WO2016017770A1 - 回折データの解析方法、コンピュータプログラム及び記録媒体 - Google Patents

回折データの解析方法、コンピュータプログラム及び記録媒体 Download PDF

Info

Publication number
WO2016017770A1
WO2016017770A1 PCT/JP2015/071682 JP2015071682W WO2016017770A1 WO 2016017770 A1 WO2016017770 A1 WO 2016017770A1 JP 2015071682 W JP2015071682 W JP 2015071682W WO 2016017770 A1 WO2016017770 A1 WO 2016017770A1
Authority
WO
WIPO (PCT)
Prior art keywords
space group
single crystal
diffraction data
compound
crystal
Prior art date
Application number
PCT/JP2015/071682
Other languages
English (en)
French (fr)
Inventor
藤田 誠
泰英 猪熊
健太郎 山口
Original Assignee
国立研究開発法人 科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人 科学技術振興機構 filed Critical 国立研究開発法人 科学技術振興機構
Priority to JP2016538444A priority Critical patent/JP6534668B2/ja
Priority to EP15826644.5A priority patent/EP3176568A4/en
Priority to US15/500,629 priority patent/US10976267B2/en
Publication of WO2016017770A1 publication Critical patent/WO2016017770A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/205Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials using diffraction cameras

Definitions

  • the present invention relates to a method for analyzing diffraction data more simply and efficiently in a single crystal structure analysis method, a computer program for causing a computer to execute this method, and a recording medium.
  • a single crystal X-ray structure analysis method is known as a method for determining the molecular structure of a compound.
  • a three-dimensional image of a molecule can be obtained at the atomic level, and this method is extremely useful in studies of functional substances such as physiologically active substances.
  • a single crystal is irradiated with X-rays, diffracted X-rays are detected and diffraction data is collected, and then the diffraction data is analyzed to determine the molecular structure.
  • the detected diffraction X-ray usually loses phase information, so the molecular structure (electron density distribution) cannot be directly determined by Fourier synthesis.
  • a method has been adopted in which a crystal structure model is first constructed and refined to obtain a crystal structure that conforms to diffraction data, thereby determining the molecular structure. For example, as shown in FIG.
  • Non-patent Document 1 a diffraction structure is collected, a space group is determined, and then a crystal structure model is constructed by determining an initial phase. Then, by refining it, a crystal structure that fits the measured diffraction data can be obtained, and the structure of the molecule can be determined (Non-patent Document 1).
  • the present invention has been made in view of such circumstances, and in a single crystal structure analysis method, a method capable of analyzing diffraction data more simply and efficiently, a computer program for causing a computer to execute the method, and the computer program
  • An object of the present invention is to provide a recording medium on which is recorded.
  • the present inventors have a three-dimensional skeleton and three-dimensionally regularly arranged pores and / or hollows that are partitioned by the three-dimensional skeleton.
  • Crystal structure analysis in which the molecules of a compound that determines the structure are regularly arranged in the pores and / or hollows of a single crystal of a porous compound whose three-dimensional skeleton has been elucidated by a crystal structure analysis method
  • the diffraction data on the single crystal space group and crystal structure of the porous compound used is used as the initial value to make the diffraction data easier and more efficient.
  • the inventors have found that it can be analyzed, and have completed the present invention.
  • the following diffraction data analysis method (1), computer programs (2) to (5), and a recording medium (6) are provided.
  • (1) It has a three-dimensional framework and pores and / or hollows that are partitioned by the three-dimensional framework and are regularly arranged in three dimensions, and the three-dimensional framework is solved by a crystal structure analysis method.
  • a method for analyzing diffraction data obtained using a crystal structure analysis sample in which molecules of a compound that determines the structure are regularly arranged in the pores and / or hollows of a single crystal of a porous compound.
  • a method for analyzing diffraction data comprising: (2) A program for analyzing diffraction data, which causes a computer to execute the method for analyzing diffraction data described in (1). (3) Process (I) for deriving a space group having lower symmetry based on the space group of the single crystal of the porous compound.
  • Diffraction data on the crystal structure analysis sample is obtained by selecting one space group selected from the same space group as the single crystal space group of the porous compound and the space group derived in the processing (I).
  • the program according to (2) which causes a computer to execute.
  • the method further includes a process of presenting the space group derived in the process (I) to the user, and the determination of the space group in the process (II) is performed based on the user's judgment.
  • (3) The program described in.
  • (5) The program according to (3), wherein the determination of the space group in the process (II) is performed by a computer according to a preset rule.
  • (6) A computer-readable recording medium in which the computer program according to any one of (2) to (5) is recorded.
  • the initial phase is determined by a conventional method by analyzing diffraction data (coordinate values of crystallographic data) relating to the crystal structure of the single crystal of the porous compound before inclusion of the guest molecule as the initial structure.
  • the initial phase can be determined without any problem.
  • the method for analyzing diffraction data of the present invention has a three-dimensional skeleton and three-dimensionally regularly arranged pores and / or hollows formed by partitioning the three-dimensional skeleton.
  • Crystal structure analysis in which the molecules of a compound that determines the structure are regularly arranged in the pores and / or hollows of a single crystal of a porous compound whose three-dimensional skeleton has been elucidated by a crystal structure analysis method
  • a method for analyzing diffraction data obtained using a sample for use comprising the following steps (I) to (III).
  • Step (I) Selecting the same space group as the space group of the single crystal of the porous compound or the space group having lower symmetry than the space group as the space group of the crystal structure analysis sample.
  • Step (II) Determining an initial structure of the crystal structure analysis sample using diffraction data relating to a crystal structure of a single crystal of the porous compound as an initial value;
  • Step (III) Refining the initial structure obtained in step (II).
  • the method of the present invention can be performed, for example, according to the procedure shown in FIG.
  • Diffraction data used in the present invention has a three-dimensional skeleton and three-dimensionally regularly arranged pores and / or hollows partitioned by the three-dimensional skeleton, and the three-dimensional skeleton has a crystal structure.
  • the molecules of the compound that determines the structure hereinafter sometimes referred to as “compound (A)”.
  • a single crystal of a porous compound includes a three-dimensional skeleton and pores and / or hollows regularly and three-dimensionally formed by being partitioned by the three-dimensional skeleton.
  • the three-dimensional skeleton is elucidated by a crystal structure analysis method.
  • diffraction data relating to the three-dimensional skeleton of the single crystal, which has been clarified by a crystal structure analysis method is used as an initial value.
  • the three-dimensional skeleton is a skeleton-like structure having a three-dimensional extension inside a single crystal.
  • the three-dimensional skeleton is composed of one or more molecular chains, or one or two or more molecular chains and a skeleton-forming compound.
  • “Molecular chain” refers to an organization organized by covalent bonds and / or coordinate bonds. This molecular chain may have a branched structure or a cyclic structure. Examples of the three-dimensional skeleton composed of one molecular chain include a skeleton organized in a “jungle gym” shape.
  • a three-dimensional skeleton composed of two or more molecular chains two or more molecular chains are organized as a whole by interactions such as hydrogen bonds, ⁇ - ⁇ stacking interactions, van der Waals forces, etc.
  • a skeleton in which two molecular chains are entangled in a “chienowa” shape examples include the three-dimensional skeletons of polynuclear metal complexes 1 and 2 described later.
  • “Skeletogenic compounds” do not constitute part of the molecular chain, but constitute part of the three-dimensional skeleton by interactions such as hydrogen bonds, ⁇ - ⁇ stacking interactions, van der Waals forces, etc. Refers to the compound.
  • the skeleton-forming aromatic compound in the polynuclear metal complex mentioned later is mentioned.
  • “Three-dimensionally ordered pores and / or hollows” means pores and hollows that are regularly aligned without being disturbed to the extent that pores and hollows can be confirmed by crystal structure analysis.
  • Pore and “hollow” represent an internal space in the single crystal. The internal space extending in a cylindrical shape is called “pore”, and the other internal space is called “hollow”.
  • the size of the pore is defined as an inscribed circle of the pore (hereinafter simply referred to as a parallel plane) parallel to the crystal plane that is closest to the perpendicular to the direction in which the pore extends (hereinafter simply referred to as a parallel plane)
  • a parallel plane parallel to the crystal plane that is closest to the perpendicular to the direction in which the pore extends
  • the “direction in which the pores extend” can be determined by the following method. That is, first, a crystal plane X (A plane, B plane, C plane, or a diagonal plane of each) in an appropriate direction across the target pore is selected. Then, by expressing the atoms that exist on the crystal plane X and constitute the three-dimensional skeleton using the van der Waals radii, a cross-sectional view of the pore having the crystal plane X as a cutting plane is drawn. Similarly, a cross-sectional view of a pore having a crystal plane Y shifted from the crystal plane X by one unit cell as a cut plane is drawn.
  • the “diameter of the inscribed circle of the pore” can be obtained by the following method. That is, first, a cross-sectional view of the pore having the parallel plane as a cut plane is drawn by the same method as described above. Next, after drawing the inscribed circle of the pore in the cross-sectional view and measuring the diameter, the obtained measured value is converted into an actual scale to obtain the diameter of the inscribed circle of the actual pore. be able to. Furthermore, by measuring the diameter of the inscribed circle of the pore in each parallel surface while gradually translating the parallel surface by one unit cell, the diameter of the inscribed circle of the narrowest part and the widest The diameter of the inscribed circle of the part is obtained.
  • the diameter of the inscribed circle of the single crystal pores is preferably 2 to 30 mm, and more preferably 3 to 10 mm.
  • the major axis of the inscribed ellipse of the single crystal pores is preferably 2 to 30 mm, and more preferably 3 to 10 mm.
  • the minor axis of the inscribed ellipse of the single crystal pores is preferably 2 to 30 mm, and more preferably 3 to 10 mm.
  • the pore volume of the single crystal is described in the paper (A): Acta Crystallogr. A 46, 194-201 (1990). That is, it is possible to calculate using “volume of single crystal ⁇ porosity in unit cell” based on Solvent Accessible Void (void volume in a unit cell) calculated by a calculation program (PLATON SQUEEZE PROGRAM).
  • the pore volume of the single crystal (volume of all pores in one single crystal) is preferably 1 ⁇ 10 ⁇ 7 to 0.1 mm 3 , preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 mm 3. More preferred.
  • the size of the hollow can be obtained by the method described in the above paper (A) as well as the pore volume.
  • the single crystal preferably has a cubic or rectangular parallelepiped shape. One side thereof is preferably 10 to 1000 ⁇ m, more preferably 60 to 200 ⁇ m.
  • a single crystal of a porous compound used for preparing a sample for crystal structure analysis has a three-dimensional skeleton that has been elucidated by a crystal structure analysis method.
  • the three-dimensional skeleton has been elucidated by the crystal structure analysis method does not mean that the single crystal used for the preparation of the crystal structure analysis sample has already been subjected to crystal structure analysis. This means that a crystal structure analysis has already been performed using a single crystal of a porous compound having the same three-dimensional skeleton as that of a single crystal used for preparing a sample for structural analysis.
  • the single crystal of the porous compound used for the preparation of the sample for crystal structure analysis may consist of only a three-dimensional skeleton (so-called host molecule), or in the three-dimensional skeleton and pores and / or hollows, It may have an exchangeable molecule (so-called guest molecule).
  • the single crystal of the porous compound used for elucidating the three-dimensional skeleton and the single crystal of the porous compound used for preparing the sample for crystal structure analysis are as long as the three-dimensional skeleton does not change. The presence or absence and the type of guest molecule may differ.
  • the guest molecule is in the pore of the porous compound single crystal (1).
  • (1) clathrate, porous compound single crystal (1) with pores of guest compound (2), porous compound single crystal (1) with pores of guest molecule can be used for the preparation of a crystal structure analysis sample. Then, after collecting diffraction data using the obtained crystal structure analysis sample, a known crystal structure analysis result (a guest molecule (1) is included in the pores of a single crystal (1) of a porous compound) The diffraction data can be analyzed using the crystal structure analysis result of the state.
  • the atoms of the single crystal (1) of the porous compound Create a file with only the coordinates extracted, and use it with the diffraction data in which the guest molecule (2) is included in the pores of the single crystal (1) of the porous compound. Structural analysis can be performed.
  • the single crystal is irradiated with MoK ⁇ rays (wavelength: 0.71 ⁇ ) generated at a tube voltage of 24kV and a tube current of 50mA, and when the diffracted X-rays are detected by a CCD detector, the resolution is at least 1.5 ⁇ . Those capable of determining the molecular structure are preferred. By using a single crystal having such characteristics, a sample for crystal structure analysis of good quality can be easily obtained.
  • the pores and / or hollows of the single crystal of the porous compound are not disturbed to the extent that the structure of the molecule of the compound (A) can be determined by crystal structure analysis.
  • the porous compound is not particularly limited as long as it can be regularly accommodated in the pores and hollows of the single crystal of the porous compound.
  • a single crystal of a polynuclear metal complex, a urea crystal, or the like can be given.
  • a crystal of a polynuclear metal complex is preferable because it can easily control the size of pores and hollows and the environment (polarity and the like) in the pores and hollows.
  • polynuclear metal complex examples include those containing a plurality of ligands having two or more coordination sites and a plurality of metal ions as a central metal.
  • the ligand having two or more coordinating sites (hereinafter sometimes referred to as “polydentate ligand”) is not particularly limited as long as it can form the three-dimensional skeleton. Multidentate ligands can be utilized.
  • the “coordinating moiety” refers to an atom or atomic group in a ligand having an unshared electron pair capable of coordinating bond. Examples thereof include heteroatoms such as nitrogen atom, oxygen atom, sulfur atom and phosphorus atom; atomic groups such as nitro group, amino group, cyano group and carboxyl group; Especially, the atomic group containing a nitrogen atom or a nitrogen atom is preferable.
  • a multidentate ligand with a long distance from the center of the ligand to the coordination site a single crystal of a polynuclear metal complex having relatively large pores and hollows is obtained.
  • a multidentate ligand having a short distance from the center of the child to the coordination site a single crystal of a polynuclear metal complex having relatively small pores and hollows can be obtained.
  • the polydentate ligand is preferably a polydentate ligand having two or more coordination sites.
  • a ligand having three sites (hereinafter sometimes referred to as a “tridentate ligand”) is more preferable, and the unshared electron pairs (orbitals) of the three coordinating sites exist on a quasi-coplanar surface.
  • the three coordinating sites are arranged radially at equal intervals with respect to the central portion of the tridentate ligand.
  • each unshared electron pair is on the same plane or is slightly displaced from the plane, for example, 20 ° or less with respect to the reference plane. It also includes the state that exists in a plane that intersects at.
  • three coordinating sites are arranged radially at equal intervals with respect to the central portion of the tridentate ligand means that on a line extending radially from the central portion of the ligand at equal intervals, It means a state in which three coordination sites are arranged at approximately the same distance from the central portion.
  • tridentate ligand for example, the following formula (1)
  • Ar represents a trivalent aromatic group which may have a substituent.
  • X 1 to X 3 are each independently a divalent organic group, or Ar and Y 1 to Y 3.
  • Y 1 to Y 3 each independently represents a monovalent organic group having a coordination site).
  • Ar represents a trivalent aromatic group.
  • the number of carbon atoms constituting Ar is usually 3 to 22, preferably 3 to 13, and more preferably 3 to 6.
  • Ar is a trivalent aromatic group having a monocyclic structure composed of one 6-membered aromatic ring or a trivalent aromatic group having a condensed ring structure formed by condensing three 6-membered aromatic rings. Groups.
  • Examples of the trivalent aromatic group having a monocyclic structure composed of one 6-membered aromatic ring include groups represented by the following formulas (2a) to (2d).
  • Examples of the trivalent aromatic group having a condensed ring structure formed by condensing three 6-membered aromatic rings include groups represented by the following formula (2e).
  • “*” represents a bonding position with X 1 to X 3 , respectively.
  • Ar may have a substituent at an arbitrary position of the aromatic group represented by formula (2a), formula (2c) to formula (2e).
  • substituents include alkyl groups such as methyl, ethyl, isopropyl, n-propyl, and t-butyl; alkoxy groups such as methoxy, ethoxy, n-propoxy, and n-butoxy; fluorine A halogen atom such as an atom, a chlorine atom or a bromine atom;
  • an aromatic group represented by the formula (2a) or (2b) is preferable, and an aromatic group represented by the formula (2b) is particularly preferable.
  • X 1 to X 3 each independently represent a divalent organic group or a single bond directly connecting Ar and Y 1 to Y 3 .
  • the divalent organic group those capable of forming a ⁇ -electron conjugated system together with Ar are preferable. Since the divalent organic group represented by X 1 to X 3 forms a ⁇ -electron conjugated system, the planarity of the tridentate ligand represented by the formula (1) is improved, and a stronger three-dimensional network A structure is easily formed.
  • the number of carbon atoms constituting the divalent organic group is preferably 2 to 18, more preferably 2 to 12, and further preferably 2 to 6.
  • divalent organic group examples include a divalent unsaturated aliphatic group having 2 to 10 carbon atoms, a divalent organic group having a monocyclic structure consisting of one 6-membered aromatic ring, and 2 to 4 6-membered aromatic rings.
  • Examples of the divalent unsaturated aliphatic group having 2 to 10 carbon atoms include vinylene group and acetylene group (ethynylene group).
  • Examples of the divalent organic group having a monocyclic structure composed of one 6-membered aromatic ring include a 1,4-phenylene group.
  • Examples of the divalent organic group having a condensed ring structure in which 2 to 4 6-membered aromatic rings are condensed include a 1,4-naphthylene group and an anthracene-1,4-diyl group. Examples of combinations of two or more of these divalent organic groups include the following.
  • the divalent organic group may have a substituent.
  • the substituent include the same as those described above as the substituent for Ar. Among these, the following are preferable as the divalent organic group represented by X 1 to X 3 .
  • Y 1 to Y 3 each independently represents a monovalent organic group having a coordination site.
  • the organic group represented by Y 1 to Y 3 those capable of forming a ⁇ -electron conjugated system together with Ar and X 1 to X 3 are preferable.
  • the planarity of the tridentate ligand represented by the formula (1) is improved, and a strong three-dimensional skeleton is easily formed.
  • the number of carbon atoms constituting Y 1 to Y 3 is preferably 5 to 11, and more preferably 5 to 7.
  • Examples of Y 1 to Y 3 include organic groups represented by the following formulas (3a) to (3f).
  • “*” represents a bonding position with X 1 to X 3 .
  • Y 1 to Y 3 may have a substituent at any position of the organic groups represented by the formulas (3a) to (3f).
  • substituents include the same as those exemplified above as the substituent for Ar.
  • the group represented by the formula (3a) is particularly preferable.
  • the size of the pores and hollows of the single crystal can be adjusted. it can.
  • a single crystal having pores and hollows of a size capable of including the target molecule can be efficiently obtained.
  • tridentate ligand represented by the formula (1) since a strong three-dimensional skeleton is easily formed, the planarity and the symmetry are high, and the ⁇ -conjugated system extends throughout the ligand. Is preferred.
  • Examples of such a tridentate ligand include, but are not limited to, ligands represented by the following formulas (4a) to (4f).
  • the tridentate ligand represented by the formula (1) includes 2,4,6-tris (4-pyridyl) -1,3,5-triazine (TPT) represented by the above formula (4a). Is particularly preferred.
  • a commercial item can also be used as a polydentate ligand of a polynuclear metal complex.
  • PCP Coordination Polymer
  • MOF Metal Organic Structure
  • the metal ion as the central metal of the polynuclear metal complex is not particularly limited as long as it can form a coordinate bond with the polydentate ligand to form a three-dimensional skeleton.
  • ions of metals in Group 8 to 12 of the periodic table such as iron ions, cobalt ions, nickel ions, copper ions, zinc ions, silver ions, palladium ions, ruthenium ions, rhodium ions, platinum ions, etc. are preferable.
  • metal ions of Groups 8 to 12 of the periodic table are more preferred.
  • zinc (II) ions and cobalt (II) ions are preferred because single crystals having large pores and hollows are easily obtained.
  • a monodentate ligand may be coordinated with the central metal of the polynuclear metal complex.
  • Such monodentate ligands include monovalent anions such as chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), thiocyanate ion (SCN ⁇ ); ammonia, monoalkyl Electrically neutral coordinating compounds such as amine, dialkylamine, trialkylamine, and ethylenediamine; and the like.
  • the polynuclear metal complex is a reaction solvent (the solvent used for the synthesis of the polynuclear metal complex), a substitution solvent (refers to another solvent replaced with the reaction solvent, the same applies hereinafter), and a skeleton-forming aromatic described later. It may contain a compound.
  • “Skelet-forming aromatic compound” means an aromatic compound that interacts with a molecular chain constituting a three-dimensional skeleton (excluding covalent bonds and coordinate bonds) and can constitute a part of the three-dimensional skeleton. Say. When the polynuclear metal complex contains a skeleton-forming aromatic compound, the three-dimensional skeleton is likely to become stronger, and the three-dimensional skeleton becomes more stable even after inclusion of the molecule of the compound (A). There is.
  • Examples of the skeleton-forming aromatic compound include condensed polycyclic aromatic compounds. Examples thereof include those represented by the following formulas (5a) to (5i).
  • polynuclear metal complex examples include the following compounds. (1) Compound consisting only of ligand and metal ion [polynuclear metal complex ( ⁇ )] (2) Compound [polynuclear metal complex ( ⁇ )] comprising the polynuclear metal complex ( ⁇ ) and a skeleton-forming aromatic compound (3) A compound in which a guest molecule such as a solvent molecule is included in the polynuclear metal complex ( ⁇ ) or polynuclear metal complex ( ⁇ ) [polynuclear metal complex ( ⁇ )].
  • the polynuclear metal complex used in the present invention is preferably a polynuclear metal complex that does not lose crystallinity even after the compound (A) molecule is taken into the pores and hollows and has relatively large pores and hollows.
  • the polynuclear metal complex having such characteristics can be easily obtained by using the tridentate ligand represented by the formula (1).
  • Examples of the polynuclear metal complex obtained by using the tridentate ligand represented by the formula (1) include polynuclear metal complexes represented by the following formulas (6a) to (6c).
  • M represents a divalent metal ion belonging to Groups 8 to 12 of the periodic table
  • X represents a monovalent anionic monodentate ligand
  • L represents The tridentate ligand represented by the formula (1) is represented
  • solv represents a guest molecule such as a solvent molecule used in the synthesis
  • SA represents a skeleton-forming aromatic compound
  • a, b and c represent arbitrary natural numbers.
  • the polynuclear metal complex using the TPT represented by the formula (4a) as L is a form in which a guest molecule such as a solvent has been incorporated so far.
  • the molecular structure is determined by single crystal X-ray structural analysis, and is particularly suitable as a polynuclear metal complex used in the present invention.
  • polynuclear metal complexes examples include polynuclear metal complexes represented by the following formulas (7a) to (7d).
  • Examples of the polynuclear metal complex represented by the formula (7b) include [(ZnBr 2 ) 3 (TPT) 2 (PhNO 2 ) 5 (H 2 O)] n (polynuclear metal complex 2 described in JP-A-2008-214318. And all or part of the reaction solvent molecules in the polynuclear metal complex 2 are replaced with a substitution solvent.
  • Examples of the polynuclear metal complex represented by the formula (7c) include [(ZnI 2 ) 3 (TPT) 2 (TPH) (PhNO 2 ) 3.9 (MeOH) 1.8 ] described in JP-A-2006-188560.
  • n polynuclear metal complex 3
  • [(ZnI 2 ) 3 (TPT) 2 (PER) (PhNO 2 ) 4 ] n polynuclear metal complex 4
  • all of the reaction solvent molecules in these polynuclear metal complexes or The one obtained by exchanging a part with a substitution solvent can be mentioned.
  • the polynuclear metal complex represented by the formula (7d) [(Co (NCS) 2 ) 3 (TPT) 4 (DCB) 25 (MeOH) 5 ] n (polynuclear metal complex 5) described in WO2011 / 062260 And those obtained by exchanging all or part of the reaction solvent molecules in the polynuclear metal complex 5 with a substitution solvent.
  • PCP porous coordination polymer
  • MOF metal organic structure
  • the method for synthesizing the polynuclear metal complex is not particularly limited, and a known method can be used.
  • the Sigma-Aldrich brochure published in September 2012 includes multidentate ligands, etc.
  • Hydrothermal method in which a hydrothermal reaction is carried out by heating; a microwave method in which a solvent, a polydentate ligand, a metal ion, etc. are placed in a container and microwave irradiation; a solvent, a polydentate ligand in the container , Ultrasonic methods of putting metal ions, etc., and irradiating ultrasonic waves; solid-phase synthesis methods of mechanically mixing polydentate ligands, metal ions, etc. without using a solvent; Using this method, a single crystal of a polynuclear metal complex can be obtained.
  • the solution method is preferably used.
  • the solvent solution of the second solvent of the metal ion-containing compound is added to the solvent solution of the first solvent of the polydentate ligand, and is kept at 0 to 70 ° C. for several hours to several days. The method of leaving still is mentioned.
  • the metal ion-containing compound is not particularly limited.
  • a compound represented by the formula: MX n can be mentioned.
  • M represents a metal ion
  • X represents a counter ion
  • n represents the valence of M.
  • X include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , SCN ⁇ , NO 3 ⁇ , ClO 4 ⁇ , BF 4 ⁇ , SbF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , CH 3 CO 2- and the like.
  • Reaction solvents (first solvent and second solvent) used include aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, 1,2-dichlorobenzene, nitrobenzene; n-pentane, n-hexane, n -Aliphatic hydrocarbons such as heptane; Alicyclic hydrocarbons such as cyclopentane, cyclohexane and cycloheptane; Nitriles such as acetonitrile and benzonitrile; Sulfoxides such as dimethyl sulfoxide (DMSO); N, N-dimethyl Amides such as formamide and n-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane and 1,4-dioxane; alcohols such as methanol, ethanol and isopropyl alcohol; acetone, methyl ethyl ket
  • the first solvent and the second solvent that are not compatible with each other (that is, separated into two layers).
  • a method using nitrobenzene, dichlorobenzene, a mixed solvent of nitrobenzene and methanol, a mixed solvent of dichlorobenzene and methanol as the first solvent, and methanol as the second solvent can be mentioned.
  • the polynuclear metal complexes 1 to 5 can be synthesized according to the methods described in the above documents.
  • sample for crystal structure analysis used in the present invention is obtained by regularly arranging the molecules of the compound (A) in the pores and / or hollows of the single crystal of the porous compound.
  • the molecules of the compound (A) are regularly arranged means that the molecule of the compound (A) is not disturbed to the extent that the structure can be determined by crystal structure analysis, and the single crystal of the porous compound is It is regularly accommodated in the pores and hollows.
  • the sample for crystal structure analysis is irradiated with MoK ⁇ rays (wavelength: 0.71 ⁇ ) generated at a tube voltage of 24 kV and a tube current of 50 mA, and at least 1.5 ⁇ when diffracted X-rays are detected by a CCD detector. Those that can determine the molecular structure with a resolution of 1 are preferred.
  • the molecules of the compound (A) are incorporated into all pores and hollows in the single crystal of the porous compound. You don't have to.
  • the solvent used for the solvent solution of the compound (A) may be incorporated into pores and a part of the hollow of the single crystal of the porous compound.
  • the sample for crystal structure analysis preferably has a compound (A) molecule occupancy of 10% or more.
  • the occupation ratio is a value obtained by crystal structure analysis, and the guest actually present in the single crystal when the amount of the guest molecule [molecule of compound (A)] in the ideal inclusion state is 100%. It represents the amount of molecules.
  • the sample for crystal structure analysis can be obtained by bringing the single crystal of the porous compound into contact with a solvent solution containing the compound (A).
  • the size of the compound (A) is not particularly limited as long as the compound (A) has a size capable of entering the pores and / or hollows of the single crystal.
  • the molecular weight of the compound (A) is usually 20 to 3,000, preferably 100 to 2,000.
  • the molecular size of the compound (A) is grasped to some extent by nuclear magnetic resonance spectroscopy, mass spectrometry, elemental analysis, etc., and a single crystal having appropriate pores and hollows is appropriately selected in advance. It is also preferable to use them.
  • the solvent of the solvent solution containing the compound (A) is not particularly limited as long as it does not dissolve the single crystal to be used and dissolves the chiral compound (A).
  • solvent used include aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, 1,2-dichlorobenzene and nitrobenzene; fats such as n-butane, n-pentane, n-hexane and n-heptane.
  • aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, 1,2-dichlorobenzene and nitrobenzene
  • fats such as n-butane, n-pentane, n-hexane and n-heptane.
  • Aromatic hydrocarbons such as cyclopentane, cyclohexane and cycloheptane; Nitriles such as acetonitrile and benzonitrile; Sulfoxides such as dimethyl sulfoxide (DMSO); N, N-dimethylformamide and n-methyl Amides such as pyrrolidone; Ethers such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane and 1,4-dioxane; Alcohols such as methanol, ethanol and isopropyl alcohol; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Cellosolves such as lucerosolv; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and 1,2-dichloroethane; esters such as methyl acetate, ethyl acetate, ethyl lac
  • the method for bringing the single crystal of the porous compound into contact with the solvent solution containing the compound (A) is not particularly limited.
  • a method of immersing the single crystal in a solvent solution containing the compound (A) a method of passing the solvent solution containing the compound (A) through the capillary after the single crystal is packed in a capillary, etc. Is mentioned.
  • examples of the diffraction data to be collected include X-ray diffraction data and neutron diffraction data on single crystals of porous compounds and samples for crystal structure analysis.
  • a method of collecting diffraction data in a conventional single crystal structure analysis can be used. Specifically, in the conventional procedure shown in FIG. 1, diffraction data is measured and data can be collected according to the procedure except that the above-described sample for crystal structure analysis is mounted instead of a single crystal. .
  • the details of each step in FIG. 1 are as described in Non-Patent Document 1, for example.
  • many steps in collecting diffraction data are automated by a computer. Also in the method of the present invention, automatically collected diffraction data can be used.
  • the analysis of the diffraction data of the crystal structure analysis sample is performed as the space group of the crystal structure analysis sample, the same space group as the single crystal space group of the porous compound, or the porosity.
  • Selecting a space group having lower symmetry than the space group of the single crystal of the compound (I), and using diffraction data (coordinate values of crystallographic data) relating to the crystal structure of the single crystal of the porous compound as an initial value Without determining the initial phase by the conventional method, the step (II) for determining the initial structure of the sample for crystal structure analysis and the step (III) for refining the initial structure obtained in step (II) Done.
  • crystal analysis data space group, phase information, crystal structure information, etc.
  • step (I) the space group of the sample for crystal structure analysis is the same space group as the single crystal space group of the porous compound, or a space having lower symmetry than the single crystal space group of the porous compound. It is a step of selecting a group.
  • this step can be performed as follows. First, indexing of reflection points is performed. As a result, a rough crystal lattice constant and Brave lattice are determined.
  • the Brave lattice is a crystal lattice classified according to the combination of the symmetry (crystal system) of lattice point arrangement and the lattice type, and there are 14 types of Brave lattices.
  • This analysis can be performed by a computer using a program unique to the manufacturer of the X-ray analysis apparatus (for example, APEX if it is a Bruker) or a general-purpose program (such as HKL2000).
  • the lattice constant of the parent compound (for example, the parent compound is a metal complex represented by [(ZnI 2 ) 3 (TPT) 2 ] n )
  • the lattice constant of the parent compound for example, the metal in which the parent compound is represented by [(ZnI 2 ) 3 (TPT) 2 ] n
  • the lattice constant of the parent compound for example, the metal in which the parent compound is represented by [(ZnI 2 ) 3 (TPT) 2 ] n
  • an error due to the inclusion of the guest compound is defined from the measured data.
  • the space group is determined.
  • the space group can be determined by a computer using a general-purpose program (eg, PLATON or Bruker's WPREP) using the lattice constant of the crystal lattice and Brave lattice information determined above.
  • a general-purpose program eg, PLATON or Bruker's WPREP
  • a space group refers to a group formed by a set of symmetrical elements in a crystal structure.
  • the symmetry element means a symmetry center, a mirror plane, a projection plane, a rotation axis, and a helical axis, and an operation based on these symmetry elements is called a symmetry operation.
  • Symmetry is the property that when a symmetrical operation is performed on a certain object, it cannot be distinguished before and after.
  • the spatial symmetry of crystals is classified into 230 types of space groups, depending on the combination of symmetry elements allowed in crystals and Brave lattices.
  • single crystal ( ⁇ ) a sample for crystal structure analysis
  • Single crystal ( ⁇ ) May be referred to as a single crystal of the porous compound used for the preparation [hereinafter referred to as “single crystal ( ⁇ )”.
  • the space group of the single crystal ( ⁇ ) is used when determining the space group of the single crystal ( ⁇ ).
  • the space group of the single crystal ( ⁇ ) is more symmetrical than the space group of the single crystal ( ⁇ ) or the single crystal ( ⁇ ) space group.
  • a low space group [a space group obtained by removing an arbitrary symmetry element from the space group of the single crystal ( ⁇ )] is selected, and the diffraction data is analyzed.
  • the space group of the polynuclear metal complex 1 ⁇ [(ZnI 2 ) 3 (TPT) 2 (PhNO 2 ) 5.5 ] n ⁇ is C2 / c. Therefore, when a sample for crystal structure analysis is prepared using the polynuclear metal complex 1, basically, C2 / c is input as a candidate space group for analysis. If the guest compound exists on the symmetry plane and is the fake target data, enter a subgroup (Cc, C2, P21, P-1, P1) of the parent space group C2 / c. By calculating, you can easily reach the true space group. Thus, in the method of the present invention, since the number of candidate space groups is limited, a true space group can be determined efficiently. Whether or not it is a true space group can be determined by whether or not there is a problem with the obtained structure, as in the conventional case. There are two methods for describing the space group, the Hermann-Mauguin symbol and the Schoenfries symbol.
  • Step (II) Step (II) uses diffraction data (coordinate values of crystallographic data) relating to the crystal structure of the single crystal ( ⁇ ) as an initial value, and analyzes the diffraction data of the single crystal ( ⁇ ) to obtain the single crystal ( ⁇ ). This is the step of determining the initial structure of
  • the crystal structure of the single crystal ( ⁇ ) can be used as a model.
  • obtaining a crystal structure is synonymous with obtaining a function (structural factor F) that can describe the density of electrons around atoms present in the crystal.
  • F structural factor
  • the magnitude portion of F which is a complex function, can be determined from the data of diffraction points that can be actually measured. In order to describe complete F, it is necessary to obtain a portion corresponding to the phase, but this gives an appropriate approximate value to the observed data, and then how well the calculated diffraction point matches the measured data. It must be judged by.
  • Examples of the method for analyzing the diffraction data of the single crystal ( ⁇ ) and determining the initial structure include the direct method, the heavy atom method, and the molecular substitution method. These methods can be executed using a program.
  • the program to be used is not particularly limited as long as the initial structure is determined by analyzing the diffraction data of the single crystal ( ⁇ ) by the direct method, the heavy atom method, the molecular substitution method, or the like.
  • programs such as SHELX, SIR, superflip, X-PLOR (Molecular Simulation Co.), AMORE (CCP4 (Collaborative Computational Project, Number 4. Acta Crystallogr. D50, 670-673 (1994))).
  • Step (III) is a step of refining the crystal structure obtained in step (II).
  • Step (III) is the same as the conventional structure refinement step, and by repeating the least square method, Fourier synthesis (difference Fourier synthesis), etc., a crystal structure suitable for the measured diffraction data is obtained, The structure of the molecule is determined (Non-patent Document 1). These methods can be executed using a program.
  • a program to be used if a crystal structure suitable for the measured diffraction data can be obtained by repeating the least square method, Fourier synthesis (difference Fourier synthesis), etc., and the structure of the molecule can be determined. It is not limited. Known programs such as SHELXL, REFMAC, and Xtal are listed.
  • Steps (I) to (III) described above can be performed by causing a computer to continuously execute a program for each step.
  • the computer program of this invention makes a computer perform the analysis method of the diffraction data of this invention.
  • the computer program of the present invention is used for collecting diffraction data, displaying candidate space groups [processing (I)], organizing data, and analyzing diffraction data. Determination of the space group for the [process (II)], and the determination of the initial structure of the single crystal ( ⁇ ) by using diffraction data (crystallographic data, etc.) relating to the crystal structure of the single crystal ( ⁇ ) as initial values (III)], refinement of the initial structure [Process (IV)] is continuously performed. A program for executing each process is executed for each process.
  • the computer program of the present invention is a collection of these programs, and performs processing (I) to (IV) continuously.
  • the computer program of the present invention is a program that is installed and executed in a processing device including a main control device (CPU), an input / output device, and a storage device.
  • the main control device (CPU) is a device that executes a program and performs arithmetic processing.
  • the input / output device includes a reading device for a recording medium storing a program, means for communicating with the Internet, and an interface (display screen, keyboard, etc.) with a user.
  • the storage device is a device that stores the data of the developed program and the data being executed.
  • the program data includes crystal data of the parent compound (a single crystal of the porous compound before the inclusion of the guest compound), as described later, in addition to the program data for executing each of the processes (I) to (IV).
  • Structural diffraction data parent compound space group, crystal structure
  • diffraction data of a compound to be subjected to crystal structure analysis general space group data, and the like.
  • the computer program of the present invention can be acquired from, for example, a recording medium (CDROM) or the Internet.
  • Process (I) is a process of deriving candidate space groups in step (I) of the method of the present invention. That is, as the space group of the crystal structure analysis sample, the same space group as the single crystal space group of the porous compound or a space group having lower symmetry than the single crystal space group of the porous compound is selected. This is a process of displaying candidate space groups on the display screen.
  • the user inputs a space group of the parent compound (a single crystal of the porous compound before the guest compound is included) into the computer, thereby displaying a candidate space group.
  • a space group of the parent compound a single crystal of the porous compound before the guest compound is included
  • the space group of the single crystal is C2 / c.
  • This analysis can be performed by a computer using a program unique to the manufacturer of the X-ray analysis apparatus (for example, APEX if it is a Bruker) or a general-purpose program (such as HKL2000).
  • the computer is provided with a memory area in which data related to the space group is stored.
  • a function of displaying a subgroup of the parent space group together with the parent space group can be given.
  • the computer program of the present invention may cause the computer to execute a process of presenting the processing result to the user after the process (I), or without causing the computer to perform a process of presenting the processing result to the user.
  • the processing (II) may be executed.
  • the process (II) executes an arithmetic process for determining a space group among the steps (I) in the method of the present invention. That is, the process of determining one space group selected from the group consisting of the same space group as the single crystal space group of the porous compound and the space group derived in the process (I) for analysis of diffraction data (II).
  • the space group can be determined by a computer using a general-purpose program (eg, PLATON or Bruker's WPREP) using the lattice constant of the crystal lattice and Brave lattice information determined above.
  • one space group selected from the same space group as the single crystal space group of the porous compound and the space group derived in the processing (I) is used for analyzing the diffraction data. It will be decided. This determination may be made based on the judgment of the user, or may be made by the computer according to a preset rule.
  • the computer can determine the space group by providing in advance a rule such as selecting a space group with high symmetry. For example, from the diffraction data, if there is a possibility that the guest compound exists on the symmetry plane and is the fake target data, the subgroup (Cc, C2, P21, P ⁇ ) of the parent space group C2 / c 1, P1) may be programmed to perform the calculation.
  • Process (III) performs step (II) in the method of the present invention. That is, the initial structure of the crystal structure analysis sample is determined by using the space group determined in the processing (II) and the diffraction data relating to the crystal structure of the single crystal of the porous compound as initial values. Process (III) determines the initial structure for structure refinement.
  • the skeletal structure of a host molecule (a single crystal of a porous compound) that is expected to appear when the initial phase is determined is known in advance, a program for determining the initial phase is not executed.
  • the initial structure of the sample for crystal structure analysis can be determined directly using the previously obtained lattice constant and space group information.
  • Processing (III) can be executed using a program based on the space group determined in processing (II) and the single crystal crystal structure of the porous compound.
  • the program to be used is not particularly limited as long as it can execute the process (III).
  • programs such as SHELX, SIR, superflip, X-PLOR (Molecular Simulation) and AMORE (CCP4 (Collaborative Computational Project, Number 4. Acta Crystallogr. D50, 670-673 (1994)).
  • Process (IV) performs step (III) in the method of the present invention. That is, the initial structure obtained by the process (III) is refined.
  • reflection data (hkl file) and a data file (ins file) of the initial structure before the structure is refined are used. Specifically, it is executed as follows. First, the coordinate value of the atomic group corresponding to the skeleton of the host compound (the single crystal of the porous compound) is applied to the coordinate value of the initial structure before the structure is refined. As actual work, the coordinate values of atomic groups corresponding to the skeleton of the host compound (porous compound single crystal) may be copied to the data file (ins file) of the initial structure. Next, it is possible to refine the structure using these coordinates as initial values. Examples of the structure refinement method include Fourier method, least square method, maximum likelihood method and the like.
  • This process is the same as the conventional refinement process, and can be performed using a program.
  • the program to be used is not particularly limited as long as the refinement process can be performed.
  • known programs such as SHELXL, REFMAC, and Xtal can be used.
  • the computer program of the present invention may further have a function of displaying a projected view of the entire molecule, interatomic distance, bond angle, etc., for the molecular structure obtained by refining the structure as described above.
  • the method of the present invention can be executed efficiently. Therefore, by using the program of the present invention, even a researcher who is not familiar with crystallography can easily and efficiently analyze diffraction data.
  • the recording medium of the present invention is readable by a computer characterized by recording the computer program of the present invention.
  • Examples of the recording medium include flexible disk (FD), MO disk, CDR, CDRW, DVD-ROM, DVD-RAM, external HDD, memory card, USB memory, silicon disk, HDD compatible silicon disk, and the like.
  • the computer program of the present invention may be recorded separately on a plurality of recording media.
  • humulene (2,6,6,9-tetramethyl-1,4-8-cycloundecatriene) passes through the process of determining the phase by the heavy atom method in the presence of silver ions in the crystal, J. et al. Chem. Soc. B, 112-120 (1966).
  • the molecular structure of humulene can be easily determined by using the obtained data on the initial structure and refining the structure using a known program.
  • the porous compound A having a known molecular structure for example, the porous compound A is [(ZnI 2 ) 3 (TPT) 2 (PhNO 2 ) 5.5.
  • n it can be obtained by performing an operation of deleting data corresponding to the solvent (PhNO 2 ) from the structural analysis data of this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明は、三次元骨格が結晶構造解析法によって解明されている多孔性化合物の単結晶の細孔等内に、構造を決定する化合物の分子が規則的に配列されてなる結晶構造解析用試料の回折データの解析方法であって、結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一、又はより対称性が低い空間群を選択するステップ(I)、前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、前記結晶構造解析用試料の初期構造を決定するステップ(II)、及び、得られた初期構造を精密化するステップ(III)を含む回折データの解析方法、この方法をコンピュータに実行させるコンピュータプログラム、並びに、このプログラムを記録した記録媒体である。 本発明によれば、単結晶構造解析法において、回折データを効率よく解析する方法、この方法をコンピュータに実行させるコンピュータプログラム、及び記録媒体が提供される。

Description

回折データの解析方法、コンピュータプログラム及び記録媒体
 本発明は、単結晶構造解析法において、回折データを、より簡便かつ効率よく解析する方法、この方法をコンピュータに実行させるコンピュータプログラム、及び記録媒体に関する。
 従来、化合物の分子構造を決定する方法として、単結晶X線構造解析法が知られている。単結晶X線構造解析法によれば、分子の三次元画像を原子レベルで得ることができるため、この方法は生理活性物質等の機能性物質の研究等において極めて有用である。
 単結晶X線構造解析法においては、単結晶にX線を照射し、回折X線を検出して回折データを収集した後、回折データを解析し、分子の構造を決定する。
 回折データを解析する際、通常、検出された回折X線は位相情報が失われているため、フーリエ合成によって、直接、分子の構造(電子密度分布)を決定することができない。このため、従来、結晶構造モデルを初めに構築し、これを精密化して、回折データに適合する結晶構造を得ることにより、分子の構造を決定するという手法が採られてきた。
 例えば、図1に示すように、単結晶X線構造解析法の一般的な手順によれば、回折データを収集し、空間群を決定した後、初期位相を決定するステップにより結晶構造モデルを構築し、次いで、それを精密化することにより、測定された回折データに適合する結晶構造を得、分子の構造を決定することができる(非特許文献1)。
 このように、従来においては、回折データを解析する際は、適切な空間群及び初期位相を決定する必要がある。しかしながら、これらのステップを適切に行うためには、結晶学に関する専門知識が必要になるため、これらのステップを行うことは、結晶学に馴染みがない研究者等にとって大きな負担になっていた。
 このため、回折データを、より簡便かつ効率よく解析し得る方法が望まれていた。
化学者のための基礎講座12 X線構造解析、編集:社団法人日本化学会、発行所:株式会社朝倉書店、1999年3月20日(初版第1刷)
 本発明は、かかる実情に鑑みてなされたものであり、単結晶構造解析法において、回折データをより簡便かつ効率よく解析し得る方法、この方法をコンピュータに実行させるコンピュータプログラム、及び、このコンピュータプログラムを記録した記録媒体を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、三次元骨格と、該三次元骨格によって仕切られて形成された、三次元的に規則正しく整列した細孔及び/又は中空とを有し、前記三次元骨格が結晶構造解析法によって解明されている多孔性化合物の単結晶の細孔及び/又は中空内に、構造を決定する化合物の分子が規則的に配列されてなる結晶構造解析用試料を用いて得られた回折データを解析する際、用いた多孔性化合物の単結晶の空間群及び結晶構造に関する回折データを初期値として利用することにより、回折データを、より簡便かつ効率よく解析し得ることを見出し、本発明を完成するに到った。
 かくして本発明によれば、下記(1)の回折データの解析方法、(2)~(5)のコンピュータプログラム、及び(6)の記録媒体が提供される。
(1)三次元骨格と、該三次元骨格によって仕切られて形成された、三次元的に規則正しく整列した細孔及び/又は中空とを有し、前記三次元骨格が結晶構造解析法によって解明されている多孔性化合物の単結晶の細孔及び/又は中空内に、構造を決定する化合物の分子が規則的に配列されてなる結晶構造解析用試料を用いて得られた回折データの解析方法であって、
 結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一の空間群、又は、前記空間群より対称性が低い空間群を選択するステップ(I)、
 前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、前記結晶構造解析用試料についての初期構造を決定するステップ(II)、及び、
 ステップ(II)で得られた初期構造を精密化するステップ(III)、
を含むことを特徴とする回折データの解析方法。
(2)回折データの解析用プログラムであって、(1)に記載の回折データの解析方法をコンピュータに実行させるプログラム。
(3)前記多孔性化合物の単結晶の空間群を基に、より対称性が低い空間群を導出する処理(I)、
 前記多孔性化合物の単結晶の空間群と同一の空間群、及び、処理(I)で導出された空間群からなる群から選ばれる1の空間群を、前記結晶構造解析用試料についての回折データの解析に用いる空間群として決定する処理(II)、
 処理(II)で決定された空間群及び前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、前記結晶構造解析用試料についての回折データを解析する処理(III)、及び、
 処理(III)で得られた結晶構造を精密化する処理(IV)、
をコンピュータに実行させる(2)に記載のプログラム。
(4)さらに、処理(I)で導出された空間群をユーザに提示する処理を含み、処理(II)における空間群の決定が、ユーザの判断に基づいて行われるものである、(3)に記載のプログラム。
(5)処理(II)における空間群の決定が、あらかじめ設定した規則に従ってコンピュータによって行われるものである、(3)に記載のプログラム。
(6)前記(2)~(5)のいずれかに記載のコンピュータプログラムを記録したことを特徴とするコンピュータに読み取り可能な記録媒体。
 本発明によれば、単結晶構造解析法において、回折データを、より簡便かつ効率よく解析し得る方法、この方法をコンピュータに実行させるコンピュータプログラム、及びこのコンピュータプログラムを記録したことを特徴とするコンピュータに読み取り可能な記録媒体が提供される。
 本発明によれば、ゲスト分子を包接する前の多孔性化合物の単結晶の結晶構造に関する回折データ(結晶学データの座標値)を初期構造として解析することで、初期位相を従来法で決定することなく、初期位相を定めることができる。
従来一般的に行われてきたX線結晶構造解析の手順を表す図である。 本発明の方法の手順の一例を表す図である。 本発明のプログラムの処理手順の一例を表す図である。 単結晶の細孔が延在する方向を表す図である。 shelxs(初期構造を得るプログラム)を実行した場合に得られる、錯体部分の構造を示す図である。 本発明の方法により初期構造を与えることにより、グアイアズレンの構造の殆どが既に見えた状態を示す図(構造解析を開始する際に得られる状態図)である。
 以下、本発明を、1)回折データの解析方法、2)コンピュータプログラム、及び、3)記録媒体に項分けして詳細に説明する。
1)回折データの解析方法
 本発明の回折データの解析方法は、三次元骨格と、該三次元骨格によって仕切られて形成された、三次元的に規則正しく整列した細孔及び/又は中空とを有し、前記三次元骨格が結晶構造解析法によって解明されている多孔性化合物の単結晶の細孔及び/又は中空内に、構造を決定する化合物の分子が規則的に配列されてなる結晶構造解析用試料を用いて得られた回折データの解析方法であって、以下のステップ(I)~(III)を含むことを特徴とする。
(I)ステップ(I)
 結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一の空間群、又は、前記空間群より対称性が低い空間群を選択するステップ。
(II)ステップ(II)
 前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、前記結晶構造解析用試料についての初期構造を決定するステップ。
(III)ステップ(III)
 ステップ(II)で得られた初期構造を精密化するステップ。
 本発明の方法は、例えば、図2に示す手順に従って行うことができる。
〔回折データの収集〕
 本発明に用いる回折データは、三次元骨格と、該三次元骨格によって仕切られて形成された、三次元的に規則正しく整列した細孔及び/又は中空とを有し、前記三次元骨格が結晶構造解析法によって解明されている多孔性化合物の単結晶の細孔及び/又は中空内に、構造を決定する化合物(以下、「化合物(A)」ということがある。)の分子が規則的に配列されてなる結晶構造解析用試料を用いて得られたものである。
(i)多孔性化合物の単結晶
 多孔性化合物の単結晶は、内部に、三次元骨格と、該三次元骨格によって仕切られて形成された、三次元的に規則正しく整列した細孔及び/又は中空とを有し、前記三次元骨格が結晶構造解析法によって解明されているものである。本発明においては、結晶構造解析法によって解明された、前記単結晶の三次元骨格に関する回折データを初期値として利用する。
 前記三次元骨格は、単結晶内部において、三次元的な広がりを有する骨格状の構造体である。三次元骨格は、1若しくは2以上の分子鎖、又は、1若しくは2以上の分子鎖及び骨格形成性化合物によって構成されたものである。
 「分子鎖」とは、共有結合及び/又は配位結合によって組織化された組織体をいう。この分子鎖内には、分岐構造や環状構造があってよい。
 1の分子鎖によって構成された三次元骨格としては、例えば、「ジャングルジム」状に組織化された骨格が挙げられる。
 2以上の分子鎖によって構成された三次元骨格としては、2以上の分子鎖が、水素結合、π-πスタッキング相互作用、ファンデルワールス力等の相互作用により、全体として一つに組織化された骨格、例えば、2つの分子鎖が、「ちえのわ」状に絡みあってなる骨格が挙げられる。このような三次元骨格としては、後述する、多核金属錯体1、2の三次元骨格が挙げられる。
 「骨格形成性化合物」とは、分子鎖の一部を構成するものではないが、水素結合、π-πスタッキング相互作用、ファンデルワールス力等の相互作用により、三次元骨格の一部を構成する化合物をいう。例えば、後述する多核金属錯体における骨格形成性芳香族化合物が挙げられる。
 「三次元的に規則正しく整列した、細孔及び/又は中空」とは、結晶構造解析によって、細孔や中空を確認することができる程度に乱れなく、規則的に整列している細孔や中空をいう。
 「細孔」、「中空」は単結晶内における内部空間を表す。筒状に伸びている内部空間を「細孔」といい、それ以外の内部空間を「中空」という。
 細孔の大きさは、細孔が延在する方向に対して、最も垂直に近い結晶面と平行な面(以下、平行面ということがある。)における細孔の内接円(以下、単に「細孔の内接円」ということがある。)の直径と相関がある。内接円が大きければ、細孔も大きくなり、内接円が小さければ、細孔も小さくなる。
 「細孔が延在する方向」は、以下の方法により決定することができる。
 すなわち、まず、対象の細孔を横切る適当な方向の結晶面X(A面、B面、C面かそれぞれの対角面など)を選ぶ。そして、結晶面X上に存在し、かつ、三次元骨格を構成する原子を、ファンデルワールス半径を用いて表すことで、結晶面Xを切断面とする細孔の断面図を描く。同様に、当該結晶面Xと一単位胞ずれた結晶面Yを切断面とする細孔の断面図を描く。次に、それぞれの結晶面における細孔の断面形状の中心間を、立体図において直線(一点鎖線)で結ぶ(図3参照)。このとき得られる直線の方向が、細孔が延在する方向である。
 また、「細孔の内接円の直径」は、以下の方法により求めることができる。
 すなわち、まず、上記と同様の方法により、前記平行面を切断面とする細孔の断面図を描く。次に、その断面図において細孔の内接円を描き、その直径を測定した後、得られた測定値を実際のスケールに換算することで、実際の細孔の内接円の直径を求めることができる。
 さらに、前記平行面を、一単位胞分、徐々に平行移動させながら、各平行面における細孔の内接円の直径を測定することで、最も狭い部分の内接円の直径と、最も広い部分の内接円の直径が求められる。
 単結晶の細孔の内接円の直径は、2~30Åが好ましく、3~10Åがより好ましい。
 また、細孔の形状が真円とは大きく異なる場合、上記平行面における細孔の内接楕円の短径及び長径から、単結晶の包接能を予測することが好ましい。
 単結晶の細孔の内接楕円の長径は、2~30Åが好ましく、3~10Åがより好ましい。また、単結晶の細孔の内接楕円の短径は、2~30Åが好ましく、3~10Åがより好ましい。
 単結晶の細孔容積は、論文(A):Acta Crystallogr. A 46,194-201(1990)に記載の手法により求めることができる。すなわち、計算プログラム(PLATON SQUEEZE PROGRAM)により算出したSolvent Accessible Void(単位格子内の空隙体積)をもとに「単結晶の体積×単位胞における空隙率」を用いて計算することができる。
 単結晶の細孔容積(一粒の単結晶中のすべての細孔の容積)は、1×10-7~0.1mmが好ましく、1×10-5~1×10-3mmがより好ましい。
 また、単結晶が中空を有する場合、その中空の大きさも、細孔容積と同様に、上記論文(A)に記載の手法により求めることができる。
 単結晶は、立方体または直方体形状を有するものが好ましい。その一辺は、好ましくは10~1000μm、より好ましくは、60~200μmである。このような形状、大きさの単結晶を用いることで、良質の結晶構造解析用試料が得られ易くなる。
 結晶構造解析用試料の調製に用いる多孔性化合物の単結晶は、その三次元骨格が結晶構造解析法によって解明されているものである。
 「三次元骨格が結晶構造解析法によって解明されている」とは、結晶構造解析用試料の調製に用いる単結晶が、既に結晶構造解析が行われたものあることを意味するのではなく、結晶構造解析用試料の調製に用いる単結晶のものと同じ三次元骨格を有する多孔性化合物の単結晶を用いて、既に結晶構造解析が行われたことを意味する。
 結晶構造解析用試料の調製に用いる多孔性化合物の単結晶は、三次元骨格(いわゆるホスト分子)のみからなるものであってもよいし、三次元骨格と、細孔及び/又は中空内に、交換可能な分子(いわゆるゲスト分子)とを有するものであってもよい。
 また、三次元骨格を解明する際に用いられた多孔性化合物の単結晶と、結晶構造解析用試料の調製に用いる多孔性化合物の単結晶は、三次元骨格に変化がない限り、ゲスト分子の有無やゲスト分子の種類に関して相違していてもよい。
 例えば、多孔性化合物の単結晶(1)の細孔にゲスト分子(1)が包接されたものの結晶構造が知られている場合、多孔性化合物の単結晶(1)の細孔にゲスト分子(1)が包接されたもの、多孔性化合物の単結晶(1)の細孔にゲスト分子(2)が包接されたもの、多孔性化合物の単結晶(1)の細孔にゲスト分子が包接されていないもの、のいずれも、結晶構造解析用試料の調製に使用することができる。そして、得られた結晶構造解析用試料を用いて回折データを収集した後、既知の結晶構造解析結果(多孔性化合物の単結晶(1)の細孔にゲスト分子(1)が包接された状態の結晶構造解析結果)を利用して、回折データを解析することができる。具体的には、多孔性化合物の単結晶(1)の細孔にゲスト分子(1)が包接された状態の結晶構造解析結果の原子座標から、多孔性化合物の単結晶(1)の原子座標のみを抽出したファイルを作成し、多孔性化合物の単結晶(1)の細孔にゲスト分子(2)が包接された回折データと共に使用することで、初期位相が予め決まった状態で結晶構造解析を行うことができる。
 単結晶は、管電圧が24kV、管電流が50mAで発生させたMoKα線(波長:0.71Å)を照射し、回折X線をCCD検出器で検出したときに、少なくとも1.5Åの分解能で分子構造を決定できるものが好ましい。かかる特性を有する単結晶を用いることで、良質の結晶構造解析用試料が得られ易くなる。
 多孔性化合物の単結晶としては、前記多孔性化合物の単結晶の細孔及び/又は中空内に、化合物(A)の分子を、結晶構造解析によって構造を決定することができる程度に乱れなく、前記多孔性化合物の単結晶の細孔及び中空内に規則正しく収容させることができるものであれば、特に限定されない。例えば、多核金属錯体の単結晶や、尿素結晶等が挙げられる。なかでも、細孔や中空の大きさや、細孔や中空内の環境(極性等)を制御し易いことから、多核金属錯体の結晶が好ましい。
 多核金属錯体としては、配位性部位を2つ以上有する配位子の複数個、及び中心金属としての金属イオンの複数個を含むものが挙げられる。
 配位性部位を2つ以上有する配位子(以下、「多座配位子」ということがある。)は、前記三次元骨格を形成し得るものである限り、特に限定されず、公知の多座配位子を利用することができる。
 ここで、「配位性部位」とは、配位結合が可能な非共有電子対を有する、配位子中の原子又は原子団をいう。例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子;ニトロ基、アミノ基、シアノ基、カルボキシル基等の原子団;等が挙げられる。なかでも、窒素原子又は窒素原子を含む原子団が好ましい。
 なかでも、配位子の平面性が高く、強固な三次元骨格が形成され易いことから、多座配位子としては、芳香環を有するものが好ましい。
 一般的に、配位子の中心から、配位性部位までの距離が長い多座配位子を用いると、相対的に細孔や中空が大きい多核金属錯体の単結晶が得られ、配位子の中心から、配位性部位までの距離が短い多座配位子を用いると、相対的に細孔や中空が小さい多核金属錯体の単結晶が得られる。
 また、比較的大きな細孔や中空を有する単結晶を容易に得ることができることから、多座配位子としては、配位性部位を2つ以上有する多座配位子が好ましく、配位性部位を3つ有する配位子(以下、「三座配位子」ということがある。)がより好ましく、3つの配位性部位の非共有電子対(軌道)が擬同一平面上に存在し、かつ、3つの配位性部位が、三座配位子の中心部に対して等間隔放射状に配置されているものがより好ましい。
 ここで、「擬同一平面上に存在する」とは、各非共有電子対が、同一平面上に存在する状態の他、若干ずれた平面、例えば、基準となる平面に対して、20°以下で交差するような平面に存在する状態も含む意味である。
 また、「3つの配位性部位が、三座配位子の中心部に対して等間隔放射状に配置されている」とは、配位子の中心部から等間隔で放射状に延びる線上に、3つの配位性部位が前記中心部から略等距離に配置されている状態をいう。
 三座配位子としては、例えば、下記式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、Arは、置換基を有していてもよい3価の芳香族基を表す。X~Xは、それぞれ独立に、2価の有機基、 又はArとY~Yとを直接結ぶ単結合を表す。Y~Yは、それぞれ独立に、配位性部位を有する1価の有機基を表す。)で示される配位子が挙げられる。
 式(1)中、Arは3価の芳香族基を表す。
 Arを構成する炭素原子の数は、通常3~22、好ましくは3~13、より好ましくは3~6である。
 Arとしては、6員環の芳香環1つからなる単環構造を有する3価の芳香族基や、6員環の芳香環が3個縮合してなる縮合環構造を有する3価の芳香族基が挙げられる。
 6員環の芳香環1つからなる単環構造を有する3価の芳香族基としては、下記式(2a)~式(2d)で示される基が挙げられる。また、6員環の芳香環が3個縮合してなる縮合環構造を有する3価の芳香族基としては、下記式(2e)で示される基が挙げられる。なお、式(2a)~式(2e)において、「*」は、それぞれ、X~Xとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 Arは、式(2a)、式(2c)~式(2e)で示される芳香族基の任意の位置に置換基を有するものであってもよい。かかる置換基としては、メチル基、エチル基、イソプロピル基、n-プロピル基、t-ブチル基等のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;等が挙げられる。これらの中でも、式(2a)又は(2b)で示される芳香族基が好ましく、式(2b)で示される芳香族基が特に好ましい。
 X~Xは、それぞれ独立に、2価の有機基、又はArとY~Yとを直接結ぶ単結合を表す。
 2価の有機基としては、Arとともに、π電子共役系を構成し得るものが好ましい。X~Xで表される2価の有機基がπ電子共役系を構成することで、式(1)で示される三座配位子の平面性が向上し、より強固な三次元ネットワーク構造が形成され易くなる。
 2価の有機基を構成する炭素原子の数は、2~18が好ましく、2~12がより好ましく、2~6がさらに好ましい。
 2価の有機基としては、炭素数2~10の2価の不飽和脂肪族基、6員芳香環1つからなる単環構造を有する2価の有機基、6員芳香環が2~4個縮合してなる縮合環構造を有する2価の有機基、アミド基〔-C(=O)-NH-〕、エステル基〔-C(=O)-O-〕、これらの2価の有機基の2種以上の組み合わせ等が挙げられる。
 炭素数2~10の2価の不飽和脂肪族基としては、ビニレン基、アセチレン基(エチニレン基)等が挙げられる。
 6員環の芳香環1つからなる単環構造を有する2価の有機基としては、1,4-フェニレン基等が挙げられる。
 6員環の芳香環が2~4個縮合してなる縮合環構造を有する2価の有機基としては、1,4-ナフチレン基、アントラセン-1,4-ジイル基等が挙げられる。
 これらの2価の有機基の2種以上の組み合わせとしては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 これらの芳香環は、環内に、窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでいてもよい。
 また、2価の有機基は、置換基を有するものであってもよい。かかる置換基としては、Arの置換基として先に示したものと同じものが挙げられる。
 これらの中でも、X~Xで表される2価の有機基としては、下記のものが好ましい。
Figure JPOXMLDOC01-appb-C000005
 Y~Yは、それぞれ独立に、配位性部位を有する1価の有機基を表す。
 Y~Yで表される有機基としては、Ar、X~Xとともに、π電子共役系を構成し得るものが好ましい。
 Y~Yで表される有機基がπ電子共役系を構成することで、式(1)で示される三座配位子の平面性が向上し、強固な三次元骨格が形成され易くなる。
 Y~Yを構成する炭素原子の数は、5~11が好ましく、5~7がより好ましい。
 Y~Yとしては、下記式(3a)~式(3f)で示される有機基が挙げられる。なお、式(3a)~式(3f)において、「*」は、X~Xとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000006
 Y~Yは、式(3a)~式(3f)で示される有機基の任意の位置に、置換基を有するものであってもよい。かかる置換基としては、Arの置換基として先に例示したものと同様のものが挙げられる。
 これらの中でも、式(3a)で表される基が特に好ましい。
 式(1)で示される三座配位子中の、Ar、X~X、Y~Yを適宜選択することで、単結晶の細孔や中空の大きさを調節することができる。この方法を利用することで、目的の分子を包接し得る大きさの細孔や中空を有する単結晶を効率よく得ることができる。
 式(1)で示される三座配位子としては、強固な三次元骨格が形成され易いことから、平面性及び対称性が高く、かつ、π共役系が配位子全体に広がっているものが好ましい。このような三座配位子としては、下記式(4a)~式(4f)で示される配位子が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
 これらの中でも、式(1)で示される三座配位子としては、上記式(4a)で示される2,4,6-トリス(4-ピリジル)-1,3,5-トリアジン(TPT)が特に好ましい。
 また、多核金属錯体の多座配位子として、市販品を用いることもできる。例えば、2012年9月発行のシグマアルドリッチ社パンフレット(材料科学の基礎 第7号-多孔性配位高分子(PCP)/金属有機構造体(MOF)の基礎)には、PCP/MOF用配位子およびリンカー用化合物として、ピラジン、1,4-ジアザビシクロ[2.2.2]オクタン、1,2-ジ(4-ピリジル)エチレン、4,4’-ビピリジル、4,4’-ビフェニルジカルボン酸、ベンゼン-1,3-ジカルボン酸、ピラジン-2,3-ジカルボン酸、ピラジン-3,5-ジカルボン酸等が記載されており、これらを多核金属錯体の多座配位子として用いることができる。
 多核金属錯体の中心金属としての金属イオンは、前記多座配位子と配位結合を形成して、三次元骨格を形成し得るものである限り特に限定されない。なかでも、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、銀イオン、パラジウムイオン、ルテニウムイオン、ロジウムイオン、白金イオン等の周期表第8~12族の金属のイオンが好ましく、2価の、周期表第8~12族の金属イオンがより好ましい。なかでも、大きな細孔や中空を有する単結晶が得られ易いことから、亜鉛(II)イオン、コバルト(II)イオンが好ましい。
 多核金属錯体の中心金属には、前記多座配位子の他に、単座配位子が配位していてもよい。かかる単座配位子としては、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)、チオシアン酸イオン(SCN)等の1価の陰イオン;アンモニア、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、エチレンジアミン等の電気的に中性の配位性化合物;等が挙げられる。
 また、多核金属錯体は、反応溶媒(多核金属錯体の合成に用いた溶媒)、置換溶媒(反応溶媒と置き換えられた他の溶媒をいう。以下にて同じ。)、後述する骨格形成性芳香族化合物を含むものであってもよい。
 「骨格形成性芳香族化合物」とは、三次元骨格を構成する分子鎖と相互作用(ただし、共有結合、配位結合を除く。)し、三次元骨格の一部を構成し得る芳香族化合物をいう。
 多核金属錯体が骨格形成性芳香族化合物を含むことで、三次元骨格がより強固になり易く、化合物(A)の分子を包接した後であっても、三次元骨格がより安定化する場合がある。
 骨格形成性芳香族化合物としては、縮合多環芳香族化合物が挙げられる。例えば、下記式(5a)~式(5i)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 多核金属錯体としては、例えば、以下の化合物が挙げられる。
(1)配位子及び金属イオンのみからなる化合物〔多核金属錯体(α)〕
(2)前記多核金属錯体(α)と、骨格形成性芳香族化合物とからなる化合物〔多核金属錯体(β)〕
(3)前記多核金属錯体(α)又は多核金属錯体(β)に、溶媒分子等のゲスト分子が包接されてなる化合物〔多核金属錯体(γ)〕
 本発明に用いる多核金属錯体は、化合物(A)の分子をその細孔や中空内に取り込んだ後においても結晶性を失わず、かつ、比較的大きな細孔や中空を有するものが好ましい。
 このような特性を有する多核金属錯体は、前記式(1)で示される三座配位子を用いることで、簡便に得ることができる。
 前記式(1)で示される三座配位子を用いることで得られる多核金属錯体としては、下記式(6a)~(6c)で示される多核金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(6a)~式(6c)中、Mは、2価の、周期表第8~12族の金属イオンを表し、Xは、1価の陰イオン性単座配位子を表し、Lは、前記式(1)で示される三座配位子を表し、「solv」は、合成時に用いた溶媒分子等のゲスト分子を表し、「SA」は、骨格形成性芳香族化合物を表し、a、b、cは任意の自然数を表す。
 式(6a)~式(6c)で示される多核金属錯体において、Lとして、前記式(4a)で示されるTPTを用いた多核金属錯体は、これまでに、溶媒などのゲスト分子を取り込んだ形での分子構造が単結晶X線構造解析で決定されており、本発明に用いる多核金属錯体として特に適している。
 このような多核金属錯体としては、下記式(7a)~式(7d)で示される多核金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(7a)~(7d)中、「solv」、「SA」、a、b、cは、前記と同じ意味を表す。
 式(7a)で示される多核金属錯体としては、特開2008-214584号公報、J.Am.Chem.Soc.2004,v.126,pp16292-16293に記載の[(ZnI(TPT)(PhNO5.5(多核金属錯体1)や、多核金属錯体1中の反応溶媒分子の全部又は一部を置換溶媒に交換したものが挙げられる。
 式(7b)で示される多核金属錯体としては、特開2008-214318号公報に記載の[(ZnBr(TPT)(PhNO(HO)](多核金属錯体2)や、多核金属錯体2中の反応溶媒分子の全部又は一部を置換溶媒に交換したものが挙げられる。
 式(7c)で示される多核金属錯体としては、特開2006-188560号公報に記載の[(ZnI(TPT)(TPH)(PhNO3.9(MeOH)1.8(多核金属錯体3)や、[(ZnI(TPT)(PER)(PhNO(多核金属錯体4)や、これらの多核金属錯体中の反応溶媒分子の全部又は一部を置換溶媒に交換したものが挙げられる。
 式(7d)で示される多核金属錯体としては、WO2011/062260号公報に記載の[(Co(NCS)(TPT)(DCB)25(MeOH)(多核金属錯体5)や、多核金属錯体5中の反応溶媒分子の全部又は一部を置換溶媒に交換したものが挙げられる。
 また、多核金属錯体としては、上記の式(6a)~(6c)で示されるものの他に、多孔性配位高分子(PCP)や金属有機構造体(MOF)と称される公知の多核金属錯体を用いることもできる。例えば、2012年9月発行のシグマアルドリッチ社パンフレット(材料科学の基礎 第7号-多孔性配位高分子(PCP)/金属有機構造体(MOF)の基礎)には、
[Cu(bzdc)(pyz)]
(「bzdc」は、2,3-ピラジンジカルボン酸を表し、「pyz」は、ピラジンを表す。nは任意の数を表す。)、
[Zn(14bdc)(dabco)]
(「14bdc」は、1,4-ベンゼンジカルボン酸を表し、「dabco」は、1,4-ジアザビシクロ[2.2.2]オクタンを表し、nは任意の数を表す。)、
[Cu(dhbpc)(bpy)]
(「Hdhbpc」は、4,4’-ジヒドロキシビフェニル-3-カルボン酸を表し、「bpy」は、4,4’-ビピリジルを表し、nは任意の数を表す。)、
[Cr(btc)
(「Hbtc」は、1,3,5-ベンゼントリカルボン酸を表し、nは任意の数を表す。)等の多核金属錯体が記載されており、本発明においては、これらの単結晶を用いることができる。
 多核金属錯体の合成方法は特に限定されず、公知の方法を利用することができる。
 例えば、2012年9月発行のシグマアルドリッチ社パンフレット(材料科学の基礎 第7号-多孔性配位高分子(PCP)/金属有機構造体(MOF)の基礎)には、多座配位子等を含有する溶液と、金属イオン等を含有する溶液を混合する溶液法;耐圧容器内に、溶媒、多座配位子、金属イオン等を入れ、耐圧容器を密封した後、溶媒の沸点以上に加熱して水熱反応を行う水熱法;容器内に、溶媒、多座配位子、金属イオン等を入れ、マイクロ波を照射するマイクロ波法;容器内に、溶媒、多座配位子、金属イオン等を入れ、超音波を照射する超音波法;溶媒を用いることなく、多座配位子、金属イオン等を機械的に混合する固相合成法;等が記載されており、これらの方法を用いて、多核金属錯体の単結晶を得ることができる。
 これらの中でも、特別の装置等を要しないことから、溶液法が好ましく用いられる。
 溶液法としては、例えば、多座配位子の第1の溶媒の溶媒溶液に、金属イオン含有化合物の第2の溶媒の溶媒溶液を加え、このまま、0~70℃で、数時間から数日間、静置する方法が挙げられる。
 金属イオン含有化合物は、特に制限されない。例えば、式:MXで示される化合物が挙げられる。ここで、Mは金属イオンを表し、Xは対イオンを表し、nはMの価数を表す。
 前記Xの具体例としては、F、Cl、Br、I、SCN、NO 、ClO 、BF 、SbF 、PF 、AsF 、CHCO 等が挙げられる。
 用いる反応溶媒(第1の溶媒及び第2の溶媒)としては、ベンゼン、トルエン、キシレン、クロロベンゼン、1,2-ジクロロベンゼン、ニトロベンゼン等の芳香族炭化水素類;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、シクロヘプタン等の脂環式炭化水素類;アセトニトリル、ベンゾニトリル等のニトリル類;ジメチルスルホキシド(DMSO)等のスルホキシド類;N,N-ジメチルホルムアミド、n-メチルピロリドン等のアミド類;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン等のエーテル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素類;酢酸メチル、酢酸エチル、乳酸エチル、プロピオン酸エチル等のエステル類;水;等が挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 比較的大きな多核金属錯体の単結晶を得たい場合には、前記第1の溶媒と第2の溶媒として、互いに相溶性を有さない(すなわち、2層分離する)ものを用いることが好ましい。例えば、第1の溶媒として、ニトロベンゼン、ジクロロベンゼン、ニトロベンゼンとメタノールの混合溶媒、ジクロロベンゼンとメタノールの混合溶媒を用い、第2の溶媒としてメタノールを用いる方法が挙げられる。
 また、上記多核金属錯体1~5については、それぞれ、上記文献に記載された方法にしたがって合成することができる。
(ii)結晶構造解析用試料
 本発明に用いる結晶構造解析用試料は、前記多孔性化合物の単結晶の細孔及び/又は中空内に、化合物(A)の分子が規則的に配列されてなるものである。
 「化合物(A)の分子が、規則的に配列される」とは、化合物(A)の分子が、結晶構造解析によって構造を決定することができる程度に乱れなく、多孔性化合物の単結晶の細孔及び中空内に規則正しく収容されていることをいう。
 結晶構造解析用試料は、管電圧が24kV、管電流が50mAで発生させたMoKα線(波長:0.71Å)を照射し、回折X線をCCD検出器で検出したときに、少なくとも1.5Åの分解能で分子構造を決定できるものが好ましい。
 結晶構造解析用試料は、化合物(A)の構造を決定することができるものであれば、前記多孔性化合物の単結晶中のすべての細孔及び中空内に化合物(A)の分子が取り込まれている必要はない。例えば、前記多孔性化合物の単結晶中の細孔及び中空内の一部に、化合物(A)の溶媒溶液に用いた溶媒が取り込まれたものであっても良い。
 結晶構造解析用試料は、化合物(A)の分子の占有率が10%以上のものであることが好ましい。
 占有率は、結晶構造解析により得られる値であり、理想的な包接状態におけるゲスト分子〔化合物(A)の分子〕の量を100%としたときの、単結晶中に実際に存在するゲスト分子の量を表すものである。
 結晶構造解析用試料は、前記多孔性化合物の単結晶を、化合物(A)を含む溶媒溶液と接触させることにより得ることができる。
 化合物(A)の大きさは、化合物(A)が単結晶の細孔及び/又は中空に入り得る大きさのものである限り、特に限定されない。化合物(A)の分子量は、通常、20~3,000、好ましくは100~2,000である。
 本発明においては、あらかじめ、核磁気共鳴分光法、質量分析法、元素分析等により、化合物(A)の分子の大きさをある程度把握し、適当な細孔や中空を有する単結晶を適宜選択して用いることも好ましい。
 化合物(A)を含む溶媒溶液の溶媒としては、用いる単結晶を溶解せず、かつ、キラル化合物(A)を溶解するものであれば、特に限定されない。
 用いる溶媒の具体例としては、ベンゼン、トルエン、キシレン、クロロベンゼン、1,2-ジクロロベンゼン、ニトロベンゼン等の芳香族炭化水素類;n-ブタン、n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、シクロヘプタン等の脂環式炭化水素類;アセトニトリル、ベンゾニトリル等のニトリル類;ジメチルスルホキシド(DMSO)等のスルホキシド類;N,N-ジメチルホルムアミド、n-メチルピロリドン等のアミド類;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン等のエーテル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素類;酢酸メチル、酢酸エチル、乳酸エチル、プロピオン酸エチル等のエステル類;水;等が挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 多孔性化合物の単結晶と、前記化合物(A)を含む溶媒溶液を接触させる方法は特に限定されない。例えば、前記単結晶を、化合物(A)を含む溶媒溶液に浸漬させる方法、前記単結晶をキャピラリーの中に詰めた後、化合物(A)を含む溶媒溶液を、そのキャピラリー内を通過させる方法等が挙げられる。
(iii)回折データの収集
 本発明の方法において、収集する回折データとしては、多孔質化合物の単結晶及び結晶構造解析用試料についての、X線回折データや中性子線回折データ等が挙げられる。
 回折データを収集する際は、従来の単結晶構造解析における回折データの収集方法を利用することができる。
 具体的には、図1に示す従来の手順において、単結晶の代わりに上記の結晶構造解析用試料をマウントする点を除き、その手順に従って回折データの測定を行い、データを収集することができる。図1中の各ステップの詳細は、例えば、前記非特許文献1に記載のとおりである。
 なお、近年の結晶構造解析装置においては、回折データの収集における多くのステップがコンピュータにより自動化されている。本発明の方法においても、自動的に収集された回折データを利用することができる。
〔回折データの解析〕
 結晶構造解析用試料の回折データの解析は、図2に示すように、結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一の空間群、又は、前記多孔性化合物の単結晶の空間群より対称性が低い空間群を選択するステップ(I)、前記多孔性化合物の単結晶の結晶構造に関する回折データ(結晶学データの座標値)を初期値として用いることにより、初期位相を従来法で決定することなく、結晶構造解析用試料の初期構造を決定するステップ(II)、及び、ステップ(II)で得られた初期構造を精密化するステップ(III)を経て行われる。
 結晶構造解析用試料の回折データの解析を行う前提として、前記多孔性化合物の単結晶の結晶解析データ(空間群、位相情報、結晶構造情報等)を有していることが必要である。
(i)ステップ(I)
 ステップ(I)は、結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一の空間群、又は、記多孔性化合物の単結晶の空間群より対称性が低い空間群を選択するステップである。
 このステップは、具体的には次のようにして行うことができる。
 まず、反射点の指数付けを行う。これにより、大雑把な結晶格子の格子定数とブラベ格子が決定される。
 格子定数とは、結晶軸の長さや軸間角度のことをいい、単位格子の各稜間の角度 α,β,γ と、各軸の長さa,b,cを表す6個の定数である。例えば、[(ZnI(TPT)で表される金属錯体の場合には、a=35、b=15、c=31、monoclinicCである。
 ブラベ格子とは、格子点の配列の対称性(晶系)と格子の型の組み合わせにより分類される結晶格子をいい、14種のブラベ格子が存在する。
 この解析は、X線解析装置メーカー独自のプログラム(例えば、Brukerであれば、APEX等)や、汎用プログラム(HKL2000等)を用いて、コンピュータにより行うことができる。
 この解析により、いくつかの候補が挙げられた場合には、親化合物が持つ格子定数(例えば、親化合物が、[(ZnI(TPT)]で表される金属錯体である場合には、a=35、b=15、c=31、monoclinicCである。)に最も近いもの(最も近いもので対称性が低いもの)を選択することにより、格子定数及びブラベ格子を決定することができる。
 また、コンピュータによる計算の結果、格子定数の見当がつけられない場合には、親化合物がもつ格子定数(例えば、親化合物が、[(ZnI(TPT)で表される金属錯体である場合には、a=35、b=15、c=31、monoclinicCである。)を直接入力し、このデータを基に実測データから、ゲスト化合物が包接したことによる誤差分をrefinementすることで、格子定数及びブラベ格子を決定することができる。
 次に、空間群の決定を行う。空間群の決定は、上記で決定した結晶格子の格子定数とブラベ格子の情報を用いて、汎用プログラム(例えば、PLATONやBruker社のWPREP)を用いて、コンピュータにより行うことができる。
 空間群とは、結晶構造における対称要素の集合によって作られる群をいう。
 対称要素とは、対称中心、鏡映面、映進面、回転軸及びらせん軸をいい、これらの対称要素に基づく操作を対称操作という。ある対象物に対称操作を施したときに、その前後を区別することができないという性質を対称性という。
 結晶の空間的対称性は、結晶で許される対称要素とブラベ格子の組み合わせにより、230種の空間群に分類される。
 通常、誤った空間群に基づいて回折データの解析を行うと、構造解析に失敗したり、分子の構造が異常に歪んだりするため、回折データを解析する際は、230種の空間群の中から、真の空間群を決定することが求められる。
 従来の空間群の決定方法においては、回折X線の方向や強度を基に計算を行い、さらに消滅則等の結晶学における専門知識が必要であった。
 一方、本発明の方法においては、結晶構造解析用試料〔以下、「単結晶(α)」ということがある。〕の三次元骨格が、その調製に用いた多孔性化合物の単結晶〔以下、「単結晶(β)」ということがある。〕の三次元骨格と同じであると考えられるため、単結晶(α)の空間群を決定する際に、単結晶(β)の空間群を利用する。
 具体的には、上記のように、単結晶(α)の空間群として、単結晶(β)の空間群と同一の空間群、又は、前記多孔性化合物の単結晶の空間群より対称性が低い空間群〔単結晶(β)の空間群から、任意の対称要素を除くことで得られる空間群〕を選択し、回折データの解析を行う。
 例えば、前記多核金属錯体1{[(ZnI(TPT)(PhNO5.5}の空間群は、C2/cである。したがって、多核金属錯体1を用いて結晶構造解析用試料を作製した場合、基本的には、候補となる空間群としてC2/cを入力し、解析を行う。もし、ゲスト化合物が対称面上に存在して、偽対象データとなっている場合には、親空間群C2/cの部分群(Cc、C2、P21、P-1、P1)を入力して計算を行うことで、真の空間群に容易にたどり着くことができる。
 このように本発明の方法においては、候補となる空間群の数が限定されるため、効率よく真の空間群を決定することができる。
 真の空間群であるか否かは、従来と同様、得られた構造に問題が無いか等により判断することができる。
 空間群を記述する方法には、ヘルマン・モーガン記号(Hermann-Mauguin)とシェーンフリース記号(Schoenflies)の2つがあるが、どちらであってもよい。
(ii)ステップ(II)
 ステップ(II)は、単結晶(β)の結晶構造に関する回折データ(結晶学データの座標値)を初期値として用いて、単結晶(α)の回折データを解析して、単結晶(α)の初期構造を決定するステップである。
 本発明の方法においては、単結晶(α)と単結晶(β)が、共通の三次元骨格を有するため、単結晶(β)の結晶構造をモデルとして利用することができる。
 単結晶X線結晶構造解析において、結晶構造を得ることは、結晶中に存在する原子周りの電子の密度を記述できる関数(構造因子F)を求めることと同義である。しかしながら、実測可能な回折点のデータからは複素関数であるFの大きさ部分しか決定することはできない。完全なFを記述するには、位相にあたる部分を求める必要があるが、これは、観測データに対し適当な近似値を与え、それから計算的に予測される回折点と実測データがどれくらい合致するかで判断しなくてはならない。
 従来の手法では、この適当な近似値(初期位相)が得られない場合、構造解析に至らないという問題(いわゆる初期位相問題)があった。
 本発明では、空間群や構造が既知の単結晶(α)(結晶スポンジ)に解析対象化合物を導入する(包接させる)ことで得られた結晶構造解析試料を用いる。そのため、上述した空間群や初期位相に関しては、”適当な近似値”が既知である。なぜなら、単結晶(α)と単結晶(β)は骨格構造がほぼ同じと考えることができるからである。本発明では、その”適当な近似値”を用いて解析を行うことで、初期位相問題が発生することなく、解析を行うことで、初期構造を決定することができる。
 単結晶(α)の回折データを解析して、初期構造を決定する方法としては、直説法、重原子法、分子置換法等が挙げられる。これらの方法は、プログラムを用いて実行することができる。
 用いるプログラムとしては、直説法、重原子法、分子置換法等により、単結晶(α)の回折データを解析して、初期構造を決定するものであれば、特に限定されない。例えば、SHELX、SIR、superflip、X-PLOR(モレキュラーシミュレーション社)や、AMORE(CCP4(Collaborative Computational Project,Number4.Acta Crystallogr. D50, 670-673(1994))のプログラム群の1つ)等の公知のプログラムが挙げられる。
(iii)ステップ(III)
 ステップ(III)は、ステップ(II)で得られた結晶構造を精密化するステップである。
 ステップ(III)は、従来の、構造の精密化ステップと同じものであり、最小二乗法やフーリエ合成(差フーリエ合成)等を繰り返すことで、測定された回折データに適合する結晶構造を得、分子の構造を決定する(非特許文献1)。
 これらの方法は、プログラムを用いて実行することができる。用いるプログラムとしては、最小二乗法やフーリエ合成(差フーリエ合成)等を繰り返すことで、測定された回折データに適合する結晶構造を得、分子の構造を決定することができるものであれば、特に限定されない。SHELXL、REFMAC、Xtal等の公知のプログラムが挙げられる。
 従来、回折データを解析する際は、適切な空間群及び初期位相を決定する必要があり、これらのステップを適切に行うためには、結晶学に関する専門知識が必要であった。
 しかしながら、結晶構造が既知の多孔性化合物の単結晶を利用する本発明の方法によれば、結晶学に馴染みがない研究者等であっても、回折データを簡便かつ効率よく解析することができる。
 上述したステップ(I)~(III)は、コンピュータにより、ステップごとのプログラムを連続的に実行させることにより、実施することができる。
2)コンピュータプログラム
 本発明のコンピュータプログラムは、本発明の回折データの解析方法をコンピュータに実行させるものである。
 本発明のコンピュータプログラムは、コンピュータにインストールされて、図3に示すように、回折データの収集、候補となる空間群の表示〔処理(I)〕、データの整理、及び回折データの解析に用いるための空間群の決定〔処理(II)〕、単結晶(β)の結晶構造に関する回折データ(結晶学データ等)を初期値として用いることにより、単結晶(α)の初期構造の決定〔処理(III)〕、初期構造の精密化〔処理(IV)〕を、連続的に実行するものである。
 それぞれの処理ごとに、それぞれの処理を行うプラグラムが実行される。
 本発明のコンピュータプログラムは、これらのプログラムの集合体であって、処理(I)~(IV)を連続的に行うものである。
 本発明のコンピュータプログラムは、主制御装置(CPU)、入出力装置及び記憶装置からなる処理装置にインストールされ、実行されるプログラムである。
 主制御装置(CPU)は、プログラムを実行して演算処理を行う装置である。
 入出力装置は、プログラムが格納された記録媒体の読み取り装置、インターネットとの通信手段、ユーザとのインターフェース(表示画面、キーボード等)を備える。
 記憶装置は、展開されたプログラムのデータ、及び、実行中のデータを保管する装置である。
 プログラムのデータには、前記処理(I)~(IV)のそれぞれを実行するプログラムデータのほかに、後述するように、親化合物(ゲスト化合物を包接する前の多孔性化合物の単結晶)の結晶構造回折データ(親化合物の空間群、結晶構造)、結晶構造解析の対象となる化合物の回折データ、一般的な空間群に関するデータ等が挙げられる。
 本発明のコンピュータプログラムは、例えば、記録媒体(CDROM)やインターネットから取得できるものである。
<処理(I)>
 処理(I)は、本発明の方法のステップ(I)のうち、候補となる空間群の導出を行うものである。すなわち、結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一の空間群、又は、記多孔性化合物の単結晶の空間群より対称性が低い空間群を選択し、表示画面に候補となる空間群を表示する処理である。
 処理(I)では、使用者が親化合物(ゲスト化合物を包接する前の多孔性化合物の単結晶)の空間群をコンピュータに入力することで、候補となる空間群を表示させる。
 例えば、前出の[(ZnI(TPT)(PhNO5.5}の場合には、単結晶の空間群はC2/cである。使用者が、空間群C2/cを入力すると、親空間群C2/cとともに、部分群(Cc、C2、P21、P-1、P1)も表示される。
 この解析は、X線解析装置メーカー独自のプログラム(例えば、Brukerであれば、APEX等)や、汎用プログラム(HKL2000等)を用いて、コンピュータにより行うことができる。
 コンピュータには、空間群に関するデータが記憶されたメモリー領域が設けられており、親空間群を入力すると、親空間群とともに親空間群の部分群も表示する機能を付与することができる。
 本発明のコンピュータプログラムは、処理(I)の後、その処理結果をユーザに提示する処理をコンピュータに実行させるものであってもよいし、コンピュータに処理結果をユーザに提示する処理をさせることなく、処理(II)を実行させるものであってもよい。
<処理(II)>
 処理(II)は、本発明の方法におけるステップ(I)のうち、空間群を決定するため演算処理を実行するものである。すなわち、前記多孔性化合物の単結晶の空間群と同一の空間群、及び、処理(I)で導出された空間群からなる群から選ばれる1の空間群を回折データの解析用に決定する処理(II)である。
 空間群の決定は、上記で決定した結晶格子の格子定数とブラベ格子の情報を用いて、汎用プログラム(例えば、PLATONやBruker社のWPREP)を用いて、コンピュータにより行うことができる。
 処理(II)は、前記多孔性化合物の単結晶の空間群と同一の空間群、及び、処理(I)で導出された空間群からなる群から選ばれる1の空間群を回折データの解析用に決定するものである。
 この決定は、ユーザの判断に基づいて行われるものであってもよいし、あらかじめ設定した規則に従ってコンピュータが行うものであってもよい
 ユーザの判断に基づいて空間群を決定する場合、プログラムに、コンピュータが処理(I)を終えた後、その処理結果をユーザに提示する機能を付加することで、ユーザはその中から1の空間群を決定するようにしてもよい。
 コンピュータが空間群を決定する場合、対称性が高い空間群を選択する等の規則をあらかじめ設けておくことで、コンピュータが空間群を決定することができる。例えば、回折データから、ゲスト化合物が対称面上に存在して、偽対象データとなっている可能性がある場合には、親空間群C2/cの部分群(Cc、C2、P21、P-1、P1)を用いて、計算を行うようにプログラムされていてもよい。
<処理(III)>
 処理(III)は、本発明の方法におけるステップ(II)を実行するものである。すなわち、処理(II)で決定された空間群及び前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、結晶構造解析用試料の初期構造を決定するものである。処理(III)によって、構造の精密化のための初期構造が決定される。
 本発明では、初期位相が決定された場合に出現すると想定されるホスト分子(多孔性化合物の単結晶)の骨格構造が予めわかっているので、初期位相を決定するためのプログラムを実行することなく、先の求めた格子定数と空間群の情報を用いて、ダイレクトに結晶構造解析用試料の初期構造を決定することができる。
 処理(III)は、処理(II)で決定された空間群及び前記多孔性化合物の単結晶の結晶構造を基に、プログラムを用いて実行することができる。用いるプログラムとしては、処理(III)を実行できるものであれば、特に限定されない。例えば、SHELX、SIR、superflip、X-PLOR(モレキュラーシミュレーション社)や、AMORE(CCP4(Collaborative Computational Project,Number4.Acta Crystallogr. D50, 670-673(1994))のプログラム群の1つ)等の公知のプログラムが挙げられる。
<処理(IV)>
 処理(IV)は、本発明の方法におけるステップ(III)を実行するものである。すなわち、処理(III)で得られた初期構造を精密化するものである。
 初期構造の精密化処理では、反射データ(hklファイル)と、構造の精密化前の初期構造のデータファイル(insファイル)を用いる。
 具体的には、次のようにして実行される。
 まず、ホスト化合物(多孔性化合物の単結晶)の骨格にあたる原子団の座標値を、構造の精密化前の初期構造の座標値にあてはめる。実際の作業としては、ホスト化合物(多孔性化合物の単結晶)の骨格にあたる原子団の座標値を、前記初期構造のデータファイル(insファイル)にコピーすればよい。
 次に、この座標を初期値として構造の精密化を行うことができる。構造の精密化法としては、フーリエ法、最小二乗法、最尤法等が挙げられる。
 この処理は、従来の精密化処理と同様のものであり、プログラムを用いて行うことができる。用いるプログラムとしては、精密化処理を行うことができるものであれば、特に限定されない。例えば、SHELXL、REFMAC、Xtal等の公知のプログラムが挙げられる。
 本発明のコンピュータプログラムは、以上のようにして構造精密化して得られた分子構造について、分子全体の投影図、原子間距離、結合角等を表示する機能をさらに有していてもよい。
 本発明のコンピュータプログラムによれば、本発明の方法を効率よく実行することができる。したがって、本発明のプログラムを利用することで、結晶学に馴染みがない研究者等であっても、回折データを簡便かつ効率よく解析することができる。
3)記録媒体
 本発明の記録媒体は、本発明のコンピュータプログラムを記録したことを特徴とするコンピュータに読み取り可能なものである。
 記録媒体としては、フレキシブルディスク(FD)、MOディスク、CDR、CDRW、DVD-ROM、DVD-RAM、外付けHDD、メモリカード、USBメモリ、シリコンディスク、HDD互換シリコンディスク等が挙げられる。また、本発明のコンピュータプログラムが、複数の記録媒体に分けて記録されたものであってもよい。 
 以下に、実施例を挙げて、本発明についてより具体的に説明する。ただし、本発明はこれらの実施例によりなんら限定されるものではない。
 フムレン(2,6,6,9-テトラメチル-1,4-8-シクロウンデカトリエン)の立体構造は、結晶中で銀イオンと共存させて重原子法によって位相を決定する過程を経て、J. Chem. Soc.B,112-120 (1966)にて報告されている。
 フムレンを、分子構造が既知の多孔性化合物A(例えば、[(ZnI(TPT)(PhNO5.5が使用できる。)の細孔内に包接させた単結晶を作製し、これを結晶構造解析用試料とした。この結晶構造解析用試料から収集した反射データファイルと、多孔性化合物Aのみの原子座標を記述したデータファイルを使用し、公知のプログラム(例えば、SHELXLが使用できる。)を用いて構造解析を開始すると、新規に位相を決定すること無く、ホスト化合物の構造はフムレンの包接に最適化された原子位置に速やかに変化し、フムレン中のいくつかの原子が初期構造として観察された。
 得られた初期構造に関するデータを使用し、公知のプログラムを用いて、構造精密化を行うことで、フムレンの分子構造を容易に決定することができる。
 多孔性化合物Aのみの原子座標を記述したデータファイルは、分子構造が既知の多孔性化合物A、例えば、多孔性化合物Aが、[(ZnI(TPT)(PhNO5.5である場合、このものの結構構造解析データから、溶媒である(PhNO)に対応するデータを削除する操作を行うことにより、入手することができる。
 細孔性錯体にグアイアズレン分子を包摂させた結晶のデータでは、shelxs(初期構造を得るプログラム)を実行した場合は、錯体部分の構造しか得られない(図5)。一方、本発明の方法により初期構造を与えることで、グアイアズレンの構造の殆どが既に見えた状態で、構造解析を開始することができる(図6)。
1:結晶面X
2:結晶面Y
3:細孔
4:細孔が延在する方向

Claims (6)

  1.  三次元骨格と、該三次元骨格によって仕切られて形成された、三次元的に規則正しく整列した細孔及び/又は中空とを有し、前記三次元骨格が結晶構造解析法によって解明されている多孔性化合物の単結晶の細孔及び/又は中空内に、構造を決定する化合物の分子が規則的に配列されてなる結晶構造解析用試料を用いて得られた回折データの解析方法であって、
     結晶構造解析用試料の空間群として、前記多孔性化合物の単結晶の空間群と同一の空間群、又は、前記空間群より対称性が低い空間群を選択するステップ(I)、
     前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、前記結晶構造解析用試料についての初期構造を決定するステップ(II)、及び、
     ステップ(II)で得られた初期構造を精密化するステップ(III)、
    を含むことを特徴とする回折データの解析方法。
  2.  回折データの解析用プログラムであって、請求項1に記載の回折データの解析方法をコンピュータに実行させるコンピュータプログラム。
  3.  前記多孔性化合物の単結晶の空間群を基に、より対称性が低い空間群を導出する処理(I)、
     前記多孔性化合物の単結晶の空間群と同一の空間群、及び、処理(I)で導出された空間群から選ばれる1の空間群を、結晶構造解析用試料についての回折データの解析に用いる空間群として決定する処理(II)、
     処理(II)で決定された空間群及び前記多孔性化合物の単結晶の結晶構造に関する回折データを初期値として用いて、前記結晶構造解析用試料についての初期構造を決定する処理(III)、及び、
     処理(III)で得られた初期構造を精密化する処理(IV)、
    をコンピュータに実行させる、請求項2に記載のコンピュータプログラム。
  4.  さらに、処理(I)で導出された空間群をユーザに提示する処理を含み、処理(II)における空間群の決定が、ユーザの判断に基づいて行われるものである、請求項3に記載のコンピュータプログラム。
  5.  処理(II)における空間群の決定が、あらかじめ設定した規則に従ってコンピュータによって行われるものである、請求項3に記載のコンピュータプログラム。
  6.  請求項2~5のいずれかに記載のコンピュータプログラムを記録したことを特徴とするコンピュータに読み取り可能な記録媒体。
PCT/JP2015/071682 2014-07-31 2015-07-30 回折データの解析方法、コンピュータプログラム及び記録媒体 WO2016017770A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016538444A JP6534668B2 (ja) 2014-07-31 2015-07-30 回折データの解析方法、コンピュータプログラム及び記録媒体
EP15826644.5A EP3176568A4 (en) 2014-07-31 2015-07-30 Diffraction data analysis method, computer program, and recording medium
US15/500,629 US10976267B2 (en) 2014-07-31 2015-07-30 Method of analyzing diffraction data obtained from a single crystal of a porous compound and a compound for which a structure is to be determined

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156626 2014-07-31
JP2014156626 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017770A1 true WO2016017770A1 (ja) 2016-02-04

Family

ID=55217666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071682 WO2016017770A1 (ja) 2014-07-31 2015-07-30 回折データの解析方法、コンピュータプログラム及び記録媒体

Country Status (4)

Country Link
US (1) US10976267B2 (ja)
EP (1) EP3176568A4 (ja)
JP (1) JP6534668B2 (ja)
WO (1) WO2016017770A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105717A1 (ja) 2018-11-21 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、及び、そのための試料ホルダユニット
WO2020105718A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析システム
WO2020105726A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置用試料ホルダ、試料ホルダユニットおよび吸蔵方法
WO2020105720A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置および試料ホルダ取り付け装置
WO2020105723A1 (ja) 2018-11-23 2020-05-28 株式会社リガク 単結晶x線構造解析試料の吸蔵装置及び吸蔵方法
WO2020105728A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置用試料ホルダユニット
WO2020105725A1 (ja) 2018-11-23 2020-05-28 株式会社リガク 単結晶x線構造解析用試料の吸蔵装置と吸蔵方法
WO2020105722A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置とそのための方法
WO2020105716A1 (ja) 2018-11-21 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、及び、そのための試料ホルダ
WO2020105727A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置用試料ホルダユニット
WO2020105721A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014963A1 (en) 2014-07-24 2016-01-28 King Abdullah University Of Science And Technology Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach
CN111968709B (zh) * 2020-08-12 2024-02-09 北京大学 结构模型确定方法、装置、计算机设备及可存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131083A (ja) * 1993-10-29 1995-05-19 Fujitsu Ltd 空間群決定方法
JP2008214318A (ja) * 2007-03-07 2008-09-18 Univ Of Tokyo 高分子錯体及び高分子錯体の製造方法
WO2014038221A1 (ja) * 2012-09-07 2014-03-13 独立行政法人 科学技術振興機構 結晶構造解析用試料の作製方法、有機化合物の分子構造決定方法、及び結晶構造解析用試料の作製装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792219B2 (ja) 2004-12-28 2011-10-12 国立大学法人 東京大学 高分子錯体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131083A (ja) * 1993-10-29 1995-05-19 Fujitsu Ltd 空間群決定方法
JP2008214318A (ja) * 2007-03-07 2008-09-18 Univ Of Tokyo 高分子錯体及び高分子錯体の製造方法
WO2014038221A1 (ja) * 2012-09-07 2014-03-13 独立行政法人 科学技術振興機構 結晶構造解析用試料の作製方法、有機化合物の分子構造決定方法、及び結晶構造解析用試料の作製装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176568A4 *
YUTAKA MORITOMO: "Kozo Kaiseki no Kiso to Jissai, soshite, Kozobussei no Saizensen", BUSSEI KENKYU, vol. 91, no. 5, 20 February 2009 (2009-02-20), pages 540 - 566, XP008185149, ISSN: 0525-2997 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105716A1 (ja) 2018-11-21 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、及び、そのための試料ホルダ
US11802844B2 (en) 2018-11-21 2023-10-31 Rigaku Corporation Single-crystal x-ray structure analysis apparatus and method, and sample holder unit therefor
WO2020105717A1 (ja) 2018-11-21 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、及び、そのための試料ホルダユニット
WO2020105727A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置用試料ホルダユニット
WO2020105728A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置用試料ホルダユニット
WO2020105722A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置とそのための方法
WO2020105720A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置および試料ホルダ取り付け装置
WO2020105726A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置用試料ホルダ、試料ホルダユニットおよび吸蔵方法
WO2020105721A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析装置と方法、そのための試料ホルダ及びアプリケータ
WO2020105718A1 (ja) 2018-11-22 2020-05-28 株式会社リガク 単結晶x線構造解析システム
JP7493847B2 (ja) 2018-11-22 2024-06-03 株式会社リガク 単結晶x線構造解析装置とそのための方法
JP7493847B6 (ja) 2018-11-22 2024-06-18 株式会社リガク 単結晶x線構造解析装置とそのための方法
WO2020105723A1 (ja) 2018-11-23 2020-05-28 株式会社リガク 単結晶x線構造解析試料の吸蔵装置及び吸蔵方法
WO2020105725A1 (ja) 2018-11-23 2020-05-28 株式会社リガク 単結晶x線構造解析用試料の吸蔵装置と吸蔵方法

Also Published As

Publication number Publication date
US20170219500A1 (en) 2017-08-03
JP6534668B2 (ja) 2019-06-26
JPWO2016017770A1 (ja) 2017-07-06
EP3176568A1 (en) 2017-06-07
US10976267B2 (en) 2021-04-13
EP3176568A4 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2016017770A1 (ja) 回折データの解析方法、コンピュータプログラム及び記録媒体
Arrowsmith et al. Neutral zero-valent s-block complexes with strong multiple bonding
Lu et al. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space
Wu et al. Theoretical investigation on multiple bonds in terminal actinide nitride complexes
Vechorkin et al. Nickel Complexes of a Pincer Amidobis (amine) Ligand: Synthesis, Structure, and Activity in Stoichiometric and Catalytic C C Bond‐Forming Reactions of Alkyl Halides
Chaplais et al. Impacts of the imidazolate linker substitution (CH3, Cl, or Br) on the structural and adsorptive properties of ZIF-8
JP6164626B2 (ja) 結晶構造解析用試料の作製方法、キラル化合物の絶対配置の決定方法、及び多核金属錯体の単結晶
Panetti et al. Isolation and characterization of a covalent CeIV-Aryl complex with an anomalous 13C chemical shift
Ganguly et al. Single-Crystal-to-Single-Crystal Breathing and Guest Exchange in CoII Metal–Organic Frameworks
Liu et al. Rare three-dimensional uranyl–biphenyl-3, 3′-disulfonyl-4, 4′-dicarboxylate frameworks: Crystal structures, proton conductivity, and luminescence
Turbervill et al. An Asymmetrically Derivatized 1, 2, 3-Triphospholide: Synthesis and Reactivity of the 4-(2′-Pyridyl)-1, 2, 3-triphospholide Anion
Egidi et al. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule
Dikhtiarenko et al. Temperature-dependent supramolecular isomerism of lutetium-aminoterephthalate metal–organic frameworks: synthesis, crystallography, and physical properties
Carlotto et al. Reaction of Copper (II) Chloroacetate with Pyrazole. Synthesis of a One-Dimensional Coordination Polymer and Unexpected Dehydrochlorination Reaction
Romanova et al. Ab initio molecular dynamics study of the structure and supramolecular organization in mesogenic lanthanum (III) complexes with β‐diketones and Lewis bases
Turbervill et al. ‘Classical’and ‘Abnormal’Bonding in Tin (ii) N-Heterocyclic Carbene Complexes
Zheng et al. Understanding the interactions between the bis (trifluoromethylsulfonyl) imide anion and absorbed CO2 using X-ray diffraction analysis of a soft crystal surrogate
Wu et al. Synthesis, Crystallographic Structure, Hirshfeld Surface Analysis, and DFT Calculations of Two Salen-Type Hetero-Halogenated Schiff Ba se Mn (IV)/(III) Complexes
Yuan et al. Anomalous melting point of multicharge ionic liquids: structural, electrostatic, and orbital properties of [Ln (NO3) 6] 3–(Ln= Ce, Pr) anions
Rosa et al. Synthesis, Solid‐State Structures, and EPR Spectroscopic Studies on Polycrystalline and Single‐Crystal Samples of α‐Diimine Cobalt (II) Complexes
Zheng et al. Electron-transfer-enhanced cation–cation interactions in homo-and heterobimetallic actinide complexes: a relativistic density functional theory study
Poineau et al. Crystal structure of octabromoditechnetate (iii) and a multi-configurational quantum chemical study of the δ→ δ* transition in quadruply bonded [M 2 X 8] 2− dimers (M= Tc, Re; X= Cl, Br)
Peterson et al. New oxacalix [4] arene carboxylate detects viologen in protic media
Kobera et al. Gallium Species Incorporated into MOF Structure: Insight into the Formation of a 3D Polycrystalline Gallium–Imidazole Framework
JP5155845B2 (ja) 構造推定装置、構造推定方法、構造推定プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15500629

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015826644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826644

Country of ref document: EP