WO2020105727A1 - 単結晶x線構造解析装置用試料ホルダユニット - Google Patents
単結晶x線構造解析装置用試料ホルダユニットInfo
- Publication number
- WO2020105727A1 WO2020105727A1 PCT/JP2019/045701 JP2019045701W WO2020105727A1 WO 2020105727 A1 WO2020105727 A1 WO 2020105727A1 JP 2019045701 W JP2019045701 W JP 2019045701W WO 2020105727 A1 WO2020105727 A1 WO 2020105727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample holder
- sample
- ray
- crystal
- applicator
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
- B01L3/50825—Closing or opening means, corks, bungs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
- G01N23/20025—Sample holders or supports therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0689—Sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/042—Caps; Plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/045—Connecting closures to device or container whereby the whole cover is slidable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/046—Function or devices integrated in the closure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/207—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
Definitions
- the present invention relates to a next-generation single crystal X-ray structure analysis apparatus that enables a structure of a material to be analyzed by a microscopic aggregate structure such as an arrangement of atoms or molecules, and particularly to a single crystal sample to be analyzed.
- the present invention relates to a sample holder unit for a single crystal X-ray structure analysis device, which is a jig for performing processing including the production of
- this single crystal X-ray structure analysis had a major limitation that a single crystal had to be prepared by crystallizing a sample.
- a material called “crystal sponge” for example, pores having an infinite number of pores having a diameter of 0.5 nm to 1 nm.
- the present invention has been achieved in view of the above-mentioned problems in the conventional technique, and the object thereof is extremely minute and fragile even without specialized knowledge of X-ray structural analysis.
- a single crystal X-ray structure analysis using a crystal sponge including the work of taking out a sample occluded in a different crystal sponge and mounting it on the device, quickly and without the conventional fine and precise work that requires speed.
- a sample holder unit that can be surely and easily performed, in other words, with good yield and efficiency, excellent versatility, and to realize a user-friendly single crystal X-ray structure analysis apparatus.
- An object of the present invention is to provide a sample holder unit used in a single crystal X-ray structure analyzing apparatus.
- a sample holder unit of the present invention is a sample holder unit used in a single crystal X-ray structure analyzing apparatus and an applicator for housing the sample holder.
- the sample holder is a pedestal part attached to a goniometer of the single crystal X-ray structure analyzer, and a porous complex capable of occluding the sample in a plurality of micropores formed in the pedestal part.
- a holding part for holding a crystal, and a sample introduction structure which is formed in the base part and introduces the sample for occlusion in the porous complex crystal, and the applicator is a storage for storing the sample holder.
- the space and the opening portion, the seal portion provided on the contact surface of the sample holder housed in the housing space, and the sample holder housed in the housing space are engaged with each other, and And a retaining portion that prevents the sample holder from coming out.
- the sample introduction structure is composed of a sample introduction pipe that penetrates the base portion from the outside of the unit to the inside thereof, and the retaining portion is the sample at the engagement position. It is characterized in that it has a shape that does not interfere with the sample introduction pipe of the holder.
- the retaining portion is configured by a rotating lever that projects into the opening of the applicator and prevents the sample holder from coming out.
- the retaining portion has a shape that slides so as to project into the opening of the applicator to prevent the sample holder from coming out. There is.
- the retaining portion has an inclined surface at the tip of the sliding surface that engages with the sample holder.
- the applicator has a pair of parallel guide rails on both sides thereof, and the retaining portion engages with the guide rails and slides. I am trying.
- the applicator has a pair of parallel guide rails on both sides thereof, and the retaining portion is an engaging portion that engages with the guide rails and slides.
- the guide rail and the engaging portion are each formed in a U-shaped cross section.
- the operation of inserting the sample into the fragile crystal sponge in the single crystal X-ray structure analyzing apparatus and then mounting it on the tip of the goniometer. Can be carried out quickly, accurately and easily without the conventional dense and fine steps, and the single crystal X-ray structural analysis by the crystal sponge can be carried out quickly, accurately and easily. Therefore, single crystal X-ray structural analysis using a crystal sponge can be easily used and can be widely spread.
- FIG. 8 is a sectional view of the sample holder unit of Example 2 as well. It is a perspective view of the sample holder unit shown by the partial cross section of Example 3 of this invention.
- a or B means “at least one of A and B”, and includes “A and B” unless there is a special circumstance that A and B cannot exist.
- FIG. 1 attached herewith shows an overall appearance configuration of a single crystal X-ray structure analysis apparatus including a single crystal X-ray diffraction apparatus according to an embodiment of the present invention.
- the single crystal X-ray structure analysis apparatus 1 has a base 4 that stores a cooling device and an X-ray generation power supply unit, and an X-ray protection cover 6 that is placed on the base 4.
- the anti-X-ray cover 6 has a casing 7 surrounding the single crystal X-ray diffraction device 9, a door 8 provided on the front surface of the casing 7, and the like.
- the door 8 provided on the front surface of the casing 7 can be opened, and various operations can be performed on the internal single crystal X-ray diffraction device 9 in this opened state.
- the present embodiment shown in the figure is a single crystal X-ray structure analyzing apparatus 1 including a single crystal X-ray diffracting apparatus 9 for performing structural analysis of a substance by using a crystal sponge which will be described later.
- the single crystal X-ray diffractometer 9 has an X-ray tube 11 and a goniometer 12 as shown in FIG.
- the X-ray tube 11 has a filament, a target (also referred to as “anticathode”) that is arranged to face the filament, and a casing that hermetically stores them, and the filament is It is energized by the X-ray generation power supply unit stored in the base 4 of FIG. 1 to generate heat and emit thermoelectrons. Further, a high voltage is applied between the filament and the target by the X-ray generation power supply unit, and the thermoelectrons emitted from the filament are accelerated by the high voltage and collide with the target.
- the X-ray tube 11 is configured to include an optical element such as a microfocus tube and a multilayer film condensing mirror, and can emit a beam of higher brightness. It is also possible to select from radiation sources such as Cu, Mo and Ag.
- the filament, the target arranged facing the filament, and the casing that hermetically stores them function as an X-ray source, and an optical element such as a microfocus tube and a multilayer film condensing mirror.
- the configuration for X-ray irradiation including the above functions as an X-ray irradiation unit.
- the goniometer 12 supports the sample S to be analyzed and is arranged around the ⁇ rotary table 16 and the ⁇ rotary table 16 which is rotatable around the sample axis ⁇ passing through the X-ray incident point of the sample S. And a 2 ⁇ rotary table 17 rotatable about the sample axis ⁇ .
- the sample S is stored in a crystal sponge that is attached in advance to a part of the sample holder 214, which will be described in detail later.
- a drive device (not shown) for driving the ⁇ rotary table 16 and the 2 ⁇ rotary table 17 described above is stored inside the base 18 of the goniometer 12, and is driven by these drive devices to drive ⁇
- the rotary table 16 rotates intermittently or continuously at a predetermined angular velocity, so-called ⁇ rotation.
- the 2 ⁇ rotation base 17 rotates intermittently or continuously, so-called 2 ⁇ rotation.
- the above drive device can be configured by any structure, for example, a power transmission structure including a worm and a worm wheel.
- An X-ray detector 22 is mounted on a part of the outer circumference of the goniometer 12, and the X-ray detector 22 is, for example, a CCD type or CMOS type two-dimensional pixel detector or a hybrid type pixel detector. Composed.
- the X-ray detection and measurement unit refers to a configuration that detects and measures X-rays diffracted or scattered by the sample, and includes the X-ray detector 22 and a control unit that controls the X-ray detector 22.
- the sample S rotates ⁇ around the sample axis ⁇ by the ⁇ rotation of the ⁇ rotary table 16 of the goniometer 12.
- X-rays generated from the X-ray focal point in the X-ray tube 11 and directed toward the sample S are incident on the sample S at a predetermined angle and are diffracted / diverged. That is, the incident angle of the X-ray incident on the sample S changes according to the ⁇ rotation of the sample S.
- the sample S When the Bragg diffraction condition is satisfied between the incident angle of the X-ray incident on the sample S and the crystal lattice plane, the sample S generates diffracted X-rays. This diffracted X-ray is received by the X-ray detector 22 and its X-ray intensity is measured. As described above, the angle of the X-ray detector 22 with respect to the incident X-ray, that is, the intensity of the diffracted X-ray corresponding to the diffraction angle is measured, and the crystal structure or the like of the sample S is analyzed from the measurement result.
- FIG. 3 (A) shows an example of details of an electrical internal configuration of the control unit 110 in the single crystal X-ray structure analysis apparatus.
- the present invention is not limited to the embodiments described below.
- This single crystal X-ray structure analyzing apparatus 1 includes the above-mentioned internal structure, and further, a measuring apparatus 102 for measuring an appropriate substance as a sample, an input apparatus 103 composed of a keyboard, a mouse, etc., and a display.
- An image display device 104 as a means, a printer 106 as a means for printing and outputting an analysis result, a CPU (Central Processing Unit) 107, a RAM (Random Access Memory) 108, and a ROM (Read Only Memory) 109 and a hard disk 111 as an external storage medium.
- CPU Central Processing Unit
- RAM Random Access Memory
- ROM Read Only Memory
- the image display device 104 is composed of an image display device such as a CRT display or a liquid crystal display, and displays an image on the screen according to an image signal generated by the image control circuit 113.
- the image control circuit 113 generates an image signal based on the image data input thereto.
- the image data input to the image control circuit 113 is formed by the operation of various calculation means implemented by a computer including a CPU 107, a RAM 108, a ROM 109 and a hard disk 111.
- the printer 106 may be an ink plotter, a dot printer, an inkjet printer, an electrostatic transfer printer, or any other type of printing device.
- the hard disk 111 may be composed of a magneto-optical disk, a semiconductor memory, or a storage medium having any structure.
- analysis application software 116 that controls the overall operation of the single crystal X-ray structure analysis apparatus 1
- measurement application software 117 that controls the operation of measurement processing using the measurement apparatus 102
- image display The display application software 118 that controls the operation of the display process using the device 104 is stored.
- These application software realizes a predetermined function after being read from the hard disk 111 and transferred to the RAM 108 as needed.
- the single crystal X-ray structure analyzing apparatus 1 further includes, for example, a database placed in a cloud area for storing various measurement results including the measurement data obtained by the measuring apparatus 102.
- a database placed in a cloud area for storing various measurement results including the measurement data obtained by the measuring apparatus 102.
- an XRDS information database 120 that stores the XRDS image data obtained by the measuring device 102
- a microscope image database 130 that stores an actually measured image obtained by a microscope, and further, for example, , An XRF, a Raman ray, and the like, and a measurement result obtained by analysis other than X-rays
- another analysis database 140 that stores physical property information.
- these databases do not necessarily have to be installed inside the single crystal X-ray structure analysis apparatus 1, and may be provided outside and connected to each other via a network 150 or the like so that they can communicate with each other. ..
- a method of storing each measurement data in an individual file can be considered, but in the present embodiment, as shown in FIG.
- a plurality of measurement data are continuously stored in one data file.
- the storage area described as “condition” in FIG. 3B is an area for storing various pieces of information including device information when the measurement data is obtained and measurement conditions.
- Such measurement conditions include (1) measurement target substance name, (2) measurement device type, (3) measurement temperature range, (4) measurement start time, (5) measurement end time, and (6) measurement angle. Range, (7) moving speed of the scanning movement system, (8) scanning conditions, (9) type of X-rays incident on the sample, (10) whether or not an attachment such as a sample high temperature device is used, and various other conditions Can be considered.
- An XRDS (X-ray Diffraction and Scattering) pattern or image (see FIG. 4) is used to detect an X-ray received on a plane that is a two-dimensional space of the X-ray detector 22 that constitutes the measurement apparatus 102. It is obtained by receiving / accumulating light for each pixel arranged in a plane which constitutes the container and measuring the intensity thereof. For example, by detecting the intensity of the received X-ray by integration for each pixel of the X-ray detector 22, a pattern or image in a two-dimensional space of r and ⁇ can be obtained.
- the XRDS pattern or image in the observation space obtained by diffraction or scattering of X-rays by the target material with respect to the irradiated X-rays reflects the information of the electron density distribution in the real space of the target material.
- the XRDS pattern is a two-dimensional space of r and ⁇ , and does not directly express the symmetry in the real space of the target material, which is a three-dimensional space. Therefore, it is generally difficult to specify the (spatial) arrangement of the atoms and molecules that make up the material using only the existing XRDS image, and requires specialized knowledge of X-ray structural analysis. Therefore, in the present embodiment, the measurement application software described above is adopted for automation.
- X-ray diffraction data measurement / processing software called “CrysAlis Pro ”, which is a platform for single crystal structure analysis, is installed, Performs preliminary measurement, setting of measurement conditions, main measurement, data processing, etc. Further, by mounting an automatic structural analysis plug-in called “AutoChem”, structural analysis and structural refinement are executed in parallel with X-ray diffraction data acquisition. Then, the structure analysis program called “Olex 2 ” also shown in FIG. 6 performs space group determination, phase determination, molecular model construction and modification, structure refinement, final report, and CIF file creation.
- a “crystal sponge” which is an extremely minute and fragile porous complex crystal with a number of pores with a diameter of 0.5 nm to 1 nm opened innumerably and having a size of about several tens ⁇ m to several hundreds ⁇ m, Due to the development of the so-called material, single crystal X-ray structural analysis is widely applied to liquid compounds that do not crystallize, or very small samples such as several ng to several ⁇ g that cannot be secured in sufficient amounts for crystallization. It is possible to do.
- a skeleton of an extremely minute and fragile crystal sponge with an outer diameter of about 100 ⁇ m provided by impregnating a very small amount of sample in a storage solvent (carrier) such as cyclohexane in a container.
- a storage solvent such as cyclohexane
- the storage solvent includes a liquid, a gas (gas), and a supercritical fluid in the middle thereof.
- sample holder, sample holder unit> The present invention has been achieved based on the findings of the inventor as described above, and a single crystal X-ray structure analysis using a crystal sponge that is extremely minute and fragile is performed by a crystal supporting the crystal sponge described below.
- a sample holder unit equipped with a sponge sample holder (simply referred to as a sample holder), it is possible to perform quickly, reliably and easily, in other words, with good yield and efficiency.
- the present invention realizes a single crystal X-ray structure analyzing apparatus which is excellent in versatility and user-friendly.
- next-generation single-crystal X-ray structure analysis apparatus an extremely minute and fragile crystal sponge that occludes an extremely small amount of sample S is prepared, and further, the sample S (crystal sponge ) Has to be taken out from the occlusion container and attached to the predetermined position of the tip of the goniometer 12 accurately and promptly in a short time so that the crystal sponge is not destroyed by drying, but there is a major limitation.
- the sample S (crystal sponge ) Has to be taken out from the occlusion container and attached to the predetermined position of the tip of the goniometer 12 accurately and promptly in a short time so that the crystal sponge is not destroyed by drying, but there is a major limitation.
- it is necessary to perform such work quickly and easily without requiring a high degree of specialized knowledge and work precision. is there.
- the present invention solves such a problem, that is, while using an extremely minute and fragile crystal sponge that is difficult to handle, a work including occlusion of a sample in the crystal sponge and subsequent mounting in an apparatus, It is a jig for realizing a single crystal X-ray structural analysis device that is quick, reliable, easy, efficient with high yield, can be performed in a user-friendly manner, and has excellent versatility.
- the present invention provides a sample holder unit for a single crystal X-ray structure analyzer, which will be described in detail below.
- FIG. 7 (A) shows the tip of the goniometer 12 on an enlarged scale.
- a crystal sponge 200 for occluding the sample to be analyzed proposed by the present invention is attached to the tip of the jig beforehand.
- FIG. 7B shows an enlarged view of a so-called sample holder 214 attached to (mounted on) the goniometer head 15 at the tip of the goniometer 12.
- the sample holder 214 is attachable / detachable to / from the goniometer head 15 at the tip of the goniometer 12 by, for example, a mounting / positioning mechanism using magnetic force, etc., and anyone can easily and accurately mount it at a correct position. It is possible.
- FIG. 8 shows a cross section of the sample holder 214 of the first embodiment.
- the sample holder 214 is a disc-shaped base 201 made of metal or the like attached to the goniometer head 15 (see FIG. 7A) at the tip of the goniometer 12, and extends downward from one surface (lower surface in the drawing) of the disk-shaped base 201.
- the protrusion 202 is formed in a protruding shape.
- the protruding portion 202 is composed of a conical portion 202a and a sample holding portion (which corresponds to a so-called goniometer head pin) 202b formed in a protruding shape.
- the crystal sponge 200 for occluding the sample to be analyzed is previously attached integrally with the sample holder 214.
- a conical recessed mounting portion 203 is formed on the other surface (upper surface in the figure) of the base portion 201, and this mounting portion 203 is in contact with the goniometer head 15 at the tip portion of the goniometer 12 described above.
- a magnet (not shown) and a fitting convex portion (or concave portion) 203a are provided on the surface.
- the outer diameter of the conical portion 202a of the sample holder 214 on the base portion side is set smaller than the outer diameter of the base portion 201, and an annular step portion 208 is formed. Further, through holes 204 and 205 as a sample introduction structure penetrating from the base portion 201 to the projecting portion 202 are formed, and the through holes 204 and 205 are provided with seal portions 206 and 207 that hermetically close the inside of the holes. Be done.
- FIG. 9 shows a perspective view of the applicator 300, which is a jig for accommodating the sample holder 214 and storing the sample in the crystal sponge 200 previously attached to the sample holder 214.
- FIG. 10 is a cross-sectional view of the sample holder unit 400 including the applicator 300 and the sample holder 214 housed therein.
- the applicator 300 is formed of, for example, a transparent or opaque member such as glass, resin, or metal. Inside the applicator 300, a storage space 301 for storing the sample holder 214 is formed, and further above the storage space 301. Has an opening 302 for inserting and removing the sample holder 214. For example, an annular seal portion (O-ring) 304 is provided on the annular bottom surface of the opening 302, and when the sample holder 214 is stored, the step portion 208 of the sample holder 214 contacts the seal portion 304. , The sample holder 214 and the applicator 300 are kept airtight.
- O-ring annular seal portion
- the inner diameter of the opening 302 of the applicator 300 is set to be slightly larger than the outer diameter of the base portion 201 of the sample holder 214, and the inner wall of the opening 302 may serve as a guide surface when the sample holder 214 is taken in and out. it can. Therefore, when the sample holder 214 having the crystal sponge 200 that occludes a very small amount of sample is taken out from the applicator 300, the sample S can be easily prepared without damaging the sample S.
- Reference numeral 305 is a pair of retaining portions (rotating levers) provided on the opening surface 309 of the applicator 300 having the opening 302, and the tip 307 of the retaining portion is located at a position indicated by a broken line protruding laterally into the opening 302. Is supported by a fulcrum 306 so as to be rotatable between the retracted position and the retracted position indicated by the solid line.
- the step 208 of the sample holder 214 is brought into contact with the seal portion 304 of the storage space 301, and the upper end of the sample holder 214 is It projects from the opening surface 309 of the applicator 300.
- the tip 307 of the retaining portion 305 is rotated in a direction of protruding into the opening 302.
- the tip end 307 of the retaining portion 305 engages with the upper end of the sample holder 214 to prevent its rising, and at the same time, the step 208 of the sample holder 214 causes the sealing portion 304 to move.
- the sample holder 214 and the applicator 300 are kept airtight by being pressed against.
- FIG. 12 is an explanatory diagram showing a process in which the sample introduction pipes (hereinafter, also simply referred to as pipes) 220 and 221 as the sample introduction structure are inserted into the through holes 204 and 205 (see FIG. 8) of the sample holder.
- 13 is an explanatory diagram of a state in which the pipe is inserted.
- the pipes 220 and 221 are airtightly held between the pipes 220 and 221 and the through holes 204 and 205 by the seal portions 206 and 207 (see FIG. 8).
- Reference numeral 210 is a support portion that supports the sample introduction pipes 220 and 221 and supports both pipes in a substantially parallel state with each other at the same spacing as the spacing between the through holes 204 and 205.
- the supporting portion 210 has a truncated cone shape that is substantially the same as the concave mounting portion 203, and its height H is set higher than the height h of the mounting portion 203 of the sample holder 214.
- the sample introduction pipes 220 and 221 are simultaneously inserted into the through holes 204 and 205 by pushing down the supporting portion 210 with fingers or a manipulator.
- the lower end of the supporting part 210 enters the concave part of the mounting part 203, comes into contact with the bottom surface of the supporting part 210, descends, and then stops to stably support the pipes 220 and 221.
- the support portion 210 projects upward from the mounting portion 203 by the difference between the heights H and h (see reference numeral 211) in the stopped state.
- the protruding portion 211 is useful as a jig for pulling out the pipes 220 and 221 after the sample is stored in the crystal sponge 200. That is, the protruding portions 211 of the support portion 210 are held by fingers or a manipulator and pulled up, so that the pipes 220 and 221 can be simultaneously and efficiently withdrawn.
- reference numeral 230 is a hydrophobic solvent (eg, cyclohexane) injected into the bottom of the storage space 301 of the applicator 300, and is set to a level at which the crystal sponge 200 at the tip of the sample holder 202b is immersed. Is filled.
- the pipe 220 is a pipe for injecting a sample
- the pipe 221 is a pipe for discharging.
- the tip of the pipe 220 is immersed in the solvent 230 and extends to the vicinity of the crystal sponge 200, and the tip of the pipe 221 extends to a position where it is not immersed in the solvent 230.
- the projecting portion 211 of the supporting portion 210 is clamped and lifted by fingers or a manipulator, so that the pipes 220 and 221 are simultaneously pulled out, and then the crystalline sponge 200 in which the sample is occluded is removed.
- the sample holder 214 is attached to the goniometer head 15 at the tip of the goniometer 12.
- the sample holder 214 and the applicator 300 which is a jig for handling the sample holder, are integrated together as a sample holder unit 400, and the sample holder units 400 are arranged in a box-shaped container in a number required for analysis work. It is also possible to provide.
- the crystal sponge 200 attached to the tip of the pin-shaped holding portion 202b (corresponding to the goniometer head pin) that constitutes a part of the sample holder 214 is damaged or It can be handled safely and easily without departing from the holder 214. That is, even when taken out from the applicator 300, since the opening 302 serves as a guide surface, the crystal sponge 200 that has occluded an extremely small amount of sample can be taken out from the occluding container as a single unit without being damaged as in the conventional case. Therefore, the gonio head 15 can be prepared on the gonio head 15 safely, easily and easily, and in a short time so as not to be destroyed by drying.
- the sample holder 214 which has completed the occlusion of the sample, is removed from the applicator 300 and attached to the goniometer head 15 (see FIG. 7A) at the tip of the goniometer 12.
- the sample S occluded in the crystal sponge 200 can be easily, accurately and quickly arranged at a predetermined position in the single crystal X-ray diffractometer 9 without requiring highly specialized knowledge or precise work. Will be done.
- FIG. 14 an extremely small amount extracted by LC (liquid chromatography) 601, GC (gas chromatography) 602, further SCF (supercritical fluid chromatography) 603, CE (electrophoresis) 604, and the like that constitute the pretreatment device 600.
- the sample S is placed in the through holes 204, 205 of the sample holder 214 via an occlusion device (soaking machine) 650 that is equipped with various switching valves and pressure regulators and supplies fluid under necessary conditions (flow rate and pressure).
- the sample is supplied to the pair of sample introduction pipes 220 and 221 to be inserted, and the sample is selectively introduced into the storage space 301 inside the applicator 300.
- the sample is sent from the supply-side pipe to the supply-side sample introduction pipe 220, and is supplied from the tip portion of the supply-side sample introduction pipe 220 to the sample holder 214 inside the applicator 300.
- a sample alone or a solution in which a sample and a storage solvent (carrier) are mixed is supplied through a pipe 220 for injection.
- the introduced extremely small amount of the sample S comes into contact with the crystal sponge 200 attached to the tip of the pin-shaped sample holding portion 202b of the sample holder 214 in the storage space 301 of the applicator 300. Storage is performed.
- the electrophoresis device here includes various electrophoresis devices such as capillary electrophoresis and isoelectric focusing.
- an excess sample or a solution in which a sample and a storage solvent (carrier) are mixed is discharged from the sample introduction pipe 221 on the discharge side after a predetermined time has elapsed while the sample is being injected. To be done.
- unnecessary storage solvent (carrier) or solution flows in the sample introduction pipe 254 on the discharge side and is discharged. Therefore, the sample may not flow into the sample introduction pipe 254 on the discharge side.
- gas or supercritical fluid is used as the carrier, the carrier containing the sample is discharged.
- the sample holder 214 that has completed this occlusion process is removed from the applicator 300, and is placed at a predetermined position in the single crystal X-ray diffraction apparatus 9, that is, at the goniometer head 15 at the tip of the goniometer 12, for example, as described above. It can be attached accurately using a positioning mechanism such as magnetic force. According to this, the crystal sponge 200 attached to a part (tip) of the pin-shaped holding portion 202b of the sample holder 214 has the tip of the goniometer 12, that is, the X-ray tube, after the occlusion of the sample is completed.
- the X-ray beam from 11 is arranged at a position where it is focused and irradiated.
- the sample S stored in the crystal sponge 200 is accurately placed at a predetermined position in the single crystal X-ray diffractometer 9, and then the X-ray detector 22 detects the diffracted X-rays from the sample S. The strength is measured and the crystal structure and the like are analyzed.
- the sample holder unit 400 of the present invention anyone can easily and safely occlude a very small amount of sample in the crystal sponge 200 having an extremely small size that is integrally attached to the sample holder 214 in advance.
- the sample S can be mounted on the goniometer 12 at a highly accurate and accurate position quickly and safely in a short time so that the crystal sponge is not destroyed by drying.
- X-ray diffraction and scattering measurement by the target material are performed to configure the above-mentioned single-crystal X-ray structure analysis device.
- the structural analysis is performed by the measurement application software to construct the molecular model and the final report. That is, according to this example, the molecular structure / aggregate structure (real space) of a new structure discovered or designed in a field of various material research as well as drug discovery and life science can be quickly, safely, And it becomes possible to confirm easily.
- FIG. 15 is a perspective view of the applicator 500 according to the second embodiment
- FIG. 16 is a cross-sectional view of the sample holder unit 400 in which the sample holder 214 is incorporated in the applicator 500. is doing.
- Reference numeral 501 denotes a plate-shaped retaining portion (sliding portion) that slides along the opening surface 509 of the applicator 500 so as to project (or cover) the opening 302 from the lateral direction.
- the retaining portion 501 engages with the upper surface of the sample holder 214 housed in the applicator 500 in the mounted state, and prevents the sample holder 214 from coming out.
- Reference numerals 504 and 504 denote a pair of U-shaped guide rails installed so as to extend in parallel to both sides of the opening surface 509, and the retaining portions 501 have both side ends fitted to the guide rails 504 and 504. Together, they are slidably guided in both directions of the arrow.
- the retaining portion 501 has a circular opening 502 in the center, and the opening 502 has an inner diameter smaller than the outer diameter of the disc-shaped base 201 of the sample holder 214, and is attached to the applicator 500. At this time, only the outer peripheral portion of the upper surface of the sample holder 214 is engaged so that the through holes 204 and 205 are not blocked, and the sample holder 214 is prevented from coming out (see FIG. 16). When the sample introduction pipes 220 and 221 are inserted, the retaining portion 501 engages with the sample holder 214 at a position avoiding the sample introduction pipes.
- the engagement at a position avoiding the sample introducing pipe means engaging with the sample holder 214 in a state where the removal preventing portion 501 is attached to the applicator 500 and the withdrawal of the sample introducing pipe is not hindered.
- the retaining portion 501 is provided with an inclined surface 503 on the sliding lower surface at the front end, and is attached while the upper surface of the sample holder 214 is pushed down by the inclined surface 503 by sliding, and the inclined surface 503 allows the sample holder 214 to be attached. And the opening surface 509 of the applicator 500 are smoothly slid.
- the sample introduction pipes 220 and 221 are inserted into the through holes 204 and 205 exposed in the opening 502 with the retaining portion 501 attached.
- the light-weight plate-shaped retaining portion is used as the retaining portion, it is possible to perform a quick and reliable retaining operation with an easy operation.
- FIG. 17 is a perspective view of the sample holder unit 400 showing a part of the third embodiment in cross section, showing a state in which the retaining portion is attached to the applicator, and an opening of the retaining portion (see reference numeral 502 in FIG. 15).
- reference numeral 502 in FIG. 15 An opening of the retaining portion
- Reference numeral 700 is an applicator
- reference numeral 701 is a retaining portion (sliding portion) that slides in the opening (not shown) of the applicator 700 in the direction of the arrow, and has high mechanical strength (about (10 atm) formed to a plate thickness.
- Reference numerals 704 and 704 denote a pair of guide rails installed in parallel on both sides above the applicator 700 so as to extend in the lateral direction.
- the guide rails have a thickness (about 10 atm) and are U-shaped in cross section (U). It has a high mechanical strength.
- Reference numerals 705 and 705 denote engaging portions provided on both side ends 703 of the retaining portion 701, and are cross sections having high mechanical strength made of resin or metal so as to engage with the guide rails 704 and 704. It is formed in a U shape (U shape).
- Reference numeral 707 is a projecting operation portion provided on the top plate 702 of the retaining portion 701, and is used for sliding operation of the retaining portion 701. Further, although not shown, an inclined surface is provided on the sliding lower surface of the front end of the retaining portion 701 as in the case of the second embodiment, and smooth sliding is possible with the sample holder 214 and the applicator 700.
- the attachment to the applicator 700 is performed by engaging the engaging portions 705 and 705 of the retaining portion 701 with the guide rails 704 and 704 and sliding the operating portion 707 in the arrow direction with fingers or a manipulator. Be seen.
- the detachment prevention portion 701 when attached, engages with the upper surface of the sample holder 214 to prevent the detachment from the applicator 700.
- Removal of the retaining portion 701 is performed by operating the operation portion 707 in the direction opposite to that when the retaining portion 701 is attached, and removing the retaining portion 701 from the guide rails 704 and 704.
- a microscopic and fragile crystal sponge can be used even without specialized knowledge of X-ray structure analysis.
- the single crystal X-ray structural analysis can be performed quickly, surely and easily without the dense and minute work conventionally required.
- the single crystal X-ray structural analysis using the crystal sponge is possible.
- a sample holder unit is provided that enables to realize a highly versatile and user-friendly single crystal X-ray structure analysis apparatus capable of efficiently performing a high yield, and further A sample holder unit having a more suitable configuration is provided by the sample preparation work described above.
- the sample holder unit 400 set to a temperature, a pressure, etc. suitable for storage is stored in the storage device (soaking machine) 650 (see FIG. 14) under conditions suitable for storage ( The sample is supplied by pressure, flow rate, etc.). Therefore, the inside of the sample holder unit 400 needs to withstand various temperatures and pressures (about 10 atm).
- the retaining portion 701, the engaging portion 705, and the guide rail 704, which have high mechanical strength (about 10 atm) and have a plate thickness, are used, and further, the engaging portion 705 and the guide rail 704 are used as a machine. Since it is formed in a U-shaped cross section (U-shaped) having a high mechanical strength (about 10 atm), it is possible to cope with the mechanical strength sufficiently.
- the present invention is not limited to the above-described embodiments and includes various modifications.
- the above-described embodiment is a detailed description of the entire system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described.
- part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It would be possible to add, delete, or replace some of the example configurations with other configurations.
- the present invention can be widely used in an X-ray structure analysis device or method used for searching a material structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
結晶スポンジへの試料の吸蔵を迅速かつ容易に行うことができ、単結晶X線構造解析を迅速に、かつ正確に行える試料ホルダユニットを提供する。試料ホルダは、単結晶X線構造解析装置のゴニオメータに取り付けられる基台部と、基台部に形成され、内部に形成された複数の微細孔に試料を吸蔵可能な細孔性錯体結晶を保持する保持部と、基台部に形成され、細孔性錯体結晶に吸蔵させるための試料を導入する試料導入構造を備え、アプリケータ300は、試料ホルダを収納する収納空間および開口部302と、収納空間に収納された試料ホルダとの接触面に設けられたシール部304と、収納空間に収納された試料ホルダに係合して、開口部302からの試料ホルダの抜け出しを阻止する抜け止め部305と、を備える。
Description
本発明は、材料の構造をその原子や分子の配列などのミクロな集合構造によって解析することを可能にする次世代の単結晶X線構造解析装置に関し、特に、解析する対象となる単結晶試料の作成を含んだ処理を行うための冶具である単結晶X線構造解析装置用試料ホルダユニットに関する。
新たなデバイスや材料の研究開発では、日常的に材料の合成、材料の評価、それに基づいた次の研究方針の決定が行なわれている。短期間に材料開発を行うためのX線回折を用いた物質の構造解析では、目的の材料の機能・物性を実現する物質構造を効率良く探索するために、構造解析を効率的に行うことを可能とする物質の構造解析を中心とした物質構造の探索方法とそれに用いるX線構造解析は必要不可欠である。
しかし、当該手法で得られた結果に基づいて構造解析を行うことは、X線の専門家でなければ難しかった。そのため、X線の専門家でなくても構造解析を行うことができるX線構造解析システムが求められていた。その中でも、特に、以下の特許文献1にも知られるように、単結晶X線構造解析は、正確で精度の高い分子の立体構造を得ることができる手法として注目されている。
他方、この単結晶X線構造解析には、試料を結晶化して単結晶を用意しなければならないという大きな制約があった。しかしながら、以下の非特許文献1や2、更には、特許文献2にも知られるように、「結晶スポンジ」と呼ばれる材料(例えば、直径0.5nmから1nmの細孔が無数に開いた細孔性錯体結晶)の開発によって、結晶化しない液体状化合物や結晶化を行うに足る量を確保できない試料なども含め、単結晶X線構造解析を広く適用することが可能となっている。
Makoto Fujita; X-ray analysis on the nanogram to microgram scale using porous complexes; Nature 495,461-466; 28 March 2013
Hoshino et al. (2016), The updated crystalline sponge method IUCrJ, 3, 139-151
しかしながら、上述した結晶スポンジを利用した従来技術になる単結晶X線構造解析では、各種の装置によって分離された数ng~数μg程度の極微量の試料を寸法100μm程度の極微小で脆弱(fragile)な結晶スポンジの骨格内に吸蔵する工程と共に、更に、この試料を吸蔵した極微小な結晶スポンジを取り出し、冶具に取り付け、単結晶X線構造解析装置内のX線照射位置に搭載するという微細で緻密な作業を伴う工程を、迅速かつ正確に行うことを必要とする。なお、これらの短時間で行う微細かつ緻密な作業は、結晶スポンジに吸蔵した後の試料の測定結果に多大な影響を及ぼすこととなり、非常に重要な作業となる。
このことから、本発明は、上述した従来技術における問題点に鑑みて達成されたものであり、その目的は、特に、X線構造解析の専門知識がなくても、極微小で脆弱(fragile)な結晶スポンジに吸蔵した試料の取り出しや装置への搭載作業を含め、結晶スポンジによる単結晶X線構造解析を、迅速さも求められる従来の微細で緻密な作業を伴うことなく、迅速に、かつ、確実かつ容易に行うことを可能とする試料ホルダユニットであって、換言すれば、歩留まり良くかつ効率的で、汎用性に優れ、かつ、ユーザフレンドリな単結晶X線構造解析装置を実現するため、単結晶X線構造解析装置において使用される試料ホルダユニットを提供することを目的とするものである。
(1)上記の目的を達成するため、本発明の試料ホルダユニットは、単結晶X線構造解析装置において使用する試料ホルダと、前記試料ホルダを収納するアプリケータからなる試料ホルダユニットであって、前記試料ホルダは、前記単結晶X線構造解析装置のゴニオメータに取り付けられる基台部と、前記基台部に形成され、内部に形成された複数の微細孔に試料を吸蔵可能な細孔性錯体結晶を保持する保持部と、前記基台部に形成され、前記細孔性錯体結晶に吸蔵させるための前記試料を導入する試料導入構造を備え、前記アプリケータは、前記試料ホルダを収納する収納空間および開口部と、前記収納空間に収納された前記試料ホルダとの接触面に設けられたシール部と、前記収納空間に収納された前記試料ホルダに係合して、前記開口部からの前記試料ホルダの抜け出しを阻止する抜け止め部と、を備えることを特徴としている。
(2)また、本発明の試料ホルダユニットにおいて、前記試料導入構造は、前記基台部をユニット外側から内側に貫通する試料導入パイプで構成され、前記抜け止め部は、係合位置で前記試料ホルダの前記試料導入パイプを妨げない形状であることを特徴としている。
(3)また、本発明の試料ホルダユニットにおいて、前記抜け止め部は、前記アプリケータの開口部に突出して前記試料ホルダの抜け出しを阻止する回転レバーで構成されることを特徴としている。
(4)また、本発明の試料ホルダユニットにおいて、前記抜け止め部は、前記アプリケータの開口部に突出するように摺動して、前記試料ホルダの抜け出しを阻止する形状であることを特徴としている。
(5)また、本発明の試料ホルダユニットにおいて、前記抜け止め部は、前記試料ホルダと係合する摺動面の先端に傾斜面を有することを特徴としている。
(6)また、本発明の試料ホルダユニットにおいて、前記アプリケータはその両側部に一対の平行な案内レールを有し、前記抜け止め部は前記案内レールに係合して摺動することを特徴としている。
(7)また、本発明の試料ホルダユニットにおいて、前記アプリケータはその両側部に一対の平行な案内レールを有し、前記抜け止め部は前記案内レールに係合して摺動する係合部を有し、前記案内レールおよび前記係合部は、それぞれ断面コ字型に形成されることを特徴としている。
上述した本発明の単結晶X線構造解析装置用試料ホルダユニットによれば、単結晶X線構造解析装置における脆弱(fragile)な結晶スポンジへの試料の吸蔵とその後のゴニオメータ先端部への取り付け作業を、従来の緻密で微細な工程を伴うことなく、迅速かつ正確かつ容易に行うことができ、結晶スポンジによる単結晶X線構造解析を、迅速かつ正確かつ容易に行うことができる。そのことから、結晶スポンジによる単結晶X線構造解析を容易に利用可能にして、広く普及することが可能となる。
以下、本発明の一実施の形態になる、結晶スポンジを利用した単結晶X線構造解析装置に用いる試料ホルダユニットについて、添付の図面を参照しながら、詳細に説明する。なお、本出願において「AまたはB」の表現は、「AおよびBの少なくとも一方」を意味し、AおよびBがありえないという特段の事情がない限り「AおよびB」を含む。
添付の図1には、本発明の一実施の形態になる、単結晶X線回折装置を含む単結晶X線構造解析装置の全体外観構成が示されており、図からも明らかなように、単結晶X線構造解析装置1は、冷却装置やX線発生電源部を格納した基台4と、その基台4の上に載置された防X線カバー6とを有する。
防X線カバー6は、単結晶X線回折装置9を包囲するケーシング7及びそのケーシング7の前面に設けられた扉8等を有する。ケーシング7の前面に設けられた扉8は開くことができ、この開いた状態で内部の単結晶X線回折装置9に対して種々の操作を行うことができる。なお、図に示す本実施形態は、後にも述べる結晶スポンジを利用して物質の構造解析を行う単結晶X線回折装置9を含んだ単結晶X線構造解析装置1である。
単結晶X線回折装置9は、図2にも示すように、X線管11及びゴニオメータ12を有する。X線管11は、ここでは図示しないが、フィラメントと、フィラメントに対向して配置されたターゲット(「対陰極」とも言う)と、それらを気密に格納するケーシングとを有し、このフィラメントは、図1の基台4に格納されたX線発生電源部によって通電されて発熱して熱電子を放出する。また、フィラメントとターゲットとの間にはX線発生電源部によって高電圧が印加され、フィラメントから放出された熱電子が高電圧によって加速されてターゲットに衝突する。この衝突領域がX線焦点を形成し、このX線焦点からX線が発生して発散する。より詳細には、このX線管11は、ここでは図示しないが、マイクロフォーカス管と多層膜集光ミラー等の光学素子を含んで構成されており、より高い輝度のビームを照射することが可能であり、また、Cu、MoやAgなどの線源から選択可能となっている。上記に例示するように、フィラメントと、フィラメントに対向して配置されたターゲットと、それらを気密に格納するケーシングが、X線源として機能し、マイクロフォーカス管と多層膜集光ミラー等の光学素子を含むX線照射のための構成がX線照射部として機能する。
また、ゴニオメータ12は、解析すべき試料Sを支持すると共に、試料SのX線入射点を通る試料軸線ωを中心として回転可能とするθ回転台16と、θ回転台16のまわりに配置されて試料軸線ωを中心として回転可能な2θ回転台17とを有する。なお、試料Sは、本実施形態の場合、後にも詳述する試料ホルダ214の一部に予め取り付けられた結晶スポンジの内部に吸蔵されている。ゴニオメータ12の基台18の内部には、上述したθ回転台16及び2θ回転台17を駆動するための駆動装置(図示せず)が格納されており、これらの駆動装置によって駆動されて、θ回転台16は所定の角速度で間欠的又は連続的に回転し、いわゆるθ回転する。また、これらの駆動装置によって駆動されて2θ回転台17は間欠的又は連続的に回転し、いわゆる2θ回転する。上記の駆動装置は任意の構造によって構成できるが、例えば、ウォームとウォームホイールとを含んで構成される動力伝達構造によって構成できる。
ゴニオメータ12の外周の一部にはX線検出器22が載置されており、このX線検出器22は、例えば、CCD型やCMOS型の2次元ピクセル検出器、ハイブリッド型ピクセル検出器などによって構成される。なお、X線検出測定部は、試料により回折又は散乱されたX線を検出して測定する構成を指し、X線検出器22およびこれを制御する制御部を含む。
単結晶X線回折装置9は、以上のように構成されているので、試料Sは、ゴニオメータ12のθ回転台16のθ回転によって試料軸線ωを中心としてθ回転する。この試料Sがθ回転する間、X線管11内のX線焦点から発生して試料Sへ向けられるX線は所定の角度で試料Sに入射して回折・発散する。即ち、試料Sへ入射するX線の入射角度は試料Sのθ回転に応じて変化する。
試料Sに入射するX線の入射角度と結晶格子面との間でブラッグの回折条件が満足されると、その試料Sから回折X線が発生する。この回折X線はX線検出器22に受光されてそのX線強度が測定される。以上により、入射X線に対するX線検出器22の角度、すなわち回折角度に対応する回折X線の強度が測定され、この測定結果から試料Sに関する結晶構造等が解析される。
続いて、図3(A)は、上記単結晶X線構造解析装置における制御部110を構成する電気的な内部構成の詳細の一例を示す。なお、本発明が以下に述べる実施形態に限定されるものでないことは、もちろんである。
この単結晶X線構造解析装置1は、上述した内部構成を含んでおり、更に、適宜の物質を試料として測定を行う測定装置102と、キーボード、マウス等によって構成される入力装置103と、表示手段としての画像表示装置104と、解析結果を印刷して出力するための手段としてのプリンタ106と、CPU(Central Processing Unit)107と、RAM(Random Access Memory)108と、ROM(Read Only Memory)109と、外部記憶媒体としてのハードディスク111などを有する。これらの要素はバス112によって電気的に相互につながれている。
画像表示装置104は、CRTディスプレイ、液晶ディスプレイ等といった画像表示機器によって構成されており、画像制御回路113によって生成される画像信号に従って画面上に画像を表示する。画像制御回路113はこれに入力される画像データに基づいて画像信号を生成する。画像制御回路113に入力される画像データは、CPU107、RAM108、ROM109及びハードディスク111を含んで構成されるコンピュータによって実現される各種の演算手段の働きによって形成される。プリンタ106は、インクプロッタ、ドットプリンタ、インクジェットプリンタ、静電転写プリンタ、その他任意の構造の印刷用機器を用いることができる。なお、ハードディスク111は、光磁気ディスク、半導体メモリ、その他、任意の構造の記憶媒体によって構成することもできる。
ハードディスク111の内部には、単結晶X線構造解析装置1の全般的な動作を司る分析用アプリケーションソフト116と、測定装置102を用いた測定処理の動作を司る測定用アプリケーションソフト117と、画像表示装置104を用いた表示処理の動作を司る表示用アプリケーションソフト118とが格納されている。これらのアプリケーションソフトは、必要に応じてハードディスク111から読み出されてRAM108へ転送された後に所定の機能を実現する。
この単結晶X線構造解析装置1は、更に、上記測定装置102によって得られた測定データを含めた各種の測定結果を記憶するための、例えば、クラウド領域に置かれたデータベースも含んでいる。図の例では、後にも説明するが、上記の測定装置102によって得られたXRDSイメージデータを格納するXRDS情報データベース120、顕微鏡により得られた実測イメージを格納する顕微鏡イメージデータベース130、更には、例えば、XRFやラマン光線等、X線以外の分析により得られた測定結果や、物性情報を格納するその他分析データベース140が示されている。なお、これらのデータベースは、必ずしも、単結晶X線構造解析装置1の内部に搭載される必要はなく、例えば、外部に設けられてネットワーク150等を介して相互に通信可能に接続されてもよい。
データファイル内に複数の測定データを記憶するためのファイル管理方法としては、個々の測定データを個別のファイル内に格納する方法も考えられるが、本実施形態では、図3(B)に示すように、複数の測定データを1つのデータファイル内に連続して格納することとしている。なお、図3(B)において「条件」と記載された記憶領域は、測定データが得られたときの装置情報および測定条件を含む各種の情報を記憶するための領域である。
このような測定条件としては、(1)測定対象物質名、(2)測定装置の種類、(3)測定温度範囲、(4)測定開始時刻、(5)測定終了時刻、(6)測定角度範囲、(7)走査移動系の移動速度、(8)走査条件、(9)試料に入射するX線の種類、(10)試料高温装置等といったアタッチメントを使ったか否か、その他、各種の条件が考えられる。
XRDS(X-ray Diffraction and Scattering)パターン又はイメージ(図4を参照)は、上記測定装置102を構成するX線検出器22の2次元空間である平面上で受け取られたX線を、当該検出器を構成する平面状に配列された画素毎に受光/蓄積して、その強度を測定することにより得られるものである。例えば、X線検出器22の各画素毎に、積分によって受光したX線の強度を検出することによれば、rとθの2次元空間上のパターン又はイメージが得られる。
<測定用アプリケーションソフト>
照射されるX線に対する対象材料によるX線の回折や散乱によって得られる観測空間上のXRDSパターン又はイメージは、対象材料の実空間における電子密度分布の情報を反映している。しかしながら、XRDSパターンは、rとθの2次元空間であり、3次元空間である対象材料の実空間における対称性を直接的に表現するものではない。そのため、一般的に、現存のXRDSイメージだけでは、材料を構成する原子や分子の(空間)配列を特定することは困難であり、X線構造解析の専門知識を必要とする。そのため、本実施例では、上述した測定用アプリケーションソフトを採用して自動化を図っている。
照射されるX線に対する対象材料によるX線の回折や散乱によって得られる観測空間上のXRDSパターン又はイメージは、対象材料の実空間における電子密度分布の情報を反映している。しかしながら、XRDSパターンは、rとθの2次元空間であり、3次元空間である対象材料の実空間における対称性を直接的に表現するものではない。そのため、一般的に、現存のXRDSイメージだけでは、材料を構成する原子や分子の(空間)配列を特定することは困難であり、X線構造解析の専門知識を必要とする。そのため、本実施例では、上述した測定用アプリケーションソフトを採用して自動化を図っている。
その一例として、図5(A)及び(B)にその実行画面を示すように、単結晶構造解析のためのプラットフォームである「CrysAlisPro」と呼ばれるX線回折データ測定・処理ソフトウェアを搭載し、予備測定、測定条件の設定、本測定、データ処理などを実行する。更には、「AutoChem」と呼ばれる自動構造解析プラグインを搭載することにより、X線回折データ収集と並行して、構造解析および構造の精密化を実行する。そして、図6にも示す「Olex2」と呼ばれる構造解析プログラムにより、空間群決定から位相決定、分子モデルの構築と修正、構造の精密化、最終レポート、CIFファイルの作成を行う。
以上、単結晶X線構造解析装置1の全体構造やその機能について述べたが、以下には、特に、本発明に係る結晶スポンジと、それに関連する装置や冶具について、添付の図面を参照しながら詳細に述べる。
<結晶スポンジ>
上述したように、内部に直径0.5nmから1nmの細孔が無数に開いた、寸法が数10μm~数100μm程度の極微小で脆弱(fragile)な細孔性錯体結晶である「結晶スポンジ」と呼ばれる材料の開発によって、単結晶X線構造解析は、結晶化しない液体状化合物や、或いは、結晶化を行うに足る量が確保できない数ng~数μgの極微量の試料なども含め、広く適用することが可能となっている。
上述したように、内部に直径0.5nmから1nmの細孔が無数に開いた、寸法が数10μm~数100μm程度の極微小で脆弱(fragile)な細孔性錯体結晶である「結晶スポンジ」と呼ばれる材料の開発によって、単結晶X線構造解析は、結晶化しない液体状化合物や、或いは、結晶化を行うに足る量が確保できない数ng~数μgの極微量の試料なども含め、広く適用することが可能となっている。
しかしながら、現状においては、上述した結晶スポンジの骨格内への試料の結晶化である吸蔵(post-crystallization)を行うためには、各種の前処理(分離)装置によって分離された数ng~数μg程度の極微量の試料を、既に述べたように、容器内において、シクロヘキサン等の保存溶媒(キャリア)に含浸して提供される外径100μm程度の極微小で脆弱(fragile)な結晶スポンジの骨格内に吸蔵させる工程が必要となる。保存溶媒(キャリア)には、液体と、気体(ガス)と、その中間にあたる超臨界流体が含まれる。更には、その後、この試料を吸蔵した極微小で脆弱(fragile)な取り扱い難い結晶スポンジを、迅速に(結晶スポンジが乾燥により破壊されない程度の短い時間で)、容器から取り出し、単結晶X線回折装置内のX線照射位置に、より具体的には、ゴニオメータ12の試料軸(所謂、ゴニオヘッドピン)の先端部に、センタリングを行いながら正確に搭載する工程を必要とする。これらの工程は、X線構造解析の専門知識の有無に関わらず、作業者に非常な緻密性を要求する微細で、かつ、迅速性をも要求する作業であり、結晶スポンジに吸蔵した後の試料の測定結果に多大な影響を及ぼすこととなる。即ち、これらの作業が極微小な結晶スポンジを利用した単結晶X線構造解析を歩留まりの悪いものとしており、このことが、結晶スポンジを利用した単結晶X線構造解析が広く利用されることから阻害される一因ともなっている。
<試料ホルダ、試料ホルダユニット>
本発明は、上述したような発明者の知見に基づいて達成されたものであり、極微小で脆弱(fragile)な結晶スポンジによる単結晶X線構造解析を、以下に述べる結晶スポンジを支持する結晶スポンジ用試料ホルダ(単に、試料ホルダともいう)を備えた試料ホルダユニットを用いることにより、迅速に、確実かつ容易に行うことを可能とするものであり、換言すれば、歩留まり良くかつ効率的で、汎用性に優れ、かつ、ユーザフレンドリな単結晶X線構造解析装置を実現するものである。即ち、本発明に係る次世代の単結晶X線構造解析装置では、極微量な試料Sを吸蔵した極微小で脆弱(fragile)な結晶スポンジを用意すると共に、更には、当該試料S(結晶スポンジ)を吸蔵容器から取り出して、結晶スポンジが乾燥により破壊されない程度の短時間で、迅速に、ゴニオメータ12の先端部の所定位置に、正確かつ迅速に取り付けなければならないという、大きな制約があるが、特に、汎用性にも優れたユーザフレンドリな装置を実現するためには、かかる作業を、高度な専門知識や作業の緻密性を要求せずに、迅速かつ容易に実行可能なものとする必要がある。
本発明は、上述したような発明者の知見に基づいて達成されたものであり、極微小で脆弱(fragile)な結晶スポンジによる単結晶X線構造解析を、以下に述べる結晶スポンジを支持する結晶スポンジ用試料ホルダ(単に、試料ホルダともいう)を備えた試料ホルダユニットを用いることにより、迅速に、確実かつ容易に行うことを可能とするものであり、換言すれば、歩留まり良くかつ効率的で、汎用性に優れ、かつ、ユーザフレンドリな単結晶X線構造解析装置を実現するものである。即ち、本発明に係る次世代の単結晶X線構造解析装置では、極微量な試料Sを吸蔵した極微小で脆弱(fragile)な結晶スポンジを用意すると共に、更には、当該試料S(結晶スポンジ)を吸蔵容器から取り出して、結晶スポンジが乾燥により破壊されない程度の短時間で、迅速に、ゴニオメータ12の先端部の所定位置に、正確かつ迅速に取り付けなければならないという、大きな制約があるが、特に、汎用性にも優れたユーザフレンドリな装置を実現するためには、かかる作業を、高度な専門知識や作業の緻密性を要求せずに、迅速かつ容易に実行可能なものとする必要がある。
本発明は、かかる課題を解消し、即ち、極微小で脆弱(fragile)な取り扱い難い結晶スポンジを使用しながらも、試料の当該結晶スポンジへの吸蔵やその後の装置への搭載を含む作業を、誰でも、迅速かつ確実かつ容易に、歩留まり良く効率的で、ユーザフレンドリに行うことが可能で、かつ、汎用性にも優れた単結晶X線構造解析装置を実現可能にするための冶具である、単結晶X線構造解析装置用試料ホルダユニットを提供するものであり、以下に詳述する。
図7(A)は、ゴニオメータ12の先端部を拡大して示しており、この図では、本発明により提案される解析すべき試料を吸蔵する結晶スポンジ200をその先端部に予め取り付けた冶具である、図7(B)に拡大図を示した、所謂、試料ホルダ214が、ゴニオメータ12の先端部のゴニオヘッド15に取り付けられる(マウントされる)様子を示している。なお、この試料ホルダ214は、例えば、磁力などを利用した取付け/位置決め機構によって、ゴニオメータ12の先端部のゴニオヘッド15に対して着脱可能で、かつ、誰でも正確な位置に容易かつ高精度に取り付けることが可能となっている。
図8は、実施例1の試料ホルダ214の断面を示している。試料ホルダ214は、ゴニオメータ12の先端部のゴニオヘッド15(図7(A)参照)に取り付けられる金属等からなる円盤状の基台部201と、その一方の面(図では下面)から下方に延びる突起状に形成された突出部202で構成される。突出部202は、円錐部202aと突起状に形成された試料保持部(所謂、ゴニオヘッドピンに対応する)202bで構成される。試料保持部202bの先端の所定位置には、上述した解析すべき試料を吸蔵するための結晶スポンジ200が、予め試料ホルダ214と一体に取り付けられている。
また、基台部201の他の面(図では上面)には、円錐台の凹状の取付部203が形成され、この取付部203には、前述のゴニオメータ12の先端部のゴニオヘッド15との接触面に、図示しないマグネットや、嵌合凸部(または凹部)203aが設けられている。この構成により、試料ホルダ214は、ゴニオメータ12の先端部のゴニオヘッド15に対し、着脱可能で、誰でも容易かつ高精度に搭載することが可能となる。
試料ホルダ214の円錐部202aの基台部側の外径は、基台部201の外径より小さく設定されており、環状の段部208が形成される。また、基台部201から突出部202に貫通する試料導入構造としての貫通孔204、205が形成され、各貫通孔204、205には、孔内を気密に閉塞するシール部206、207が設けられる。
図9には、試料ホルダ214を収納し、試料ホルダ214に予め取り付けられた結晶スポンジ200に試料を吸蔵するための冶具となる、アプリケータ300の斜視図が示されている。図10は、アプリケータ300と、その内部に収納された試料ホルダ214とで構成される試料ホルダユニット400の断面図である。
アプリケータ300は、例えば、ガラスや樹脂や金属等の透明又は不透明な部材で形成されており、その内部には、試料ホルダ214を収納するための収納空間301が形成され、更に、その上部には、試料ホルダ214を嵌入し、かつ、取り出すための開口部302が形成されている。開口部302の環状の底面には、例えば、環状のシール部(Oリング)304が設けられており、試料ホルダ214の収納時に、試料ホルダ214の段部208が、シール部304に接触して、試料ホルダ214とアプリケータ300の間が気密に保たれる。
アプリケータ300の開口部302の内径は、試料ホルダ214の基台部201の外径より僅かに大きく設定されており、試料ホルダ214の出し入れ時に、開口部302の内壁を案内面とすることができる。したがって、極微量な試料を吸蔵した結晶スポンジ200を有する試料ホルダ214を、アプリケータ300から取り出す際に、試料Sに損傷を与えることがなく、容易に準備することができる。
符号305は、開口部302を有するアプリケータ300の開口面309に設けられた一対の抜け止め部(回転レバー)であり、その先端307が、開口部302内に横から突出する破線で示す位置と、実線で示す後退位置との間で回転可能に、支点306により支持されている。
図10に示すように、試料ホルダ214がアプリケータ300の開口部302から挿入されると、試料ホルダ214の段部208が収納空間301のシール部304に当接され、試料ホルダ214の上端がアプリケータ300の開口面309から突出する。次いで、試料ホルダ214の上端を手指等で矢印方向に押しながら、抜け止め部305の先端307を開口部302内に突出する方向に回転させる。この回転操作によって、図11に示すように、抜け止め部305の先端307は、試料ホルダ214の上端に係合してその浮き上がりが押さえられ、同時に、試料ホルダ214の段部208がシール部304に圧接して、試料ホルダ214とアプリケータ300との間が気密に保たれる。
図12は、試料ホルダの貫通孔204、205(図8参照)に試料導入構造としての試料導入パイプ(以下、単にパイプともいう)220、221が挿入される過程を示す説明図であり、図13は、上記パイプが挿入された状態の説明図である。各パイプ220、221は、前記シール部206、207(図8参照)によって、貫通孔204、205との間で気密に保持される。符号210は、試料導入パイプ220、221を支持する支持部であり、貫通孔204、205の間隔と同一間隔で、互いに略平行状態に両パイプを支持する。支持部210は、凹状に形成される取付部203とほぼ同一形状の円錐台形状であり、その高さHは試料ホルダ214の取付部203の高さhより高く設定される。
試料導入パイプ220、221は、支持部210を手指またはマニュピレータ等で押し下げることにより、貫通孔204、205に同時に挿入される。支持部210は、その下端が取付部203の凹部に入り込んでその底面に当接して下降後停止し、パイプ220、221を安定的に支持する。
図13に示すように、支持部210は、停止状態において取付部203から高さHとhの差分だけ上方に突出(符号211参照)する。この突出している部分211は、結晶スポンジ200への試料の吸蔵の後には、パイプ220、221を引き抜くときの冶具として有用である。すなわち、支持部210の突出している部分211を手指またはマニュピレータ等で挟持して引き上げることにより、パイプ220、221を同時に効率よく引き抜くことができる。
図13において、符号230は、アプリケータ300の収納空間301の底部に注入された疎水性の溶媒(例えばシクロヘキサン)であり、試料保持部202bの先端部の結晶スポンジ200が浸るレベルに設定されて充填される。パイプ220は試料の注入用のパイプであり、パイプ221は排出用のパイプである。パイプ220の先端部は、溶媒230に没入して結晶スポンジ200の近傍まで伸び、パイプ221の先端部は、溶媒230に浸らない位置まで伸びている。
図13において、注入用のパイプ220から測定すべき試料(例えば気体)が注入されると、試料は溶媒230に入り込み、溶媒中で結晶スポンジ200内に吸蔵される。過剰に供給された試料(溶媒、担体等)は、パイプ221を経由して外部に排出される。
その後、本例では、支持部210の突出する部分211を手指またはマニュピレータ等で挟持して持上げることにより、パイプ220、221が同時に引き抜かれ、次いで、試料の吸蔵が行われた結晶スポンジ200を有する試料ホルダ214が、ゴニオメータ12の先端部のゴニオヘッド15に取り付けられる。なお、試料ホルダ214と、その取扱い冶具であるアプリケータ300とは、共に一体化した試料ホルダユニット400として、解析作業に必要な数だけ揃えて、箱状の容器に収納し、所謂、セットとして提供することも可能である。
上記構成の試料ホルダユニット400によれば、当該試料ホルダ214の一部を構成するピン状の保持部202b(ゴニオヘッドピンに対応)の先端部に取り付けた結晶スポンジ200を、破損し、或いは、試料ホルダ214から逸脱することなく、安全かつ容易に取り扱うことができる。即ち、アプリケータ300から取り出す際にも、開口部302が案内面となるので、極微量な試料を吸蔵した当該結晶スポンジ200を、従来のように吸蔵容器から単体で取り出されて損傷することなく、安全で簡単かつ容易に、かつ、乾燥により破壊されない程度の短時間で、迅速に、ゴニオヘッド15上に準備することができる。本実施例では、この試料の吸蔵が完了した試料ホルダ214を、アプリケータ300から取り外し、ゴニオメータ12の先端部のゴニオヘッド15(図7(A)を参照)に取り付ける。これにより、結晶スポンジ200に吸蔵した当該試料Sは、高度な専門知識や緻密な作業を必要とすることなく、単結晶X線回折装置9内の所定の位置に容易に、正確かつ迅速に配置されることとなる。
<吸蔵装置(ソーキングマシン)による試料の導入>
続いて、上記構成の試料ホルダユニット400(図10~13参照)の結晶スポンジ200への、吸蔵装置を用いて行われる試料の吸蔵について説明する。
続いて、上記構成の試料ホルダユニット400(図10~13参照)の結晶スポンジ200への、吸蔵装置を用いて行われる試料の吸蔵について説明する。
図14において、前処理装置600を構成するLC(液体クロマトグラフィ)601、GC(気体クロマトグラフィ)602、更には、SCF(超臨界液体クロマトグラフィ)603やCE(電気泳動)604等によって抽出された極微量な試料Sは、各種の切替弁や調圧装置を備えて必要な条件(流量や圧力)で流体を供給する吸蔵装置(ソーキングマシン)650を介して、試料ホルダ214の貫通孔204、205に挿入される一対の試料導入パイプ220、221に供給され、当該試料は、アプリケータ300内部の収納空間301に選択的に導入される。すなわち試料は、供給側配管から供給側の試料導入パイプ220に送られ、供給側の試料導入パイプ220の先端部分からアプリケータ300の内部の試料ホルダ214に供給される。試料のみ、または試料と保存溶媒(キャリア)とが混合された溶液が、注入用のパイプ220内を流れ供給される。このことにより、導入された当該極微量の試料Sは、アプリケータ300の収納空間301内において、試料ホルダ214のピン状の試料保持部202bの先端に取り付けた結晶スポンジ200に接触して試料の吸蔵が行われる。なお、ここでの電気泳動装置は、キャピラリー電気泳動や等電点電気泳動等、種々の電気泳動装置を含む。吸蔵装置500を用いる場合、試料が注入された状態で所定の時間が経過した後、排出側の試料導入パイプ221から過剰な試料、または試料と保存溶媒(キャリア)とが混合された溶液が排出される。吸蔵装置500を用いない場合、不要な保存溶媒(キャリア)または溶液が排出側の試料導入管254内を流れ排出される。したがって、排出側の試料導入管254には、試料が流れない場合がありうる。なお、気体や超臨界流体をキャリアとした場合には、試料を含んだキャリアが排出される。
そして、この吸蔵工程が完了した試料ホルダ214は、アプリケータ300から取り外されて、単結晶X線回折装置9内の所定の位置、即ち、ゴニオメータ12の先端部のゴニオヘッド15に、例えば、上述した磁力等の位置決め機構を利用して、正確に取り付けられる。このことによれば、試料ホルダ214のピン状の保持部202bの一部(先端)に取り付けられた結晶スポンジ200は、試料の吸蔵が完了した後、ゴニオメータ12の先端部、即ち、X線管11からのX線ビームが集光されて照射される位置に配置されることとなる。換言すれば、結晶スポンジ200に吸蔵された試料Sは、単結晶X線回折装置9内の所定の位置に正確に配置され、その後、X線検出器22により当該試料Sからの回折X線の強度が測定されてその結晶構造等が解析されることとなる。
このように、本発明の試料ホルダユニット400によれば、誰でも容易かつ安全に、極微量の試料を、試料ホルダ214に予め一体に取り付けられた極微小な寸法の結晶スポンジ200に吸蔵させると共に、その後、当該試料Sをゴニオメータ12に、高精度で正確な位置に結晶スポンジが乾燥により破壊されない短時間で迅速に、かつ、安全に搭載することが可能となる。なお、その後、上述した単結晶X線回折装置9によって試料Sに所要の波長のX線を照射しながら対象材料によるX線の回折や散乱測定し、上述した単結晶X線構造解析装置を構成する測定用アプリケーションソフトにより構造解析を行って分子モデルの構築や最終レポートの作成等を行うことは現状と同様である。即ち、本実施例によれば、創薬や生命科学のみならず各種の材料研究の現場などにおいて、発見又は設計した新たな構造物の分子構造・集合構造(実空間)を、迅速、安全、かつ簡単に確認することが可能となる。
図15は、実施例2のアプリケータ500の斜視図で、図16はアプリケータ500に試料ホルダ214を内蔵した試料ホルダユニット400の断面図であり、実施例1と同等部分に同一符号を付している。符号501は、アプリケータ500の開口面509に沿って横方向から開口部302に突出する(或いは、覆う)ように摺動する、板状の抜け止め部(摺動部)である。抜け止め部501は、装着された状態で、アプリケータ500に収納された試料ホルダ214の上面に係合し、試料ホルダ214の抜け出しを阻止する。符号504、504は、開口面509の両側部に平行に延びるように設置された断面コ字型の一対の案内レールであり、抜け止め部501は、その両側端が案内レール504、504に嵌合して、矢印の両方向に摺動案内される。
抜け止め部501は、中央部に円形の開口502を有し、開口502は試料ホルダ214の円盤状の基台部201の外径より小さな内径を有しており、アプリケータ500に装着されたとき、貫通孔204、205を塞がないように、試料ホルダ214の上面の外周部のみに係合して、試料ホルダ214の抜け出しを阻止する(図16参照)。なお、試料導入パイプ220、221が挿入された状態では、抜け止め部501は、試料導入パイプを避けた位置で試料ホルダ214に係合する。なお、試料導入パイプを避けた位置での係合とは、抜け止め部501をアプリケータ500に装着した状態で試料導入パイプの出し入れが妨げられない状態で試料ホルダ214に係合していることを指す。抜け止め部501は、前端の摺動下面に傾斜面503が設けられており、摺動により傾斜面503で試料ホルダ214の上面を押し下げながら装着がなされ、また、傾斜面503により、試料ホルダ214の上面、およびアプリケータ500の開口面509との摺動は円滑になされる。
結晶スポンジ200への試料の吸蔵に際しては、抜け止め部501が装着された状態で、その開口502に露出している貫通孔204、205に、試料導入パイプ220、221が挿入される。
本実施例2によれば、抜け止め部として、軽量な板状の抜け止め部を用いているので、容易な操作で、迅速で確実な抜け止めを行うことができる。
図17は、実施例3の一部を断面で示す試料ホルダユニット400の斜視図で、抜け止め部がアプリケータに装着された状態を示し、抜け止め部の開口(図15の符号502参照)が図示省略されており、実施例2と同等部分に同一符号を付している。
符号700はアプリケータ、符号701はアプリケータ700の開口部(図示せず)を矢印方向に摺動する抜け止め部(摺動部)であり、樹脂や金属等で機械的強度の高い(約10気圧)板厚に形成される。符号704、704は、アプリケータ700の上方の両側部に、横方向に延びるように平行に設置された一対の案内レールで、強度(約10気圧)を有する板厚で断面コ字型(U字型)に形成され、高い機械的強度を有する。符号705、705は、抜け止め部701の両側端703に設けられた係合部であって、前記案内レール704、704に係合するように、樹脂や金属等で高い機械的強度を有する断面コ字型(U字型)に形成されている。
符号707は、抜け止め部701の天板702上に設けられた突起状の操作部で、抜け止め部701の摺動操作に用いられる。また、図示が省略されているが、抜け止め部701の前端の摺動下面には、実施例2と同様に傾斜面が設けられ、試料ホルダ214およびアプリケータ700と、円滑な摺動を可能にする。
アプリケータ700への装着は、抜け止め部701の係合部705、705を案内レール704、704に係合させて、操作部707を手指やマニュピレータなどで矢印方向に摺動操作することで行われる。抜け止め部701は、装着された状態で、試料ホルダ214の上面に係合して、アプリケータ700からの抜け出しを阻止する。抜け止め部701の取外しは、操作部707を装着時と逆方向に操作して、抜け止め部701を案内レール704、704から抜き取ることで行われる。
以上に詳述したように、本発明の単結晶X線構造解析装置用試料ホルダユニットによれば、X線構造解析の専門知識がなくても、極微小で脆弱(fragile)な結晶スポンジを利用した単結晶X線構造解析を、従来必要とされた緻密で微細な作業を伴わずに、迅速、確実かつ容易に行うことが出来る、換言すれば、結晶スポンジを利用した単結晶X線構造解析を、歩留まり良くかつ効率的に行うことが可能な、汎用性に優れ、かつ、ユーザフレンドリな単結晶X線構造解析装置を実現することを可能にする試料ホルダユニットが提供され、更には、実際の試料の準備作業により適合した構成の試料ホルダユニットが提供される。
結晶スポンジ200への試料の吸蔵工程では、吸蔵に適した、温度、圧力等に設定された試料ホルダユニット400に、吸蔵装置(ソーキングマシン)650(図14参照)から、吸蔵に適した条件(圧力や流量等)で試料が供給される。このため、試料ホルダユニット400内は、種々の温度と圧力(約10気圧)に耐える必要がある。本実施例3では、機械的強度の高い(約10気圧)板厚の抜け止め部701、係合部705、および案内レール704を用いており、更に、係合部705および案内レール704を機械的強度の高い(約10気圧)断面コ字型(U字型)に形成しているので、機械強度的に十分に耐えて対応することができる。
なお、以上には本発明の種々の実施例を説明したが、本発明は上記した実施例に限定されるものではなく様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、またある実施例の構成に他の実施例の構成を加えることも可能であり、また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能であろう。
本発明は、物質構造の探索に用いるX線構造解析装置や方法などにおいて広く利用可能である。
なお、本国際出願は、2018年11月22日に出願した日本国特許出願第2018-219781号に基づく優先権を主張するものであり、日本国特許出願第2018-219781号の全内容を本国際出願に援用する。
1…単結晶X線構造解析装置(全体)、9…単結晶X線回折装置、11…X線管、12…ゴニオメータ、22…X線検出器、102…測定装置、103…入力装置、104…画像表示装置、107…CPU、108…RAM、109…ROM、111…ハードディスク、116…分析用アプリケーションソフト、117…測定用アプリケーションソフト、200…結晶スポンジ、201…基台部、202…突出部、202b…試料保持部、204、205…貫通孔、214…試料ホルダ、220、221…試料導入パイプ(パイプ)、300、500、700…アプリケータ、301…収納空間、302…開口部、305、501、701…抜け止め部、400…試料ホルダユニット。
Claims (7)
- 単結晶X線構造解析装置において使用する試料ホルダと、前記試料ホルダを収納するアプリケータからなる試料ホルダユニットであって、
前記試料ホルダは、
前記単結晶X線構造解析装置のゴニオメータに取り付けられる基台部と、
前記基台部に形成され、内部に形成された複数の微細孔に試料を吸蔵可能な細孔性錯体結晶を保持する保持部と、
前記基台部に形成され、前記細孔性錯体結晶に吸蔵させるための前記試料を導入する試料導入構造を備え、
前記アプリケータは、
前記試料ホルダを収納する収納空間および開口部と、
前記収納空間に収納された前記試料ホルダとの接触面に設けられたシール部と、
前記収納空間に収納された前記試料ホルダに係合して、前記開口部からの前記試料ホルダの抜け出しを阻止する抜け止め部と、を備えることを特徴とする試料ホルダユニット。 - 請求項1に記載の試料ホルダユニットにおいて、
前記試料導入構造は、前記基台部をユニット外側から内側に貫通する試料導入パイプで構成され、
前記抜け止め部は、係合位置で前記試料ホルダの前記試料導入パイプを妨げない形状であることを特徴とする試料ホルダユニット。 - 請求項1または2に記載の試料ホルダユニットにおいて、
前記抜け止め部は、前記アプリケータの開口部に突出して前記試料ホルダの抜け出しを阻止する回転レバーで構成されることを特徴とする試料ホルダユニット。 - 請求項1または2に記載の試料ホルダユニットにおいて、
前記抜け止め部は、前記アプリケータの開口部に突出するように摺動して、前記試料ホルダの抜け出しを阻止する形状であることを特徴とする試料ホルダユニット。 - 請求項4に記載の試料ホルダユニットにおいて、
前記抜け止め部は、前記試料ホルダと係合する摺動面の先端に傾斜面を有することを特徴とする試料ホルダユニット。 - 請求項4または5に記載の試料ホルダユニットにおいて、
前記アプリケータはその両側部に一対の平行な案内レールを有し、
前記抜け止め部は前記案内レールに係合して摺動することを特徴とする試料ホルダユニット。 - 請求項4または5に記載の試料ホルダユニットにおいて、
前記アプリケータはその両側部に一対の平行な案内レールを有し、
前記抜け止め部は前記案内レールに係合して摺動する係合部を有し、
前記案内レールおよび前記係合部は、それぞれ断面コ字型に形成されることを特徴とする試料ホルダユニット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980088744.4A CN113287003B (zh) | 2018-11-22 | 2019-11-21 | 单晶x射线结构解析装置用试样保持架组件 |
JP2020557653A JP7278527B2 (ja) | 2018-11-22 | 2019-11-21 | 単結晶x線構造解析装置用試料ホルダユニット |
EP19886784.8A EP3885750A4 (en) | 2018-11-22 | 2019-11-21 | SAMPLE HOLDER UNIT FOR X-RAY STRUCTURAL ANALYSIS DEVICES ON MONOCRYSTAL |
US17/295,864 US20220347679A1 (en) | 2018-11-22 | 2019-11-21 | Sample holder unit for single-crystal x-ray structure analysis apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018219781 | 2018-11-22 | ||
JP2018-219781 | 2018-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105727A1 true WO2020105727A1 (ja) | 2020-05-28 |
Family
ID=70774429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045701 WO2020105727A1 (ja) | 2018-11-22 | 2019-11-21 | 単結晶x線構造解析装置用試料ホルダユニット |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220347679A1 (ja) |
EP (1) | EP3885750A4 (ja) |
JP (1) | JP7278527B2 (ja) |
CN (1) | CN113287003B (ja) |
WO (1) | WO2020105727A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113302484B (zh) * | 2018-11-22 | 2024-06-25 | 株式会社理学 | 单晶x射线构造解析装置用试样保持架单元 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030152194A1 (en) * | 2001-12-12 | 2003-08-14 | The Regents Of The University Of California | Integrated crystal mounting and alignment system for high-throughput biological crystallography |
JP2007003394A (ja) | 2005-06-24 | 2007-01-11 | Rigaku Corp | 双晶解析装置 |
WO2009001602A1 (ja) * | 2007-06-25 | 2008-12-31 | Sai Corporation | ガス充填式キャピラリーおよび試料充填方法 |
JP2013156218A (ja) * | 2012-01-31 | 2013-08-15 | Japan Synchrotron Radiation Research Institute | 微小試料用キャピラリー |
WO2014038220A1 (ja) * | 2012-09-07 | 2014-03-13 | 独立行政法人 科学技術振興機構 | ゲスト化合物内包高分子金属錯体結晶、その製造方法、結晶構造解析用試料の作製方法、及び有機化合物の分子構造決定方法 |
WO2016017770A1 (ja) | 2014-07-31 | 2016-02-04 | 国立研究開発法人 科学技術振興機構 | 回折データの解析方法、コンピュータプログラム及び記録媒体 |
JP2017138302A (ja) * | 2016-02-02 | 2017-08-10 | 住友金属鉱山株式会社 | 結晶子径測定方法、試料ホルダー、流動物の製造システム、流動物の製造方法、流動物の品質管理システム、および、流動物の品質管理方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08247966A (ja) * | 1995-03-10 | 1996-09-27 | Rigaku Corp | X線装置用試料ホルダ及びx線装置への試料装着方法 |
US6400797B1 (en) * | 2000-06-22 | 2002-06-04 | D'amico Kevin L. | Sample changer for capillary geometry X-ray diffractometers |
JP3640383B2 (ja) * | 2001-09-10 | 2005-04-20 | 独立行政法人理化学研究所 | サンプルの支持機構 |
EP1623202B1 (en) * | 2003-03-20 | 2012-08-22 | Cornell Research Foundation, Inc. | Curved and tapered film used as sample mount in microcrystal crystallography |
JP4466991B2 (ja) * | 2003-05-22 | 2010-05-26 | 英明 森山 | 結晶成長装置及び方法 |
JP2007171000A (ja) * | 2005-12-22 | 2007-07-05 | Rigaku Corp | X線結晶構造解析装置 |
WO2012063877A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社ジェイ・エム・エス | 分離容器および分離方法 |
JP5838109B2 (ja) * | 2011-05-13 | 2015-12-24 | 株式会社リガク | 複合x線分析装置 |
JP6051014B2 (ja) * | 2012-10-29 | 2016-12-21 | 株式会社日立ハイテクノロジーズ | 試料格納用容器、荷電粒子線装置、及び画像取得方法 |
US9757515B1 (en) * | 2013-10-16 | 2017-09-12 | Flextronics Ap, Llc | Multi-location top loading insulin infusion set |
JP2017036919A (ja) * | 2013-12-27 | 2017-02-16 | 国立研究開発法人科学技術振興機構 | 結晶構造解析用試料の作製方法、及び代謝物の分子構造決定方法 |
JP6569151B2 (ja) * | 2015-02-25 | 2019-09-04 | 学校法人日本大学 | イオン液体を用いた透過型電子顕微鏡による錯体の観察方法及び観察用試料 |
JP6104480B2 (ja) * | 2015-03-17 | 2017-04-05 | 株式会社エム・ビー・エス | 試料採取分離器具 |
EP3287775B1 (en) * | 2016-08-26 | 2019-04-03 | Leica Mikrosysteme GmbH | Modular specimen holders for high pressure freezing and x-ray crystallography of a specimen |
-
2019
- 2019-11-21 WO PCT/JP2019/045701 patent/WO2020105727A1/ja unknown
- 2019-11-21 JP JP2020557653A patent/JP7278527B2/ja active Active
- 2019-11-21 CN CN201980088744.4A patent/CN113287003B/zh active Active
- 2019-11-21 US US17/295,864 patent/US20220347679A1/en not_active Abandoned
- 2019-11-21 EP EP19886784.8A patent/EP3885750A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030152194A1 (en) * | 2001-12-12 | 2003-08-14 | The Regents Of The University Of California | Integrated crystal mounting and alignment system for high-throughput biological crystallography |
JP2007003394A (ja) | 2005-06-24 | 2007-01-11 | Rigaku Corp | 双晶解析装置 |
WO2009001602A1 (ja) * | 2007-06-25 | 2008-12-31 | Sai Corporation | ガス充填式キャピラリーおよび試料充填方法 |
JP2013156218A (ja) * | 2012-01-31 | 2013-08-15 | Japan Synchrotron Radiation Research Institute | 微小試料用キャピラリー |
WO2014038220A1 (ja) * | 2012-09-07 | 2014-03-13 | 独立行政法人 科学技術振興機構 | ゲスト化合物内包高分子金属錯体結晶、その製造方法、結晶構造解析用試料の作製方法、及び有機化合物の分子構造決定方法 |
WO2016017770A1 (ja) | 2014-07-31 | 2016-02-04 | 国立研究開発法人 科学技術振興機構 | 回折データの解析方法、コンピュータプログラム及び記録媒体 |
JP2017138302A (ja) * | 2016-02-02 | 2017-08-10 | 住友金属鉱山株式会社 | 結晶子径測定方法、試料ホルダー、流動物の製造システム、流動物の製造方法、流動物の品質管理システム、および、流動物の品質管理方法 |
Non-Patent Citations (3)
Title |
---|
HOSHINO ET AL., THE UPDATED CRYSTALLINE SPONGE METHOD IUCRJ, vol. 3, 2016, pages 139 - 151 |
MAKOTO FUJITA: "X-ray analysis on the nanogram to microgram scale using porous complexes", NATURE, vol. 495, 28 March 2013 (2013-03-28), pages 461 - 466, XP055400439, DOI: 10.1038/nature11990 |
See also references of EP3885750A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7278527B2 (ja) | 2023-05-22 |
EP3885750A1 (en) | 2021-09-29 |
US20220347679A1 (en) | 2022-11-03 |
JPWO2020105727A1 (ja) | 2021-10-07 |
CN113287003B (zh) | 2024-07-16 |
EP3885750A4 (en) | 2022-08-03 |
CN113287003A (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7520419B2 (ja) | 試料ホルダユニット | |
JP7252654B2 (ja) | 単結晶x線構造解析試料の吸蔵装置及び吸蔵方法 | |
JP7278528B2 (ja) | 単結晶x線構造解析装置用試料ホルダユニット | |
JP7278526B2 (ja) | 単結晶x線構造解析システム | |
WO2020105726A1 (ja) | 単結晶x線構造解析装置用試料ホルダ、試料ホルダユニットおよび吸蔵方法 | |
WO2020105727A1 (ja) | 単結晶x線構造解析装置用試料ホルダユニット | |
WO2020105716A1 (ja) | 単結晶x線構造解析装置と方法、及び、そのための試料ホルダ | |
JP7237373B2 (ja) | 単結晶x線構造解析装置および試料ホルダ取り付け装置 | |
JP7300744B2 (ja) | 単結晶x線構造解析用試料の吸蔵装置と吸蔵方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19886784 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020557653 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019886784 Country of ref document: EP Effective date: 20210622 |