WO2020107285A1 - 数据处理方法、融合模块与移动平台 - Google Patents

数据处理方法、融合模块与移动平台 Download PDF

Info

Publication number
WO2020107285A1
WO2020107285A1 PCT/CN2018/118007 CN2018118007W WO2020107285A1 WO 2020107285 A1 WO2020107285 A1 WO 2020107285A1 CN 2018118007 W CN2018118007 W CN 2018118007W WO 2020107285 A1 WO2020107285 A1 WO 2020107285A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
fusion
data
module
working
Prior art date
Application number
PCT/CN2018/118007
Other languages
English (en)
French (fr)
Inventor
王钧玉
戴明峻
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880072721.XA priority Critical patent/CN111356637A/zh
Priority to PCT/CN2018/118007 priority patent/WO2020107285A1/zh
Publication of WO2020107285A1 publication Critical patent/WO2020107285A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of safety management of a battery combination power supply system, in particular to a data processing method, a fusion module and a mobile platform.
  • unmanned aerial vehicles are generally powered by multiple batteries connected in parallel. As a result, each battery outputs its own dynamic working data externally. The data volume of these dynamic working data is large, and there are a lot of repeated data, which is not conducive to the monitoring of the battery working status by the control module. The crash of an unmanned aerial vehicle has a large hidden safety risk.
  • the invention provides a data processing method, a fusion module and a mobile platform, in order to realize convenient monitoring of the working state of the battery and improve the safety and stability of the unmanned aerial vehicle.
  • the present invention provides a data processing method, executed on a fusion module, where the fusion module is installed on a mobile platform, the method includes:
  • the present invention provides a fusion module, including:
  • the computer program is stored in the memory and is configured to be executed by the processor to implement the method according to the first aspect.
  • the present invention provides a mobile platform, including:
  • Battery module including multiple batteries
  • a fusion module for performing the method as described in the first aspect
  • the control module is configured to receive the fusion data sent by the fusion module and perform mobile control according to the fusion data.
  • the mobile platform may be an unmanned aerial vehicle.
  • the present invention provides a computer-readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement the method according to the first aspect.
  • the present invention provides a data processing method, which is executed on a fusion module and the fusion module is installed on a mobile platform.
  • the method includes:
  • control module including:
  • the computer program is stored in the memory and is configured to be executed by the processor to implement the method according to the fifth aspect.
  • the present invention provides a mobile platform, including:
  • Battery module including multiple batteries
  • a fusion module for performing the method as described in the first aspect
  • the control module is used to execute the method described in the fifth aspect.
  • the mobile platform may be an unmanned aerial vehicle.
  • the present invention provides a computer-readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement the method according to the fifth aspect.
  • the data processing method, fusion module and mobile platform provided by the present invention are provided with a fusion module on the mobile platform, which is mainly used to fuse the working data of each battery in the battery module, so that the fusion data after fusion can be used to characterize The overall working state of the battery module, so that for the control module, mobile control can be achieved without occupying the control resources of the control module, and because the data redundancy for mobile control at the control module is reduced, the timeliness of the mobile control is improved It is beneficial to adjust the flight strategy in a timely manner under abnormal battery conditions. Therefore, the technical solution provided by the embodiments of the present invention improves the safety and stability of the UAV.
  • FIG. 1 is a schematic flowchart of a data processing method provided by the present invention
  • FIG. 2 is a schematic diagram of data flow in a data processing method provided by the present invention.
  • FIG. 3 is a schematic flowchart of another data processing method provided by the present invention.
  • FIG. 5 is a schematic flowchart of another data processing method provided by the present invention.
  • FIG. 6 is a schematic flowchart of another data processing method provided by the present invention.
  • FIG. 7 is a schematic structural diagram of a fusion module provided by the present invention.
  • FIG. 8 is a schematic structural diagram of a control module provided by the present invention.
  • FIG. 9 is a schematic structural diagram of a mobile platform provided by the present invention.
  • the specific application scenario of the present invention is: a monitoring and management scenario for a battery module in a mobile platform.
  • This scenario can be further embodied as a scenario in which mobile control management is performed based on the working state of the battery module during the flight of the mobile platform.
  • the aforementioned mobile platform may include other mobile devices powered by multiple batteries, for example, electric vehicles, electric ships, etc., in addition to unmanned aerial vehicles, wherein the electric vehicles may further be electric unmanned vehicles.
  • the aforementioned mobile platform (or referred to as a mobile device) works under the premise of being powered by a battery, so the working state of the battery module is crucial to the normal operation of the mobile platform.
  • the battery module is composed of multiple batteries.
  • multiple batteries independently send their own dynamic working data to the control module of the mobile platform. This causes the control module to receive a large amount of dynamic data that contains repeated data. Working data, therefore, the monitoring and management of these dynamic working data place high requirements on the control module.
  • the technical solution provided by the present invention aims to solve the above technical problems of the prior art, and proposes the following solution: the fusion module is provided in the mobile platform, and the fusion module serves as a bridge between the battery module and the control module to The working data of the module is fused, and the fused data is sent to the control module.
  • the control module there is no need to occupy the control resources of the control module, and the data redundancy for mobile control at the control module is reduced, and the mobile Timeliness of control.
  • An embodiment of the present invention provides a data processing method.
  • the method is executed in a fusion module, and the fusion module is installed on a mobile platform.
  • the method includes the following steps:
  • S102 Obtain working data of each battery in a battery module on a mobile platform.
  • S104 Perform fusion processing on the working data of each battery to obtain fusion data that is used to characterize the working state of the battery module.
  • S106 Send the fusion data to the control module of the mobile platform, so that the control module performs mobile control according to the fusion data.
  • the battery module 910 is composed of a plurality of batteries (1 to N), where N is an integer greater than 1; the working data of each battery is sent to the fusion module 700, and the fusion module 700 will The fusion data is sent to the control module 800.
  • the fusion data is the fusion work data.
  • the fusion data is also the data of this category .
  • the fused data is the fused voltage, referred to as fused voltage; if the aforementioned working data is current, the fused data is the fused current, referred to as fused current.
  • the fusion module needs to acquire the working data of each battery.
  • the embodiments of the present invention provide at least the following two implementation manners:
  • the first way Collect the working data of each battery through the working data collection device.
  • the fusion module in addition to performing fusion processing, the fusion module also needs to perform work data collection and analysis processing.
  • a voltage collection circuit can be provided for each battery to obtain the voltage of each battery.
  • the second way request battery working data from the management module of each battery.
  • the management module may be a battery management system (BMS) of a battery module or a battery management unit (BMU) of a single battery.
  • BMS battery management system
  • BMU battery management unit
  • the BMS includes multiple management units for a single battery.
  • the working data of each battery in the battery module is monitored and managed by the BMS (or BMU). Therefore, no additional data collection device is required to directly request data from the BMS (or BMU) It is more conducive to saving costs and simplifying the system structure, to avoid other security risks due to the complex structure.
  • the fusion module and the management module of each battery can communicate through a wired method or a wireless method.
  • the battery management module when the fusion module requests data from the BMS, it can further determine whether the battery module communicates externally.
  • the fusion module may start timing when the aforementioned work data request is issued, and if the timing duration reaches a preset waiting duration, it determines that its external communication is abnormal.
  • the number of waiting times may also be preset. In this way, if the timing of the fusion module reaches the preset waiting time, and the working data of the battery is not received, the number is increased by one; until the number of times reaches the preset waiting number, and the working data of the battery is not received, the battery module is determined (Or battery) Abnormal external communication.
  • the fusion module may generate a communication abnormality flag, and send the communication abnormality flag as fusion data to the control module.
  • the subsequent steps may not be performed, and only the communication abnormality flag is used as fusion data and sent to the control module; or, only the abnormality The mark is used as the fusion data of the abnormal battery, and other batteries that have no communication abnormality normally perform the subsequent work data fusion step, and the fusion data can be sent to the control module.
  • the working data involved in the embodiments of the present invention may include, but is not limited to: voltage, current, and temperature.
  • the fusion module executes a specific fusion strategy, it also needs to consider the serial-parallel connection relationship between the batteries, and then adopt different fusion strategies.
  • step S104 may specifically include the following steps:
  • the connection relationship between each battery can be obtained by requesting the BMS of the battery module.
  • the connection method between the batteries if it has been pre-stored in the storage location readable by the fusion module, it can be read directly at the storage location.
  • the fusion module can also request the connection relationship from the user terminal. Specifically, at this time, the connection relationship acquisition request can be directly sent to the user terminal through the control module or the fusion module itself. It is an operable input box.
  • S104-2-4 Perform fusion processing on the voltage of each battery according to the connection relationship to obtain a fusion voltage; and/or, perform fusion processing on the current of each battery according to the connection relationship to obtain a fusion current.
  • the fusion voltage is used to characterize the maximum voltage value at both ends of the battery module
  • the fusion current is used to characterize the current value of the main circuit of the battery module.
  • the maximum voltage value between multiple batteries connected in parallel may be obtained as the fusion voltage; or, if the batteries are connected in series, the series The sum of the voltage values of the connected multiple batteries can be used as the fusion voltage.
  • the maximum voltage value is taken for the parallel connected batteries, and the sum of the voltage values is taken for the series connected batteries, after the aforementioned processing After that, the fusion voltage can be obtained.
  • the batteries are connected in parallel, the sum of the current values of multiple batteries connected in parallel can be used as the fusion current; or, if the batteries are connected in series, then the series is obtained.
  • the maximum current value between multiple connected batteries can be used as the fusion current.
  • the temperature also has a great influence on the working state of the battery.
  • the low temperature environment and the high temperature environment especially the low temperature environment, may cause the battery working state to change suddenly, or even cause the battery damage. Therefore, monitoring the temperature of the battery becomes particularly important.
  • the preset low temperature threshold is used to measure whether the temperature of the battery is abnormal.
  • S104-4-4 Obtain the lowest temperature among the temperatures of each battery as the fusion temperature.
  • the lowest temperature in each battery can be used to reflect the overall temperature change of the battery module, so the lowest temperature is selected as the fusion temperature.
  • S104-4-6 Obtain the highest temperature among the temperatures of each battery as the fusion temperature.
  • the temperature of each battery is greater than the preset low temperature threshold. At this time, the temperature of each battery is not abnormal, and the highest temperature in each battery can be used to reflect the overall temperature change of the battery module, so , Select the highest temperature as the fusion temperature.
  • a high temperature threshold can also be preset.
  • the work data reported by each battery may also include at least one of the following: abnormal cell flag, remaining capacity, capacity percentage, power and battery firmware version number.
  • the working data acquired in S102 is the remaining capacity
  • the sum of the remaining capacities of the batteries can be obtained as the remaining fusion capacity.
  • the fusion remaining capacity can be used to characterize the total remaining capacity of the battery module.
  • the working data acquired in S102 is the remaining capacity percentage
  • the average value between the remaining capacity percentages of the batteries can be obtained as the fusion remaining capacity percentage.
  • the fusion remaining capacity percentage is used to represent the average value of the remaining power of each battery in the battery module.
  • the remaining capacity percentage is the proportion of the remaining capacity in the total capacity. Therefore, in actual implementation, the foregoing two fusion methods can be interchanged or common. That is, the average value of the remaining capacity of each battery can also be obtained as the fusion remaining capacity. No longer.
  • the working data is power
  • the sum of the power of each battery can be obtained as fusion power.
  • the product of the fusion voltage and the fusion current may be obtained as fusion power.
  • the firmware version number is used to determine whether the battery is a specified battery. Therefore, the firmware version number of each battery in the battery module needs to be compared with the preset version number one by one; if they are consistent, the battery is determined to be the specified battery; , It is determined that the battery is not a prescribed battery, which may cause potential safety hazards. Therefore, at this time, the firmware version number needs to be notified or identified.
  • the firmware version inconsistency flag may be generated as the fusion data of the item by sending the firmware version inconsistency flag to the control module.
  • a firmware version inconsistency flag is generated.
  • the firmware version inconsistency flag may or may not carry the identifier of the battery in which the firmware version inconsistency occurs.
  • an inconsistent firmware version flag is independently generated, and the inconsistent firmware version flag carries the identifier of the abnormal battery.
  • the battery cell abnormality flag is used to indicate whether the battery cell is working normally, which may include but not limited to: a battery cell damage flag, a battery cell undervoltage flag, and a discharge short circuit flag.
  • the abnormal cell flag is the working data reported by the battery to the fusion module. Based on this, the fusion module can generate the abnormal cell flag of the battery module as fusion data after receiving the abnormal cell flag sent by any battery. And send it to the control module; or, the abnormal cell flags reported by these batteries can be directly used as fusion data and sent to the control module.
  • the fusion processing of the working data reported by the battery by the fusion module can be realized.
  • the working data of each battery needs to be fused separately, and when the fusion of each working data is specifically executed, it can be executed simultaneously At the same time, the fusion data is sent to the control module; alternatively, it can also be executed sequentially.
  • the execution order can be preset. For example, in an implementation scenario, if voltage and current data are obtained at the same time, you can first perform fusion processing on the voltage and send the fusion voltage to the control module according to the preset order, and then perform fusion processing on the current and send the fusion current To the control module.
  • the execution order may be preset to be executed in the order in which the working data is obtained. If the current is obtained first, the current is first fused, and then the voltage is obtained, and then the voltage is fused, and finally When the temperature is obtained, the temperature is fused, and so on.
  • the battery module includes multiple batteries, but currently only some of the batteries provide power to the mobile platform.
  • the battery module includes some spare batteries, which are not currently used to Mobile platform power supply, at this time, can include the following processing methods;
  • Method 1 Only obtain the working data of a part of the batteries currently powering the mobile platform, and at the same time, only obtain the connection relationship of this part of the power supply batteries, and fuse the working data of this part of the power supply batteries;
  • the working data of all the batteries in the battery module are obtained at the same time, but only the working data of the partially powered batteries currently supplying the mobile platform are integrated.
  • Method 3 Obtain the working data of all the batteries in the battery module at the same time, and do unified fusion processing on the working data of all the batteries in the battery module sink.
  • Method four Obtain the working data of all the batteries in the battery module at the same time, and, according to the power supply situation, perform the aforementioned fusion processing on the currently powered part of the power supply battery, and the aforementioned fusion processing on the currently unpowered part of the backup battery holder Both types of fusion data are sent to the control module, so that the control module can realize the supervision and control of the power supply battery, and also understand the working status of the backup battery.
  • the method may further include the following steps:
  • S502 according to the working data and/or fusion data of each battery, determine whether the battery module is abnormal; if yes, execute S504; if not, end.
  • S506 Send the abnormal flag to the mobile platform.
  • the abnormality flags involved in the embodiments of the present invention may include, but are not limited to, at least one of the following: communication abnormality flag, low capacity flag, overcurrent flag, excessive voltage difference flag, authentication flag, and firmware version inconsistency flag.
  • the communication abnormality flag and the firmware version inconsistency flag are the same as before and will not be repeated here.
  • the low capacity flag indicates that the remaining capacity of the battery module (using fusion data) or the battery (using working data) is too low.
  • the fusion residual capacity percentage of the battery module is compared with a preset first low-capacity threshold, assuming 10%, if the fusion residual capacity percentage of the battery module is less than or equal to 10%, the Logo.
  • a preset first low-capacity threshold assuming 10%
  • it can also be obtained by fusing the remaining capacity with a preset second low-capacity threshold, and no further tracing is performed.
  • the implementation method is similar to the foregoing method using fusion data, and will not be described in detail.
  • the overcurrent flag is used to indicate whether the current of the battery module (using fusion data) or the battery (using working data) is greater than the maximum current.
  • the implementation method is the same as above, and it can be implemented by setting the current threshold, which will not be described in detail.
  • the excessive voltage difference flag is used to indicate whether the voltage difference between any two batteries in each battery in the battery module is excessive. This judgment can be realized by using fusion data, or by using working data. The implementation method is the same as above and will not be repeated here.
  • the certification mark is used to indicate whether the fusion module and the battery module (or battery) have successfully shaken hands. It may include: a certification success mark or a certification failure mark.
  • abnormal data can be judged according to other parameters in the fusion data and/or working data, and corresponding flags can be generated. For example, low temperature warning signs can also be generated.
  • the aforementioned flag can be used as part of the fusion data, and the aforementioned fusion voltage, fusion current, fusion temperature and other data can be jointly sent to the control module.
  • abnormal signs In addition, corresponding to the generation of abnormal signs, these abnormal signs have a certain timeliness, which is not static. As the working data of the battery changes, some abnormal signs will be generated according to the aforementioned abnormal judgment conditions, and some abnormal signs Will disappear.
  • the method further includes:
  • S508 determine whether the abnormality of the battery module disappears; if yes, execute S510; if no, end.
  • the fusion module can realize data fusion and abnormal flag judgment on the working state of the battery module, and in contrast, the embodiment of the present invention briefly describes the control strategy on the control module side.
  • the data processing method executed by the control module side includes:
  • S602 Receive fusion data sent by the fusion module.
  • S604 Perform mobile control according to the fusion data.
  • the step S604 will be specifically described.
  • the movement control in S604 is essentially flight control for the unmanned aerial vehicle.
  • flight control for unmanned aerial vehicles may include, but is not limited to: takeoff control strategy, landing control strategy, and attitude restriction strategy.
  • this step it can be achieved by detecting whether the received fusion data carries a cell abnormality flag. If it is, it is determined that the battery cell is abnormal and the inspection fails; otherwise, if it is not, the battery cell is normal and the inspection is passed.
  • this step it can be achieved by detecting whether the received fusion data carries a communication abnormality flag (based on the judgment of the process of requesting data from the BMS). If there is, it is determined that the external communication of the battery module is abnormal and the check fails; otherwise, it is determined that the external communication is normal and the check is passed.
  • this step it can be achieved by detecting the authentication mark carried in the received fusion data. If the authentication success mark is carried, it is determined that the battery authentication is successful and the inspection passes; otherwise, if the authentication failure mark is carried, the battery authentication is determined to fail and the inspection fails.
  • the fusion voltage and the starting voltage can be compared. If the fusion voltage is lower than the starting voltage, the check fails; otherwise, if the fusion voltage is higher than or equal to the starting voltage, the check passes.
  • the embodiment of the present invention has no particular limitation on the starting voltage.
  • the starting voltage may also be transformed into a voltage threshold, which may be a slightly higher value or a slightly lower value for the actual starting voltage of the battery.
  • the starting voltage can be set as required, which is not particularly limited in the embodiments of the present invention.
  • the starting voltage may be set to 20V.
  • the fusion remaining power can be compared with the severely low battery threshold. If the fusion remaining power is below the severely low battery threshold, the check fails; otherwise, if the fusion remaining power is greater than or equal to the severely low battery threshold, the check passes.
  • the severely low battery threshold is the same as the aforementioned first low-capacity threshold or slightly higher than the first low-capacity threshold, it can be achieved by checking whether the low-capacity flag is present in the fusion data. If yes, the inspection fails; otherwise, the inspection passes.
  • the fusion temperature can be compared with the take-off temperature threshold. If the fusion temperature is lower than the take-off temperature threshold, the check fails; otherwise, if the fusion temperature is higher than or equal to the take-off temperature threshold, the check passes.
  • this step can also be realized by a low temperature warning sign, and will not be described in detail.
  • the take-off temperature threshold can be set according to needs, which is not particularly limited in the embodiment of the present invention.
  • the takeoff temperature threshold may be set to 15 degrees.
  • This step can be implemented by checking whether the aforementioned inconsistent firmware version flag is carried in the fusion data, and will not be described in detail.
  • This step can be implemented by checking whether the aforementioned excessive voltage difference flag is carried in the fusion data, which will not be repeated here.
  • the takeoff of the UAV is restricted. Conversely, if all the aforementioned inspections pass, the UAV can be controlled to take off.
  • execution order of the aforementioned eight steps is not particularly limited, and may be performed in the aforementioned order or may be performed in other orders, and there is no particular limitation on this.
  • the inspection of subsequent steps may not be performed.
  • the return control can be canceled by the user terminal. And, if it is cancelled by the user terminal, the check is no longer triggered.
  • the user terminal is output with a message prompting the return flight, and the next flight control is executed according to the user terminal instructions.
  • the flight can be performed normally without any other processing.
  • the flight control can be executed according to the user's instructions.
  • an embodiment of the present invention also provides a forced low voltage droop strategy. That is, when the judgment result of the foregoing step 2.2) is yes, the voltage of any cell in the battery module can be forcedly controlled to be less than the forced low voltage threshold.
  • This mandatory measure can be designed so that it cannot be cancelled by the user.
  • the mandatory low voltage threshold can be set as needed, for example, it can be set to 3.2V.
  • the implementation of the attitude limitation strategy for the UAV may be: according to the product of the fusion voltage and the fusion current (or the use of fusion power) is less than the preset attitude limit threshold, the aircraft attitude angle of the UAV is limited to less than a certain angle threshold .
  • the attitude limit threshold can be designed to be related to the actual power or theoretical power of the battery module. For example, if the theoretical power of the battery module is 1600W, the attitude limit threshold can be designed to 1600W ⁇ 80%.
  • the angle threshold is designed to improve the safety of the UAV as much as possible, and it can be designed according to actual needs. For example, it can be specifically set to 15 degrees.
  • the aforementioned fusion data can also be used to adjust the mobile strategy in combination with actual scenarios to improve the security and stability of the mobile platform.
  • the embodiments of the present invention further provide device embodiments that implement the steps and methods in the above method embodiments.
  • the fusion module 700 includes:
  • the computer program is stored in the memory 710 and is configured to be executed by the processor 720 to implement the method described in the above embodiment.
  • a transceiver 730 is also provided in the fusion module 700 for data transmission or communication with other devices, which will not be repeated here.
  • the memory 710, the processor 720, and the transceiver 730 are connected and communicate through a bus.
  • the number of processors 720 in the fusion module 700 may be one or more, and the processors 720 may also be referred to as processing units, which may implement certain control functions.
  • the processor 720 may be a general-purpose processor or a dedicated processor.
  • the processor 720 may also store instructions, and the instructions may be executed by the processor, so that the fusion module 700 executes the method corresponding to the fusion module described in the foregoing method embodiments.
  • the fusion module 700 may include a circuit that can implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the number of the memory 710 in the fusion module 700 may be one or more.
  • the memory 710 has instructions or intermediate data stored thereon, and the instructions may be executed on the processor, so that the fusion
  • the module 700 executes the method described in the above method embodiment.
  • other relevant data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor 720.
  • the processor 720 and the memory 710 may be set separately, or may be integrated together.
  • the processor 720 may be referred to as a processing unit.
  • the transceiver 730 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the fusion module 700.
  • the transceiver 730 may send the fusion data to the control module.
  • the transceiver can further complete other corresponding communication functions.
  • the processor 720 is used to complete a corresponding determination or control operation, and optionally, a corresponding instruction may also be stored in the memory 710.
  • processors and transceivers described in this application can be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application-specific integrated circuits (application specific integrated circuits (ASIC)), and printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuits
  • analog ICs analog ICs
  • RFICs radio frequency integrated circuits
  • mixed-signal ICs mixed-signal ICs
  • ASIC application specific integrated circuits
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor (PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS positive channel metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • an embodiment of the present invention provides a readable storage medium on which a computer program is stored, which is executed by a processor to implement the method described in the foregoing fusion module side embodiment.
  • the control module 800 includes:
  • the computer program is stored in the memory 810 and is configured to be executed by the processor 820 to implement the method as described in the above embodiment.
  • control module 800 is also provided with a transceiver 830 for data transmission or communication with other devices, which will not be repeated here.
  • the memory 810, the processor 820, and the transceiver 830 are connected and communicate through a bus.
  • the number of processors 820 in the control module 800 may be one or more, and the processors 820 may also be referred to as processing units, which may implement certain control functions.
  • the processor 820 may be a general-purpose processor or a dedicated processor.
  • the processor 820 may also store instructions, and the instructions may be executed by the processor, so that the control module 800 executes the method corresponding to the control module described in the foregoing method embodiments.
  • control module 800 may include a circuit that can implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the number of the memory 810 in the control module 800 may be one or more.
  • the memory 810 has instructions or intermediate data stored thereon, and the instructions may be executed on the processor so that the control The module 800 executes the method described in the above method embodiment.
  • other relevant data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor 820.
  • the processor 820 and the memory 810 may be provided separately or integrated together.
  • the processor 820 may be referred to as a processing unit.
  • the transceiver 830 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the control module 800.
  • the transceiver 830 may receive the fusion data sent by the fusion module.
  • the transceiver can further complete other corresponding communication functions.
  • the processor 820 is used to complete a corresponding determination or control operation, and optionally, a corresponding instruction may also be stored in the memory 810.
  • processors and transceivers described in this application can be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application-specific integrated circuits (application specific integrated circuits (ASIC)), and printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuits
  • analog ICs analog ICs
  • RFICs radio frequency integrated circuits
  • mixed-signal ICs mixed-signal ICs
  • ASIC application specific integrated circuits
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor (PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS positive channel metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • an embodiment of the present invention provides a readable storage medium on which a computer program is stored, which is executed by a processor to implement the method described in the foregoing embodiment on the control module side.
  • an embodiment of the present invention also provides a mobile platform.
  • the mobile platform 900 includes:
  • the battery module 910 includes multiple batteries
  • the fusion module 700 is configured to execute the method performed by the fusion module described in any of the foregoing embodiments;
  • the control module 800 is configured to receive the fusion data sent by the fusion module, and perform mobile control according to the fusion data.
  • the mobile platform may be an unmanned aerial vehicle.

Abstract

一种数据处理方法、融合模块与移动平台,该方法执行于融合模块,所述融合模块设置于移动平台上,所述方法包括:获取所述移动平台上的电池模组中各电池的工作数据(S102);对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据(S104);将所述融合数据发送给所述移动平台的控制模块,以便于所述控制模块根据所述融合数据进行移动控制(S106)。所述方法能够实现对电池工作状态的便捷监控,提高无人飞行器的安全性与稳定性。

Description

数据处理方法、融合模块与移动平台 技术领域
本发明涉及电池组合供电系统的安全管理技术领域,尤其涉及一种数据处理方法、融合模块与移动平台。
背景技术
随着无人飞行技术的不断发展,无人飞行器的安全性问题尤为重要。
目前,无人飞行器一般采用多电池并联的方式供电。由此,每个电池都对外输出自身的动态工作数据,这些动态工作数据的数据量较大,且存在大量重复数据,不利于控制模块对电池工作状态的监控,从而,由于缺乏监控很容易导致无人飞行器发生坠毁事故,存在较大的安全隐患。
发明内容
本发明提供了一种数据处理方法、融合模块与移动平台,以期实现对电池工作状态的便捷监控,提高无人飞行器的安全性与稳定性。
第一方面,本发明提供一种数据处理方法,执行于融合模块,所述融合模块设置于移动平台上,所述方法包括:
获取所述移动平台上的电池模组中各电池的工作数据;
对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据;
将所述融合数据发送给所述移动平台的控制模块,以便于所述控制模块根据所述融合数据进行移动控制。
第二方面,本发明提供一种融合模块,包括:
存储器;
处理器;以及
计算机程序;
其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如第一方面所述的方法。
第三方面,本发明提供一种移动平台,包括:
电池模组,包括多个电池;
融合模块,用于执行如第一方面所述的方法;
控制模块,用于接收所述融合模块发送的所述融合数据,并根据所述融合数据进行移动控制。
在一种可能的设计中,该移动平台可以为无人飞行器。
第四方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如第一方面所述的方法。
第五方面,本发明提供一种数据处理方法,执行于融合模块,所述融合模块设置于移动平台上,所述方法包括:
接收所述融合模块发送的融合数据;
根据所述融合数据进行移动控制。
第六方面,本发明提供一种控制模块,包括:
存储器;
处理器;以及
计算机程序;
其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如第五方面所述的方法。
第七方面,本发明提供一种移动平台,包括:
电池模组,包括多个电池;
融合模块,用于执行如第一方面所述的方法;
控制模块,用于执行如第五方面所述的方法。
在一种可能的设计中,该移动平台可以为无人飞行器。
第八方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如第五方面所述的方法。
本发明所提供的数据处理方法、融合模块与移动平台,在移动平台上设置融合模块,其主要用于对电池模组中各电池的工作数据进行融合,使得融合后的融合数据能够用以表征电池模组的整体工作状态,从而,对于控制模块而言,无需占用控制模块的控制资源即可实现移动控制,且由于减少了控制模块处作出移动控制的数据冗余,提高了移动控制的及时性,有利于在电 池异常情况下更及时的调整飞行策略,因此,本发明实施例提供的技术方案提高了无人飞行器的安全性与稳定性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为本发明提供的一种数据处理方法的流程示意图;
图2为本发明提供的数据处理方法中的数据流向示意图;
图3为本发明提供的另一种数据处理方法的流程示意图;
图4为本发明提供的另一种数据处理方法的流程示意图;
图5为本发明提供的另一种数据处理方法的流程示意图;
图6为本发明提供的另一种数据处理方法的流程示意图;
图7为本发明提供的一种融合模块的结构示意图;
图8为本发明提供的一种控制模块的结构示意图;
图9为本发明提供的一种移动平台的结构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本发明具体的应用场景为:针对移动平台中电池模组的监控管理场景。
该场景可进一步具化为:在移动平台飞行过程中,基于电池模组的工作状态进行移动控制管理的场景。
此外,前述移动平台除包括无人飞行器之外,还可以包括其他由多电池供电的可移动设备,例如,电动汽车、电动轮船等,其中,电动汽车还可以 进一步为电动无人汽车。
前述移动平台(或称之为可移动设备)在受到电池供电的前提下工作,因此,电池模组的工作状态对移动平台的正常工作至关重要。而基于电池模组由多个电池构成,现有技术中一般是由多个电池独立向移动平台的控制模块发送自身的动态工作数据,这就导致控制模块接收到大量地、包含重复数据的动态工作数据,从而,对这些动态工作数据的监控和管理对控制模块提出较高要求,对大量动态工作数据进行分析处理占用了控制模块的大量资源,可能会影响其正常的移动控制,并且,由于数据量较大、冗余数据较多,也可能会导致监控失误,从而,导致移动平台在移动过程中存在严重的安全隐患,甚至可能会造成巨大的生命财产损失。
本发明提供的技术方案,旨在解决现有技术的如上技术问题,并提出如下解决思路:在移动平台中设置融合模块,融合模块作为电池模组与控制模块之间的桥梁,用于对电池模组的工作数据进行融合,并将融合数据发给控制模块,如此,对于控制模块而言,无需占用控制模块的控制资源,且减少了控制模块处作出移动控制的数据冗余,提高了移动控制的及时性。
下面以具体地实施例对本发明的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
实施例一
本发明实施例提供了一种数据处理方法,该方法执行于融合模块中,融合模块设置于移动平台上。具体的,请参考图1,该方法包括如下步骤:
S102,获取移动平台上的电池模组中各电池的工作数据。
S104,对各电池的工作数据进行融合处理,得到用以表征电池模组工作状态的融合数据。
S106,将融合数据发送给移动平台的控制模块,以便于控制模块根据融合数据进行移动控制。
为了便于理解,请参考图2所示的数据流向交互示意图。如图2所示,电池模组910由多个电池(1~N)组成,其中,N为大于1的整数;每个电池的工作数据发送给融合模块700,并由融合模块700将融合后的融合数据 发送给控制模块800。
可知,图2所示信息交互流程为示意性的,在具体实现时,融合数据为融合后的工作数据,针对某一固定类别的工作数据而言,其融合后的融合数据也是该类别的数据。例如,若前述工作数据为电压,则融合数据为融合后的电压,简称融合电压;若前述工作数据为电流,则融合数据为融合后的电流,简称融合电流。
结合图1与图2可知,通过融合模块的融合处理,大大降低了动态工作数据的冗余。对于控制模块而言,一个工作数据对应于N个电池,假设共有M个工作数据上报给控制模块,则控制模块需要处理M×N个工作数据,才能确定电池模组的工作状态;而经过如图2所示的处理后,控制模块仅需处理M×1个工作数据即可获知电池模组的工作状态,并且,由于数据量的降低,减少了对控制模块的资源占用,有利于其更及时的根据电池模组的工作状态执行移动控制。
基于前述思路,以下结合具体的实现场景对前述各步骤的实现方式进行具体说明。
首先,融合模块在执行S104之前,需要获取各电池工作数据的步骤。本发明实施例给出至少如下两种实现方式:
第一种方式:通过工作数据采集装置采集各电池工作数据。
这种实现方式中,融合模块除执行融合处理之外,还需要执行工作数据的采集和分析处理。例如,可以为每个电池分别设置电压采集电路,以获取各电池的电压。
第二种方式:向各电池的管理模块请求电池工作数据。
其中,管理模块可以为电池模组的电池管理系统(Battery Management System,BMS)或者,可以为单一电池的电池管理单元(Battery Management Unit,BMU)。
其中,BMS包括多个针对单一电池的管理单元,电池模组中各电池的工作数据受到BMS(或BMU)的监控管理,因此,无需额外设置数据采集装置,直接向BMS(或BMU)请求数据更有利于节省成本和简化系统结构,避免由于结构复杂而导致其他安全隐患。
其在具体实现时,可表现为:向电池模组中各电池的管理模块发送工作 数据请求,并接收电池管理系统反馈的各电池的工作数据。
其中,融合模块与各电池的管理模块之间可以通过有线方式或无线方式进行通信。
此外,以电池的管理模块为BMS为例,融合模块在向BMS请求数据时,还可以进一步判断该电池模组是否对外通信正常。
在一个可能的实现场景中,融合模块可在发出前述工作数据请求时开始计时,若计时时长,达到预设等待时长,则确定其对外通信异常。
或者,在另一实现场景中,还可以预设等待次数。如此,若融合模块的计时时长达到预设等待时长,且未接收到电池的工作数据,则次数加一;直至次数达到预设等待次数,仍未接收到电池的工作数据,则确定电池模组(或电池)对外通信异常。
在前述判断结果为电池模组(或电池)对外通信异常的前提下,融合模块可生成通信异常标志,并将该通信异常标志作为融合数据,发送给控制模块。
此外,需要注意,若针对电池模组中的部分电池发生通信异常,则可以不再执行后续步骤,仅将该通信异常标志作为融合数据,并发送给控制模块;或者,也可以仅将该异常标志作为该异常电池的融合数据,其他未发生通信异常的电池则正常执行后续工作数据融合步骤,得到融合数据发送给控制模块即可。
反之,若电池模组(或电池模组中各电池均)未发生通信异常,则正常执行后续工作数据融合步骤。
本发明实施例中所涉及到的工作数据可以包括但不限于:电压、电流与温度。
具体而言,融合模块在执行具体的融合策略时,还需要考虑各电池之间的串并联连接关系,进而,采取不同的融合策略。
请参考图3,若工作数据为电压和/或电流,则S104步骤可具体包括如下步骤:
S104-2-2,确定各电池之间的连接关系。
具体而言,一个实现场景中,各电池之间的连接关系可以向电池模组的BMS请求获取得到。另一实现场景中,若已提前在该融合模块可读取到的存 储位置中预先存储了各电池之间的连接方式,则可以直接在该存储位置读取得到即可。此外,在另一实现场景中,该融合模块还可以向用户端请求该连接关系,具体而言,此时可以通过控制模块或者融合模块自身直接向用户端发出连接关系获取请求,其可具体表现为可操作的输入框。
S104-2-4,根据连接关系,对各电池的电压进行融合处理,得到融合电压;和/或,根据连接关系,对各电池的电流进行融合处理,得到融合电流。
其中,融合电压用以表征电池模组两端的最大电压值,融合电流用以表征电池模组主回路的电流值。
由此,针对电压而言,若电池之间为并联连接,则获取并联连接的多个电池之间的最大电压值,作为融合电压即可;或者,若电池之间为串联连接,则获取串联连接的多个电池的电压值之和,作为融合电压即可。
以及,若电池模组中的电压同时存在串联关系和并联关系,则结合前述两个执行方式,对并联连接的电池取最大电压值,并对串联连接的电池取电压值之和,经前述处理后,即可得到融合电压。
另一反面,针对电流而言,若电池之间为并联连接,则获取并联连接的多个电池的电流值之和,作为融合电流即可;或者,若电池之间为串联连接,则获取串联连接的多个电池之间的最大电流值,作为融合电流即可。
以及,若电池模组中的电流同时存在串联关系和并联关系,则结合前述两个执行方式,对并联连接的电池取电流值之和,并对串联连接的电池取最大电流值,经前述处理后,即可得到融合电流。
此外,温度对电池的工作状态也有较大影响,具体而言,低温环境以及高温环境,尤其是低温环境,都可能会导致电池工作状态突变,甚至导致电池损坏。因此,对电池的温度进行监控就变得尤为重要。
在具体执行温度的融合时,融合后的温度用于体现电池模组的温度状态。因此,若更关注低温环境对电池模组工作状态的影响,则此时,可通过如图4所示的方式实现温度融合:
S104-4-2,判断各电池的温度是否均大于预设低温阈值,若是,执行S104-4-4;若否,执行S104-4-6。
其中,预设低温阈值用以衡量电池的温度是否异常。
S104-4-4,获取各电池的温度中的最低温度,以作为融合温度。
若是,则在电池模组中存在至少一个电池的温度小于或者等于预设低温阈值,也就是说,至少存在一个电池的温度低于该低温阈值,该电池的工作状态可能已经异常,因此,在具体实现融合时,各电池中的最低温度更能够用以体现电池模组的整体温度变化情况,因此,选择其中的最低温度作为融合温度。
S104-4-6,获取各电池的温度中的最高温度,以作为融合温度。
若否,则各电池的温度均大于预设低温阈值,此时,各电池的温度情况均未发生异常,则各电池中的最高温度更能够用以体现电池模组的整体温度变化情况,因此,选择其中的最高温度作为融合温度。
可知,前述如图4所示的实现方式仅为一种可行的实现方式,在具体的实现场景中,还可以预设高温阈值,则在具体实现时,则需要判断各电池的温度是否均小于预设高温阈值,从而,若存在至少一个电池的温度大于或者等于预设高温阈值,获取各电池的温度中的最高温度,以作为融合温度;反之,若各电池的温度均小于预设低温阈值,获取各电池的温度中的最低温度,以作为融合温度。不再赘述。
除前述三种工作数据对控制模块执行的移动控制有较大影响之外,各电池上报的工作数据还可能包括如下至少一种:电芯异常标志、剩余容量、容量百分比、功率与电池固件版本号。
本发明实施例也进一步结合应用场景,给出这部分工作数据的融合处理方式:
在一个具体的实现场景中,若S102获取到的工作数据为剩余容量,则可以获取各电池的剩余容量之和,以作为融合剩余容量。此时,融合剩余容量实质上可用于表征电池模组的剩余电量总和。
在另一个具体的实现场景中,若S102获取到的工作数据为剩余容量百分比,则可以获取各电池的剩余容量百分比之间的平均值,以作为融合剩余容量百分比。此时,该融合剩余容量百分比用于表征电池模组中各电池的剩余电量的平均值。
可知,对于一个电池而言,其剩余容量百分比即为剩余容量在总容量中所占的比例,由此,在实际实现时,前述两种融合方式可以互换或通用。也就是,也可以获取各电池的剩余容量平均值,以作为融合剩余容量。不再赘 述。
若工作数据为功率,则可以有多种处理方式。在一种可能的实现场景中,可以获取各电池的功率之和,以作为融合功率。或者,在另一可能的实现场景中,可以在前述电压与电流融合步骤之后,获取融合电压与融合电流之积,以作为融合功率。
此外,固件版本号用以判断电池是否为规定电池,因此,需要对电池模组中各电池的固件版本号与预设版本号逐一进行比对;若一致,则确定该电池为规定电池;反之,则确定该电池不是规定电池,可能会造成安全隐患,因此,此时,需要对该固件版本号不一致的情况进行通知或标识。为了便于控制模块的处理,可通过生成固件版本不一致标志的方式,将该固件版本不一致标志作为该项的融合数据,发送给控制模块。
具体实现该方法时,由于涉及多个电池均需要进行前述判断,因此,在具体执行时,可以有多种变形。例如,一种实现场景中,只要存在固件版本号不一致的电池,则生成一个固件版本不一致标志,该固件版本不一致标志可以携带或者也可以不携带发生固件版本不一致的电池的标识。或者,另一实现场景中,为每个存在固件版本不一致情况的电池(简称异常电池)都独立生成一个固件版本不一致标志,该固件版本不一致标志中携带有该异常电池的标识。
此外,电芯异常标志用于表征电芯是否工作正常,其具体可包括但不限于:电芯损坏标志、电芯欠压标志与放电短路标志。
需要说明的是,电芯异常标志是电池上报给融合模块的工作数据,基于此,融合模块在收到任意电池发送的电芯异常标志后,可生成电池模组的电芯异常标志作为融合数据,并发送给控制模块;或者,也可直接将这些电池上报的电芯异常标志作为融合数据,并发送给控制模块。
基于前述步骤,可实现融合模块对电池上报的工作数据的融合处理。
此外,还需要说明的是,由于融合模块获取到的工作数据的种类可以有多种,因此,需要对各电池的工作数据分别进行融合,而在具体执行各工作数据的融合时,可以同时执行并同时将融合数据发送给控制模块;或者,也可以先后顺序执行。
先后顺序执行时,可预设执行次序。如在一个实现场景中,若同时获取 到电压和电流数据,则可以按照预设的次序,先对电压做融合处理并将融合电压发送给控制模块,再对电流做融合处理并将融合电流发送给控制模块。
或者,先后顺序执行时,还可以依据S102步骤获取到的工作数据的时序执行。如在另一实现场景中,可预设执行次序为按照获取到工作数据的次序执行,若先获取到电流,则先对电流做融合处理,其次获取到电压,再对电压做融合处理,最后获取到温度,则再对温度做融合处理,以此类推。
此外,还需要进一步考虑的情况是,电池模组中包括多个电池,但当前只有其中的部分电池为移动平台供电,换言之,电池模组中包含部分备用电池,这部分备用电池当前并不用以为移动平台供电,此时,可以包括如下处理方式;
方式一,仅获取当前为移动平台供电的部分电池的工作数据,同时,也仅获取这部分供电电池的连接关系,并对这部分供电电池的工作数据进行融合;
方式二,同时获取电池模组中所有电池的工作数据,但是,仅针对当前为移动平台供电的部分供电电池的工作数据做融合处理。
方式三,同时获取电池模组中所有电池的工作数据,以及,对电池模组汇中的所有电池的工作数据做统一的融合处理。
方式四,同时获取电池模组中所有电池的工作数据,以及,根据供电情况,对当前供电的部分供电电池做前述融合处理,以及,对当前不供电的部分备用电池座前述融合处理,并将这两个类型的融合数据都发送给控制模块,以便于控制模块实现对供电电池的监管控制的同时,也了解备用电池的工作情况。
如前,出于进一步简化控制模块的处理程序的角度考虑,请参考图5,该方法还可以包括如下步骤:
S502,根据各电池的工作数据和/或融合数据,判断电池模组是否发生异常;若是,执行S504;若否,结束。
S504,生成与异常原因相应的异常标志。
S506,将异常标志发送给移动平台。
具体的,本发明实施例所涉及到的异常标志可以包括但不限于如下至少一种:通信异常标志、容量过低标志、过流标志、电压差过大标志、认证标 志与固件版本不一致标志。
其中,通信异常标志、固件版本不一致标志均如前,不再赘述。
而容量过低标志,则用以表示电池模组(利用融合数据实现)或者电池(利用工作数据实现)的剩余容量过低。
一种实现场景中,将电池模组的融合剩余容量百分比与预设的第一低容量阈值进行比较,假设为10%,若电池模组的融合剩余容量百分比小于或者等于10%,则生成该标志。或者,还可以通过融合剩余容量与预设的第二低容量阈值进行比较得到,不再追溯。
或者,还可以依据电池的剩余容量对单一电池是否容量过低进行衡量,其实现方式与前述利用融合数据实现的方式类似,不再赘述。
而过流标志用以表示电池模组(利用融合数据实现)或者电池(利用工作数据实现)的电流是否大于最大电流。实现方式同上,可通过设置电流阈值的方式比较实现,不再赘述。
电压差过大标志用以表示电池模组中各电池中任意两个电池之间的电压差是否过大,该判断可利用融合数据实现,或者,也可利用工作数据实现。实现方式同上,不再赘述。
认证标志用于表示融合模块与电池模组(或电池)是否握手成功。其可包括:认证成功标志或者认证失败标志。
除前述标志之外,还可以根据融合数据和/或工作数据中的其他参数进行异常数据判断,并生成与之对应的标志。例如,还可以生成低温报警标志等。
具体实现其发送时,可将前述标志作为融合数据的一部分,协同前述融合电压、融合电流、融合温度等数据,共同发送给控制模块。
此外,与生成异常标志对应的,这些异常标志具备一定的时效性,其并不是一成不变的,随着电池的工作数据的变化,某些异常标志会依据前述异常判断条件生成,也有某些异常标志会随之消失。
因此,如图5所示,该方法还包括:
S508,判断电池模组的异常情况是否消失;若是,执行S510;若否,结束。
S510,将用于清除该异常情况对应的异常标志的通知消息发送给移动平台。
通过前述流程,融合模块可实现针对电池模组的工作状态的数据融合和异常标志判断,而与之相对的,本发明实施例对控制模块侧的控制策略进行简要说明。
具体的,请参考图6,控制模块侧所执行的数据处理方法包括:
S602,接收融合模块发送的融合数据。
S604,根据融合数据进行移动控制。
以移动平台为无人飞行器为例,对S604步骤进行具体说明。此时,S604中的移动控制实质为针对无人飞行器的飞行控制。
具体而言,针对无人飞行器的飞行控制可以包括但不限于:起飞控制策略、降落控制策略与姿态限制策略。
首先,在无人飞行器的起飞控制策略中,需要根据前述融合数据确定电池模组供电能够满足要求。
具体而言,在无人飞行器起飞之前,至少需要执行如下检查:
1.1)判断电池模组中各电池的电芯是否异常。
该步骤实现时,可通过检测接收到的融合数据中是否携带有电芯异常标志实现。若有,则确定电芯异常,检查不通过;反之,若没有,则确定电芯正常,检查通过。
1.2)判断电池模组是否对外通信异常。
该步骤实现时,可通过检测接收到的融合数据中是否携带有通信异常标志(依据向BMS请求数据过程的判断)实现。若有,则确定电池模组对外通信异常,检查不通过;反之,则确定对外通信正常,检查通过。
1.3)检查电池是否认证成功。
该步骤实现时,可通过检测接收到的融合数据中携带的认证标志实现。若携带有认证成功标志,则确定电池认证成功,检查通过;反之,若携带有认证失败标志,则确定电池认证失败,检查不通过。
1.4)检查电池模组的电压是否低于启动电压。
该步骤可将融合电压与启动电压进行比较,若融合电压低于启动电压,则检查不通过;反之,若融合电压高于或等于启动电压,则检查通过。
本发明实施例对于启动电压无特殊限定。此外,在具体实现时,启动电压还可以变形为电压阈值,该电压阈值可以是电池实际启动电压略高的值或 略低的值。
此外,启动电压可根据需要设定,本发明实施例对此无特殊限定。例如,在一个可能的实现场景中,启动电压可以设置为20V。
1.5)检查起飞前的电池模组的电量是否低于严重低电量阈值。
该步骤可将融合剩余电量与严重低电量阈值进行比较,若融合剩余电量低于严重低电量阈值,则检查不通过;反之,若融合剩余电量高于或等于严重低电量阈值,则检查通过。
或者,若该严重低电量阈值与前述第一低容量阈值相同,或略高于该第一低容量阈值,则可以通过检查融合数据中是否具备该容量过低标志来实现。若具备,则检查不通过;反之,则检查通过。
1.6)检查电池模组当前温度是否低于起飞温度阈值。
该步骤可将融合温度与起飞温度阈值进行比较,若融合温度低于起飞温度阈值,则检查不通过;反之,若融合温度高于或等于起飞温度阈值,则检查通过。
与步骤1.5)类似,该步骤也可通过低温报警标志来实现,不再赘述。
此外,起飞温度阈值可根据需要设定,本发明实施例对此无特殊限定。例如,在一个可能的实现场景中,起飞温度阈值可以设置为15度。
1.7)检查电池的固件版本是否一致。
该步骤可通过检查融合数据中是否携带前述固件版本不一致标志来实现,不再赘述。
1.8)检查电池电压差是否过大。
该步骤可通过检查融合数据中是否携带前述电压差过大标志来实现,不再赘述。
通过如上8个步骤的检查,若任意一个步骤的检查不通过,则限制无人飞行器的起飞。反之,若前述检查均通过,则可控制无人飞行器起飞。
此外,前述8个步骤的执行次序无特殊限定,可以按照前述顺序执行或者,也可以其他次序执行,对此无特殊限定。为了进一步节省控制模块的资源,若前述任一项检查结果不通过,则可以不再执行后续步骤的检查。
其次,在执行针对无人飞行器的降落之前,至少存在如下步骤:
2.1)在无人机飞行过程中,检查电池模组的融合剩余容量是否小于预估 返航电量。
若是,则需要向用户端输出提示返航的信息,并控制无人飞行器返航。具体的实现场景中,该返航控制可以被用户端取消。并且,若被用户端取消后不再触发该检查。
或者,若融合剩余电量等于预估返航电量,则向用户端输出提示返航的信息,并根据用户端的指示执行下一步飞行控制。
或者,若融合剩余电量大于预估返航电量,则可正常执行飞行,不做其他处理。
2.2)在无人机返航需要降落之前,仍需进一步确定无人飞行器的融合剩余容量是否小于预估降落电量,或者,检测融合剩余容量是否小于最低电量阈值。
若是,则控制无人飞行器立即降落,以避免安全事故发生。该处理可设计为不能被用户端取消。
若否,则可根据用户端的指示执行飞行控制。
2.3)此外,本发明实施例还提供一种强制低电压降落策略。也就是,在前述2.2)步骤的判断结果为是时,可强制控制电池模组中任意电芯的电压小于强制低电压阈值。该强制措施可设计为不能被用户端取消。其中,强制低电压阈值可根据需要设置,例如,可设置为3.2V。
此外,在执行针对无人飞行器的姿态限制策略可以为:根据融合电压与融合电流之积(或利用融合功率)小于预设姿态限制阈值时,则限制无人飞行器的飞机姿态角小于一定角度阈值。
其中,姿态限制阈值可设计为与电池模组的实际功率或理论功率相关。例如,若电池模组的理论功率为1600W,则可将该姿态限制阈值设计为1600W×80%。而角度阈值的设计是为了尽量提高无人飞行器的安全性,其可根据实际需要设计。例如,其可具体设置为15度。
可以理解,针对其他移动平台,也可结合实际场景,利用前述融合数据实现移动策略的调整,以提高移动平台的安全性和稳定性。
可以理解的是,上述实施例中的部分或全部步骤骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施 例中的全部操作。
基于上述实施例所提供的数据处理方法,本发明实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
本发明实施例提供了一种融合模块,请参考图7,该融合模块700,包括:
存储器710;
处理器720;以及
计算机程序;
其中,计算机程序存储在存储器710中,并被配置为由处理器720执行以实现如上述实施例所述的方法。
此外,如图7所示,在该融合模块700中还设置有收发器730用于与其他设备进行数据传输或通信,在此不再赘述。
其中,如图7所示,存储器710、处理器720与收发器730通过总线连接并通信。
所述融合模块700中处理器720的数目可以为一个或多个,处理器720也可以称为处理单元,可以实现一定的控制功能。所述处理器720可以是通用处理器或者专用处理器等。
在一种可选地设计中,处理器720也可以存有指令,所述指令可以被所述处理器运行,使得所述融合模块700执行上述方法实施例中描述的对应于融合模块的方法。
在又一种可能的设计中,融合模块700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,所述融合模块700中存储器710的数目可以为一个或多个,存储器710,其上存有指令或者中间数据,所述指令可在所述处理器上被运行,使得所述融合模块700执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有其他相关数据。可选地,处理器720中也可以存储指令和/或数据。所述处理器720和存储器710可以单独设置,也可以集成在一起。
所述处理器720可以称为处理单元。所述收发器730可以称为收发单元、收发机、收发电路、或者收发器等,用于实现融合模块700的收发功能。
若该融合模块700用于实现对应于图1所示实施例中融合模块的操作时,例如,可以是收发器730将融合数据发送给控制模块。收发器还可以进一步 完成其他相应的通信功能。而处理器720用于完成相应的确定或者控制操作,可选的,还可以在存储器710中存储相应的指令。各个部件的具体的处理方式可以参考前述实施例的相关描述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
此外,本发明实施例提供了一种可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行以实现如前述融合模块侧实施例所述的方法。
本发明实施例提供了一种控制模块,请参考图8,该控制模块800,包括:
存储器810;
处理器820;以及
计算机程序;
其中,计算机程序存储在存储器810中,并被配置为由处理器820执行以实现如上述实施例所述的方法。
此外,如图8所示,在该控制模块800中还设置有收发器830用于与其他设备进行数据传输或通信,在此不再赘述。
其中,如图8所示,存储器810、处理器820与收发器830通过总线连接并通信。
所述控制模块800中处理器820的数目可以为一个或多个,处理器820也可以称为处理单元,可以实现一定的控制功能。所述处理器820可以是通用处理器或者专用处理器等。
在一种可选地设计中,处理器820也可以存有指令,所述指令可以被所述处理器运行,使得所述控制模块800执行上述方法实施例中描述的对应于控制模块的方法。
在又一种可能的设计中,控制模块800可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,所述控制模块800中存储器810的数目可以为一个或多个,存储器810,其上存有指令或者中间数据,所述指令可在所述处理器上被运行,使得所述控制模块800执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有其他相关数据。可选地,处理器820中也可以存储指令和/或数据。所述处理器820和存储器810可以单独设置,也可以集成在一起。
所述处理器820可以称为处理单元。所述收发器830可以称为收发单元、收发机、收发电路、或者收发器等,用于实现控制模块800的收发功能。
若该控制模块800用于实现对应于图6所示实施例中控制模块的操作时,例如,可以是收发器830接收融合模块发送的融合数据。收发器还可以进一步完成其他相应的通信功能。而处理器820用于完成相应的确定或者控制操作,可选的,还可以在存储器810中存储相应的指令。各个部件的具体的处理方式可以参考前述实施例的相关描述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
此外,本发明实施例提供了一种可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行以实现如前述控制模块侧实施例所述的方法。
此外,本发明实施例还提供了一种移动平台。具体的,请参考图9,该移动平台900包括:
电池模组910,包括多个电池;
融合模块700,用于执行前述任一实施例所述的融合模块侧执行的方法;
控制模块800,用于接收所述融合模块发送的所述融合数据,并根据所 述融合数据进行移动控制。
在一种可能的设计中,该移动平台可以为无人飞行器。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种数据处理方法,其特征在于,执行于融合模块,所述融合模块设置于移动平台上,所述方法包括:
    获取所述移动平台上的电池模组中各电池的工作数据;
    对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据;
    将所述融合数据发送给所述移动平台的控制模块,以便于所述控制模块根据所述融合数据进行移动控制。
  2. 根据权利要求1所述的方法,其特征在于,所述工作数据包括:电压、电流与温度。
  3. 根据权利要求2所述的方法,其特征在于,所述对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据,包括:
    确定各电池之间的连接关系;
    根据所述连接关系,对各电池的电压进行融合处理,得到融合电压;和/或,根据所述连接关系,对各电池的电流进行融合处理,得到融合电流;
    其中,所述融合电压用以表征所述电池模组两端的最大电压值,所述融合电流用以表征所述电池模组主回路的电流值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述连接关系对各电池的电压进行融合处理,得到融合电压,包括:
    获取并联连接的多个电池之间的最大电压值;和/或,
    获取串联连接的多个电池之间的电压值之和。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述连接关系对各电池的电流进行融合处理,得到融合电流,包括:
    获取并联连接的多个电池之间的电流值之和;和/或,
    获取串联连接的多个电池之间的最大电流值。
  6. 根据权利要求2所述的方法,其特征在于,所述对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据,包括:
    判断各电池的温度是否均大于预设低温阈值,所述预设低温阈值用以衡量电池的温度是否异常;
    若存在至少一个电池的温度小于或者等于所述预设低温阈值,获取各电 池的温度中的最低温度,以作为融合温度;
    若各电池的温度均大于所述预设低温阈值,获取各电池的温度中的最高温度,以作为所述融合温度。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述工作数据还如下至少一种:电芯异常标志、剩余容量、容量百分比、功率与电池固件版本号。
  8. 根据权利要求7所述的方法,其特征在于,所述对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据,包括:
    获取各电池的剩余容量之和,以作为融合剩余容量。
  9. 根据权利要求7所述的方法,其特征在于,所述对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据,包括:
    获取各电池的剩余容量百分比之间的平均值,以作为融合剩余容量百分比。
  10. 根据权利要求7所述的方法,其特征在于,所述对各电池的工作数据进行融合处理,得到用以表征所述电池模组工作状态的融合数据,包括:
    获取各电池的功率之和,以作为融合功率。
  11. 根据权利要求7所述的方法,其特征在于,所述电芯异常标志包括如下至少一种:电芯损坏标志、电芯欠压标志与放电短路标志。
  12. 根据权利要求1或2所述的方法,其特征在于,所述获取电池模组中各电池的工作数据,包括:
    向所述电池模组中各电池的管理模块发送工作数据请求;
    接收所述电池管理系统反馈的各电池的工作数据。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据各电池的工作数据和/或融合数据,判断所述电池模组是否发生异常;
    若是,生成与异常原因相应的异常标志;
    将所述异常标志发送给所述移动平台。
  14. 根据权利要求13所述的方法,其特征在于,所述异常标志包括如下至少一种:通信异常标志、容量过低标志、过流标志、电压差过大标志、认证标志与固件版本不一致标志。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    判断所述电池模组的异常情况是否消失;
    若是,将用于清除该异常情况对应的所述异常标志的通知消息发送给所述移动平台。
  16. 一种融合模块,其特征在于,包括:
    存储器;
    处理器;以及
    计算机程序;
    其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如权利要求1-15任一项所述的方法。
  17. 一种移动平台,其特征在于,包括:
    电池模组,包括多个电池;
    融合模块,用于执行如权利要求1-15任一项所述的方法;
    控制模块,用于接收所述融合模块发送的所述融合数据,并根据所述融合数据进行移动控制。
PCT/CN2018/118007 2018-11-28 2018-11-28 数据处理方法、融合模块与移动平台 WO2020107285A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880072721.XA CN111356637A (zh) 2018-11-28 2018-11-28 数据处理方法、融合模块与移动平台
PCT/CN2018/118007 WO2020107285A1 (zh) 2018-11-28 2018-11-28 数据处理方法、融合模块与移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118007 WO2020107285A1 (zh) 2018-11-28 2018-11-28 数据处理方法、融合模块与移动平台

Publications (1)

Publication Number Publication Date
WO2020107285A1 true WO2020107285A1 (zh) 2020-06-04

Family

ID=70854249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118007 WO2020107285A1 (zh) 2018-11-28 2018-11-28 数据处理方法、融合模块与移动平台

Country Status (2)

Country Link
CN (1) CN111356637A (zh)
WO (1) WO2020107285A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532807A (zh) * 2016-11-02 2017-03-22 山西省交通科学研究院 一种智能型电池充放电控制系统及方法
CN106842045A (zh) * 2017-01-20 2017-06-13 北京理工大学 一种基于自适应权重方法的电池多模型融合建模方法和电池管理系统
CN106845562A (zh) * 2017-03-21 2017-06-13 湖北民族学院 光伏组件的故障监测系统及数据处理方法
CN107942255A (zh) * 2017-11-03 2018-04-20 山东智洋电气股份有限公司 一种基于数据融合技术的变电站蓄电池组状态评估方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515478B (zh) * 2016-10-27 2017-10-20 合肥工业大学 电动汽车剩余行驶里程在线预测方法及装置
CN108701875A (zh) * 2017-04-27 2018-10-23 深圳市大疆创新科技有限公司 移动平台、计算机可读存储介质、电池及其控制方法和系统
CN107140194A (zh) * 2017-05-16 2017-09-08 华东交通大学 一种支持自动充电的循轨多旋翼铁路自动巡检系统
CN108544925B (zh) * 2018-04-02 2019-10-01 北京理工大学 电池管理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532807A (zh) * 2016-11-02 2017-03-22 山西省交通科学研究院 一种智能型电池充放电控制系统及方法
CN106842045A (zh) * 2017-01-20 2017-06-13 北京理工大学 一种基于自适应权重方法的电池多模型融合建模方法和电池管理系统
CN106845562A (zh) * 2017-03-21 2017-06-13 湖北民族学院 光伏组件的故障监测系统及数据处理方法
CN107942255A (zh) * 2017-11-03 2018-04-20 山东智洋电气股份有限公司 一种基于数据融合技术的变电站蓄电池组状态评估方法

Also Published As

Publication number Publication date
CN111356637A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
KR102210282B1 (ko) 릴레이 상태 검출 방법 및 장치
US9640843B2 (en) Battery management system
EP3546961B1 (en) Battery leakage current detection method, device and circuit
CN108215935A (zh) 汽车最高车速管理方法、装置、存储介质及电动汽车
EP3101840A1 (en) Method and apparatus for processing information in m2m communications
CN106848452B (zh) 一种动力电池故障显示方法和动力电池故障显示装置
CN101005669A (zh) 移动终端设备
US9377490B2 (en) Smart meter voltage sensing using optically coupled isolators
WO2020107285A1 (zh) 数据处理方法、融合模块与移动平台
CN114966454A (zh) 一种电池采样线虚接的检测方法、系统、设备及存储介质
JP2004080865A (ja) 半導体の異常診断回路
CN104682342A (zh) 一种测试主机的过压保护电路
CN106231543A (zh) 一种用于电动车的通信装置
CN102694395B (zh) 一种评估输电网络两终端可靠性的方法
CN107064688A (zh) 一种无人机供电异常智能预警系统
CN115808640A (zh) 电源故障检测电路、方法、系统、电子设备及存储介质
CN102944734A (zh) 一种监控终端状态的方法、监控电路及终端
CN204269804U (zh) 一种绝缘检测有效性检查电路
CN108039005A (zh) 一种可移动目标物的防盗管理系统
CN206892209U (zh) 故障检测电路及系统
CN104135447A (zh) 一种数据包的传输方法和装置
CN111404121B (zh) 电源欠压保护方法、系统、介质及装置
WO2018068270A1 (zh) 一种充电电路及装置
CN202455047U (zh) 锂电池电芯安全性的提高装置
CN215494578U (zh) 用于PIS信息显示系统的ByPass网络安全电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941221

Country of ref document: EP

Kind code of ref document: A1