WO2018068270A1 - 一种充电电路及装置 - Google Patents

一种充电电路及装置 Download PDF

Info

Publication number
WO2018068270A1
WO2018068270A1 PCT/CN2016/102025 CN2016102025W WO2018068270A1 WO 2018068270 A1 WO2018068270 A1 WO 2018068270A1 CN 2016102025 W CN2016102025 W CN 2016102025W WO 2018068270 A1 WO2018068270 A1 WO 2018068270A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
charging
voltage
circuit module
Prior art date
Application number
PCT/CN2016/102025
Other languages
English (en)
French (fr)
Inventor
赵世兴
成转鹏
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to PCT/CN2016/102025 priority Critical patent/WO2018068270A1/zh
Priority to CN201680011494.0A priority patent/CN109478789A/zh
Publication of WO2018068270A1 publication Critical patent/WO2018068270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of charging technologies, and in particular, to a charging circuit and device.
  • Lithium batteries are used as a type of power source. Lithium batteries are increasingly used because of their high energy and light weight. For a battery management system (BATTERY MANAGEMENT SYSTEM, BMS) consisting of a multi-cell lithium battery, how to effectively protect the battery management system is an important technical issue.
  • BATTERY MANAGEMENT SYSTEM, BMS Battery management system
  • a lithium battery pack is placed in a battery pack, and an external power source charges the lithium battery pack through a charger.
  • the related art has the following problems: due to the relatively poor charging environment of the battery pack, during the charging process, the charging circuit of the battery pack is prone to failure or cause some charging accidents, resulting in unreliable charging.
  • the embodiment of the invention provides a charging circuit and device, which solves the technical problem that the battery pack is unreliable in the prior art.
  • the present invention provides the following technical solutions:
  • an embodiment of the present invention discloses a charging circuit for connecting a power source and controlling charging of a battery pack, the charging circuit comprising: a detecting circuit module, configured to detect voltages at both ends of each battery of the battery pack When the detection circuit module detects that the voltage across the battery continues to be greater than the first voltage protection threshold for a preset delay time, the first control signal is output; the switch circuit module is connected to the detection circuit module, The switch circuit module is configured to switch the charging circuit to stop the charging state according to the first control signal.
  • the switch circuit module includes a first switch circuit, the first switch circuit includes a first input end, a first output end, and a first control end, where the first input end is connected to the power source.
  • the first output end is connected to the battery pack, and the first control end is connected to the detecting circuit module;
  • the first switching circuit is specifically configured to switch the charging circuit to stop the charging state according to the first control signal.
  • the switch circuit module further includes a second switch circuit; the second switch circuit includes a second input end, a second output end, and a second control end, the second input end and the first output End connection, the second output end is connected to the battery pack; the charging circuit further includes a protection circuit module respectively connected to the second control end and each battery of the battery pack for detecting the a voltage across the battery of the battery pack; when the voltage across the battery is greater than a second voltage protection threshold, the protection circuit module outputs a second control signal to cause the second switch circuit to switch the charging circuit Until the charging state is stopped.
  • the charging circuit further includes a plurality of third switching circuits corresponding to the number of batteries of the battery pack, and the third switching circuit includes a third input end, a third output end, and a third control end
  • the battery is connected to a third input end, and the third output end is respectively connected to another third switch circuit and another battery, and the third control terminal and the detecting circuit are respectively Module connection; when the voltage of the battery with the highest voltage is greater than the preset equalization starting voltage and less than the preset equalization end voltage, and the voltage across the battery with the highest voltage minus the voltage difference between the voltages of the battery with the lowest voltage
  • the detection circuit module outputs a third control signal, and controls the third switch circuit corresponding to the battery with the highest voltage to be in an on state.
  • the protection circuit module is connected to the detection circuit module through a communication interface, and transmits voltage information of each battery of the battery pack to the detection circuit module.
  • the charging circuit further includes a heat dissipation module connected to the detection circuit module; and when the third control signal is output, the detection circuit module starts the heat dissipation module.
  • the detecting circuit module when the detecting circuit module detects that the remaining power of the battery is lower than a preset low-voltage discharge equalization threshold, and the battery continues to fail to meet the full-charge state and/or full-scale within a preset number of times In a state, the detecting circuit module controls the third switch circuit corresponding to each battery of the battery pack to be in an on state.
  • the detecting circuit module activates the heat dissipation module when the third switch circuit corresponding to each battery of the battery pack is controlled to be in an on state.
  • an embodiment of the present invention provides a charging apparatus, including: a charging circuit for connecting a power source and controlling charging of a battery pack; a battery pack, the battery pack being disposed inside the battery pack; and an equalization box Connected to the battery pack; wherein the charging circuit includes: a detecting circuit module, configured to detect voltages at both ends of each battery of the battery pack, when the detecting circuit module detects The first control signal is output when the voltage of the two ends of the battery continues to be greater than the first voltage protection threshold for a preset delay time; the switch circuit module is connected to the detection circuit module, and the switch circuit module is used according to the The first control signal switches the charging circuit to a stop state of charge.
  • the detecting circuit module is disposed inside the battery pack.
  • the detection circuit module is disposed inside the equalization box.
  • the switch circuit module includes a first switch circuit disposed inside the equalization box, the first switch circuit includes a first input end, a first output end, and a first control end, the first input The first output end is connected to the battery pack, and the first control end is connected to the detection circuit module; the first switch circuit is specifically configured to be configured according to the first control signal Switching the charging circuit to stop charging.
  • the switch circuit module further includes a second switch circuit disposed inside the battery pack; the second switch circuit includes a second input end, a second output end, and a second control end, the second An input terminal is coupled to the first output terminal, the second output terminal is coupled to the battery pack; the charging circuit further includes a protection circuit module coupled to the second control terminal and each of the battery pack a battery connection for detecting voltages across the battery of the battery pack; when the voltage across the battery is greater than a second voltage protection threshold, the protection circuit module outputs a second control signal to enable the second A switching circuit switches the charging circuit to a stop state of charge.
  • the charging circuit further includes a plurality of third switching circuits corresponding to the number of batteries of the battery pack, the third switching circuit is disposed inside the equalization box; and the third switching circuit includes a third input end, a third output end, and a third control end, wherein the battery is connected to a third input end, and the third output end is respectively connected to another third switch circuit and another battery Connected, a third control terminal and the detection circuit module are connected; when the voltage of the battery with the highest voltage is greater than the preset equalization start voltage and less than the preset equalization end voltage, and the two ends of the battery with the highest voltage The voltage difference between the voltages of the two terminals of the battery with the lowest voltage minus the voltage is greater than the preset equalization starting voltage difference, and the detecting circuit module outputs a third control signal, and the third switching circuit corresponding to the battery with the highest voltage is controlled to be turned on. status.
  • the protection circuit module is connected to the detection circuit module through a communication interface, and transmits voltage information of each battery of the battery pack to the detection circuit module.
  • the charging circuit further includes a heat dissipation module disposed inside the equalization box, and is connected to the detection circuit module; when the third control signal is output, the detection circuit module starts the heat dissipation module .
  • the detecting circuit module when the detecting circuit module detects that the remaining power of the battery is lower than a preset low-voltage discharge equalization threshold, and the battery continues to fail to meet the full-charge state and/or full-scale within a preset number of times In a state, the detecting circuit module controls the third switch circuit corresponding to each battery of the battery pack to be in an on state.
  • the detecting circuit module activates the heat dissipation module when the third switch circuit corresponding to each battery of the battery pack is controlled to be in an on state.
  • the charging circuit further includes a power module and a fourth switch circuit;
  • the fourth switch circuit includes a fourth input end, a fourth output end, and a fourth control end, wherein the power module and the heat dissipation module respectively Connected to the fourth input terminal, the fourth output terminal is connected to the first input terminal, the fourth control terminal is connected to the detection circuit module; when the battery pack and the equalization box are disconnected When connected, the detection circuit module outputs a fourth control signal to disconnect the output of the power module.
  • the detecting circuit module outputs a first control signal when the voltage across the battery of the battery pack is detected to be greater than the first voltage protection threshold for a preset delay time, and the switch circuit module is configured according to the first control.
  • the signal switching charging circuit is in a state of stopping charging. Therefore, when the charging circuit is in an abnormal charging state during charging, the charging circuit can enter a state of stopping charging, thereby avoiding an accident in the charging circuit or the battery group due to continued charging, thereby protecting the battery pack and Protect the charging circuit.
  • FIG. 1 is a circuit block diagram of a charging circuit according to an embodiment of the present invention.
  • FIG. 2 is a circuit block diagram showing another charging circuit according to an embodiment of the present invention.
  • FIG. 3 is a circuit block diagram of another charging circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a circuit of a charging circuit according to an embodiment of the present invention.
  • FIG. 4a is a schematic structural diagram of a circuit of a heat dissipation module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a circuit of another charging circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a charging apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another charging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a circuit block diagram of a charging circuit according to an embodiment of the present invention.
  • the charging circuit 10 is connected to the power source 12 and the battery pack 14, respectively, and the charging circuit 10 receives the current supplied from the power source 12 to charge the respective batteries of the battery pack 14.
  • the charging circuit 10 can control the charging of each battery of the battery pack 14 according to the preset charging logic. Controlling the charging of each battery includes at least: balancing the respective batteries and preventing overvoltage, undervoltage, overcurrent, and owing of each battery. Flow status.
  • the charging circuit 10 includes a detection circuit module 101 and a switch circuit module 102, wherein the detection circuit module 101 is connected to the switch circuit module 102 and the battery pack 14, respectively, and the switch circuit module 102 is connected to the battery pack 14 and the power source 12, respectively.
  • the detection circuit module 101 can detect voltages across the respective batteries of the battery pack 14. When the detecting circuit module 101 detects that the voltage across the battery is greater than the first voltage protection threshold, it starts to call the delay program or enters the delay circuit. Further, when the voltage across the battery continues to be greater than the first in the preset delay time.
  • the voltage protection threshold outputs a first control signal, and the switch circuit module 102 switches the charging circuit to stop the charging state according to the first control signal.
  • the preset delay time here is generated by a delay program or a delay circuit, or is generated by a delay program in conjunction with a delay circuit, and a preset delay time is generated by a software method or a preset delay time is generated by a hardware circuit.
  • the objects of the embodiments of the present invention can be achieved by combining the content of the embodiments with the prior art.
  • the value of the preset delay time here can be determined by the designer according to the business requirements. For example, when the detection circuit module 101 is a microprocessor, the designer can select a suitable crystal oscillator and write a suitable delay program to implement the pre-preparation. Set the delay time.
  • the designer can match the appropriate logic gate circuit to complete the preset delay time setting.
  • the preset delay time it is possible to cause the detection circuit module 101 to more accurately determine the voltage state of the voltage across the current battery to avoid false positives.
  • the designer can also set the first voltage protection threshold according to the type of battery in the battery pack.
  • the battery pack 14 includes a plurality of batteries in which a plurality of positive and negative electrodes are connected in series, and the detection circuit module 101 is connected to the positive and negative electrodes of the respective batteries.
  • the detecting circuit module 101 adjusts the voltages of the collected two batteries when collecting the voltages of the two ends of the battery of the battery pack 14, and according to the preset logic, each battery is The voltage between the two ends is compared with the first voltage protection threshold. During the comparison, the detection circuit module 101 can select the voltage of the battery with the highest voltage at both ends of the battery pack 14 and the first voltage protection threshold for comparison. Of course, the detection circuit module The 101 can also select the voltage between the two ends of the battery in the battery pack 14 to be compared with the first voltage protection threshold. When the detection circuit module 101 detects that the voltage across the battery continues to be greater than the first voltage protection threshold within the preset delay time, the output is output. The first control signal.
  • the detecting circuit module 101 includes a controller and a signal conditioning circuit.
  • the controller collects voltages at both ends of each battery of the battery pack 14 according to a preset logic, and after processing by the signal conditioning circuit, analyzes the processed signals to satisfy the battery.
  • the first control signal is output when the voltage at both ends continues for a predetermined delay time greater than the first voltage protection threshold.
  • the signal conditioning circuit herein includes a signal filtering circuit, a denoising circuit, an amplifying circuit, an analog to digital conversion circuit, a digital to analog conversion circuit, and the like.
  • the controller can be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or Any combination of these components.
  • the controller herein can be any conventional processor, microprocessor, microcontroller or state machine.
  • the processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the switch circuit module 102 can be a switch circuit composed of an electronic switch tube and other discrete components and can be controlled by an electrical signal, or can also be an electromagnetic switch controlled by an electrical signal.
  • the switching circuit module 102 may be a switching circuit composed of a triode and a resistor, or may be a relay or the like.
  • the charging circuit 10 when the charging circuit 10 is in a charging abnormal state when charging, the charging circuit 10 can enter a state of stopping charging, thereby avoiding an accident of the charging circuit or the battery pack due to continued charging, thereby protecting the battery pack and protecting the charging circuit. .
  • the switch circuit module 102 includes a first switch circuit 1021.
  • the first switch circuit 1021 includes a first input terminal 10A, a first output terminal 10B, and a first control terminal 10C.
  • the first input terminal 10A is connected to the power source 12.
  • the first output terminal 10B is connected to the battery pack 14, and the first control terminal 10C is connected to the detection circuit module 101.
  • the detection circuit module 101 detects that the voltage across the battery continues to be greater than the first voltage protection threshold for a preset delay time
  • the first control circuit 1010 outputs a first control signal to the first switch circuit 1021, and the first switch circuit 1021 According to the first control signal, the charging circuit between the power source 12 and the battery pack 14 is turned off, thereby switching the charging circuit 10 to the stopped charging state.
  • the switch circuit module 102 can be a switch circuit composed of a triode and a resistor, and the triode is in a normal state of charge. In the on state, when the first switching circuit 1021 receives the first control signal, the transistor is in an off state, thereby switching the charging circuit 10 to the stopped charging state.
  • the switch circuit module 102 further includes a second switch circuit 1022.
  • the second switch circuit 1022 includes a second input terminal 20A, a second output terminal 20B, and a second control terminal 20C.
  • the second input terminal 20A and the first The output terminal 10A is connected, and the second output terminal 20B is connected to the battery pack 14.
  • the first switching circuit 1021 and/or the second switching circuit 1022 may be a switching circuit composed of an electronic switching tube and other discrete components and which may be controlled by an electrical signal, or may also be an electromagnetic switch controlled by an electrical signal.
  • the charging circuit 10 further includes a protection circuit module 103 connected to each of the second control terminal 20C and the battery of the battery pack 14.
  • the protection circuit module 103 detects the voltage across the battery of the battery pack 14. When the voltage across the battery is greater than the second voltage protection threshold, the protection circuit module 103 outputs a second control signal to the second control terminal 20C of the second switch circuit 1022. The second switch circuit 1022 switches the charging circuit 10 to the stopped charging state. However, the second switch circuit 1022 often faces the risk of losing control.
  • the switch circuit module 102 of the charging circuit 10 of the present embodiment further provides a first switch circuit 1021 capable of being based on the first control signal. The charging circuit 10 is switched to the stop charging state, thereby further protecting the charging circuit, providing charging reliability, and avoiding the safety hazard caused by the failure of the primary protection circuit.
  • the circuit design can also greatly reduce the failure of the secondary protection. possibility.
  • the first voltage protection threshold here is greater than the second voltage protection threshold. Therefore, when an abnormality occurs in the charging circuit, the second switching circuit 1022 first enters a state of "switching the charging circuit 10 to the stopped charging state" with respect to the first switching circuit 1021. When the control of the second switching circuit 1022 fails, the voltage of the charging circuit gradually rises, at which time the first switching circuit 1021 starts to enter a state of "switching the charging circuit 10 to the stopped charging state".
  • FIG. 4 is a schematic diagram showing the circuit structure of a charging circuit according to an embodiment of the present invention.
  • the first switch circuit 1021 is a first electronic switch 1021
  • the second switch circuit 1022 is a second electronic switch 1022
  • the detection circuit module 101 is a microprocessor 101
  • the protection circuit module 103 is a charge protection chip. 103.
  • the battery pack 14 includes four batteries.
  • the first input end 10A of the first electronic switch 1021 is connected to the power supply 12 (or the charger 12), and the first output end 10B is connected to the second input end 20A of the second electronic switch 1022.
  • the first control end 10C is connected.
  • the second pin 2A of the microprocessor 101 is connected to the anode of the first battery 141, and the third pin 3A and the second
  • the anode of the battery 142 is connected, the anode of the fourth pin 4A and the third battery 143 are connected, the anode of the fifth pin 5A and the fourth battery 144 are connected, and the sixth pin 6A is grounded.
  • the second output end 20B of the second electronic switch tube 1022 is connected to the anode of the first battery 141.
  • first pin 1B of the charging protection chip 103 is connected to the second control terminal 20C of the second electronic switch tube 1022, the second pin 2B is connected to the positive terminal of the first battery 141, and the third pin 3B and the second pin are connected.
  • the positive electrode of the battery 142 is connected, the fourth pin 4B is connected to the positive electrode of the third battery 143, the positive terminal of the fifth pin 5B and the fourth battery 144 is connected, and the sixth pin 6B is grounded.
  • the charging protection chip 103 respectively collects the voltages of the respective terminals of the respective batteries through the second pin 2B to the fifth pin 5B, and at the same time, the microprocessor 101 respectively collects the two ends of the respective batteries through the second pin 2A to the fifth pin 5A.
  • the voltage wherein the voltages of the first battery 141 to the fourth battery 144 are V1, V2, V3, and V4, respectively.
  • the charging protection chip 103 detects that the voltage across the battery is greater than the second voltage protection threshold, the charging protection chip 103 sends a second control signal to the second electronic switch 1022, and the second electronic switch 1022 switches the charging circuit 10 to the stop. charging.
  • the microprocessor 101 detects that the voltage across the battery is preset.
  • the delay time is longer than the first voltage protection threshold, the first control signal is sent to the first electronic switch 1021, and the first electronic switch 1021 cuts off the charging circuit between the power supply 12 and the battery pack 14 according to the first control signal. Thereby, the charging circuit 10 is switched to the stopped charging state.
  • the charging circuit 10 further includes a plurality of third switching circuits 104 corresponding to the number of batteries of the battery pack 14.
  • the charging circuit 10 since the battery pack 14 includes four batteries, the charging circuit 10 includes four third switching circuits 104.
  • a third switching circuit 104 includes a third input terminal 30A, a third output terminal 30B, and a third control terminal 30C.
  • One battery is connected to a third input terminal 30A, and a third output terminal 30B is coupled to another third switching circuit.
  • 104 is connected to another battery, and a third control terminal 30C is connected to the detection circuit module 101.
  • the respective circuits of the detection circuit module 101 and the battery pack 14 are connected, and the voltages across the respective batteries of the battery pack 14 are detected.
  • the detection circuit module here is a microprocessor.
  • the detection circuit module 101 (microprocessor) outputs a third control signal, and the third switch circuit corresponding to the battery with the highest control voltage is in an on state, thereby achieving equalization of each battery.
  • the designer can set the preset equalization starting voltage, the preset equalization end voltage, and the preset equalization starting differential pressure according to the type of the battery.
  • the preset equalization starting voltage can be selected to be 3.6V
  • the preset equalization end voltage is 4.15V
  • the preset equalization starting voltage difference is 20mV.
  • the detecting circuit module 101 microprocessor detects each battery and finds the battery with the highest voltage VELL(max) and the lowest voltage VELL(min), when the highest voltage VELL(max) satisfies the condition: Let the equalization starting voltage ⁇ VELL (max) ⁇ equalizing end voltage, and VELL (max) - VELL (min) ⁇ preset equalization starting differential pressure.
  • the third switching circuit corresponding to the battery that controls the highest voltage of the detecting circuit module 101 is in an on state. For example, as shown in FIG. 4, the voltage across the first battery 141 is the highest, and the detection circuit module 101 outputs a third control signal to control the first third switching circuit to be in an on state, thereby achieving equalization.
  • the charging circuit 10 activates the heat dissipation module to dissipate heat from the charging circuit while equalizing the voltage across the respective batteries. Therefore, optionally, as shown in FIG. 4a, the charging circuit 10 further includes a heat dissipation module 105, and the heat dissipation module 105 is connected to the microprocessor 101. During the equalization process, the microprocessor 101 turns off the switch 105A when the third control signal is output through the eleventh pin 11A, thereby starting the heat sink.
  • the passive equalization current can only be within 100 mA.
  • the heat dissipation module is disposed in the charging circuit, which can improve the equalization current of the passive equalization, thereby more effectively equalizing the batteries, and the equalization current here can be improved by 5-10 compared with the conventional method. More than twice the current makes the balance more significant.
  • the detecting circuit module 101 detects that the remaining battery power is lower than the preset low-voltage discharging equalization threshold, and the battery continues to fail to satisfy the full-charge state and/or the full-discharge state within the preset number of times.
  • the circuit module controls the third switch circuit corresponding to each battery of the battery pack to be in an on state, and the power of all the batteries is emptied, thereby realizing power calibration and battery equalization. Please refer to Figure 4 again.
  • SOC state of charge
  • the microprocessor The third switch circuit corresponding to each battery of the battery pack is controlled to be in an on state by the seventh pin 7A to the tenth pin 10A, and the power of all the cells is emptied, thereby realizing the correction of the power and the battery equalization.
  • the microprocessor 101 starts the heat dissipation module through the eleventh pin 11A to advance the discharge process. Cooling.
  • the voltage curve of the battery discharge curve is relatively steep when venting, and the principle of correcting the remaining capacity is easily obtained to achieve the effect of equalizing the remaining capacity.
  • the present embodiment further provides a structural schematic diagram of another charging circuit.
  • the charging circuit is different from the charging circuit shown in FIG. 4 in that the protection circuit module 103 is connected to the detection circuit module 101 through a communication interface, and transmits voltage information of each battery of the battery pack 14 to the detection circuit.
  • Module 101 As shown in FIG. 5, the protection circuit module 103 herein is a charge protection chip 103, and the detection circuit module 101 is a microprocessor 101.
  • the charging protection chip 103 is connected to the microprocessor 101 through a serial port.
  • the charging protection chip 103 collects voltages across the batteries of the battery pack 14 and transmits the collected voltage information to the microprocessor 101.
  • FIG. 6 is a schematic structural diagram of a charging apparatus according to an embodiment of the present invention.
  • the charging device 60 includes a battery pack 601, an equalization box 602, and a charging circuit 10 as shown in FIGS. 1 to 5.
  • the equalization box 602 is connected to the battery pack 601, and the battery pack 14 is disposed inside the battery pack 601. .
  • the detection circuit module 101 and the protection circuit module 103 are disposed inside the battery pack 601
  • the first switch circuit 1021 is disposed inside the equalization box 602
  • the second switch circuit 1022 is disposed inside the battery pack.
  • Each of the third switch circuits 104 is disposed inside the equalization box 602
  • the heat dissipation module 105 is disposed inside the equalization box 602.
  • the detection circuit module 101 is disposed inside the equalization box 602
  • the protection circuit module 103 is disposed inside the battery pack 601
  • the first switch circuit 1021 is disposed inside the equalization box 602
  • the second switch circuit 1022 is disposed in the battery pack 601.
  • each of the third switch circuits 104 is disposed inside the equalization box 602
  • the heat dissipation module 105 is disposed inside the equalization box 602.
  • FIG. 7 differs from FIG. 4 in that the detecting circuit module 101 is disposed inside the equalization box 602.
  • the charging circuit 10 further includes a power module 106 and a fourth switching circuit 107.
  • the fourth switch circuit 107 includes a fourth input terminal 40A, a fourth output terminal 40B, and a fourth control terminal 40C.
  • the power module 106 is respectively connected to the heat dissipation module 105 and the fourth input terminal 40A, and the fourth output terminal 40B and the first input terminal are respectively connected.
  • 10A is connected, and the fourth control terminal 40C is connected to the twelfth pin 12A of the microprocessor 101.
  • the detection circuit module 101 outputs a fourth control signal to turn off the output of the power module 106.
  • the microprocessor 101 When the equalization box 602 is combined with the charger 12 as an assembly, in order to reduce the static power consumption of the charging device, when the equalization box 602 is disconnected from the battery pack 601, the microprocessor 101 outputs the fourth control through the twelfth pin 12A. The signal disconnects the power supply of the power module 106, thereby reducing the power consumption of the charging device.

Abstract

一种充电电路(10)及装置,其中,该充电电路(10)包括:检测电路模块(101),用于检测电池组(14)的各个电池的两端电压,当检测电路模块(101)检测到电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号;开关电路模块(102),其和检测电路模块(101)连接,开关电路模块(102)用于根据第一控制信号切换充电电路(10)至停止充电状态。因此,当充电电路(10)在充电时出现充电异常状况时,充电电路(10)能够进入停止充电状态,避免因继续充电而导致充电电路(10)或电池组(14)出现事故,从而保护电池组(14)和保护充电电路(10)。

Description

一种充电电路及装置 技术领域
本发明涉及充电技术领域,特别是涉及一种充电电路及装置。
背景技术
锂电池作为电源使用方式的一种,由于锂电池的能量高和重量轻,因此锂电池得到日益广泛地使用。对于由多节锂电池组成的电池管理系统(BATTERY MANAGEMENT SYSTEM,BMS),如何使电池管理系统能够得到有效保护是一个重要的技术课题。
在一些应用领域中,锂电池组设置在电池包中,外部电源通过充电器对锂电池组进行充电。发明人在实现本发明的过程中,发现相关技术存在以下问题:由于电池包的充电环境比较差,在充电过程中,电池包的充电电路容易出现失效或者引发一些充电事故,导致充电不可靠。
发明内容
本发明实施例提供一种充电电路及装置,其解决了现有技术存在电池组充电不可靠的技术问题。
为解决上述技术问题,本发明提供以下技术方案:
在第一方面,本发明实施例公开一种充电电路,用于连接电源并控制电池组的充电,所述充电电路包括:检测电路模块,用于检测所述电池组的各个电池的两端电压,当所述检测电路模块检测到所述电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号;开关电路模块,其和所述检测电路模块连接,所述开关电路模块用于根据所述第一控制信号切换所述充电电路至停止充电状态。
可选地,所述开关电路模块包括第一开关电路,所述第一开关电路包括第一输入端、第一输出端及第一控制端,所述第一输入端和所述电源连接,所述第一输出端和所述电池组连接,所述第一控制端和所述检测电路模块连接;所 述第一开关电路具体用于根据所述第一控制信号切换所述充电电路至停止充电状态。
可选地,所述开关电路模块还包括第二开关电路;所述第二开关电路包括第二输入端、第二输出端及第二控制端,所述第二输入端和所述第一输出端连接,所述第二输出端和所述电池组连接;所述充电电路还包括保护电路模块,其分别与所述第二控制端和所述电池组的各个电池连接,用于检测所述电池组的各个电池的两端电压;当所述电池的两端电压大于第二电压保护阈值,所述保护电路模块输出第二控制信号,以使所述第二开关电路将所述充电电路切换至停止充电状态。
可选地,所述充电电路还包括与所述电池组的电池的数量对应的若干个第三开关电路,一所述第三开关电路包括第三输入端、第三输出端及第三控制端,一所述电池和一所述第三输入端连接,一所述第三输出端分别与另一所述第三开关电路和另一电池连接,一所述第三控制端和所述检测电路模块连接;当电压最高的电池的两端电压大于预设均衡启动电压而小于预设均衡结束电压,并且所述电压最高的电池的两端电压减去电压最低的电池的两端电压的压差大于预设均衡启动压差,所述检测电路模块输出第三控制信号,控制所述电压最高的电池所对应的第三开关电路处于导通状态。
可选地,所述保护电路模块通过通信接口和所述检测电路模块连接,将所述电池组的各个电池的电压信息传输至所述检测电路模块。
可选地,所述充电电路还包括散热模块,其和所述检测电路模块连接;在输出所述第三控制信号时,所述检测电路模块启动所述散热模块。
可选地,当所述检测电路模块检测到所述电池的剩余电量低于预设低压放电均衡门限值,并且所述电池在预设次数范围内持续未满足满充状态和/或满放状态,所述检测电路模块控制所述电池组的各个电池所对应的第三开关电路均处于导通状态。
可选地,在控制所述电池组的各个电池所对应的第三开关电路均处于导通状态时,所述检测电路模块启动所述散热模块。
在第二方面,本发明实施例提供一种充电装置,所述充电装置包括:充电电路,用于连接电源并控制电池组的充电;电池包,所述电池组设置于电池包内部;均衡盒,其和所述电池包连接;其中,所述充电电路包括:检测电路模块,用于检测所述电池组的各个电池的两端电压,当所述检测电路模块检测到 所述电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号;开关电路模块,其和所述检测电路模块连接,所述开关电路模块用于根据所述第一控制信号切换所述充电电路至停止充电状态。
可选地,所述检测电路模块设置于所述电池包内部。
可选地,所述检测电路模块设置于所述均衡盒内部。
可选地,所述开关电路模块包括设置于所述均衡盒内部的第一开关电路,所述第一开关电路包括第一输入端、第一输出端及第一控制端,所述第一输入端和所述电源连接,所述第一输出端和所述电池组连接,所述第一控制端和所述检测电路模块连接;所述第一开关电路具体用于根据所述第一控制信号切换所述充电电路至停止充电状态。
可选地,所述开关电路模块还包括设置于所述电池包内部的第二开关电路;所述第二开关电路包括第二输入端、第二输出端及第二控制端,所述第二输入端和所述第一输出端连接,所述第二输出端和所述电池组连接;所述充电电路还包括保护电路模块,其与所述第二控制端连接和所述电池组的各个电池连接,用于检测所述电池组的各个电池的两端电压;当所述电池的两端电压大于第二电压保护阈值,所述保护电路模块输出第二控制信号,以使所述第二开关电路将所述充电电路切换至停止充电状态。
可选地,所述充电电路还包括与所述电池组的电池的数量对应的若干个第三开关电路,所述第三开关电路设置于所述均衡盒内部;一所述第三开关电路包括第三输入端、第三输出端及第三控制端,一所述电池和一所述第三输入端连接,一所述第三输出端分别与另一所述第三开关电路和另一电池连接,一所述第三控制端和所述检测电路模块连接;当电压最高的电池的两端电压大于预设均衡启动电压而小于预设均衡结束电压,并且所述电压最高的电池的两端电压减去电压最低的电池的两端电压的压差大于预设均衡启动压差,所述检测电路模块输出第三控制信号,控制所述电压最高的电池所对应的第三开关电路处于导通状态。
可选地,所述保护电路模块通过通信接口和所述检测电路模块连接,将所述电池组的各个电池的电压信息传输至所述检测电路模块。
可选地,所述充电电路还包括设置于所述均衡盒内部的散热模块,其和所述检测电路模块连接;在输出所述第三控制信号时,所述检测电路模块启动所述散热模块。
可选地,当所述检测电路模块检测到所述电池的剩余电量低于预设低压放电均衡门限值,并且所述电池在预设次数范围内持续未满足满充状态和/或满放状态,所述检测电路模块控制所述电池组的各个电池所对应的第三开关电路均处于导通状态。
可选地,在控制所述电池组的各个电池所对应的第三开关电路均处于导通状态时,所述检测电路模块启动所述散热模块。
可选地,所述充电电路还包括电源模块和第四开关电路;所述第四开关电路包括第四输入端、第四输出端及第四控制端,所述电源模块分别与所述散热模块和所述第四输入端连接,所述第四输出端和所述第一输入端连接,所述第四控制端和所述检测电路模块连接;当所述电池包和所述均衡盒断开连接时,所述检测电路模块输出第四控制信号,以断开所述电源模块的输出。
在本发明各个实施例中,检测电路模块在检测到电池组的电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号,开关电路模块根据第一控制信号切换充电电路处于停止充电状态,因此,当充电电路在充电时出现充电异常状况时,充电电路能够进入停止充电状态,避免因继续充电而导致充电电路或电池组出现事故,从而保护电池组和保护充电电路。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供一种充电电路的电路原理框图;
图2是本发明实施例提供另一种充电电路的电路原理框图;
图3是本发明实施例提供另一种充电电路的电路原理框图;
图4是本发明实施例提供一种充电电路的电路结构示意图;
图4a是本发明实施例提供一种散热模块的电路结构示意图;
图5是本发明实施例提供另一种充电电路的电路结构示意图;
图6是本发明实施例提供一种充电装置的结构示意图;
图7是本发明实施例提供另一种充电装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
图1是本发明实施例提供一种充电电路的电路原理框图。如图1所示,该充电电路10分别与电源12和电池组14连接,充电电路10接收电源12提供的电流,分别为电池组14的各个电池进行充电。在充电过程中,充电电路10可以根据预设充电逻辑控制电池组14的各个电池的充电,控制各个电池的充电至少包括:均衡各个电池和防止各个电池出现过压、欠压、过流及欠流状态。
请再参阅图1。充电电路10包括检测电路模块101和开关电路模块102,其中,检测电路模块101分别与开关电路模块102和电池组14连接,开关电路模块102分别与电池组14和电源12连接。检测电路模块101可以检测电池组14的各个电池的两端电压。当检测电路模块101检测到电池的两端电压大于第一电压保护阈值时,开始调用延时程序或者进入延时电路,进一步的,当电池的两端电压在预设延迟时间内持续大于第一电压保护阈值,输出第一控制信号,开关电路模块102根据第一控制信号切换充电电路至停止充电状态。此处的预设延迟时间由延时程序或者延时电路产生,或者由延时程序配合延时电路产生,至于由软件方法产生预设延迟时间或者由硬件电路产生预设延迟时间,本技术领域人员根据实施例所训导的内容,结合现有技术,均可以实现本发明实施例的目的。此处的预设延迟时间的数值可以由设计者根据业务需求自行决定,例如,当检测电路模块101为微处理器时,设计者可以选择合适的晶振,编写合适的延时程序,从而实现预设延迟时间的设定。又例如,当有延迟电路来实现预设延迟时间的设定时,设计者可以搭配合适的逻辑门电路以完成预设延迟时间的设定。通过设置预设延迟时间,其能够使检测电路模块101更加准确地判断当前电池的两端电压的电压状态,以免误判。设计者还可以根据电池组的电池的类型自行设定第一电压保护阈值。
电池组14包括多个正负极相互串接的电池,检测电路模块101分别与各个电池的正负极连接。检测电路模块101在采集到电池组14的各个电池的两端电压时,调理所采集到的各个电池的两端电压,并且根据预设逻辑,将各个电池 的两端电压与第一电压保护阈值进行比较,在比较过程中,检测电路模块101可以选择电池组14中两端电压最高的电池的电压和第一电压保护阈值进行比较,当然,检测电路模块101还可以选择电池组14中其它电池的两端电压和第一电压保护阈值进行比较,检测电路模块101检测到电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号。
检测电路模块101包括控制器以及信号调理电路,控制器按照预设逻辑采集电池组14的各个电池的两端电压,并且经过信号调理电路处理之后,对处理后的各个信号进行分析,在满足电池的两端电压在预设延迟时间内持续大于第一电压保护阈值的条件时,输出第一控制信号。此处的信号调理电路包括信号滤波电路、去噪电路、放大电路、模数转换电路、数模转换电路以及等等。控制器可以是由通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,此处的控制器可以是任何传统处理器、微处理器、微控制器或状态机。处理器也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。
开关电路模块102可以由电子开关管和其它分立元件组成的并且可以受电信号进行控制的开关电路,或者还可以是由电信号进行控制的电磁开关。例如,开关电路模块102可以由三极管和电阻组成的开关电路,或者还可以是继电器等等。
在本实施例中,当充电电路10在充电时出现充电异常状况时,充电电路10能够进入停止充电状态,避免因继续充电而导致充电电路或电池组出现事故,从而保护电池组和保护充电电路。
如图2所示,开关电路模块102包括第一开关电路1021,第一开关电路1021包括第一输入端10A、第一输出端10B及第一控制端10C,第一输入端10A和电源12连接,第一输出端10B和电池组14连接,第一控制端10C和检测电路模块101连接。当检测电路模块101检测到电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,通过第一控制端10C向第一开关电路1021输出第一控制信号,第一开关电路1021根据第一控制信号,切断电源12和电池组14之间的充电回路,从而将充电电路10切换至停止充电状态。开关电路模块102可以由三极管和电阻组成的开关电路,在正常充电状态时,三极管处于导 通状态,当第一开关电路1021接收到第一控制信号后,三极管处于截止状态,从而将充电电路10切换至停止充电状态。
如图3所示,开关电路模块102还包括第二开关电路1022,第二开关电路1022包括第二输入端20A、第二输出端20B及第二控制端20C,第二输入端20A和第一输出端10A连接,第二输出端20B和电池组14连接。第一开关电路1021和/或第二开关电路1022可以由电子开关管和其它分立元件组成的并且可以受电信号进行控制的开关电路,或者还可以是由电信号进行控制的电磁开关。
进一步的,如图3所示,充电电路10还包括保护电路模块103,保护电路模块103分别与第二控制端20C和电池组14的各个电池连接。
在实际操作过程中,当充电电路对电池组的各个电池进行充电时,由于充电环境比较复杂,用于保护电池组充电安全的开关电路经常面临失去控制的危险。保护电路模块103检测电池组14的各个电池的两端电压,当电池的两端电压大于第二电压保护阈值,保护电路模块103向第二开关电路1022的第二控制端20C输出第二控制信号,第二开关电路1022将充电电路10切换至停止充电状态。但是,第二开关电路1022经常面临失去控制的危险,为了提高控制过充的可靠性,本实施例的充电电路10的开关电路模块102还设置第一开关电路1021,其能够根据第一控制信号将充电电路10切换至停止充电状态,从而实现进一步保护充电电路,提供充电可靠性,避免一次保护电路失效带来的安全隐患,采用此种电路设计,还可以大大降低了二级保护全部失效的可能性。
此处的第一电压保护阈值大于第二电压保护阈值。因此,当充电电路出现异常时,第二开关电路1022相对于第一开关电路1021,最先进入“将充电电路10切换至停止充电状态”的状态。当第二开关电路1022的控制失效之后,充电回路的电压逐渐升高,此时第一开关电路1021开始进入“将充电电路10切换至停止充电状态”的状态。
图4是本发明实施例提供一种充电电路的电路结构示意图。如图4所示,第一开关电路1021为第一电子开关管1021,第二开关电路1022为第二电子开关管1022,检测电路模块101为微处理器101,保护电路模块103为充电保护芯片103,电池组14包括四个电池。其中,第一电子开关管1021的第一输入端10A和电源12(或充电器12)连接,第一输出端10B和第二电子开关管1022的第二输入端20A连接,第一控制端10C和微处理器101的第一引脚1A连接,微处理器101的第二引脚2A和第一电池141的正极连接,第三引脚3A和第二 电池142的正极连接,第四引脚4A和第三电池143的正极连接,第五引脚5A和第四电池144的正极连接,第六引脚6A接地。第二电子开关管1022的第二输出端20B和第一电池141的正极连接。
进一步的,充电保护芯片103的第一引脚1B和第二电子开关管1022的第二控制端20C连接,第二引脚2B和第一电池141的正极连接,第三引脚3B和第二电池142的正极连接,第四引脚4B和第三电池143的正极连接,第五引脚5B和第四电池144的正极连接,第六引脚6B接地。
充电保护芯片103通过第二引脚2B至第五引脚5B分别采集各个电池的两端电压,同时,微处理器101通过第二引脚2A至第五引脚5A分别采集各个电池的两端电压,其中,第一电池141至第四电池144的电压分别为V1、V2、V3及V4。当充电保护芯片103检测到电池的两端电压大于第二电压保护阈值时,充电保护芯片103向第二电子开关管1022发送第二控制信号,第二电子开关管1022将充电电路10切换至停止充电状态。当第二电子开关管1022失效而不受充电保护芯片103的控制,或者充电保护芯片103出现异常未能控制第二电子开关管1022时,微处理器101检测到电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,向第一电子开关管1021发送第一控制信号,第一电子开关管1021根据第一控制信号,切断电源12和电池组14之间的充电回路,从而将充电电路10切换至停止充电状态。
请再参考图4。可选地,充电电路10还包括与电池组14的电池的数量对应的若干个第三开关电路104。例如,在本实施例中,由于电池组14包括四个电池,因此充电电路10包括四个第三开关电路104。一第三开关电路104包括第三输入端30A、第三输出端30B及第三控制端30C,一电池和一第三输入端30A连接,一第三输出端30B分别与另一第三开关电路104和另一电池连接,一第三控制端30C和检测电路模块101连接。检测电路模块101和电池组14的各个电池连接,检测电池组14的各个电池的两端电压。此处的检测电路模块为微处理器。
当电压最高的电池的两端电压大于预设均衡启动电压而小于预设均衡结束电压,并且电压最高的电池的两端电压减去电压最低的电池的两端电压的压差大于预设均衡启动压差,检测电路模块101(微处理器)输出第三控制信号,控制电压最高的电池所对应的第三开关电路处于导通状态,从而实现各个电池的均衡。
此处,设计者可以根据电池类型以作业目的设定预设均衡启动电压、预设均衡结束电压及预设均衡启动压差。例如,可以选择预设均衡启动电压为3.6V,预设均衡结束电压为4.15V,预设均衡启动压差为20mV。如图4所示,检测电路模块101(微处理器)检测各节电池,找出最高电压VELL(max)和最低电压VELL(min)的电池,当该最高电压VELL(max)满足条件:预设均衡启动电压≤VELL(max)≤均衡结束电压,并且,VELL(max)-VELL(min)≥预设均衡启动压差。检测电路模块101控制最高电压的电池所对应的第三开关电路处于导通状态。例如,如图4所示,第一电池141的两端电压最高,检测电路模块101输出第三控制信号,控制第一个的第三开关电路处于导通状态,从而实现均衡。
在本实施例中,为了提高均衡电流,充电电路10在均衡各个电池的两端电压的同时,还会启动散热模块对充电电路进行散热。因此,可选地,如图4a所示,充电电路10还包括散热模块105,散热模块105和微处理器101连接。微处理器101在均衡的过程中,通过第十一引脚11A输出第三控制信号时,使该开关105A闭合,从而启动散热装置。相对于传统的被动均衡方案,由于其采用并联旁路电阻耗电的方式,如果均衡电流太大,具有发热量大,热量无法释放,导致均衡电路温度会急剧升高,从而烧坏电路,有安全隐患。因此,被动均衡电流一般只能在100mA以内,对于容量比较大的电池组来说,均衡作用就非常小,起不到应有作用。而在本实施例中,本实施例在充电电路设置散热模块,其能够提高被动均衡的均衡电流,从而更加有效的均衡各节电池,并且,此处的均衡电流比传统方式可提高5-10倍以上的电流,使平衡效果更加显著。
为了提高充电可靠性,当检测电路模块101检测到电池的剩余电量低于预设低压放电均衡门限值,并且电池在预设次数范围内持续未满足满充状态和/或满放状态,检测电路模块控制电池组的各个电池所对应的第三开关电路均处于导通状态,将所有各节电池的电量放空,从而实现电量的校正和电池均衡。请再参考图4。当电池的剩余电量SOC(State of Charge,SOC)低于预设低压放电均衡门限值(SOC=15%),并且连续在3次未满足满充状态和/或满放状态,微处理器通过第七引脚7A至第十引脚10A控制电池组的各个电池所对应的第三开关电路均处于导通状态,将所有各节电池的电量放空,从而实现电量的校正和电池均衡。
进一步的,在控制电池组14的各个电池所对应的第三开关电路均处于导通状态时,微处理器101通过第十一引脚11A启动散热模块,以对放电的过程进 行散热。
在本实施例中,通过采用低电量放空的方式,利用电池放电曲线在放空时电压曲线比较陡,容易校正剩余容量的原理,达到均衡剩余容量的效果。
除了如图4所示的充电电路的结构方式之外,作为本实施例的又一方面,本实施例还提供另一种充电电路的结构示意图。如图5所示,该充电电路和图4所示的充电电路的不同点在于:保护电路模块103通过通信接口和检测电路模块101连接,将电池组14的各个电池的电压信息传输至检测电路模块101。如图5所示,此处的保护电路模块103为充电保护芯片103,检测电路模块101为微处理器101。充电保护芯片103通过串口和微处理器101连接,充电保护芯片103通过采集电池组14的各个电池的两端电压,并将采集到的电压信息传输给微处理器101。
本技术领域人员应当理解:实施例所示的电池组的电池的两端电压采集方式、散热模块的驱动方式、均衡方式以及开关电路的控制方式均是一个示例性,任何人根据本实施例所训导的内容,结合现有技术,在本实施例所作出的任何改进或者替换,均应当落入本发明的保护范围之内。
图6是本发明实施例提供一种充电装置的结构示意图。如图6所示,该充电装置60包括电池包601、均衡盒602以及如图1至图5所示的充电电路10,均衡盒602和电池包601连接,电池组14设置于电池包601内部。
在一些实施例中,如图4所示,检测电路模块101和保护电路模块103设置于电池包601内部,第一开关电路1021设置于均衡盒602内部,第二开关电路1022设置于电池包内部,各个第三开关电路104设置于均衡盒602内部,散热模块105设置于均衡盒602内部。
作为本发明实施例的另一方面,除了如图4所示的各个电路模块的位置关系,其还存在如图5所示的各个电路模块的位置关系。如图5所示,检测电路模块101设置于均衡盒602内部,保护电路模块103设置于电池包601内部,第一开关电路1021设置于均衡盒602内部,第二开关电路1022设置于电池包601内部,各个第三开关电路104设置于均衡盒602内部,散热模块105设置于均衡盒602内部。
作为本发明实施例的又一方面,除了如图4或图5所示的各个电路模块的位置关系,其还存在如图7所示的各个电路模块的位置关系。图7所示的充电电路和图4的区别在于:检测电路模块101设置于均衡盒602内部。
在一些实施例中,如图4或5或7所示,充电电路10还包括电源模块106和第四开关电路107。第四开关电路107包括第四输入端40A、第四输出端40B及第四控制端40C,电源模块106分别与散热模块105和第四输入端40A连接,第四输出端40B和第一输入端10A连接,第四控制端40C和微处理器101的第十二引脚12A连接。当电池包601和均衡盒602断开连接时,检测电路模块101输出第四控制信号,以断开电源模块106的输出。当均衡盒602与充电器12组合作为总成时,为了降低充电装置的静态功耗,当均衡盒602与电池包601断开时,微处理器101通过第十二引脚12A输出第四控制信号,断开电源模块106的供电,从而降低充电装置的功耗。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种充电电路,用于连接电源并控制电池组的充电,其特征在于,包括:
    检测电路模块,用于检测所述电池组的各个电池的两端电压,当所述检测电路模块检测到所述电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号;
    开关电路模块,其和所述检测电路模块连接,所述开关电路模块用于根据所述第一控制信号切换所述充电电路至停止充电状态。
  2. 根据权利要求1所述的充电电路,其特征在于,
    所述开关电路模块包括第一开关电路,所述第一开关电路包括第一输入端、第一输出端及第一控制端,所述第一输入端和所述电源连接,所述第一输出端和所述电池组连接,所述第一控制端和所述检测电路模块连接;所述第一开关电路具体用于根据所述第一控制信号切换所述充电电路至停止充电状态。
  3. 根据权利要求2所述的充电电路,其特征在于,所述开关电路模块还包括第二开关电路;
    所述第二开关电路包括第二输入端、第二输出端及第二控制端,所述第二输入端和所述第一输出端连接,所述第二输出端和所述电池组连接;
    所述充电电路还包括保护电路模块,其分别与所述第二控制端和所述电池组的各个电池连接,用于检测所述电池组的各个电池的两端电压;当所述电池的两端电压大于第二电压保护阈值,所述保护电路模块输出第二控制信号,以使所述第二开关电路将所述充电电路切换至停止充电状态。
  4. 根据权利要求3所述的充电电路,其特征在于,所述充电电路还包括与所述电池组的电池的数量对应的若干个第三开关电路,一所述第三开关电路包括第三输入端、第三输出端及第三控制端,一所述电池和一所述第三输入端连接,一所述第三输出端分别与另一所述第三开关电路和另一电池连接,一所述第三控制端和所述检测电路模块连接;
    当所述电池组中电压最高的电池的两端电压大于预设均衡启动电压而小于预设均衡结束电压,并且所述电压最高的电池的两端电压减去电压最低的电池的两端电压的压差大于预设均衡启动压差,所述检测电路模块输出第三控制信号,控制所述电压最高的电池所对应的第三开关电路处于导通状态。
  5. 根据权利要求3所述的充电电路,其特征在于,所述保护电路模块通过通信接口和所述检测电路模块连接,将所述电池组的各个电池的电压信息传输至所述检测电路模块。
  6. 根据权利要求4或5所述的充电电路,其特征在于,所述充电电路还包括散热模块,其和所述检测电路模块连接;在输出所述第三控制信号时,所述检测电路模块启动所述散热模块。
  7. 根据权利要求4或5所述的充电电路,其特征在于,当所述检测电路模块检测到所述电池的剩余电量低于预设低压放电均衡门限值,并且所述电池在预设次数范围内持续未满足满充状态和/或满放状态,所述检测电路模块控制所述电池组的各个电池所对应的第三开关电路均处于导通状态。
  8. 根据权利要求7所述的充电电路,其特征在于,在控制所述电池组的各个电池所对应的第三开关电路均处于导通状态时,所述检测电路模块启动所述散热模块。
  9. 一种充电装置,其特征在于,包括:
    充电电路,用于连接电源并控制电池组的充电;
    电池包,所述电池组设置于电池包内部;
    均衡盒,其和所述电池包连接;
    其中,所述充电电路包括:
    检测电路模块,用于检测所述电池组的各个电池的两端电压,当所述检测电路模块检测到所述电池的两端电压在预设延迟时间内持续大于第一电压保护阈值时,输出第一控制信号;
    开关电路模块,其和所述检测电路模块连接,所述开关电路模块用于根据所述第一控制信号切换所述充电电路至停止充电状态。
  10. 根据权利要求9所述的充电装置,其特征在于,所述检测电路模块设置于所述电池包内部。
  11. 根据权利要求9所述的充电装置,其特征在于,所述检测电路模块设置于所述均衡盒内部。
  12. 根据权利要求10或11所述的充电装置,其特征在于,所述开关电路模块包括设置于所述均衡盒内部的第一开关电路,所述第一开关电路包括第一输入端、第一输出端及第一控制端,所述第一输入端和所述电源连接,所述第一输出端和所述电池组连接,所述第一控制端和所述检测电路模块连接;所述 第一开关电路具体用于根据所述第一控制信号切换所述充电电路至停止充电状态。
  13. 根据权利要求12所述的充电装置,其特征在于,所述开关电路模块还包括设置于所述电池包内部的第二开关电路;
    所述第二开关电路包括第二输入端、第二输出端及第二控制端,所述第二输入端和所述第一输出端连接,所述第二输出端和所述电池组连接;
    所述充电电路还包括保护电路模块,其与所述第二控制端连接和所述电池组的各个电池连接,用于检测所述电池组的各个电池的两端电压;当所述电池的两端电压大于第二电压保护阈值,所述保护电路模块输出第二控制信号,以使所述第二开关电路将所述充电电路切换至停止充电状态。
  14. 根据权利要求13所述的充电电路,其特征在于,所述充电电路还包括与所述电池组的电池的数量对应的若干个第三开关电路,所述第三开关电路设置于所述均衡盒内部;
    一所述第三开关电路包括第三输入端、第三输出端及第三控制端,一所述电池和一所述第三输入端连接,一所述第三输出端分别与另一所述第三开关电路和另一电池连接,一所述第三控制端和所述检测电路模块连接;
    当电压最高的电池的两端电压大于预设均衡启动电压而小于预设均衡结束电压,并且所述电压最高的电池的两端电压减去电压最低的电池的两端电压的压差大于预设均衡启动压差,所述检测电路模块输出第三控制信号,控制所述电压最高的电池所对应的第三开关电路处于导通状态。
  15. 根据权利要求13所述的充电装置,其特征在于,所述保护电路模块通过通信接口和所述检测电路模块连接,将所述电池组的各个电池的电压信息传输至所述检测电路模块。
  16. 根据权利要求14或15所述的充电装置,其特征在于,所述充电电路还包括设置于所述均衡盒内部的散热模块,其和所述检测电路模块连接;在输出所述第三控制信号时,所述检测电路模块启动所述散热模块。
  17. 根据权利要求16所述的充电装置,其特征在于,当所述检测电路模块检测到所述电池的剩余电量低于预设低压放电均衡门限值,并且所述电池在预设次数范围内持续未满足满充状态和/或满放状态,所述检测电路模块控制所述电池组的各个电池所对应的第三开关电路均处于导通状态。
  18. 根据权利要求17所述的充电装置,其特征在于,在控制所述电池组的 各个电池所对应的第三开关电路均处于导通状态时,所述检测电路模块启动所述散热模块。
  19. 根据权利要求18所述的充电装置,其特征在于,所述充电电路还包括电源模块和第四开关电路;
    所述第四开关电路包括第四输入端、第四输出端及第四控制端,
    所述电源模块分别与所述散热模块和所述第四输入端连接,所述第四输出端和所述第一输入端连接,所述第四控制端和所述检测电路模块连接;当所述电池包和所述均衡盒断开连接时,所述检测电路模块输出第四控制信号,以断开所述电源模块的输出。
PCT/CN2016/102025 2016-10-13 2016-10-13 一种充电电路及装置 WO2018068270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/102025 WO2018068270A1 (zh) 2016-10-13 2016-10-13 一种充电电路及装置
CN201680011494.0A CN109478789A (zh) 2016-10-13 2016-10-13 一种充电电路及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102025 WO2018068270A1 (zh) 2016-10-13 2016-10-13 一种充电电路及装置

Publications (1)

Publication Number Publication Date
WO2018068270A1 true WO2018068270A1 (zh) 2018-04-19

Family

ID=61906131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102025 WO2018068270A1 (zh) 2016-10-13 2016-10-13 一种充电电路及装置

Country Status (2)

Country Link
CN (1) CN109478789A (zh)
WO (1) WO2018068270A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850136A (en) * 1996-12-26 1998-12-15 Integran, Inc. Battery charger
CN101728852A (zh) * 2009-11-04 2010-06-09 秦永振 电池平衡充电及检测修复装置
CN203747465U (zh) * 2014-03-04 2014-07-30 南通纺织职业技术学院 基于ZigBee无线网络的蓄电池均衡充电装置
CN104428970A (zh) * 2014-06-03 2015-03-18 华为技术有限公司 一种电芯保护电路和方法
CN104852438A (zh) * 2015-06-02 2015-08-19 中投仙能科技(苏州)有限公司 锂电池组的充电管理系统
CN205195331U (zh) * 2015-11-06 2016-04-27 天长市万德福电子有限公司 电池充电器及其补充电电路
CN205544487U (zh) * 2016-04-19 2016-08-31 深圳市道通智能航空技术有限公司 一种充电电池均衡装置及充电器
CN105978106A (zh) * 2016-07-08 2016-09-28 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路及其装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122813B (zh) * 2010-01-11 2015-11-25 日隆电子股份有限公司 保护电池用的开关嵌入式集成电路及方法
TWI434484B (zh) * 2010-05-25 2014-04-11 Richpower Microelectronics 保護電池用的開關嵌入式積體電路及方法
CN202127255U (zh) * 2011-01-24 2012-01-25 启明信息技术股份有限公司 一种电动汽车用动力电池全均衡控制器
CN105071546B (zh) * 2015-09-06 2017-03-29 张家港智电可再生能源与储能技术研究所有限公司 一种电力系统储能站中锂离子电池的剩余电量校正方法
CN105162078B (zh) * 2015-10-15 2018-02-23 广东欧珀移动通信有限公司 一种终端的充电保护电路及方法和终端
CN105429215B (zh) * 2015-12-02 2017-11-28 安徽农业大学 一种复合电源的组合均衡装置及其均衡方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850136A (en) * 1996-12-26 1998-12-15 Integran, Inc. Battery charger
CN101728852A (zh) * 2009-11-04 2010-06-09 秦永振 电池平衡充电及检测修复装置
CN203747465U (zh) * 2014-03-04 2014-07-30 南通纺织职业技术学院 基于ZigBee无线网络的蓄电池均衡充电装置
CN104428970A (zh) * 2014-06-03 2015-03-18 华为技术有限公司 一种电芯保护电路和方法
CN104852438A (zh) * 2015-06-02 2015-08-19 中投仙能科技(苏州)有限公司 锂电池组的充电管理系统
CN205195331U (zh) * 2015-11-06 2016-04-27 天长市万德福电子有限公司 电池充电器及其补充电电路
CN205544487U (zh) * 2016-04-19 2016-08-31 深圳市道通智能航空技术有限公司 一种充电电池均衡装置及充电器
CN105978106A (zh) * 2016-07-08 2016-09-28 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路及其装置

Also Published As

Publication number Publication date
CN109478789A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US20210391729A1 (en) Rechargeable battery systems and rechargeable battery system operational methods
EP3512067B1 (en) Battery, terminal, and charging system
US8198862B2 (en) Battery pack with balancing management
US9917461B2 (en) Battery unit, overcurrent control method, and computer program for the same
US10389144B2 (en) Battery protection circuit monitoring a state of a charging switch and battery pack including same
CN106849288B (zh) 一种电池模组连接电路和储能装置
JPWO2014141809A1 (ja) 電池パック、移動体および制御方法
US20120057259A1 (en) Controller with battery recharge protective function
CN105356421A (zh) 一种锂电池组充放电保护电路
TWI610486B (zh) Active balance charging device
TWI499160B (zh) Battery status monitoring circuit and battery device
CN206481074U (zh) 一种充放电电路及移动终端
KR20160125297A (ko) 배터리 장치
KR20160037098A (ko) 2차 전지 보호 회로 및 배터리 장치
WO2020181437A1 (zh) 电芯保护电路及电子设备
TW201433044A (zh) 充放電控制電路及電池裝置
TWM518824U (zh) 主動式平衡充電裝置
CN206498189U (zh) 电池保护集成电路
WO2023165300A1 (zh) 充电电路、装置及设备
TWI624977B (zh) Active balance charging device
WO2018068270A1 (zh) 一种充电电路及装置
CN102624036A (zh) 电池管理模块及电池管理方法
JP2013126331A (ja) 電子機器、電池ユニット
CN103855689A (zh) 级联的电池保护电路及系统
CN208939565U (zh) 一种锂电池串联型双重保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918886

Country of ref document: EP

Kind code of ref document: A1