memory that stores the corresponding control program, and provides a user interaction interface ( (For example, touch pad, touch screen, mechanical buttons, display screen, peripheral interface, etc.), so that the welding system can be used independently without external equipment.
  • a user interaction interface (For example, touch pad, touch screen, mechanical buttons, display screen, peripheral interface, etc.), so that the welding system can be used independently without external equipment.
  • the coherent optical scanner 20 is used to emit mutually coherent scanning beams and reference beams to perform coherent optical scanning on the welding area, and the coherent optical scanning includes at least one scanning line.
  • Coherent light refers to any point in time or space, especially in a region on a plane perpendicular to the direction of light propagation, or at all times in a specific point in space, all parameters of light can be predicted and Relevance light.
  • the coherent light scanner 20 can be used to divide the light waves (source waves) emitted by the light source into a group of several waves (beams) through an optical device (interference device). Since these waves come from the same source wave, when the initial phase of the source wave changes, the initial phase of each member wave changes accordingly, so that the phase difference between them remains unchanged. At the same time, the polarization direction of each member wave is also consistent with the source wave, so their polarization directions are also generally the same at the point of investigation.
  • the general interference device can make the amplitude of each member wave less disparity. Thus, a group of several generated light beams is a coherent light group.
  • the coherent light scanner 20 emits two beams of light, and the two beams are mutually coherent, one of which is a scanning beam, and the other is a reference beam that is coherent with the scanning beam.
  • the scanning beam is used to scan the welding area, that is, the emission direction of the scanning beam is moved according to a certain trajectory, so that the scanning beam moves at the irradiation point of the welding area to form a scanning line.
  • After the scanning beam irradiates the welding area it will be reflected.
  • the reflected light and the aforementioned reference beam are still coherent light, so an interference phenomenon will occur, and the welding track of the welding area can be detected by this interference phenomenon.
  • the coherent light scanner 20 includes a coherent light generator 202, a scanning device 204 connected to the coherent light generator 202, and a semi-transparent light set in the light exit direction of the coherent light generator Half mirror 206.
  • the coherent light generator 202 is used to generate a coherent light beam.
  • the scanning device 204 is used to control the exit direction of the coherent light beam of the coherent light generator for scanning.
  • the half mirror 206 is used to transmit coherent beams and reflect laser welding beams.
  • the coherent light generator 202 generates a set of coherent light beams.
  • the coherent light beams are reflected and transmitted through the half mirror 206, and part of the transmitted beams are directed to the welding area on the surface of the welding inspection material. After the surface of the welding area is reflected and then transmitted through the half mirror, the light interferes with the reference beam and forms an image on the photosensitive element 30.
  • the mutually coherent scanning beam and reference beam can be separated into a scanning beam and a reference beam by the coherent light generator 202 when generating the coherent beam, or can be passed through a semi-transparent mirror or other optical devices in the subsequent optical path It is divided into reference beams by reflection and transmission.
  • the scanning beam and the reference beam can be generated by the coherent light scanner by generating two coherent beams of coherent light, or by the coherent light scanner, generating a beam of coherent light, which is then separated by other optical elements in the subsequent optical path Scanning beam and reference beam. That is to say, the generation method of the reference beam is not limited here, it only needs to ensure that the generated reference beam and the scanning beam are mutually interfering.
  • the scanning device 204 is used to control the emission direction of the coherent light beam of the coherent light generator 202 to move along the predetermined scanning line direction. Since the scanning beam is split by the coherent light beam emitted by the coherent light generator 202, the scanning device 204 is essentially Control the scanning behavior of the scanning beam.
  • the scanning device 204 can scan the welding area, and the scanning line of the up and down arrows in FIG. 3 is the movement locus of the irradiation point of the scanning beam on the welding area.
  • the distance between adjacent scan lines is the horizontal resolution, and the vertical resolution of the scan corresponds to the wavelength of the coherent light emitted by the coherent light generator 202.
  • the photosensitive element 30 is used to receive the interference signal of the reflected light of the scanning beam and the reference beam, and send the interference signal to the processor, the interference signal corresponding to the scanning line.
  • the intensity of the optical signal is superimposed during the process of reaching the photosensitive element 30. Since the optical path of the photosensitive element 30 and the welding area is constant, if the surface of the welding area corresponding to the scanning line is smooth and no traces, the intensity of the interference light signal corresponding to the position on the scanning line is the same, and if the scanning line passes In the welding trajectory part in the welding area, the surface height change of the welding area due to the welding seam or welding spot changes the interference imaging of the reflected light of the scanning beam and the reference beam.
  • the coherent optical scanner 20 scans the welding area in the order of 1 to 7.
  • the welding track is not cut at the scanning line 1 (that is, the scanning process is not scanned To the welding track), therefore, the intensity of the light signal received on the photosensitive element 30 does not change with the scanning process on the scanning line 1 and remains stable.
  • the scanning line 7 because the scanning line 7 cuts the welding track (that is, the welding track is scanned during the scanning process), when the intensity of the optical signal received on the photosensitive element 30 reaches the welding track at the scanning position, Changes occurred, and the scanning position returned to stability after leaving the welding trajectory.
  • the photosensitive element 30 can continuously receive the intensity of the interference signal at each scanning point during the scanning process and send the intensity of the interference signal to the processor 10, and at the same time the processor 10 can pass the coherent light scanner 20 or the coherent light scanner
  • the scanning device 204 of FIG. 2 obtains position information corresponding to the intensity of the interference signal, so that the processor 10 can obtain the signal intensity of the interference signal of the reflected light and the reference beam corresponding to each scanning point on the scan line.
  • the processor 10 is used for determining the height information of the scanning line scanned by the coherent light according to the interference signal; determining the welding trajectory according to the height information of at least one scanning line, and generating a welding control signal according to the welding trajectory.
  • the height of each point on the surface is the same, so the height of each scanning point on the scan line is the same, which makes the intensity of the interference signal received during the scanning process consistent.
  • the corresponding relationship between the scanning point and the intensity of the interference signal is a nearly stable horizontal line that changes with the scanning point.
  • the interference signal strength at the scanning point at the welding track has changed significantly, or the scanning line can be detected from the sudden change of the interference signal strength.
  • the magnitude of the abrupt change in signal intensity also corresponds to the depth of the weld seam or the height of the welding spot in the welding trajectory.
  • the processor 10 can detect the abrupt part in its height information (that is, the convex or concave part in the signal intensity diagram), obtain the relative position of the abrupt height part, and then combine the scans Multiple scanning lines in the process can obtain the relative position of the highly abrupt portions on each scanning line, so that the complete welding trace in the welding area can be detected.
  • the abrupt part in its height information that is, the convex or concave part in the signal intensity diagram
  • the height information corresponding to multiple scan lines is obtained by scanning the weld seam area, and the height information can detect that the weld seam crosses the scan line.
  • the width of the weld seam is obtained from the width of the abrupt part in the height information
  • the depth of the weld seam is obtained from the height of the abrupt part in the height information.
  • the laser welding device 40 is used for positioning the welding track according to the welding control signal. After the processor 10 determines the welding trajectory, it can control the laser welding device 40 to emit the laser for welding to the specified position and direction through the welding control signal. After the laser welding device 40 is positioned according to the control signal of the processor 10, the laser can be emitted for welding.
  • the length and power of the laser emission can be configured according to preset configuration information, or can be specified by the welding control signal sent by the processor 10.
  • the processor 10 can set corresponding parameters according to the width and depth of the welding trajectory, add it to the welding control signal, and send it to the laser welding device 40.
  • the scanning beam emitted by the coherent light scanner 20 and the laser welding beam emitted by the laser welding device 40 are coaxial. This makes the scanning and positioning process of the coherent optical scanner 20 and the positioning and welding process of the laser welding device 40 use the same coordinate system, and will not bring about secondary errors (such as errors generated by the motion system of the paraxial system), thereby making welding Tracking is more accurate.
  • the welding trajectory tracking system further includes a pre-positioned camera 50 connected to the processor 10 for taking pictures of the surface of the welding object and sending the taken pictures to the processor 10,
  • the processor 10 is used to determine the welding area in the photographed picture.
  • the function of the pre-positioning camera 50 is to preliminarily screen the welding trajectory area in the welding area through the photographing auxiliary processor 10, so that the scanning range of the coherent light scanner 20 can be reduced.
  • the processor 10 After the processor 10 receives the picture taken by the pre-positioned camera 50, it can determine the welding area to be scanned in two ways: In the first way, the processor 10 can display the picture to the user of the welding operation through the display device , The user shall define the corresponding area in the picture as the welding area. In the second way, the processor 10 can recognize the texture in the image through image recognition, such as edge detection, contour recognition, etc., and then demarcate one or more regions as welding regions. It should be noted that these two methods can be used in combination and are not limited to being used alone. For example, the image recognition process can be used as an aid, in the picture displayed to the user, the user is prompted to indicate the area where the welding area can be defined, but the user still needs to confirm the actual delineation of the welding area.
  • image recognition process can be used as an aid, in the picture displayed to the user, the user is prompted to indicate the area where the welding area can be defined, but the user still needs to confirm the actual delineation of the welding area.
  • the coherent light scanner 20 when setting the scanning direction, may also refer to the welding area delineated in the photographed picture of the pre-positioned camera 50, and the processor 10 may obtain the welding seam in the welding area /Welding spot extension direction, scan in the axial direction of the welding seam/welding spot extension direction.
  • the processor 10 may detect the approximate position of the weld or spot in the welding area through image recognition, and then refer to FIGS. 3 and 4 to set the scanning route according to its extension direction, so that the detected welding The width of the track approximates the width of the actual welding track, thereby improving accuracy.
  • the welding area may further include one or more welding trajectories, that is, when tracking the welding trajectory, the height information in the scan line contains one or more mutation parts;
  • the processor 10 may determine one or more welding trajectories according to one or more mutation parts in the height information of at least one scan line.
  • the welding area contains a welding track composed of two welds: track 1 and track 2. Therefore, on the same scanning line, there will be a sudden change in signal strength at two positions.
  • the processor 10 records the relative positions of the two abrupt parts on each scan line, and then combines multiple scan lines to determine multiple welding traces (regardless of whether the welding traces cross, when the scan line spacing is appropriate, or horizontal When the resolution is appropriate, each welding track can also be accurately detected).
  • the processor 10 may also send a control signal to the coherent light scanner 20 to adjust the wavelength of the coherent light emitted by the coherent light scanner 20.
  • the processor 10 may also send a control signal to the coherent light scanner 20 to adjust the wavelength of the coherent light emitted by the coherent light scanner 20.
  • the surface of the welding area itself is rough, the rough texture will also cause the intensity of the interference signal to fluctuate. If coherent light scanning with a shorter wavelength is used, this fluctuation may not be distinguishable from the abrupt change in signal intensity, thereby making The processor 10 cannot correctly recognize it.
  • the processor 10 may send a control signal to the coherent light scanner 20 to increase the wavelength of the coherent light emitted by the coherent light scanner 20, which will reduce the fluctuation of the interference signal caused by the rough texture of the surface of the welding area
  • the relative strength makes the abrupt change in the strength of the interference signal corresponding to the weld or welding trace more obvious, thereby making the detection of the welding trace more accurate.
  • the coherent light scanner 20 can perform multiple scans on the welding area. After the initial scan, the position, width, and shape of the welding track belonging to the weld can be determined. At this time, the processor 10 controls the laser welding device to It emits laser light for welding. After the welding is completed, the coherent optical scanner 20 can be controlled to repeatedly scan the welding area to determine whether there are welding trajectories formed by welding spots with too high height. If so, the laser welding device is controlled Repair welding until the scanned welding trace meets the standard.
  • a welding trajectory tracking method is also provided.
  • the implementation of the method may depend on a computer program, which may be run on a computer system based on the Von Neumann system, which may be a graph 1 or the independent processor 10 in FIG. 2 (which may be a personal computer, a server device, a server cluster device, a notebook computer, a palmtop computer, a tablet computer, a smartphone), or it may be integrated in a laser welding system in other embodiments Processor chipset.
  • the execution of the computer program of this method requires calling the driver programs of the coherent light scanner 20, the photosensitive element 30, and the laser welding device 40 in FIG. 1 or FIG. 2, so as to implement hardware-level communication therewith.
  • a welding trajectory tracking method includes:
  • Step S102 Coherent optical scanning is performed on the welding area by a coherent optical scanner.
  • the coherent optical scanner emits a mutually coherent scanning beam and a reference beam.
  • the coherent optical scanning includes at least one scanning line.
  • Step S104 Receive an interference signal of the reflected light of the scanning beam and the reference beam through the photosensitive element, the interference signal corresponding to the scanning line.
  • Step S106 Determine the height information of the scanning line scanned by the coherent light according to the interference signal.
  • Step S108 Determine the welding trajectory according to the height information of the at least one scanning line.
  • the coherent light scanning of the welding area by the coherent light scanner further includes:
  • the surface of the welding object is photographed by a predetermined camera, and the welding area is determined in the photographed picture.
  • the coherent light scanning of the welding area by the coherent light scanner further includes:
  • the height information in the scan line includes one or more mutation parts
  • the determining the welding trajectory according to the height information of the at least one scanning line includes:
  • One or more welding traces are determined according to one or more abrupt changes in the height information of the at least one scan line.
  • a welding trajectory tracking device is also provided correspondingly. Specifically, as shown in FIG. 8, it includes a scan control module 102, a signal receiving module 104, and a signal processing module 106 and track recognition module 108, in which:
  • the scanning control module 102 is configured to perform coherent optical scanning on the welding area by a coherent optical scanner.
  • the coherent optical scanner emits a mutually coherent scanning beam and a reference beam.
  • the coherent optical scanning includes at least one scanning line.
  • the signal receiving module 104 is configured to receive the interference signal of the reflected light of the scanning beam and the reference beam through the photosensitive element, and the interference signal corresponds to the scanning line.
  • the signal processing module 106 is configured to determine the height information of the scanning line scanned by the coherent light according to the interference signal.
  • the trajectory recognition module 108 is used to determine the welding trajectory according to the height information of the at least one scanning line.
  • the device further includes a pre-positioning module 110, which is used to take a picture of the surface of the welded object through a pre-positioned camera and determine the welding area in the photographed picture.
  • a pre-positioning module 110 which is used to take a picture of the surface of the welded object through a pre-positioned camera and determine the welding area in the photographed picture.
  • the scanning control module 102 is further used to obtain the welding seam/welding spot extension direction in the welding area, and scan in the axial direction of the welding seam/welding spot extension direction.
  • the height information in the scan line includes one or more abrupt parts; the trajectory recognition module 108 is further used to determine one or more abrupt parts in the height information of the at least one scan line Determine one or more welding traces.
  • the interference factors on the reflected light such as the texture, material, reflection coefficient, and color spots on the surface of the welding area will not affect the welding trajectory
  • the detection has an effect.
  • the processor only needs to detect the welding trace according to the sudden change of the interference signal of the reflected light of the scanning beam and the reference beam on the scanning line with the position, so it is more accurate than the traditional laser triangulation method.
  • FIG. 9 shows a computer system based on the von Neumann system that runs the above welding trajectory tracking method. Specifically, it may include an external input interface 1001 connected to the system bus, a processor 1002, a memory 1003, and an output interface 1004.
  • the external input interface 1001 may optionally include at least a network interface 10012 and a USB interface 10014.
  • the memory 1003 may include an external memory 10032 (for example, a hard disk, an optical disk, or a floppy disk, etc.) and an internal memory 10034.
  • the output interface 1004 may include at least a display screen 10042 and other devices.
  • the operation of the method is based on a computer program whose program files are stored in the external memory 10032 of the aforementioned computer system 10 based on the von Neumann system and are loaded into the internal memory 10034 during operation. It is then compiled into machine code and passed to the processor 1002 for execution, so that the computer system 10 based on the von Neumann system forms a logical scan control module 102, signal receiving module 104, signal processing module 106, and trajectory recognition module 108.
  • the input parameters are received through the external input interface 1001 and passed to the memory 1003 for buffering, and then input to the processor 1002 for processing. Perform subsequent processing, or be passed to the output interface 1004 for output.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种焊接轨迹跟踪系统、方法及装置,焊接轨迹跟踪系统包括处理器(10)、相干光扫描仪(20)、感光元件(30)、激光焊接装置(40);相干光扫描仪(20)用于发射互相干的扫描光束和参考光束,对焊接区域进行相干光扫描,相干光扫描包括至少一条扫描线;感光元件(30)用于接收扫描光束的反射光与参考光束的干涉信号,将干涉信号发送给处理器(10);处理器(10)用于根据干涉信号确定扫描线的高度信息;根据至少一条扫描线的高度信息确定焊接轨迹,根据焊接轨迹生成焊接控制信号;激光焊接装置(40),用于根据焊接控制信号定位焊接轨迹。

Description

焊接轨迹跟踪方法、装置及系统 技术领域
本发明涉及计算机技术领域,特别涉及一种焊接轨迹跟踪方法、装置及系统。
背景技术
传统的焊接工艺技术中,普遍采用了激光焊接的方法。激光焊接具有能量密度高、加热区小、焊接距离长、可焊材料种类多、易于焊接过程自动化等诸多优势,现已被逐渐广泛应用在机械制造、航空航天、能源交通、石油化工等行业中。然而,激光焊接同时也具有非线性、时变且干扰因素多的特点,焊接过程会出现焊缝变形而导致焊枪偏离焊缝,因此,在焊接过程中需要对焊缝的焊接轨迹进行自动跟踪。
现有的追踪激光焊接轨迹的方法多采用激光三角测量法,其利用激光束投射到被测表面形成漫反射光斑作为传感信号。然而,被焊接物体的表面实际情况是千差万别的,不同颜色、材料、粗糙度、光学性质以及表面面形等因素,造成当同一光源入射时,表面对光的反射和吸收情况不同,特别是物体表面的粗糙度及复折射率等因素,严重影响着物体表面的光散射,使通过透镜成像原理得到的光斑图像像质差别较大,导致会将一些有颜色的表面附着物误判为焊缝,因此准确度较低。
光栅投影是获取激光焊接轨迹表面轮廓的另外一种方法。将光栅分别投影到参考平面和被测物体表面,当光栅投影到表面起伏的被测物体表面时,光栅会产生不同程度的变形,通过求取相位的变化值,可以得到物体表面在相应点处的高度,从而得到三维物体的轮廓形状。然而,目前的光栅投影测量设备多用数字投影仪和数字相机作为光栅条纹的投射和采集设备,但由于投影仪的Gamma效应和CCD的非线性效应以及在投影仪倾斜投影时的周期展宽给相位带来了误差,使得光栅条纹出现一定程度的非正弦化,使得在相位求解的过程中,光栅条纹的非正弦化对测量精度产生非常大的影响。
因此,目前传统技术中常用的焊接轨迹跟踪方式的准确度较低。
发明内容
基于此,为解决现有技术中使用激光三角测量法和光栅投影法的焊接轨迹跟踪方式的准确度较低的技术问题,特提出了一种焊接轨迹跟踪系统。
一种焊接轨迹跟踪系统,包括处理器,与处理器连接的相干光扫描仪、感光元件、激光焊接装置;
所述相干光扫描仪用于发射互相干的扫描光束和参考光束,对焊接区域进行相干光扫描,所述相干光扫描包括至少一条扫描线;
所述感光元件用于接收所述扫描光束的反射光与所述参考光束的干涉信号,将所述干涉信号发送给所述处理器,所述干涉信号与所述扫描线对应;
所述处理器用于根据所述干涉信号确定相干光扫描的扫描线的高度信息;根据所述至少一条扫描线的高度信息确定焊接轨迹,根据所述焊接轨迹生成焊接控制信号;
激光焊接装置,用于根据所述焊接控制信号定位所述焊接轨迹。
在其中一个实施例中,所述相干光扫描仪包括相干光发生器、与所述相干光发生器连接的扫描装置,以及设置于所述相干光发生器的出光方向上的半透半反镜;
所述相干光发生器用于生成相干光束;
所述扫描装置用于控制所述相干光发生器的相干光束的出射方向进行扫描;
所述半透半反镜用于透射相干光束和反射激光焊接光束。
在其中一个实施例中,所述系统还包括与所述处理器连接的预定位相机,用于对所述焊接物表面进行拍照,并将所述拍照的图片发送给所述处理器,所述处理器用于在所述拍照的图片里确定焊接区域。
在其中一个实施例中,所述相干光扫描仪发射的扫描光束和所述激光焊接装置发射的激光焊接光束同轴。
在一个实施例中,所述处理器还用于向所述相干光扫描仪发送控制信号,调节所述相干光扫描仪发射的相干光的波长。
此外,为解决现有技术中使用激光三角测量法和光栅投影法的焊接轨迹跟 踪方式的准确度较低技术问题,特提出了一种焊接轨迹跟踪方法。
一种焊接轨迹跟踪方法,包括:
通过相干光扫描仪对焊接区域进行相干光扫描,所述相干光扫描仪发射互相干的扫描光束和参考光束,所述相干光扫描包括至少一条扫描线;
通过感光元件接收所述扫描光束的反射光与所述参考光束的干涉信号,所述干涉信号与所述扫描线对应;
根据所述干涉信号确定相干光扫描的扫描线的高度信息;
根据所述至少一条扫描线的高度信息确定焊接轨迹。
在其中一个实施例中,所述通过相干光扫描仪对焊接区域进行相干光扫描之前还包括:
通过预定位相机对所述焊接物表面进行拍照,在所述拍照的图片里确定焊接区域。
在其中一个实施例中,所述通过相干光扫描仪对焊接区域进行相干光扫描还包括:
获取所述焊接区域中的焊缝/焊斑延展方向,在所述焊缝/焊斑延展方向的轴向方向上扫描。
在其中一个实施例中,所述扫描线中的高度信息中包含一个或一个以上的突变部分;
所述根据所述至少一条扫描线的高度信息确定焊接轨迹包括:
根据所述至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
此外,为解决现有技术中使用激光三角测量法和光栅投影法的焊接轨迹跟踪方式的准确度较低技术问题,特提出了一种焊接轨迹跟踪装置。
一种焊接轨迹跟踪装置,包括:
扫描控制模块,用于通过相干光扫描仪对焊接区域进行相干光扫描,所述相干光扫描仪发射互相干的扫描光束和参考光束,所述相干光扫描包括至少一条扫描线;
信号接收模块,用于通过感光元件接收所述扫描光束的反射光与所述参考 光束的干涉信号,所述干涉信号与所述扫描线对应;
信号处理模块,用于根据所述干涉信号确定相干光扫描的扫描线的高度信息;
轨迹识别模块,用于根据所述至少一条扫描线的高度信息确定焊接轨迹。
在其中一个实施例中,所述装置还包括预定位模块,用于通过预定位相机对所述焊接物表面进行拍照,在所述拍照的图片里确定焊接区域。
在其中一个实施例中,所述扫描控制模块还用于获取所述焊接区域中的焊缝/焊斑延展方向,在所述焊缝/焊斑延展方向的轴向方向上扫描。
在其中一个实施例中,所述扫描线中的高度信息中包含一个或一个以上的突变部分;
所述轨迹识别模块还用于根据所述至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
实施本发明实施例,将具有如下有益效果:
采用了上述焊接轨迹跟踪方法、装置及系统之后,由于是采用的相干光扫描的方法,因此焊接区域表面的纹理、材质、反射系数、颜色斑点等对反射光的干扰因素不会对焊接轨迹的检测产生影响,处理器只需要根据扫描光束的反射光与参考光束的干涉信号在扫描线上随位置发生的突变即可检测得到焊接轨迹,因此相对于传统的激光三角测量法更加准确。同时,相对于光栅投影的方式,不需要额外使用投影设备,也不需要参考平面,也不会在信号处理过程中的运算过程中产生影响精度的误差,从而准确度也更高。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中一种焊接轨迹跟踪系统的架构图;
图2为另一个实施例中一种焊接轨迹跟踪系统的架构图;
图3为一个实施例中扫描线分布的示意图;
图4为一个实施例中根据扫描线对应的干涉信号强度确定轨迹的原理图;
图5为一个实施例中根据扫描线对应的干涉信号强度确定轨迹的原理图;
图6为一个实施例中根据扫描线对应的干涉信号强度确定多条轨迹的原理图;
图7为一个实施例一种焊接轨迹跟踪方法的流程图;
图8为一个实施例一种焊接轨迹跟踪装置的示意图;
图9为一个实施例中运行前述焊接轨迹跟踪方法的计算机系统的组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决现有技术中的焊接轨迹跟踪方式受到焊接物体表面的颜色、材料、粗糙度、光学性质以及表面面形的影响,从而导致的定位焊接轨迹的方法准确度较低的技术问题,本发明特提出了一种焊接轨迹跟踪系统,以及基于该焊接轨迹跟踪系统的一种焊接轨迹跟踪方法和装置。
本发明提出的焊接轨迹跟踪系统的一种实现方式可参考如图1所示。该焊接轨迹跟踪系统包括:处理器10,与处理器10连接的相干光扫描仪20、感光元件30、激光焊接装置40。在本实施例中,如图1所示,相干光扫描仪20、感光元件30和激光焊接装置40可集成于焊接系统之上,以激光焊接装置40为主体,相干光扫描仪20和感光元件30作为辅助跟踪系统附加在激光焊接装置40上,而处理器10则为独立的计算机系统,例如控制主机、中控机、操作终端等。相干光扫描仪20、感光元件30和激光焊接装置40分别通过相应的通信线路与处理器10连接,在其他实施例中,也可设置统一的控制总线、端 口和通信协议,并通过统一的控制总线、端口和通信协议传输相干光扫描仪20、感光元件30和激光焊接装置40各部件与处理器10之间的控制信号或控制消息。
在另一个实施例中,处理器10也可作为焊接系统的一部分集成在激光焊接装置40上,以处理器芯片的形式存在,并连接有存储相应的控制程序的存储器,和提供用户交互接口(例如触控板、触摸屏、机械按键、显示屏、外设接口等),使得焊接系统不需要外接设备即可独立地使用。
具体的,相干光扫描仪20用于发射互相干的扫描光束和参考光束,对焊接区域进行相干光扫描,所述相干光扫描包括至少一条扫描线。
相干光是指在时间或空间的任意点上,特别是在垂直于光的传播方向的平面上的一个区域内,或在空间的一个特定点的所有时间里,光的所有参数都可以预测并相关性的光。
相干光扫描仪20可用于通过光学装置(干涉装置)将光源发出的光波(源波)分为一组若干个波(光束)。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。从而使得产生的一组若干个光束为相干光组。
在本实施例中,相干光扫描仪20发射有两束光,且该两束光为互相干,其中一束为扫描光束,另一束为与扫描光束相干的参考光束。扫描光束用于对焊接区域进行扫描,即按照一定的运动轨迹移动扫描光束的发射方向,使得扫描光束在焊接区域的照射点移动形成扫描线。扫描光束在照射焊接区域后,会发生反射,反射后的反射光与前述的参考光束由于仍然是相干光,因此会发生干涉现象,可通过该干涉现象对焊接区域的焊接轨迹进行检测。
在一个实施例中,参考图2所示,相干光扫描仪20包括相干光发生器202、与相干光发生器202连接的扫描装置204,以及设置于相干光发生器的出光方向上的半透半反镜206。
相干光发生器202用于生成相干光束。
扫描装置204用于控制所述相干光发生器的相干光束的出射方向进行扫 描。
半透半反镜206用于透射相干光束和反射激光焊接光束。
也就是说,顺着光路来看,相干光发生器202生成一组相干光束,该相干光束经由半透半反镜206反射和透射,透射的部分光束射向焊接检材表面的焊接区域,由焊接区域表面反射后再经过半透半反镜透射,该光与参考光束发生干涉现象,并在感光元件30上成像。
互相干的扫描光束和参考光束,既可由相干光发生器202在生成相干光束时,即分离成扫描光束和参考光束,也可通过在后续的光路中,通过半透半反镜或其他光学器件通过反射和透射划分为参考光束。或者说,扫描光束和参考光束即可由相干光扫描仪通过生成两束互相干的相干光生成,也可由相干光扫描仪生成一束相干光,然后在后续的光路中通过其他光学元件将其分离为扫描光束和参考光束。也就是说,参考光束的生成方式在此并不做限定,只需要保证生成的参考光束与扫描光束互相干即可。
扫描装置204则用于控制相干光发生器202的相干光束的出射方向沿着预定的扫描线方向移动,由于扫描光束是由相干光发生器202发出的相干光束分出的,因此扫描装置204实质上控制了扫描光束的扫描行为。
例如,如图3所示,扫描装置204可针对焊接区域进行扫描,图3中的上下箭头的扫描线即为扫描光束在焊接区域上的照射点的移动轨迹。相邻扫描线之间的距离即为水平分辨率,而扫描的垂直分辨率则与相干光发生器202发射的相干光的波长对应。
感光元件30用于接收扫描光束的反射光与参考光束的干涉信号,将干涉信号发送给处理器,干涉信号与扫描线对应。
扫描光束的反射光与参考光束由于为相干光,因此,在抵达感光元件30的过程中,光信号的强度会发生叠加。由于感光元件30与焊接区域的光程是一定的,因此,若扫描线所对应的焊接区域表面平滑无痕迹,则该扫描线上位置对应的干涉光信号强度为相同,而若扫描线经过了焊接区域中的焊接轨迹部分,则由于焊缝或焊斑造成的焊接区域表面高度变化使得扫描光束的反射光与参考光束的干涉成像发生变化。
具体的,参考图4所示,相干光扫描仪20按照1至7的顺序扫描焊接区 域,在扫描线1的位置纵向扫描时,由于扫描线1处没有切割焊接轨迹(即扫描过程中未扫描到焊接轨迹),因此,感光元件30上接收到的光信号强度不随扫描线1上的扫描过程而发生变化,保持稳定。而在扫描线7处,由于该扫描线7切割焊接轨迹(即扫描过程中跨过了焊接轨迹进行了扫描),因此,感光元件30上接收到的光信号强度在扫描位置抵达焊接轨迹时,发生变化,而扫描位置离开焊接轨迹后,又恢复稳定。
感光元件30可在扫描过程中持续地接收各扫描点上的干涉信号的强度,并将干涉信号的强度发送给处理器10,同时处理器10可通过相干光扫描仪20或相干光扫描仪中的扫描装置204获取与干涉信号强度对应的位置信息,从而处理器10可获取到扫描线上各扫描点对应的反射光和参考光束的干涉信号的信号强度。
处理器10用于根据干涉信号确定相干光扫描的扫描线的高度信息;根据至少一条扫描线的高度信息确定焊接轨迹,根据所述焊接轨迹生成焊接控制信号。
当焊接区域表面较平滑,不存在焊缝或者焊斑时,该表面各点的高度一致,因此扫描线上各扫描点的高度一致,这就使得扫描过程中接收到的干涉信号的强度一致,参考图4中的扫描线1,扫描点和干涉信号强度的对应关系即为一个随扫描点变化的近乎平稳的横线。而当扫描线经过了焊缝或者焊斑时,扫描焊缝或者焊斑的过程中接收到的干涉信号的信号强度会发生突变,或者说,焊缝或焊斑位置的扫描点对应的干涉信号的信号强度会产生明显变化,参考图4中的扫描线7所示,位于焊接轨迹处的扫描点的干涉信号强度发生明显变化,或者说可从干涉信号强度的突变情况,检测到扫描线上位于焊接轨迹处的扫描点。因此干涉信号的强度沿扫描线上各扫描点的分布反应了扫描线上各扫描点处焊接区域的相对高度信息,根据该相对高度信息中的突变部分即可确定扫描线中处于焊接轨迹的扫描点的位置。
同时,在相干光扫描仪20发出的相干光波长合适的情况下,信号强度的突变的大小也与焊接轨迹中焊缝的深度或者焊斑的高度对应,通过对突变的信号强度的大小的检测,也能够检测到焊缝的深度或者焊斑的高度。
再参考图4所示,对于各条扫描线,处理器10可检测其高度信息中的突 变部分(即信号强度图中凸起或凹陷的部分),获取高度突变部分的相对位置,然后结合扫描过程中的多条扫描线,获取各个扫描线上高度突变部分的相对位置,从而可检测到焊接区域中完整的焊接轨迹。
例如,参考图5所示,在一个焊缝检测的应用场景中,通过对焊缝区域的扫描得到多条扫描线对应的高度信息,由该高度信息中可检测到焊缝与扫描线交叉的位置,通过高度信息中的突变部分的宽度得到焊缝的宽度,通过高度信息中的突变部分的高度得到焊缝的深度。从而可在计算机上模拟得到焊接轨迹的三维立体图像。在该应用场景中,处理器10可将生成的焊缝轨迹的三维立体图像展示给用户,方便用户细致地了解焊缝的实际情况,从而方便用户选择合适的方法进行焊接工作。
激光焊接装置40,用于根据所述焊接控制信号定位所述焊接轨迹。处理器10在确定了焊接轨迹之后,即可通过焊接控制信号控制激光焊接装置40向指定的位置和方向发射焊接用激光。激光焊接装置40根据处理器10的控制信号定位之后,即可发射激光进行焊接,发射激光的时间长度和功率可根据预设的配置信息进行配置,也可由处理器10发送的焊接控制信号指定。处理器10可根据焊接轨迹的宽度和深度设定相应的参数,并添加到焊接控制信号中发送给激光焊接装置40。
在本实施例中,如图2所示,相干光扫描仪20发射的扫描光束和激光焊接装置40发射的激光焊接光束同轴。这就使得,相干光扫描仪20的扫描定位过程和激光焊接装置40的定位焊接过程使用同一坐标系,不会带来二次误差(如旁轴系统通过运动机构产生的误差),从而使得焊接轨迹的追踪更加准确。
在一个实施例中,如图2所示,该焊接轨迹跟踪系统还包括与处理器10连接的预定位相机50,用于对焊接物表面进行拍照,并将拍照的图片发送给处理器10,处理器10用于在拍照的图片里确定焊接区域。
预定位相机50的作用在于,通过拍照辅助处理器10初步筛选焊接区域中的焊接轨迹区域,从而可缩小相干光扫描仪20的扫描范围。
处理器10在接收到预定位相机50拍摄的图片之后,可通过两种方式确定需要扫描的焊接区域:在第一种方式中,处理器10可通过显示设备将该图片展示给焊接操作的用户,由用户自行在图片中划定相应的区域作为焊接区域。 在第二种方式中,处理器10可通过图像识别,例如边缘检测,轮廓识别等方法,对图像中的纹理进行识别,然后划定一个或多个区域作为焊接区域。需要说明的是,这两种方式可结合使用,并不限于只能单独使用。例如图像识别过程可作为辅助,在展示给用户的图片中提示用户可在哪些区域划定焊接区域,但最终仍需要用户确认方可实际划定焊接区域。
在本实施例中,相干光扫描仪20在设定扫描方向时,也可参考在预定位相机50的拍照图片中划定的焊接区域进行划定,处理器10可获取焊接区域中的焊缝/焊斑延展方向,在焊缝/焊斑延展方向的轴向方向上扫描。
例如,处理器10可通过图像识别检测出焊接区域中的焊缝或焊斑的大致位置,然后参考图3和图4所示,按照其延展方向设定扫描路线,这样就使得检测到的焊接轨迹的宽度近似于实际的焊接轨迹的宽度,从而提高了准确度。
在一个实施例中,焊接区域中还可包括一条或一条以上的焊接轨迹,即在进行焊接轨迹跟踪时,扫描线中的高度信息中包含一个或一个以上的突变部分;
处理器10可根据至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
如图6所示,焊接区域中包含两条焊缝构成的焊接轨迹:轨迹1和轨迹2,因此在同一条扫描线上,会有两个位置出现信号强度突变部分。处理器10分别记录该两个突变部分在每条扫描线上的相对位置,再结合多条扫描线即可确定多条焊接轨迹(不管焊接轨迹是否交叉,在扫描线间距合适时,或者说水平分辨率合适时,也可准确检测出各条焊接轨迹)。
在一个实施例中,处理器10还可向相干光扫描仪20发送控制信号,调节相干光扫描仪20发射的相干光的波长。当焊接区域表面本身较粗糙时,粗糙的纹理也会使得干涉信号的强度产生波动,若使用波长较短的相干光扫描,则可能使得该波动和前述的信号强度的突变无法分辨开,从而使得处理器10无法正确地进行识别。此时,处理器10可向相干光扫描仪20发送控制信号,使其增加相干光扫描仪20发射的相干光的波长,这就会降低焊接区域表面的粗糙纹理带来的干涉信号的波动的相对强度,从而使得焊缝或焊接轨迹对应的干涉信号强度的突变更加明显,从而使得焊接轨迹的检测更加准确。
在一个实施例中,相干光扫描仪20可对焊接区域进行多次扫描,当初次 扫描后,可确定属于焊缝的焊接轨迹的位置、宽度和形状,此时处理器10控制激光焊接装置对其发射激光进行焊接。焊接完毕后,可再控制相干光扫描仪20对焊接区域进行反复扫描,确定焊接区域是否有高度过高的焊斑形成的焊接轨迹,若是,则控制激光焊接装置对焊斑形成的焊接轨迹进行补焊,直至扫描到的焊接轨迹符合标准为止。
在一个实施例中,还提供了一种焊接轨迹跟踪方法,该方法的实现可依赖于计算机程序,该计算机程序可运行于基于冯诺依曼体系的计算机系统之上,该计算机系统可以是图1或图2中独立的处理器10(可以是个人电脑,服务器设备,服务器集群设备,笔记本电脑,掌上电脑,平板电脑,智能手机),也可以是其他实施例中集成在激光焊接系统中的处理器芯片组。该方法的计算机程序的执行需要对图1或图2中的相干光扫描仪20、感光元件30和激光焊接装置40的驱动程序进行调用,从而与之实现硬件层面的通信。
具体的,如图7所示,一种焊接轨迹跟踪方法,包括:
步骤S102:通过相干光扫描仪对焊接区域进行相干光扫描,所述相干光扫描仪发射互相干的扫描光束和参考光束,所述相干光扫描包括至少一条扫描线。
步骤S104:通过感光元件接收所述扫描光束的反射光与所述参考光束的干涉信号,所述干涉信号与所述扫描线对应。
步骤S106:根据所述干涉信号确定相干光扫描的扫描线的高度信息。
步骤S108:根据所述至少一条扫描线的高度信息确定焊接轨迹。
在一个实施例中,所述通过相干光扫描仪对焊接区域进行相干光扫描之前还包括:
通过预定位相机对所述焊接物表面进行拍照,在所述拍照的图片里确定焊接区域。
在一个实施例中,所述通过相干光扫描仪对焊接区域进行相干光扫描还包括:
获取所述焊接区域中的焊缝/焊斑延展方向,在所述焊缝/焊斑延展方向的轴向方向上扫描。
在一个实施例中,所述扫描线中的高度信息中包含一个或一个以上的突变部分;
所述根据所述至少一条扫描线的高度信息确定焊接轨迹包括:
根据所述至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
在一个实施例中,针对上述焊接轨迹跟踪方法,还与之对应地提供了一种焊接轨迹跟踪装置,具体的,如图8所示,包括扫描控制模块102、信号接收模块104、信号处理模块106和轨迹识别模块108,其中:
扫描控制模块102,用于通过相干光扫描仪对焊接区域进行相干光扫描,所述相干光扫描仪发射互相干的扫描光束和参考光束,所述相干光扫描包括至少一条扫描线。
信号接收模块104,用于通过感光元件接收所述扫描光束的反射光与所述参考光束的干涉信号,所述干涉信号与所述扫描线对应。
信号处理模块106,用于根据所述干涉信号确定相干光扫描的扫描线的高度信息。
轨迹识别模块108,用于根据所述至少一条扫描线的高度信息确定焊接轨迹。
在一个实施例中,如图8所示,该装置还包括预定位模块110,用于通过预定位相机对所述焊接物表面进行拍照,在所述拍照的图片里确定焊接区域。
在一个实施例中,扫描控制模块102还用于获取所述焊接区域中的焊缝/焊斑延展方向,在所述焊缝/焊斑延展方向的轴向方向上扫描。
在一个实施例中,所述扫描线中的高度信息中包含一个或一个以上的突变部分;轨迹识别模块108还用于根据所述至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
实施本发明实施例,将具有如下有益效果:
采用了上述焊接轨迹跟踪方法、装置及系统之后,由于是采用的相干光扫描的方法,因此焊接区域表面的纹理、材质、反射系数、颜色斑点等对反射光 的干扰因素不会对焊接轨迹的检测产生影响,处理器只需要根据扫描光束的反射光与参考光束的干涉信号在扫描线上随位置发生的突变即可检测得到焊接轨迹,因此相对于传统的激光三角测量法更加准确。同时,相对于光栅投影的方式,不需要额外使用投影设备,也不需要参考平面,也不会在信号处理过程中的运算过程中产生影响精度的误差,从而准确度也更高。
在一个实施例中,如图9所示,图9展示了一种运行上述焊接轨迹跟踪方法的基于冯诺依曼体系的计算机系统。具体的,可包括通过系统总线连接的外部输入接口1001、处理器1002、存储器1003和输出接口1004。其中,外部输入接口1001可选的可至少包括网络接口10012和USB接口10014。存储器1003可包括外存储器10032(例如硬盘、光盘或软盘等)和内存储器10034。输出接口1004可至少包括显示屏10042等设备。
在本实施例中,本方法的运行基于计算机程序,该计算机程序的程序文件存储于前述基于冯诺依曼体系的计算机系统10的外存储器10032中,在运行时被加载到内存储器10034中,然后被编译为机器码之后传递至处理器1002中执行,从而使得基于冯诺依曼体系的计算机系统10中形成逻辑上的扫描控制模块102、信号接收模块104、信号处理模块106和轨迹识别模块108。且在上述焊接轨迹跟踪方法执行过程中,输入的参数均通过外部输入接口1001接收,并传递至存储器1003中缓存,然后输入到处理器1002中进行处理,处理的结果数据或缓存于存储器1003中进行后续地处理,或被传递至输出接口1004进行输出。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (12)

  1. 一种焊接轨迹跟踪系统,其特征在于,包括处理器,与处理器连接的相干光扫描仪、感光元件、激光焊接装置;
    所述相干光扫描仪用于发射互相干的扫描光束和参考光束,对焊接区域进行相干光扫描,所述相干光扫描包括至少一条扫描线;
    所述感光元件用于接收所述扫描光束的反射光与所述参考光束的干涉信号,将所述干涉信号发送给所述处理器,所述干涉信号与所述扫描线对应;
    所述处理器用于根据所述干涉信号确定相干光扫描的扫描线的高度信息;根据所述至少一条扫描线的高度信息确定焊接轨迹,根据所述焊接轨迹生成焊接控制信号;
    激光焊接装置,用于根据所述焊接控制信号定位所述焊接轨迹。
  2. 根据权利要求1所述的焊接轨迹跟踪系统,其特征在于,所述相干光扫描仪包括相干光发生器、与所述相干光发生器连接的扫描装置,以及设置于所述相干光发生器的出光方向上的半透半反镜和扫描系统;
    所述相干光发生器用于生成相干光束;
    所述扫描装置用于控制所述相干光发生器的相干光束的出射方向进行扫描;
    所述半透半反镜用于透射相干光束和反射激光焊接光束。
  3. 根据权利要求1或2所述的焊接轨迹跟踪系统,其特征在于,所述系统还包括与所述处理器连接的预定位相机,用于对所述焊接物表面进行拍照,并将所述拍照的图片发送给所述处理器,所述处理器用于在所述拍照的图片里确定焊接区域。
  4. 根据权利要求1或2所述的焊接轨迹跟踪系统,其特征在于,所述相干光扫描仪发射的扫描光束和所述激光焊接装置发射的激光焊接光束同轴。
  5. 一种焊接轨迹跟踪方法,其特征在于,包括:
    通过相干光扫描仪对焊接区域进行相干光扫描,所述相干光扫描仪发射互相干的扫描光束和参考光束,所述相干光扫描包括至少一条扫描线;
    通过感光元件接收所述扫描光束的反射光与所述参考光束的干涉信号,所述干涉信号与所述扫描线对应;
    根据所述干涉信号确定相干光扫描的扫描线的高度信息;
    根据所述至少一条扫描线的高度信息确定焊接轨迹。
  6. 根据权利要求5所述的焊接轨迹跟踪方法,其特征在于,所述通过相干光扫描仪对焊接区域进行相干光扫描之前还包括:
    通过预定位相机对所述焊接物表面进行拍照,在所述拍照的图片里确定焊接区域。
  7. 根据权利要求5或6所述的焊接轨迹跟踪方法,其特征在于,所述通过相干光扫描仪对焊接区域进行相干光扫描还包括:
    获取所述焊接区域中的焊缝/焊斑延展方向,在所述焊缝/焊斑延展方向的轴向方向上扫描。
  8. 根据权利要求5或6所述的焊接轨迹跟踪方法,其特征在于,所述扫描线中的高度信息中包含一个或一个以上的突变部分;
    所述根据所述至少一条扫描线的高度信息确定焊接轨迹包括:
    根据所述至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
  9. 一种焊接轨迹跟踪装置,其特征在于,包括:
    扫描控制模块,用于通过相干光扫描仪对焊接区域进行相干光扫描,所述相干光扫描仪发射互相干的扫描光束和参考光束,所述相干光扫描包括至少一条扫描线;
    信号接收模块,用于通过感光元件接收所述扫描光束的反射光与所述参考光束的干涉信号,所述干涉信号与所述扫描线对应;
    信号处理模块,用于根据所述干涉信号确定相干光扫描的扫描线的高度信息;
    轨迹识别模块,用于根据所述至少一条扫描线的高度信息确定焊接轨迹。
  10. 根据权利要求9所述的焊接轨迹跟踪装置,其特征在于,所述装置还包括预定位模块,用于通过预定位相机对所述焊接物表面进行拍照,在所述拍 照的图片里确定焊接区域。
  11. 根据权利要求9或10所述的焊接轨迹跟踪装置,其特征在于,所述扫描控制模块还用于获取所述焊接区域中的焊缝/焊斑延展方向,在所述焊缝/焊斑延展方向的轴向方向上扫描。
  12. 根据权利要求9或10所述的焊接轨迹跟踪装置,其特征在于,所述扫描线中的高度信息中包含一个或一个以上的突变部分;
    所述轨迹识别模块还用于根据所述至少一条扫描线的高度信息中的一个或一个以上的突变部分确定一个或一个以上的焊接轨迹。
PCT/CN2018/118206 2018-11-29 2018-11-29 焊接轨迹跟踪方法、装置及系统 WO2020107336A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880068591.2A CN111344102A (zh) 2018-11-29 2018-11-29 焊接轨迹跟踪方法、装置及系统
PCT/CN2018/118206 WO2020107336A1 (zh) 2018-11-29 2018-11-29 焊接轨迹跟踪方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118206 WO2020107336A1 (zh) 2018-11-29 2018-11-29 焊接轨迹跟踪方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2020107336A1 true WO2020107336A1 (zh) 2020-06-04

Family

ID=70851883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118206 WO2020107336A1 (zh) 2018-11-29 2018-11-29 焊接轨迹跟踪方法、装置及系统

Country Status (2)

Country Link
CN (1) CN111344102A (zh)
WO (1) WO2020107336A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061458B (zh) * 2022-01-17 2022-04-19 快克智能装备股份有限公司 一种空间扫描定位缝隙的方法及装置和应用
CN115673630B (zh) * 2022-11-17 2023-10-20 广州华夏职业学院 基于3d跟踪的非标冷库门焊接方法、系统、终端及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201300288Y (zh) * 2008-10-31 2009-09-02 鞍山荣邦电力电子有限公司 焊缝自动跟踪系统
CN106573338A (zh) * 2014-09-15 2017-04-19 黑鸟机械人系统有限责任公司 借助传感器‑扫描装置进行远程激光加工的装置
DE102015015330A1 (de) * 2015-11-25 2017-06-01 Lessmüller Lasertechnik GmbH Vorrichtung und Verfahren zum Überwachen eines mit einem oszillierenden Bearbeitungsstrahl ausgeführten Bearbeitungsprozesses unter Verwendung eines OCT-Messstrahls
CN107953037A (zh) * 2017-12-12 2018-04-24 佛山科学技术学院 一种基于扫频oct的高精度激光三维雕刻装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236846B (en) * 1988-11-22 1992-10-14 Fiat Auto Spa Laser welding monitoring systems.
CN102721366B (zh) * 2012-06-21 2015-01-07 张旭 一种焊缝跟踪测量方法及其装置
CN103934571B (zh) * 2014-04-11 2016-03-23 上海交通大学 厚板机器人焊接系统及多层多道焊缝实时跟踪、规划方法
CN106312397B (zh) * 2016-10-12 2018-04-13 华南理工大学 一种激光视觉引导的焊接轨迹自动跟踪系统及方法
CN106825914B (zh) * 2017-03-13 2019-08-02 湘潭大学 一种具有焊缝跟踪功能的一体化激光焊枪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201300288Y (zh) * 2008-10-31 2009-09-02 鞍山荣邦电力电子有限公司 焊缝自动跟踪系统
CN106573338A (zh) * 2014-09-15 2017-04-19 黑鸟机械人系统有限责任公司 借助传感器‑扫描装置进行远程激光加工的装置
DE102015015330A1 (de) * 2015-11-25 2017-06-01 Lessmüller Lasertechnik GmbH Vorrichtung und Verfahren zum Überwachen eines mit einem oszillierenden Bearbeitungsstrahl ausgeführten Bearbeitungsprozesses unter Verwendung eines OCT-Messstrahls
CN107953037A (zh) * 2017-12-12 2018-04-24 佛山科学技术学院 一种基于扫频oct的高精度激光三维雕刻装置及方法

Also Published As

Publication number Publication date
CN111344102A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
US11105617B2 (en) Hybrid light measurement method for measuring three-dimensional profile
JP4238891B2 (ja) 三次元形状測定システム、三次元形状測定方法
CN104903680B (zh) 控制三维物体的线性尺寸的方法
CN107036534B (zh) 基于激光散斑测量振动目标位移的方法及系统
US20150085108A1 (en) Lasergrammetry system and methods
WO2020107336A1 (zh) 焊接轨迹跟踪方法、装置及系统
JP2017151067A (ja) 三次元画像検査装置、三次元画像検査方法、三次元画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
CN110726382B (zh) 用于借助电磁射束检测物体表面的设备和方法
JP2019219238A (ja) 反射体位置算出装置、反射体位置算出方法および反射体位置算出用プログラム
JP2023176008A (ja) 像解析装置、解析装置、形状測定装置、像解析方法、測定条件決定方法、形状測定方法及びプログラム
JP6781969B1 (ja) 測定装置及び測定方法
US6166810A (en) Method and apparatus for determining distance
US20220155065A1 (en) Measurement apparatus, control apparatus, and control method
US9151601B2 (en) Aspheric face form measuring method, form measuring program, and form measuring apparatus
WO2022050279A1 (ja) 三次元計測装置
US20220109821A1 (en) Multi-image projector and electronic device having multi-image projector
JP2017125764A (ja) 物体検出装置、及び物体検出装置を備えた画像表示装置
US12000688B2 (en) Shape inspection device, processing device, height image processing device using characteristic points in combination with correcetion reference regions to correct height measurements
US20230026608A1 (en) Shape inspection device, processing device, height image processing device
JPS6355641B2 (zh)
WO2022208661A1 (ja) 測距装置、測距装置の制御方法及び測距システム
CA2382372C (en) Light-beam multiple reflections resolution
JP2017015572A (ja) 形状計測装置
JP2006189390A (ja) 光学式変位測定方法および装置
JP6840590B2 (ja) 校正用システム、校正治具、校正方法、及び校正用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18941906

Country of ref document: EP

Kind code of ref document: A1