WO2020107281A1 - 高强度复合隔膜及其制备方法 - Google Patents

高强度复合隔膜及其制备方法 Download PDF

Info

Publication number
WO2020107281A1
WO2020107281A1 PCT/CN2018/117998 CN2018117998W WO2020107281A1 WO 2020107281 A1 WO2020107281 A1 WO 2020107281A1 CN 2018117998 W CN2018117998 W CN 2018117998W WO 2020107281 A1 WO2020107281 A1 WO 2020107281A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
sheet
coating
binder
weight
Prior art date
Application number
PCT/CN2018/117998
Other languages
English (en)
French (fr)
Inventor
高保清
陈红辉
舒均国
陈立新
杨天乐
毛冬琪
Original Assignee
湖南中锂新材料有限公司
湖南中锂新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南中锂新材料有限公司, 湖南中锂新材料科技有限公司 filed Critical 湖南中锂新材料有限公司
Priority to PCT/CN2018/117998 priority Critical patent/WO2020107281A1/zh
Publication of WO2020107281A1 publication Critical patent/WO2020107281A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and relates to a high-strength separator and a preparation method thereof.
  • Lithium ion batteries have become a new generation of batteries widely used in the market due to their excellent performance in all aspects.
  • the lithium battery separator is an important part of the secondary lithium battery. It is placed between the positive and negative electrodes, which allows ions to pass freely between the positive and negative electrodes while not allowing electrons to pass, preventing the battery from short-circuiting.
  • a coating is usually applied on the polyolefin diaphragm.
  • the current coated diaphragm generally has the problems that the bonding strength with the coating is insufficient, the coating is easily peeled off, and the overall strength is insufficient, especially in Lithium-ion power batteries charge and discharge at high power, which affects the safety and cycle performance of lithium batteries.
  • An object of the present invention is to provide a composite separator having high tensile strength and which can allow excellent battery cycle performance and a method of manufacturing the same.
  • a composite membrane comprising a polymer membrane and a coating on at least one side of the polymer membrane, the polymer membrane comprising 50-80% by weight of a polymer matrix, 5-15% by weight of Ceramic powder, 14-30% by weight binder and 1-5% by weight plasticizer.
  • ⁇ 2> The composite separator according to ⁇ 1>, wherein the ceramic powder is selected from silicon carbide, titanium oxide, silicon nitride, boron nitride, or any mixture thereof.
  • ⁇ 3> The composite separator according to ⁇ 1>, wherein the binder is selected from chlorinated polyethylene, stearate, tolylbisureidosilane, or any mixture thereof.
  • ⁇ 4> The composite separator according to any one of ⁇ 1> to ⁇ 3>, wherein the plasticizer is selected from polyethylene glycol, polyphthalate, or any mixture thereof.
  • a lithium ion battery including a positive electrode, a negative electrode, an electrolyte interposed between the positive electrode and the negative electrode, and the composite separator according to any one of ⁇ 1> to ⁇ 4>.
  • a method for preparing the above composite separator includes the following steps:
  • the gel sheet is longitudinally stretched at 90°C-135°C and transversely stretched at 100°C-140°C to obtain a stretched sheet;
  • the transversely stretched sheet is simultaneously or sequentially heat fixed and annealed at 120°C-140°C to obtain a polymer membrane;
  • the coating is dried to obtain the composite separator.
  • ⁇ 7> The method according to ⁇ 6>, wherein the ceramic powder is selected from silicon carbide, titanium oxide, silicon nitride, boron nitride, or any mixture thereof.
  • ⁇ 8> The method according to ⁇ 6>, wherein the binder is selected from chlorinated polyethylene, stearate, tolylbisureidosilane, or any mixture thereof.
  • ⁇ 9> The method according to any one of ⁇ 6> to ⁇ 8>, wherein the plasticizer is selected from polyethylene glycol, polyphthalate, or any mixture thereof.
  • the present invention forms a polymer matrix-ceramic composite body by doping ceramic powder into a polymer membrane, thereby greatly enhancing the tensile strength of the polymer membrane and the bonding strength with the surface coating layer, thereby giving Lithium-ion battery has excellent safety performance and cycle performance.
  • the composite membrane according to the present invention comprises a polymer membrane and a coating on at least one side of the polymer membrane, the polymer membrane comprises 50-80% by weight of a polymer matrix, 5-15% by weight of ceramic powder, 14-30% by weight binder and 1-5% by weight plasticizer.
  • the ceramic powder may be selected from silicon carbide, titanium oxide, silicon nitride, boron nitride, or any mixture thereof.
  • the polymer matrix may be selected from polypropylene, polyethylene, polyethylene terephthalate, or any mixture thereof.
  • the plasticizer may be selected from polyethylene glycol, polyphthalate such as polybutyl phthalate, or any mixture thereof.
  • the binder may be selected from chlorinated polyethylene, stearate, tolylbisureidosilane, or any mixture thereof.
  • the coating can be located on one or both sides of the polymer membrane.
  • the coating may contain ceramic powder and a binder.
  • the ceramic powder in the coating may be the same as or different from the ceramic powder in the polymer separator.
  • the ceramic powder may be selected from zirconia, alumina, or any mixture thereof.
  • the ceramic powder may constitute 70-90% by weight of the coating.
  • the binder in the coating layer may be the same as or different from the binder in the polymer membrane, for example, it may be selected from pentaerythritol stearate and the like.
  • the binder may constitute 10-30% by weight of the coating.
  • the coating may further contain antioxidants, stabilizers, surfactants or a combination thereof.
  • the method for preparing a composite membrane according to the present invention includes the following steps:
  • the gel sheet is longitudinally stretched at 90°C-135°C and transversely stretched at 100°C-140°C to obtain a stretched sheet;
  • the transversely stretched sheet is simultaneously or sequentially heat fixed and annealed at 120°C-140°C to obtain a polymer membrane;
  • the coating is dried to obtain the composite separator.
  • the type of ceramic powder, the type of polymer matrix, the type of plasticizer and the type of binder are the same as the detailed description in the above composite membrane.
  • the polymer matrix accounts for 50-80% by weight
  • the ceramic powder accounts for 5-15% by weight
  • the binder accounts for 14-30% by weight
  • the plasticizer accounts for 1-5 weight%.
  • the mixture is melt-kneaded using a kneading device to obtain a masterbatch.
  • the temperature of melt-kneading is in the range of 130-250°C, and the time is in the range of 30-60min.
  • the masterbatch is extruded using an extruder to form an extruded sheet.
  • the extrusion temperature is in the range of 130-250°C.
  • the cast sheet machine is used to cool the extruded sheet into a gel sheet.
  • the cooling temperature is in the range of 10-25°C
  • the cooling time is in the range of 10-25min.
  • the gel sheet is longitudinally stretched at 90°C-135°C and transversely stretched at 100°C-140°C using a stretching device.
  • the longitudinal stretching magnification is 3-8 times, and the lateral stretching magnification is 4-9 times.
  • the stretched sheet is dried in a temperature range of 80-100° C. for a period of 30-60 min.
  • the dried sheet is laterally stretched at a draw ratio of 1.5 times or less at 120°C-140°C using a stretching device.
  • the transversely stretched sheet is simultaneously or sequentially heat fixed and annealed at 120° C.-140° C.
  • the heat fixed and annealed treatment times are 10-30 min and 15-35 min respectively.
  • the coating liquid may be formed by adding ceramic powder and a binder to a solvent such as an organic solvent.
  • the coating liquid may further contain an antioxidant, a stabilizer, a surfactant, a combination thereof, or the like.
  • the ceramic powder and binder in the coating solution may be the same as or different from the ceramic powder and binder in the mixture used to prepare the polymer separator, for example, the ceramic powder may be selected from zirconia, alumina, or any mixture
  • the binder can be selected from pentaerythritol stearate and the like.
  • the ceramic powder may account for 70-90% by weight of the coating liquid other than the solvent.
  • the binder may account for 10-30% by weight of the coating liquid other than the solvent.
  • the coating may further contain antioxidants, stabilizers, surfactants or a combination thereof.
  • the coating liquid may be applied to at least one side of the polymer membrane using a coating machine.
  • the coating methods include bar coating, blade coating, curtain coating, spraying and so on.
  • the coating is dried in a temperature range of 120-180°C for a period of 30-60 min.
  • the method further includes the step of cooling the dried composite membrane.
  • the cooling temperature is in the range of 10-30°C
  • the cooling time is in the range of 10-30min.
  • the lithium ion battery according to the present invention includes a positive electrode, a negative electrode, an electrolyte interposed between the positive electrode and the negative electrode, and the composite separator as described above.
  • conventional materials can be used for the positive electrode, the negative electrode, and the electrolyte.
  • polypropylene resin 10g of silicon carbide powder, 4g of titanium oxide powder, 15g of chlorinated polyethylene as a binder, 10g of stearate and 4g of tolylbisureidosilane, and 5g
  • the polybutylene phthalate plasticizer and 20 ml of ethylene glycol were mixed uniformly to obtain a mixture.
  • the mixture was melt-kneaded at 170°C using a kneader to obtain a master batch.
  • the masterbatch was extruded into a sheet through a T-die at 175°C.
  • the sheet melt was cooled at 15°C using a casting tablet machine to make a gel sheet.
  • the gel sheet was subjected to longitudinal stretching (MD) treatment at 105° C. at a draw ratio of 5 times and transversely stretched (TD) treatment at 120° C. at a draw ratio of 6 times.
  • MD longitudinal stretching
  • TD transversely stretched
  • the solvent contained in the sheet after the stretching treatment was replaced with a washing solvent, and heated and dried at 90°C for 30 min.
  • the dried sheet was stretched in the TD direction at 130°C at a stretch ratio of 1.4 times.
  • the sheet after the stretching treatment was subjected to heat fixation and annealing treatment at 125° C. for 20 minutes to obtain a polypropylene separator.
  • the above composite separator is assembled with a lithium nickel cobalt manganate positive electrode, a silicon carbon negative electrode and a lithium hexafluorophosphate electrolyte in a conventional manner to form a lithium ion battery.
  • the masterbatch was extruded into a sheet through a T-die at 155°C.
  • the sheet melt was cooled at 25°C using a casting tablet machine to make a gel sheet.
  • the gel sheet was subjected to longitudinal stretching (MD) treatment at 110° C. at a stretch ratio of 5 times and transverse stretch (TD) treatment at 125° C. at a stretch ratio of 6 times.
  • MD longitudinal stretching
  • TD transverse stretch
  • the solvent contained in the sheet after the stretching treatment was replaced with a washing solvent, and heated and dried at 80°C for 50 min.
  • the dried sheet was stretched in the TD direction at 125°C at a stretch ratio of 1.4 times.
  • the sheet after the stretching treatment was subjected to heat fixation and annealing treatment at 120° C. for 20 minutes to obtain a polypropylene separator.
  • the above composite separator is assembled with a lithium nickel cobalt manganate positive electrode, a silicon carbon negative electrode and a lithium hexafluorophosphate electrolyte in a conventional manner to form a lithium ion battery.
  • polypropylene resin 5g of silicon carbide powder, 5g of titanium oxide powder, 15g of stearate as a binder and 5g of tolyl ureido silane, and 5g of polyethylene glycol plasticizer and 25ml of ethylene glycol was mixed to obtain a mixture.
  • the mixture was melt-kneaded at 135°C using a kneader to obtain a master batch.
  • the masterbatch was extruded into a sheet through a T-die at 160°C.
  • the sheet melt was cooled at 10°C using a casting machine to make a gel sheet.
  • the gel sheet was subjected to longitudinal stretching (MD) treatment at 100° C. at a stretch ratio of 5 times and transverse stretch (TD) treatment at 115° C. at a stretch ratio of 6 times.
  • MD longitudinal stretching
  • TD transverse stretch
  • the solvent contained in the sheet after the stretching treatment was replaced with a washing solvent, and heated and dried at 85°C for 55 min.
  • the dried sheet was stretched in the TD direction at 125°C at a stretch ratio of 1.4 times.
  • the sheet after the stretching treatment was subjected to heat fixation and annealing treatment at 120° C. for 20 minutes to obtain a polypropylene separator.
  • the above composite separator is assembled with a lithium nickel cobalt manganate positive electrode, a silicon carbon negative electrode and a lithium hexafluorophosphate electrolyte in a conventional manner to form a lithium ion battery.
  • the composite membranes (thickness 20um) prepared in Examples 1 to 3 were tested for lateral and longitudinal tensile strength under the same conditions as follows: (1) conventional testing conditions; (2) charge and discharge at 2C Condition, after 100 cycles.
  • the lithium ion batteries prepared in Examples 1 to 3 were tested for battery cycle performance as follows.
  • the prepared lithium-ion battery was charged and discharged 100 times at a rate of 1C, and placed for 60 minutes to detect the capacity of the battery.
  • the composite separator prepared by the present invention has high tensile strength and excellent battery cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

一种具有高的抗拉强度并且可以允许优良的电池循环性能的复合隔膜及其制备方法,该复合隔膜包括聚合物隔膜和在所述聚合物隔膜的至少一侧的涂层,所述聚合物隔膜包含50-80重量%的聚合物基体、5-15重量%的陶瓷粉末、14-30重量%的粘结剂和1-5重量%的增塑剂。

Description

高强度复合隔膜及其制备方法 技术领域
本发明属于锂离子电池技术领域,涉及一种高强度隔膜及其制备方法。
背景技术
锂离子电池由于其各方面的优异性能,已经成为了市场上广泛使用的新一代电池。其中,锂电池隔膜是二次锂电池的重要组成部分。它置于正负极之间,起到了让离子在正负极之间自由通过的同时不让电子通过,防止电池短路。为了提升隔膜的性能,通常在聚烯烃隔膜上涂覆涂层,然而,目前的涂覆隔膜普遍存在与涂层结合强度不够,涂层容易脱落,并且整体强度不够的问题,特别是在应用于锂离子动力电池大功率充放电时,从而影响锂电池的安全性和循环性能。
发明内容
本发明的目的是提供具有高的抗拉强度并且可以允许优良的电池循环性能的复合隔膜及其制备方法。
为了达到上述目的,本发明提供以下技术方案:
<1>一种复合隔膜,其包括聚合物隔膜和在所述聚合物隔膜的至少一侧的涂层,所述聚合物隔膜包含50-80重量%的聚合物基体、5-15重量%的陶瓷粉末、14-30重量%的粘结剂和1-5重量%的增塑剂。
<2>根据<1>所述的复合隔膜,其中所述陶瓷粉末选自碳化硅、氧化钛、氮化硅、氮化硼或它们的任意混合物。
<3>根据<1>所述的复合隔膜,其中所述粘结剂选自氯化聚乙烯、硬脂酸酯、甲苯基双脲基硅烷或它们的任意混合物。
<4>根据<1>至<3>中任一项所述的复合隔膜,其中所述增塑剂选自聚乙二醇、聚邻苯二甲酸酯或它们的任意混合物。
<5>一种锂离子电池,其包括正极、负极以及介于正极与负极之间的电解液和根据<1>至<4>中任一项所述的复合隔膜。
<6>一种用于制备上述复合隔膜的方法,该方法包括以下步骤:
将陶瓷粉末、粘结剂和增塑剂加入到聚合物基体中以得到混合物;
将所述混合物熔融混炼以得到母料;
将所述母料挤出以形成挤出片材;
将所述挤出片材冷却以制成凝胶片材;
将所述凝胶片材在90℃-135℃进行纵向拉伸并且在100℃-140℃进行横向拉伸以得到拉伸后的片材;
将所述拉伸后的片材干燥;
将干燥后的片材在120℃-140℃进行横向拉伸;
将横向拉伸后的片材在120℃-140℃同时或依次进行热固定和退火处理以得到聚合物隔膜;
将涂布液涂布于所述聚合物隔膜的至少一侧以形成涂层;
将所述涂层干燥以得到所述复合隔膜。
<7>根据<6>所述的方法,其中所述陶瓷粉末选自碳化硅、氧化钛、氮化硅、氮化硼或它们的任意混合物。
<8>根据<6>所述的方法,其中所述粘结剂选自氯化聚乙烯、硬脂酸酯、甲苯基双脲基硅烷或它们的任意混合物。
<9>根据<6>至<8>中任一项所述的方法,其中所述增塑剂选自聚乙二醇、聚邻苯二甲酸酯或它们的任意混合物。
有益效果
本发明通过将陶瓷粉体掺杂进聚合物隔膜中,形成了聚合物基体-陶瓷复合体,从而大大增强了聚合物隔膜的抗拉强度以及与表面涂覆层之间的结合强度,从而赋予锂离子电池优良的安全性能和循环性能。
具体实施方式
根据本发明的复合隔膜包括聚合物隔膜和在所述聚合物隔膜的至少一侧的涂层,所述聚合物隔膜包含50-80重量%的聚合物基体、5-15重量%的陶瓷粉末、14-30重量%的粘结剂和1-5重量%的增塑剂。
在本发明的复合隔膜的实施方案中,所述陶瓷粉末可以选自碳化硅、氧化钛、氮化硅、氮化硼或它们的任意混合物。
在本发明的复合隔膜的实施方案中,所述聚合物基体可以选自聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯或它们的任意混合物。
在本发明的复合隔膜的实施方案中,所述增塑剂可以选自聚乙二醇、聚邻苯二甲酸酯如聚邻苯二甲酸二丁酯或它们的任意混合物。
在本发明的复合隔膜的实施方案中,所述粘结剂可以选自氯化聚乙烯、硬脂酸酯、甲苯基双脲基硅烷或它们的任意混合物。
根据本发明,涂层可以位于聚合物隔膜的一侧或两侧。涂层可以包含陶瓷粉末和粘结剂。涂层中的陶瓷粉末可以与聚合物隔膜中的陶瓷粉末相同或不同,例如,该陶瓷粉末可以选自氧化锆、氧化铝或它们的任意混合物。陶瓷粉末可以占所述涂层的70-90重量%。涂层中的粘结剂可以与聚合物隔膜中的粘结剂相同或不同,例如,可以选自季戊四醇硬脂酸酯等。该粘结剂可以占所述涂层的10-30重量%。根据需要,涂层还可以包含抗氧化剂、稳定剂、表面活性剂或其组合等。
根据本发明的用于制备复合隔膜的方法包括以下步骤:
将陶瓷粉末、粘结剂和增塑剂加入到聚合物基体中以得到混合物;
将所述混合物熔融混炼以得到母料;
将所述母料挤出以形成挤出片材;
将所述挤出片材冷却以制成凝胶片材;
将所述凝胶片材在90℃-135℃进行纵向拉伸并且在100℃-140℃进行横向拉伸以得到拉伸后的片材;
将所述拉伸后的片材干燥;
将干燥后的片材在120℃-140℃进行横向拉伸;
将横向拉伸后的片材在120℃-140℃同时或依次进行热固定和退火处理以得到聚合物隔膜;
将涂布液涂布于所述聚合物隔膜的至少一侧以形成涂层;
将所述涂层干燥以得到所述复合隔膜。
根据本发明的方法的实施方案,关于陶瓷粉末的类型,聚合物基体的类型,增塑剂的类型和粘结剂的类型与上述复隔膜中的详细描述相同。在所述混合物中,所述聚合物基体占50-80重量%,所述陶瓷粉末占5-15重量%,所述粘结剂占14-30重量%并且所述增塑剂占1-5重量%。
根据本发明的方法的实施方案,使用混炼装置将所述混合物熔融混炼以得到母料。熔融混炼的温度在130-250℃的范围内,时间在30-60min的范围内。
根据本发明的方法的实施方案,使用挤出机将所述母料挤出以形成挤出片材。挤出的温度在130-250℃的范围内。
根据本发明的方法的实施方案,利用流延铸片机将挤出片材冷却制成凝胶片材。冷却温度在10-25℃的范围内,冷却时间在10-25min的范围内。
根据本发明的方法的实施方案,使用拉伸装置将所述凝胶片材在90℃-135℃进行纵向拉伸且在100℃-140℃进行横向拉伸。纵向拉伸拉伸倍率为3-8倍,且横向拉伸倍率为4-9倍。
根据本发明的方法的实施方案,将所述拉伸后的片材在80-100℃的温度范围内干燥30-60min时间。
根据本发明的方法的实施方案,使用拉伸装置将干燥后的片材在120℃-140℃以1.5倍以下的拉伸倍率进行横向拉伸。
根据本发明的方法的实施方案,将横向拉伸后的片材在120℃-140℃同时或依次进行热固定和退火处理,热固定和退火处理时间分别为10-30min和15-35min。
根据本发明的方法的实施方案,涂布液可以在溶剂如有机溶剂中加入陶瓷粉末和粘结剂而形成。涂布液还可以包含抗氧化剂、稳定剂、表面活性剂或其组合等。涂布液中的陶瓷粉末与粘结剂可以与用于制备聚合物隔膜的混合物中的陶瓷粉末与粘结剂相同或不同,例如,陶瓷粉末可以选自氧化锆、氧化铝或它们的任意混合物,粘结剂可以选自季戊四醇硬脂酸酯等。陶瓷粉末可以占所述除溶剂之外的涂布液的70-90重量%。粘结剂可以占所述除溶剂之外的涂布液的10-30重量%。根据需要,涂层还可以包含抗氧化剂、稳定剂、表面活性剂或其组合等。
可以使用涂覆机将涂布液涂敷在聚合物隔膜的至少一侧。涂敷方法包括棒涂、刮涂、幕涂、喷涂等。
根据本发明的方法的实施方案,将所述涂层在120-180℃的温度范围内干燥30-60min时间。
根据本发明,所述方法还包括将干燥后的复合隔膜冷却的步骤。冷却 温度在10-30℃的范围内,冷却时间在10-30min的范围内。
根据本发明的锂离子电池包括正极、负极以及介于正极与负极之间的电解液和如上所述的复合隔膜。
在本发明中,正极、负极和电解液可以使用常规的材料。
实施例
以下,将通过一些实施例来具体说明本发明。应当懂得,这些实施例仅用于说明的目的,它们并不以任何方式对本发明构成限制。
实施例1
将52g的聚丙烯树脂、10g的碳化硅粉末、4g的氧化钛粉末、作为粘结剂的15g的氯化聚乙烯、10g的硬脂酸酯和4g的甲苯基双脲基硅烷,和5g的聚邻苯二甲酸二丁酯增塑剂和20ml乙二醇混合均匀以得到混合物。使用混炼机将所述混合物在170℃进行熔融混炼以得到母料。
使用挤出机将母料在175℃通过T型模头挤出为片材。利用流延铸片机将片材熔体在15℃冷却以制成凝胶片材。使用拉伸装置将凝胶片材在105℃以5倍的拉伸倍率进行纵向拉伸(MD)处理并且在120℃以6倍的拉伸倍率进行横向拉伸(TD)处理。然后利用洗净溶剂置换经过拉伸处理后的片材内含有的溶剂,并在90℃加热干燥30min。将干燥后的片材在130℃以1.4倍的拉伸倍率进行TD方向拉伸处理。将拉伸处理后的片材125℃进行热固定及退火处理20min时间,以得到聚丙烯隔膜。
将70g的氧化锆粉末和30g的季戊四醇硬脂酸酯和30mL的乙醇搅拌均匀,以得到浆料。使用涂覆机将浆料涂覆在上述聚丙烯隔膜的一侧上以得到涂层。将涂层在130℃烘干40min。将烘干后的涂层在25℃冷却15min,最终得到复合隔膜。
将上述复合隔膜与镍钴锰酸锂正极、硅碳负极和六氟磷酸锂电解液以常规方式组装成锂离子电池。
实施例2
将78g的聚丙烯树脂、7g的氮化硅粉末、作为粘结剂的14g的氯化聚 乙烯和1g的聚乙二醇增塑剂和25ml乙二醇混合均匀以得到混合物。使用混炼机将所述混合物在205℃进行熔融混炼以得到母料。
使用挤出机将母料在155℃通过T型模头挤出为片材。利用流延铸片机将片材熔体在25℃冷却以制成凝胶片材。使用拉伸装置将凝胶片材在110℃以5倍的拉伸倍率进行纵向拉伸(MD)处理并且在125℃以6倍的拉伸倍率进行横向拉伸(TD)处理。然后利用洗净溶剂置换经过拉伸处理后的片材内含有的溶剂,并在80℃加热干燥50min。将干燥后的片材在125℃以1.4倍的拉伸倍率进行TD方向拉伸处理。将拉伸处理后的片材120℃进行热固定及退火处理20min时间,以得到聚丙烯隔膜。
将70g的氧化锆粉末和30g的季戊四醇硬脂酸酯和30mL的乙醇搅拌均匀,以得到浆料。使用涂覆机将浆料涂覆在上述聚丙烯隔膜的一侧上以得到涂层。将涂层在150℃烘干30min。将烘干后的涂层在25℃冷却20min,最终得到复合隔膜。
将上述复合隔膜与镍钴锰酸锂正极、硅碳负极和六氟磷酸锂电解液以常规方式组装成锂离子电池。
实施例3
将65g的聚丙烯树脂、5g的碳化硅粉末、5g的氧化钛粉末、作为粘结剂的15g硬脂酸酯和5g的甲苯基双脲基硅烷,和5g的聚乙二醇增塑剂和25ml乙二醇混合均匀以得到混合物。使用混炼机将所述混合物在135℃进行熔融混炼以得到母料。
使用挤出机将母料在160℃通过T型模头挤出为片材。利用流延铸片机将片材熔体在10℃冷却以制成凝胶片材。使用拉伸装置将凝胶片材在100℃以5倍的拉伸倍率进行纵向拉伸(MD)处理并且在115℃以6倍的拉伸倍率进行横向拉伸(TD)处理。然后利用洗净溶剂置换经过拉伸处理后的片材内含有的溶剂,并在85℃加热干燥55min。将干燥后的片材在125℃以1.4倍的拉伸倍率进行TD方向拉伸处理。将拉伸处理后的片材120℃进行热固定及退火处理20min时间,以得到聚丙烯隔膜。
将85g的氧化锆粉末和15g的季戊四醇硬脂酸酯和35mL的乙醇搅拌均匀,以得到浆料。使用涂覆机将浆料涂覆在上述聚丙烯隔膜的一侧上以 得到涂层。将涂层在165℃烘干35min。将烘干后的涂层在25℃冷却15min,最终得到复合隔膜。
将上述复合隔膜与镍钴锰酸锂正极、硅碳负极和六氟磷酸锂电解液以常规方式组装成锂离子电池。
性能测试
(1)抗拉强度
使用抗拉强度测试装置将实施例1至3中制备的复合隔膜(厚度20um)分别在以下同等条件下进行横向和纵向抗拉强度测试:(1)常规检测条件;(2)在2C充放电条件,100次循环后。
(2)电池循环性能
如下将实施例1至3中制备的锂离子电池进行电池循环性能测试。将所制备的锂离子电池在1C倍率下充放电100次,并放置60min,检测电池的容量。
测试结果如下表1所示。
表1
Figure PCTCN2018117998-appb-000001
如表1所示,本发明制备的复合隔膜具有高的抗拉强度和优良的电池 循环性能。
上述实施例仅例示性的说明了本发明,而非用于限制本发明。熟知本领域的技术人员应当理解,在不偏离本发明的精神和范围的情况下,对本发明实施例所作的任何更改和变化均落在本发明的范围内。且本发明的保护范围应由所附的权利要求确定。

Claims (9)

  1. 一种复合隔膜,其包括聚合物隔膜和在所述聚合物隔膜的至少一侧的涂层,所述聚合物隔膜包含50-80重量%的聚合物基体、5-15重量%的陶瓷粉末、14-30重量%的粘结剂和1-5重量%的增塑剂。
  2. 根据权利要求1所述的复合隔膜,其特征在于所述陶瓷粉末选自碳化硅、氧化钛、氮化硅、氮化硼或它们的任意混合物。
  3. 根据权利要求1所述的复合隔膜,其特征在于所述粘结剂选自氯化聚乙烯、硬脂酸酯、甲苯基双脲基硅烷或它们的任意混合物。
  4. 根据权利要求1至3中任一项所述的复合隔膜,其特征在于所述增塑剂选自聚乙二醇、聚邻苯二甲酸酯或它们的任意混合物。
  5. 一种锂离子电池,其包括正极、负极以及介于正极与负极之间的电解液和根据权利要求1至4中任一项所述的复合隔膜。
  6. 一种用于制备权利要求1所述的复合隔膜的方法,该方法包括以下步骤:
    将陶瓷粉末、粘结剂和增塑剂加入到聚合物基体中以得到混合物;
    将所述混合物熔融混炼以得到母料;
    将所述母料挤出以形成挤出片材;
    将所述挤出片材冷却以制成凝胶片材;
    将所述凝胶片材在90℃-135℃进行纵向拉伸并且在100℃-140℃进行横向拉伸以得到拉伸后的片材;
    将所述拉伸后的片材干燥;
    将干燥后的片材在120℃-140℃进行横向拉伸;
    将横向拉伸后的片材在120℃-140℃同时或依次进行热固定和退火处理以得到聚合物隔膜;
    将涂布液涂布于所述聚合物隔膜的至少一侧以形成涂层;
    将所述涂层干燥以得到所述复合隔膜。
  7. 根据权利要求6所述的方法,其特征在于所述陶瓷粉末选自碳化硅、氧化钛、氮化硅、氮化硼或它们的任意混合物。
  8. 根据权利要求6所述的方法,其特征在于所述粘结剂选自氯化聚乙烯、硬脂酸酯、甲苯基双脲基硅烷或它们的任意混合物。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于所述增塑剂选自聚乙二醇、聚邻苯二甲酸酯或它们的任意混合物。
PCT/CN2018/117998 2018-11-28 2018-11-28 高强度复合隔膜及其制备方法 WO2020107281A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117998 WO2020107281A1 (zh) 2018-11-28 2018-11-28 高强度复合隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117998 WO2020107281A1 (zh) 2018-11-28 2018-11-28 高强度复合隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2020107281A1 true WO2020107281A1 (zh) 2020-06-04

Family

ID=70854239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117998 WO2020107281A1 (zh) 2018-11-28 2018-11-28 高强度复合隔膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2020107281A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060121269A1 (en) * 2004-12-07 2006-06-08 Daramic Llc Microporous material and a method of making same
CN103165841A (zh) * 2013-03-06 2013-06-19 珠海市赛纬电子材料有限公司 一种锂离子电池用隔膜的生产方法
CN103199300A (zh) * 2013-04-22 2013-07-10 上海双奥能源技术有限公司 一种涂层锂离子电池隔膜
CN103682218A (zh) * 2013-12-23 2014-03-26 中国科学院上海硅酸盐研究所 一种有机-无机复合锂离子电池隔膜及其制备方法
CN108470876A (zh) * 2018-05-31 2018-08-31 成都亿佰达电子科技有限公司 一种锂电池隔膜的制备方法
WO2018213484A1 (en) * 2017-05-16 2018-11-22 Cornell University Hybrid separators and the manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060121269A1 (en) * 2004-12-07 2006-06-08 Daramic Llc Microporous material and a method of making same
CN103165841A (zh) * 2013-03-06 2013-06-19 珠海市赛纬电子材料有限公司 一种锂离子电池用隔膜的生产方法
CN103199300A (zh) * 2013-04-22 2013-07-10 上海双奥能源技术有限公司 一种涂层锂离子电池隔膜
CN103682218A (zh) * 2013-12-23 2014-03-26 中国科学院上海硅酸盐研究所 一种有机-无机复合锂离子电池隔膜及其制备方法
WO2018213484A1 (en) * 2017-05-16 2018-11-22 Cornell University Hybrid separators and the manufacture thereof
CN108470876A (zh) * 2018-05-31 2018-08-31 成都亿佰达电子科技有限公司 一种锂电池隔膜的制备方法

Similar Documents

Publication Publication Date Title
US8003261B2 (en) Polyolefin microporous membrane
US20140322587A1 (en) Separator of lithium-ion-battery preparation and method thereof
CN109560235B (zh) 一种新型锂离子电池芳纶隔膜制备方法
WO2017063218A1 (zh) 一种锂离子电池复合隔膜及其制备方法以及一种锂离子电池
WO2018095093A1 (zh) 一种电池隔离膜及其制备方法
CN105845871B (zh) 一种具有热开关功能的锂电池隔膜及其制备方法
WO2018095094A1 (zh) 一种电池隔离膜的制备方法
CN108779282A (zh) 聚烯烃微多孔膜及其制造方法、电池用隔膜以及电池
CN108666501A (zh) 一种以静电纺丝法制取的可用于锂离子电池的对位芳纶聚合物隔膜的制备方法
WO2023274143A1 (zh) 隔膜及其制备方法、二次电池和用电设备
BR112014024527B1 (pt) Método para a fabricação de separador poroso compreendendo material elástico
CN104140502A (zh) 一种锂离子电池隔膜用粘结剂、制备方法及使用该粘结剂的隔膜
TW201836852A (zh) 聚烯烴微多孔膜
KR20110032227A (ko) 높은 기공도와 우수한 기계적 및 열적 특성을 가지는 리튬 이차전지용 폴리에틸렌 미세다공성 분리막 및 이의 제조방법
WO2013183666A1 (ja) ポリオレフィン系樹脂多孔性フィルム
WO2012119361A1 (zh) 含有纳米预交联橡胶微粉的共挤复合隔膜以及使用其的锂离子电池
CN111653718A (zh) 一种用于高能量密度锂离子电池的聚乙烯隔膜、制备方法及应用
CN113285176A (zh) 一种用于锂离子电池的高孔隙率、孔径均匀的聚烯烃隔膜及其制备方法、锂离子电池
KR102238664B1 (ko) 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법
CN109768202A (zh) 高强度复合隔膜及其制备方法
CN107046117A (zh) 一种用于锂离子电池隔膜或基膜的电晕处理装置及其应用
WO2020107281A1 (zh) 高强度复合隔膜及其制备方法
WO2023246704A1 (zh) 一种锂离子电池极片及其制备方法
CN112864532A (zh) 长耐久涂覆聚烯烃隔膜制备方法以及应用
JP5771045B2 (ja) プロピレン系樹脂微孔フィルム及びその製造方法、並びにリチウムイオン電池用セパレータ及びリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941529

Country of ref document: EP

Kind code of ref document: A1