WO2020105533A1 - 過給システム - Google Patents

過給システム

Info

Publication number
WO2020105533A1
WO2020105533A1 PCT/JP2019/044647 JP2019044647W WO2020105533A1 WO 2020105533 A1 WO2020105533 A1 WO 2020105533A1 JP 2019044647 W JP2019044647 W JP 2019044647W WO 2020105533 A1 WO2020105533 A1 WO 2020105533A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercharger
supercharging
variable nozzle
nozzle mechanism
mode
Prior art date
Application number
PCT/JP2019/044647
Other languages
English (en)
French (fr)
Inventor
楠昌幸
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to AU2019383763A priority Critical patent/AU2019383763B2/en
Priority to RU2021116466A priority patent/RU2760416C1/ru
Publication of WO2020105533A1 publication Critical patent/WO2020105533A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a supercharging system, and particularly to a supercharging system having a plurality of superchargers connected in parallel.
  • a supercharging system for supercharging engine intake air for example, a configuration having a plurality of superchargers connected in parallel is known.
  • a supercharging mode in which one of the two superchargers is used to supercharge the intake air of the engine hereinafter referred to as a single supercharging mode.
  • a supercharging mode in which the intake air of the engine is supercharged by using both superchargers hereinafter, also referred to as a twin supercharging mode).
  • a step of boost pressure may occur.
  • a supercharging system including a motor for assisting the start of the second supercharger for example, refer to Patent Document 1.
  • the present disclosure has been made to solve the above-described problems, and an object thereof is to reduce a step of supercharging pressure without adding a device that assists the start of the supercharger. Is to provide a feeding system.
  • a supercharging system includes a first turbine driven by exhaust gas discharged from an engine, and a first variable nozzle mechanism that adjusts a flow velocity of exhaust gas flowing into the first turbine according to an opening degree, and is sucked into the engine.
  • a first supercharger for supercharging the air a second turbine driven by the exhaust gas discharged from the engine, and a second variable nozzle mechanism for adjusting the flow velocity of the exhaust gas flowing into the second turbine by the opening degree.
  • the control device switches to a second supercharging mode in which the supplied air and the air supercharged in the second supercharger are supplied to the engine.
  • the control device supplies the exhaust gas to the second supercharger and switches the air supercharged by the second supercharger to the first supercharger before switching from the first supercharge mode to the second supercharge mode.
  • the supercharging pressure of the second supercharger reaches the supercharging pressure of the first supercharger during the preparatory running operation to be supplied, it is switched to the second supercharging mode to start the preparatory running operation.
  • the second variable nozzle mechanism is controlled so that the opening degree of the second variable nozzle mechanism is smaller than that of the first variable nozzle mechanism.
  • control device sets the opening degree of the second variable nozzle mechanism to be the same as the opening degree of the first variable nozzle mechanism when the increase of the supercharging pressure of the second supercharger is stagnant during the running operation.
  • the control device sets the opening degree of the second variable nozzle mechanism to be the same as the opening degree of the first variable nozzle mechanism when the increase of the supercharging pressure of the second supercharger is stagnant during the running operation.
  • the control device sets the opening degree of the first variable nozzle mechanism such that the turbine efficiency of the first supercharger is the best and the turbine work of the first supercharger is the best.
  • the first variable nozzle mechanism is controlled so as to have a predetermined opening between and.
  • control device calculates the limit opening of the first variable nozzle mechanism when the pressure of the exhaust gas discharged from the engine reaches the limit pressure, and when the predetermined opening exceeds the calculated limit opening, The first variable nozzle mechanism is controlled so that the opening degree of the first variable nozzle mechanism becomes the limited opening degree.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an engine 1 in this embodiment.
  • this engine 1 is mounted in a vehicle as a drive source for traveling, for example.
  • engine 1 is a diesel engine
  • the case where engine 1 is a diesel engine will be described as an example, but may be, for example, a gasoline engine.
  • the engine 1 includes banks 10A and 10B, an air cleaner 20, an intercooler 25, intake manifolds 28A and 28B, a primary supercharger 30, a secondary supercharger 40, and exhaust manifolds 50A and 50B (hereinafter referred to as "exhaust manifold"). (Also referred to as a), an exhaust treatment device 81, and a control device 200.
  • a plurality of cylinders 12A are formed in the bank 10A.
  • a plurality of cylinders 12B is formed in the bank 10B.
  • a piston (not shown) is housed in each cylinder 12A, 12B, and a combustion chamber (a space in which fuel burns) is formed by the top of the piston and the inner wall of the cylinder. The volume of the combustion chamber is changed by the piston sliding in each cylinder 12A, 12B.
  • An injector (not shown) is provided in each of the cylinders 12A and 12B, and during operation of the engine 1, fuel of a timing and an amount set by the control device 200 is injected into each of the cylinders 12A and 12B. ..
  • the injection amount and timing of the fuel injected from each injector are set by the control device 200 based on, for example, the engine speed NE, the intake air amount Qin, the accelerator pedal depression amount, the vehicle speed, and the like.
  • the pistons of the cylinders 12A and 12B are connected to a common crankshaft (not shown) via a connecting rod.
  • the combustion of fuel in the cylinders 12A and 12B in a predetermined order causes the piston to slide in the cylinders 12A and 12B, and the vertical motion of the piston is converted into rotational motion of the crankshaft via the connecting rod. ..
  • the primary supercharger 30 is a turbocharger including a compressor 31 and a turbine 32.
  • the compressor 31 of the primary supercharger 30 is provided in the intake passage of the engine 1 (that is, the passage from the air cleaner 20 to the intake manifolds 28A and 28B).
  • the turbine 32 of the primary supercharger 30 is provided in the exhaust passage of the engine 1 (that is, the passage from the exhaust manifolds 50A and 50B to the exhaust treatment device 81).
  • a compressor wheel 33 is rotatably housed in the compressor 31. Inside the turbine 32, a turbine wheel 34 and a variable nozzle mechanism 35 are provided.
  • the turbine wheel 34 is rotatably housed in the turbine 32.
  • the compressor wheel 33 and the turbine wheel 34 are connected by a rotating shaft 36 and rotate integrally.
  • the compressor wheel 33 is rotationally driven by the energy of the exhaust (exhaust energy) supplied to the turbine wheel 34.
  • the primary supercharger 30, the turbine 32, and the variable nozzle mechanism 35 correspond to the first supercharger, the first turbine, and the first variable nozzle mechanism of the present disclosure, respectively.
  • the variable nozzle mechanism 35 changes the flow velocity of exhaust gas that operates the turbine 32.
  • the variable nozzle mechanism 35 is arranged on the outer peripheral side of the turbine wheel 34, and rotates each of the plurality of nozzle vanes (not shown) that guides the exhaust gas supplied from the exhaust gas inlet to the turbine wheel 34 and the plurality of nozzle vanes.
  • a drive device (not shown) that changes a gap between adjacent nozzle vanes (this gap is referred to as a VN opening degree in the following description).
  • the variable nozzle mechanism 35 changes the VN opening degree by rotating a nozzle vane using a drive device in response to a control signal VN1 from the control device 200, for example.
  • the secondary supercharger 40 is a turbocharger including a compressor 41 and a turbine 42.
  • the secondary supercharger 40 has the same structure and size as the primary supercharger 30.
  • the compressor 41 of the secondary supercharger 40 is provided in the intake passage of the engine 1 in parallel with the compressor 31, and supercharges the intake air of the engine 1.
  • the turbine 42 of the secondary supercharger 40 is provided in the exhaust passage of the engine 1 in parallel with the turbine 32.
  • a compressor wheel 43 is rotatably housed in the compressor 41.
  • a turbine wheel 44 and a variable nozzle mechanism 45 are provided inside the turbine 42.
  • the turbine wheel 44 is rotatably housed in the turbine 42.
  • the compressor wheel 43 and the turbine wheel 44 are connected by a rotating shaft 46 and rotate integrally.
  • the compressor wheel 43 is rotationally driven by the exhaust energy supplied to the turbine wheel 44.
  • the secondary supercharger 40, the turbine 42, and the variable nozzle mechanism 45 correspond to the second supercharger, the second turbine, and the second variable nozzle mechanism of the present disclosure, respectively.
  • variable nozzle mechanism 45 Since variable nozzle mechanism 45 has the same configuration as variable nozzle mechanism 35, detailed description thereof will not be repeated.
  • the variable nozzle mechanism 45 changes the VN opening degree by rotating a nozzle vane using a drive device in response to a control signal VN2 from the control device 200, for example.
  • the air cleaner 20 removes foreign matter from the air sucked in through an intake port (not shown).
  • One end of the intake pipe 23 is connected to the air cleaner 20.
  • the other end of the intake pipe 23 is branched and connected to one end of the intake pipe 21 and one end of the intake pipe 22.
  • the other end of the intake pipe 21 is connected to the intake inlet of the compressor 31 of the primary supercharger 30.
  • One end of the intake pipe 37 is connected to the intake air outlet of the compressor 31 of the primary supercharger 30.
  • the other end of the intake pipe 37 is connected to the intercooler 25.
  • the compressor 31 supercharges the air sucked through the intake pipe 21 by the rotation of the compressor wheel 33 and supplies the supercharged air to the intake pipe 37.
  • the other end of the intake pipe 22 is connected to the intake inlet of the compressor 41 of the secondary supercharger 40.
  • One end of the intake pipe 47 is connected to the intake outlet of the compressor 41 of the secondary supercharger 40.
  • the other end of the intake pipe 47 is connected to the connecting portion J3 in the middle of the intake pipe 37.
  • the compressor 41 supercharges the air taken in through the intake pipe 22 by the rotation of the compressor wheel 43 and supplies it to the intake pipe 47.
  • a first control valve 62 is provided in the middle of the intake pipe 47.
  • the first control valve 62 is, for example, a normally-off VSV (negative pressure switching valve) that is ON (open) / OFF (closed) controlled according to a control signal CV1 from the control device 200.
  • VSV negative pressure switching valve
  • one end of the return pipe 48 is connected to the connection portion J4 located on the upstream side (the compressor 41 side) of the first control valve 62 in the intake pipe 47.
  • the other end of the return pipe 48 is connected to the intake pipe 21.
  • the recirculation pipe 48 is a passage for recirculating at least a part of the air flowing through the intake pipe 47 to the upstream side of the compressor 31 of the primary supercharger 30. The air recirculated to the intake pipe 21 through the recirculation pipe 48 is supplied to the compressor 31.
  • a second control valve 64 is provided in the middle of the reflux pipe 48.
  • the second control valve 64 is, for example, a normally-off electromagnetic valve (solenoid valve) that is ON (open) / OFF (closed) controlled according to a control signal CV2 from the control device 200.
  • connection portion J3 The air supercharged by the compressor 31 and the air supercharged by the compressor 41 and passing through the first control valve 62 are supplied to the connection portion J3. These air merges at the connection portion J3 and flows into the intercooler 25.
  • the intercooler 25 is configured to cool the inflowing air.
  • the intercooler 25 is, for example, an air-cooled or water-cooled heat exchanger.
  • the intercooler 25 is provided with two intake outlets. One end of the intake pipe 27A is connected to one outlet of the intercooler 25. The other end of the intake pipe 27A is connected to the intake manifold 28A. One end of the intake pipe 27B is connected to the other outlet of the intercooler 25. The other end of the intake pipe 27B is connected to the intake manifold 28B.
  • the intake manifolds 28A and 28B are connected to intake ports (not shown) of the cylinders 12A and 12B in the banks 10A and 10B, respectively.
  • the exhaust manifolds 50A and 50B are connected to the exhaust ports (not shown) of the cylinders 12A and 12B in the banks 10A and 10B, respectively.
  • Exhaust gas (gas after combustion) discharged from the combustion chamber of each cylinder 12A, 12B to the outside of the cylinder through the exhaust port is discharged to the outside via the exhaust passage of the engine 1.
  • the exhaust passage includes exhaust manifolds 50A and 50B, exhaust pipes 51A and 51B, a connecting portion J1, exhaust pipes 52A, 52B, 53A and 53B, and a connecting portion J2.
  • One end of the exhaust pipe 51A is connected to the exhaust manifold 50A.
  • One end of the exhaust pipe 51B is connected to the exhaust manifold 50B.
  • the other end of the exhaust pipe 51A and the other end of the exhaust pipe 51B once join at the connection portion J1, and then branch to be connected to one end of the exhaust pipe 52A and one end of the exhaust pipe 52B.
  • the other end of the exhaust pipe 52A is connected to the exhaust inlet of the turbine 32.
  • One end of the exhaust pipe 53A is connected to the exhaust outlet of the turbine 32.
  • the other end of the exhaust pipe 52B is connected to the exhaust inlet of the turbine 42.
  • One end of an exhaust pipe 53B is connected to the exhaust outlet of the turbine 42.
  • a third control valve 66 is provided in the middle of the exhaust pipe 52B.
  • the third control valve 66 is, for example, a normally-on VSV (negative pressure switching valve) that is ON (open) / OFF (closed) controlled according to a control signal CV3 from the control device 200.
  • the other end of the exhaust pipe 53A and the other end of the exhaust pipe 53B meet at the connection portion J2 and are connected to the exhaust treatment device 81.
  • the exhaust treatment device 81 is composed of, for example, an SCR catalyst, an oxidation catalyst, a PM removal filter, or the like, and purifies the exhaust gas flowing from the exhaust pipe 53A and the exhaust pipe 53B.
  • the operation of the engine 1 is controlled by the control device 200.
  • the control device 200 includes a CPU (Central Processing Unit) that performs various processes, a ROM (Read Only Memory) that stores programs and data, and a memory that includes a RAM (Random Access Memory) that stores processing results of the CPU, and the like. It includes an input / output port (not shown) for exchanging information with the outside.
  • Various sensors for example, the air flow meter 102, the first pressure sensor 106, the second pressure sensor 108, etc.
  • Devices to be controlled for example, a plurality of injectors, variable nozzle mechanisms 35 and 45, first control valve 62, second control valve 64, third control valve 66, etc.
  • the control device 200 controls various devices so that the engine 1 is in a desired operating state based on signals from the respective sensors and devices and maps and programs stored in the memory. Note that various controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit). Further, the control device 200 has a built-in timer circuit (not shown) for measuring time.
  • the air flow meter 102 detects the intake air amount Qin.
  • the air flow meter 102 transmits a signal indicating the detected intake air amount Qin to the control device 200.
  • An engine speed sensor (not shown) detects the engine speed NE.
  • the engine speed sensor sends a signal indicating the detected engine speed NE to the control device 200.
  • the first pressure sensor 106 detects the pressure (hereinafter, referred to as the first supercharging pressure) Pp at the connecting portion J3 of the intake pipe 37.
  • the first pressure sensor 106 transmits a signal indicating the detected first boost pressure Pp to the control device 200.
  • the second pressure sensor 108 detects the pressure at the connection portion J4 of the intake pipe 47 (hereinafter, referred to as the second supercharging pressure Ps).
  • the second pressure sensor 108 transmits a signal indicating the second boost pressure Ps to the control device 200.
  • the primary supercharger 30, the secondary supercharger 40, and the control device 200 constitute a “supercharge system”.
  • the control device 200 controls the first control valve 62, the second control valve 64, and the third control valve 66 to perform a single supercharging mode in which supercharging is performed only by the primary supercharger 30 (primary turbo), and a primary supercharging mode.
  • a switching control for switching from one of the supercharger 30 (primary turbo) and the twin supercharger 40 (secondary turbo) to the other is performed.
  • the control device 200 executes the operation in the approach mode in which the supercharging pressure by the secondary supercharger 40 is increased above a certain level from the single supercharging mode. After that, the supercharging mode is switched to the twin supercharging mode.
  • the single supercharging mode and the twin supercharging mode correspond to the first supercharging mode and the second supercharging mode of the present disclosure.
  • Control device 200 operates the supercharging system in the single supercharging mode when a predetermined execution condition is satisfied.
  • the predetermined execution condition includes, for example, a condition that the operating state of the engine 1 based on the engine speed NE and the intake air amount Qin is a low load operating state.
  • control device 200 closes all of first control valve 62, second control valve 64, and third control valve 66 (off state).
  • FIG. 2 is a diagram for explaining the operation of the supercharging system in the single supercharging mode.
  • the exhaust gas flowing through the exhaust manifolds 50A and 50B flows to the turbine 32 of the primary supercharger 30 via the exhaust pipe 52A and to the exhaust treatment device 81 via the exhaust pipe 53A. Flowing.
  • the exhaust gas supplied to the turbine 32 causes the turbine wheel 34 to rotate, and the compressor wheel 33 also rotates as the turbine wheel 34 rotates.
  • the air sucked from the air cleaner 20 flows into the compressor 31 via the intake pipe 23 and the intake pipe 21.
  • the intake air discharged from the compressor 31 flows to the intercooler 25 via the intake pipe 37.
  • the intake air that has flowed into the intercooler 25 branches into the intake pipes 27A and 27B and flows into each of the intake manifolds 28A and 28B.
  • Control device 200 switches from the single supercharging mode to the twin supercharging mode when, for example, the supercharging mode is the single supercharging mode and the rotation speed of primary supercharger 30 exceeds the threshold value. Judge that there is a request.
  • the control device 200 executes the run-up mode before switching to the twin supercharging mode. That is, the control device 200 puts both the second control valve 64 and the third control valve 66 into an open state (ON state) and puts the first control valve 62 into a closed state (OFF state).
  • FIG. 3 is a diagram for explaining the operation of the supercharging system in the run-up mode.
  • the exhaust gas flowing through the exhaust manifolds 50A and 50B once joins at the connection portion J1 and then branches into the exhaust pipes 52A and 52B, and the turbines of the primary supercharger 30 and the secondary supercharger 40. It flows to both 32 and 42, and flows into the exhaust treatment device 81 via the exhaust pipes 53A and 53B.
  • the turbine wheel 34 is rotated by the exhaust gas supplied to the turbine 32, and the compressor wheel 33 is rotated along with the rotation of the turbine wheel 34.
  • the turbine wheel 44 is rotated by the exhaust gas supplied to the turbine 42, and the compressor wheel 43 is rotated along with the rotation of the turbine wheel 44.
  • the air sucked from the air cleaner 20 branches from the intake pipe 23 into the intake pipes 21 and 22, and flows into both the compressors 31 and 41.
  • the intake air discharged from the compressor 31 flows to the intercooler 25 via the intake pipe 37.
  • the intake air discharged from the compressor 41 flows from the intake pipe 47 to the recirculation pipe 48 via the connection portion J4, and flows from the recirculation pipe 48 to the compressor 31 via the intake pipe 21.
  • the intake air that has flowed into the intercooler 25 is branched into the intake pipes 27A and 27B and flows into each of the intake manifolds 28A and 28B.
  • the rotational speed of the secondary supercharger 40 is increased while the primary supercharger 30 supercharges the intake air flowing to the intercooler 25.
  • the pressure of intake air discharged from the compressor 41 of the secondary supercharger 40 increases.
  • the control device 200 operates the supercharging system in the twin supercharging mode at the timing when the supercharging ability of the secondary supercharger 40 in the approach mode becomes sufficiently high.
  • the control device 200 opens the first control valve 62 (ON state) and closes the second control valve 64 (OFF state). In addition, both the third control valves 66 are opened (on).
  • FIG. 4 is a diagram for explaining the operation of the supercharging system in the twin supercharging mode.
  • the intake air discharged from the compressor 41 of the secondary supercharger 40 was flowing from the middle of the intake pipe 47 to the intake pipe 21 via the recirculation pipe 48, whereas in the twin supercharge mode.
  • the intake air discharged from the compressor 41 of the secondary supercharger 40 flows from the intake pipe 47 to the intercooler 25 via the intake pipe 37 as shown by the arrow in FIG.
  • FIG. 11 is a diagram for explaining changes in the conventional supercharging pressure.
  • the solid line indicates the second supercharging pressure Ps of the secondary supercharger 40
  • the broken line indicates the first supercharging pressure Pp of the primary supercharger 30.
  • the drivability is deteriorated due to, for example, the rise of the supercharging pressure, or the reliability of the supercharging device is deteriorated because the supercharging device is burdened by a relatively large fluctuation of the supercharging pressure.
  • the supercharging system In order to reduce the step of the supercharging pressure, it is possible to provide the supercharging system with a motor for assisting the start of the second secondary supercharger 40.
  • the cost for mounting the motor is high, it is necessary to secure a space for mounting the motor, and the mounting of the motor increases the weight of the vehicle.
  • the control device 200 is supercharged by the secondary supercharger 40 while supplying exhaust gas to the secondary supercharger 40 before switching from the single supercharge mode to the twin supercharge mode.
  • the operation in the run-up mode for supplying air to the primary supercharger 30 is executed, and the supercharge pressure of the secondary supercharger 40 reaches the supercharge pressure of the primary supercharger 30 during the operation in the run-up mode.
  • the variable nozzle mechanism 45 is controlled so that the opening degree of the variable nozzle mechanism 45 is smaller than the opening degree of the variable nozzle mechanism 35 when the twin supercharging mode is switched to and the operation in the approach mode is started.
  • FIG. 5 is a flowchart showing an example of processing executed by the control device. This processing is repeatedly called and executed by the control device 200 from the main processing at predetermined control cycles.
  • control device 200 determines whether or not the supercharging mode flag is a value indicating the single supercharging mode (step S101).
  • the supercharging mode flag is a flag that indicates the supercharging mode that is currently controlled, and is a value that indicates one of the single supercharging mode, the twin supercharging mode, and the running mode as the controlled supercharging mode. Can be taken.
  • control device 200 advances the process to be executed to the process of step S111.
  • step S101 when it is determined that the supercharging mode flag indicates the single supercharging mode (YES in step S101), the control device 200 determines whether or not there is a request for switching to the twin supercharging mode (step S102). For example, as described above, when the rotation speed of primary supercharger 30 exceeds the threshold value, it is determined that there is a request for switching to the twin supercharge mode. When determining that there is no switching request (NO in step S102), the control device 200 advances the process to be executed to the process of step S111.
  • step S102 when determining that there is a switching request (YES in step S102), the control device 200 rewrites the supercharging mode flag with a value indicating the running mode (step S103). Next, the control device 200 calculates the limit opening VN1th, which is output as the command opening by the control signal VN1 of the variable nozzle mechanism 35, using the estimation model of the limit opening (step S104).
  • FIG. 6 is a diagram for explaining calculation of the limit opening using an estimation model of the limit opening.
  • the target effective opening area ⁇ A is calculated using the nozzle formula shown in the following formula (1).
  • A actual opening area
  • ⁇ A target effective opening area
  • m intake air amount Ga + mass flow rate of injected fuel Gf
  • R gas constant
  • T4 exhaust manifold internal temperature
  • P6 exhaust passage back pressure
  • P4 exhaust manifold Internal pressure
  • a constants predetermined for each value of P6 / P4.
  • the limit exhaust manifold internal pressure P4th which is input as the exhaust manifold internal pressure P4 in the equation (1), is predetermined as a value that does not blow through the oil seal of the valve stem of the exhaust valve or open the exhaust valve.
  • the intake air amount Ga, the exhaust manifold internal temperature T4, and the back pressure P6 are specified according to the detection signals from the air flow meter 102, the temperature sensor 114, and the pressure sensor 116, respectively.
  • the mass flow rate Gf of the injected fuel is calculated from the fuel injection amount calculated by the control device 200 for the fuel injection.
  • the limit opening VN1th is calculated from the calculated target effective opening area ⁇ A using the opening characteristic map showing the relationship between the VN opening and the effective opening area.
  • control device 200 determines whether or not the base opening degree VN1b of the variable nozzle mechanism 35 is larger than VN1th (step S105).
  • FIG. 7 is a diagram for explaining calculation of the base opening degree of the variable nozzle mechanism 35 of the primary supercharger 30.
  • the solid line indicates turbine work and the broken line indicates turbine efficiency.
  • the turbine of the primary supercharger 30 is increased to the peak as the expansion ratio of the exhaust gas increases.
  • the turbine work of the primary supercharger 30 is reduced as the gas amount of the exhaust gas passing through the primary supercharger 30 decreases as it further changes to the closing side. descend.
  • the turbine efficiency of the primary supercharger 30 has a peak at an opening due to the characteristics of the primary supercharger 30.
  • the opening between the opening at which this turbine work peaks and the opening at which turbine efficiency peaks is called the base opening VN1b.
  • an opening intermediate between the opening at which the turbine work peaks and the turbine efficiency at the peak is set as the base opening VN1b.
  • the intermediate opening degree corresponds to the predetermined opening degree of the present disclosure.
  • the flow passage area of the exhaust gas is reduced while the supercharging pressure of the primary supercharger 30 is reduced. Since the step becomes smaller, the exhaust manifold internal pressure P4 is likely to rise.
  • the exhaust manifold internal pressure P4th is provided so that the oil seal of the valve stem of the exhaust valve does not blow through or the exhaust valve does not open. However, there is a concern that the exhaust manifold internal pressure P4 may exceed the exhaust manifold internal pressure P4th. is there.
  • FIG. 8 is a diagram showing changes in the exhaust manifold pressure and the command opening indicated by the control signal VN1.
  • the command opening indicated by the control signal VN1 is not limited and the command opening is set to the base opening VN1b
  • the exhaust manifold internal pressure P4 exceeds the restricted exhaust manifold internal pressure P4th during the running mode. It may happen.
  • the command opening exceeds the limit opening VN1th, the command opening is set to the limit acuity VN1th. This makes it possible to prevent the exhaust manifold internal pressure P4 from exceeding the restricted exhaust manifold internal pressure P4th.
  • control device 200 when it is determined that VN1b is not larger than VN1th (NO in step S105), the control device 200 outputs the control signal VN1 with the command opening degree of the control signal VN1 as the base opening degree VN1b. (Step S106).
  • control device 200 when it is determined that VN1b is larger than VN1th (YES in step S105), the control device 200 outputs the control signal VN1 that sets the command opening to the limit opening VN1th to the variable nozzle mechanism 35 of the primary supercharger 30. (Step S107).
  • step S106 or step S107 the control device 200 sets the command opening degree to the opening degree VN2b of the fully closed control (the opening area is not 0) which is the minimum opening degree for control.
  • VN2 is output to the variable nozzle mechanism 45 of the secondary supercharger 40 (step S108).
  • Cpg constant pressure specific heat (0.26)
  • K exhaust gas specific heat ratio (1.33)
  • G4 supercharger passing gas amount
  • T4 exhaust manifold internal temperature
  • P4 exhaust manifold internal pressure
  • P6 exhaust passage Back pressure of.
  • Cpa constant temperature specific heat (0.24), k: specific heat ratio of air (1.4), Ga: intake air amount, T1: intake air temperature, P3: intake pressure after supercharger, P2: supercharger.
  • the front intake pressure is.
  • Mathematical expressions (2) to (4) shown above are physical expressions of the supercharger.
  • the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 is larger than the opening degree of the variable nozzle mechanism 35 of the primary supercharger 30 in the running mode. Is used on the closed side. For this reason, compared with the case of using it on the open side, it is possible to suppress a decrease in the supercharger passing gas amount G4 of the primary supercharger 30 due to an increase in pressure loss on the secondary supercharger 40 side.
  • the decrease in the exhaust manifold internal pressure P4 can be suppressed, and thus the decrease in the expansion ratio P4 / P6 can be suppressed.
  • the formula (2) it is possible to suppress a decrease in turbine work of the primary supercharger 30 and a decrease in compressor work.
  • control device 200 sets the control signal CV2 of the second control valve 64 to a signal for opening the second control valve 64 (step S109), and sets the control signal CV3 of the third control valve 66 to the third control.
  • the signal is used to open the valve 66 (step S110).
  • the control device 200 determines whether or not the supercharging mode flag is a value indicating the approach mode (step S111). When it is determined that the running mode is not set (NO in step S111), the control device 200 returns the process to be executed to the calling source of the running mode process.
  • the control device 200 determines whether or not the second supercharging pressure Ps of the secondary supercharger 40 is stagnant (step S112). For example, whether or not the second supercharging pressure Ps is stagnant is determined by whether or not the time differential value of the second supercharging pressure Ps is smaller than a predetermined value that can be determined to be stagnant.
  • step S112 When it is determined that the second supercharging pressure Ps is stagnant (YES in step S112), the command opening degree of the control signal VN2 of the variable nozzle mechanism 45 is changed to the same opening degree as the command opening degree of the control signal VN1. Then, the control signal VN2 is output (step S113).
  • FIG. 9 is a diagram for explaining a case where the second supercharging pressure Ps of the secondary supercharger 40 is stagnant.
  • the solid line indicates the second supercharging pressure Ps of the secondary supercharger 40
  • the broken line indicates the first supercharging pressure Pp of the primary supercharger 30. If the first supercharging pressure Pp is high before switching to the run-up mode, the second supercharging pressure Ps does not catch up to the first supercharging pressure Pp and is stagnant as shown by the chain double-dashed line in FIG. 9. It may happen.
  • the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 is increased to the same opening degree as the opening degree of the variable nozzle mechanism 35 of the primary supercharger 30.
  • the control device 200 when it is determined that the second supercharging pressure Ps is not stagnant (NO in step S112) or after step S113, the control device 200 causes the second supercharging device 40 to perform the second supercharging. It is determined whether the pressure Ps has become equal to the first supercharging pressure Pp of the primary supercharger 30 (step S114). When it is determined that they are not equal (NO in step S114), the control device 200 returns the process to be executed to the calling source of this approach mode process.
  • the supercharging mode flag is changed to a value indicating the twin supercharging mode (step S115).
  • the control signal CV1 of the first control valve 62 is set as a signal for opening the first control valve 62 (step S116), and the control signal CV2 of the second control valve 64 is set as a signal for closing the second control valve 64. (Step S117). After that, the control device 200 returns the processing to be executed to the calling source of this approach mode processing.
  • FIG. 10 is a diagram for explaining changes in supercharging pressure in this embodiment.
  • the solid line indicates the second supercharging pressure Ps of the secondary supercharger 40
  • the broken line indicates the first supercharging pressure Pp of the primary supercharger 30
  • the two-dot chain line indicates the conventional first supercharging pressure Pp.
  • the second supercharging pressure Ps By executing the control shown in FIG. 5, the run-up mode is provided between the single supercharging mode and the twin supercharging mode, so that the first supercharging of the conventional primary supercharger 30 shown in FIG. 11 is performed. It is possible to reduce the step difference of the first boost pressure Pp as compared with the step difference of the pressure Pp.
  • the engine 1 is described as an example of a V-type 6-cylinder engine, but it may be an engine of other cylinder layout (for example, in-line type or horizontal type).
  • the supercharging system has been described as having two superchargers, but it may have three or more superchargers.
  • the first pressure sensor 106 has been described as detecting the pressure in the intake pipe 37, but at least the first supercharging pressure Pp of the compressor 31 of the primary supercharger 30 is detected. It is only necessary to detect the pressure in the intake pipe 27A, or the pressure in the intake pipe 27B may be detected.
  • the control device 200 is described as switching the supercharging mode to the twin supercharging mode when the second supercharging pressure Ps reaches the first supercharging pressure Pp. It suffices that the second supercharging pressure Ps reaches the first supercharging pressure Pp, and for example, the control device 200 is at a predetermined timing after the second supercharging pressure Ps reaches the first supercharging pressure Pp.
  • the supercharging mode may be switched to the twin supercharging mode.
  • step S112 of FIG. 5 whether or not the second supercharging pressure Ps is stagnant is the time differential value of the second supercharging pressure Ps being stagnant. The judgment is made based on whether or not the value becomes smaller than a predetermined value that can be judged.
  • the present invention is not limited to this, and whether or not the second supercharging pressure Ps is stagnant is determined by whether or not the period after switching to the running mode is equal to or longer than a predetermined period that can be determined to be stagnant.
  • the time differential value of Pp-Ps may be determined based on whether the time differential value is smaller than a predetermined value that can be determined to be stagnant, or the time differential value of the first supercharging pressure Pp may be determined. The determination may be made based on whether or not the value has become smaller than a predetermined value that can be determined to be stagnant.
  • the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 is changed to the opening degree of the variable nozzle mechanism 35 of the primary supercharger 30. I made it to the same opening as.
  • the present invention is not limited to this, and the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 may be increased, and the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 and the variable nozzle mechanism of the primary supercharger 30.
  • the opening may be increased up to a predetermined opening between the opening and 35.
  • a supercharging system including a primary supercharger 30, a secondary supercharger 40, and a control device 200, disclosure of an internal combustion engine such as the engine 1, internal combustion of the engine 1 or the like It can be regarded as disclosure of a control device such as the ECU 100 of the engine, disclosure of a control method by such a control device, or disclosure of an internal combustion engine system including such an internal combustion engine and a control device.
  • the supercharging system includes a turbine 32 driven by the exhaust gas discharged from the engine 1, and a variable nozzle mechanism for adjusting the flow velocity of the exhaust gas flowing into the turbine 32 by the opening degree.
  • 35 which includes a primary supercharger 30 for supercharging the air sucked into the engine 1, a turbine 42 driven by the exhaust gas discharged from the engine 1, and a flow velocity of the exhaust gas flowing into the turbine 42 is adjusted by the opening degree.
  • the control device 200 switches to a twin supercharging mode in which the air supercharged in the primary supercharger 30 and the air supercharged in the secondary supercharger 40 are supplied to the engine 1.
  • the control device 200 supplies the exhaust gas to the secondary supercharger 40 and switches the air supercharged by the secondary supercharger 40 before switching from the single supercharge mode to the twin supercharge mode.
  • the operation is performed in the run-up mode in which is supplied to the primary supercharger 30.
  • the second supercharging pressure Ps of the secondary supercharger 40 reaches the first supercharging pressure Pp of the primary supercharger 30 during the operation in the approach mode.
  • Switch to twin supercharging mode in case.
  • steps S106 to S108 of FIG. 5 when the operation in the running mode is started, the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 is changed to the variable nozzle mechanism 35 of the primary supercharger 30.
  • the variable nozzle mechanism 45 is controlled so as to be smaller than the opening degree.
  • the control device 200 sets the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 to the primary opening.
  • the variable nozzle mechanism 45 is controlled so as to have the same opening as the variable nozzle mechanism 35 of the supercharger 30. Accordingly, by reducing the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40, even if the increase of the second supercharging pressure Ps is stagnant, the stagnant can be eliminated.
  • the control device 200 controls the base opening degree VN1b of the variable nozzle mechanism 35 of the primary supercharger 30 during operation in the run-up mode so that the primary supercharger 30 has the best turbine efficiency and the primary supercharger.
  • the variable nozzle mechanism 35 of the primary supercharger 30 is controlled so that the opening degree is intermediate to the opening degree where the turbine work of the machine 30 is the best. Accordingly, even when the opening degree of the variable nozzle mechanism 45 of the secondary supercharger 40 is controlled to be smaller than the opening degree of the variable nozzle mechanism 35 of the primary supercharger 30, the primary supercharger 30.
  • the turbine efficiency and the turbine work can be set to high values in a well-balanced manner.
  • the control device 200 calculates the limit opening VN1th of the variable nozzle mechanism 35 of the primary supercharger 30 when the pressure of the exhaust gas discharged from the engine 1 reaches the limit exhaust manifold internal pressure P4th, and the calculated limit When the base opening degree VN1b exceeds the opening degree VN1th, the variable nozzle mechanism 35 is controlled so that the opening degree of the variable nozzle mechanism 35 becomes the limit opening degree VN1th. This makes it possible to prevent the exhaust manifold internal pressure P4 from exceeding the restricted exhaust manifold internal pressure P4th.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

過給システムは、流入する排気の流速を開度により調整する第1可変ノズル機構(35)を含む第1過給機(30)と、流入する排気の流速を開度により調整する第2可変ノズル機構(40)を含む第2過給機(40)と、第1過給機で過給された空気がエンジン(1)に供給される第1過給モードから、第1,2過給機(30、40)で過給された空気がエンジン(1)に供給される第2過給モードに切替える制御装置(200)とを備える。制御装置(200)は、第1から第2過給モードに切替える前に第2過給機(40)に排気を供給しつつ第2過給機(40)によって過給された空気を第1過給機(30)に供給する助走運転を実行し、助走運転中に第2過給機(40)の過給圧が第1過給機(30)の過給圧に到達した場合に第2過給モードに切替え(S114~S117)助走運転を開始する場合に、第2可変ノズル機構(35)の開度が第1可変ノズル機構(40)の開度よりも小さくなるよう制御する(S106~S108)。

Description

過給システム
 この開示は、過給システムに関し、特に、並列に接続された複数の過給機を有する過給システムに関する。
 エンジンの吸気を過給する過給システムとしては、たとえば、並列に接続された複数の過給機を有する構成が公知である。たとえば、並列に接続された2つの過給機を有する過給システムにおいては、2つの過給機のうちの一つを用いてエンジンの吸気を過給する過給モード(以下、シングル過給モードとも記載する)と、両方の過給機を用いてエンジンの吸気を過給する過給モード(以下、ツイン過給モードとも記載する)とを切替える切替制御が行なわれる。
 このような切替制御を実行する場合において、過給圧の段差が生じる場合がある。この過給圧の段差を低減させるために、2つ目の過給機の始動を補助するためのモータを備える過給システムがある(たとえば、特許文献1参照)。
特開2008-255902号公報
 しかし、特許文献1の過給システムでは、モータを搭載するためのコストが掛かり、モータを搭載するためのスペースを確保する必要があり、また、モータを搭載すると車両の重量が増加してしまう。
 この開示は、上述の問題を解決するためになされたものであり、その目的は、過給機の始動を補助する装置を追加することなく、過給圧の段差を低減することが可能な過給システムを提供することである。
 この開示による過給システムは、エンジンから排出される排気によって駆動する第1タービンと、第1タービンへ流入する排気の流速を開度によって調整する第1可変ノズル機構とを含み、エンジンに吸入される空気を過給する第1過給機と、エンジンから排出される排気によって駆動する第2タービンと、第2タービンへ流入する排気の流速を開度によって調整する第2可変ノズル機構とを含み、エンジンに吸入される空気を過給する第2過給機と、第1過給機において過給された空気がエンジンに供給される第1過給モードから、第1過給機において過給された空気と第2過給機において過給された空気とがエンジンに供給される第2過給モードに切替える制御装置とを備える。制御装置は、第1過給モードから第2過給モードに切替える前に、第2過給機に排気を供給しつつ、第2過給機によって過給された空気を第1過給機に供給する助走運転を実行し、助走運転中に、第2過給機の過給圧が第1過給機の過給圧に到達した場合に第2過給モードに切替え、助走運転を開始する場合に、第2可変ノズル機構の開度が、第1可変ノズル機構の開度よりも小さくなるように第2可変ノズル機構を制御する。
 好ましくは、制御装置は、助走運転中に、第2過給機の過給圧の上昇が停滞する場合、第2可変ノズル機構の開度が第1可変ノズル機構の開度と同じとなるように第2可変ノズル機構を制御する。
 好ましくは、制御装置は、助走運転中、第1可変ノズル機構の開度が、第1過給機のタービン効率が最も良くなる開度と第1過給機のタービン仕事が最も良くなる開度との間の所定開度となるよう第1可変ノズル機構を制御する。
 さらに好ましくは、制御装置は、エンジンから排出される排気の圧力が制限圧力に達する場合の第1可変ノズル機構の制限開度を算出し、算出された制限開度を所定開度が上回る場合、第1可変ノズル機構の開度が制限開度となるよう第1可変ノズル機構を制御する。
 この開示に従えば、過給機の始動を補助する装置を追加することなく、過給圧の段差を低減することが可能な過給システムを提供することができる。
この実施の形態におけるエンジンの概略構成の一例を示す図である。 シングル過給モード時の過給システムの動作を説明するための図である。 助走モード時の過給システムの動作を説明するための図である。 ツイン過給モード時の過給システムの動作を説明するための図である。 制御装置で実行される処理の一例を示すフローチャートである。 推定モデルを用いた制限開度の算出を説明するための図である。 プライマリ過給機の可変ノズル機構のベース開度の算出を説明するための図である。 エキマニ内圧力と制御信号VN1で示される指令開度との変化を示す図である。 セカンダリ過給機の第2過給圧が停滞する場合を説明するための図である。 この実施の形態における過給圧の変化について説明するための図である。 従来の過給圧の変化について説明するための図である。
 以下、図面を参照しつつ、この開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。
 <過給システムの構成について>
 図1は、この実施の形態におけるエンジン1の概略構成の一例を示す図である。図1を参照して、このエンジン1は、たとえば、走行のための駆動源として車両に搭載される。この実施の形態においては、エンジン1は、ディーゼルエンジンである場合を一例として説明するが、たとえば、ガソリンエンジンであってもよい。
 エンジン1は、バンク10A,10Bと、エアクリーナ20と、インタークーラ25と、吸気マニホールド28A,28Bと、プライマリ過給機30と、セカンダリ過給機40と、排気マニホールド50A,50B(以下「エキマニ」ともいう)と、排気処理装置81と、制御装置200とを備える。
 バンク10Aには、複数の気筒12Aが形成される。バンク10Bには、複数の気筒12Bが形成される。各気筒12A,12B内にはピストン(図示せず)が収納されており、ピストンの頂部と気筒の内壁とによって燃焼室(燃料が燃焼する空間)が形成されている。各気筒12A,12B内をピストンが摺動することによって燃焼室の容積が変化される。各気筒12A,12Bには、インジェクタ(図示せず)が設けられており、エンジン1の動作中においては、制御装置200によって設定されたタイミングおよび量の燃料を各気筒12A,12B内に噴射する。なお、各インジェクタから噴射する燃料の噴射量およびタイミングは、たとえば、エンジン回転数NE、吸入空気量Qin、アクセルペダルの踏み込み量あるいは車両の速度等から制御装置200によって設定される。
 各気筒12A,12Bのピストンは、コネクティングロッドを介して共通のクランクシャフト(図示せず)に連結される。各気筒12A,12B内において所定の順序で燃料が燃焼することによってピストンが各気筒12A,12B内を摺動し、ピストンの上下運動がコネクティングロッドを経由してクランクシャフトの回転運動に変換される。
 プライマリ過給機30は、コンプレッサ31とタービン32とを含むターボチャージャーである。プライマリ過給機30のコンプレッサ31は、エンジン1の吸気通路(すなわち、エアクリーナ20から吸気マニホールド28A,28Bまでの通路)に設けられる。プライマリ過給機30のタービン32は、エンジン1の排気通路(すなわち、排気マニホールド50A,50Bから排気処理装置81までの通路)に設けられる。
 コンプレッサ31内には、コンプレッサホイール33が回転自在に収納される。タービン32内には、タービンホイール34と可変ノズル機構35とが設けられる。タービンホイール34は、回転自在にタービン32内に収納される。コンプレッサホイール33と、タービンホイール34とは、回転軸36によって連結されており、一体的に回転する。コンプレッサホイール33は、タービンホイール34に供給される排気のエネルギー(排気エネルギー)によって回転駆動される。プライマリ過給機30、タービン32、及び可変ノズル機構35は本開示の第1過給機、第1タービン、第1可変ノズル機構にそれぞれ相当する。
 可変ノズル機構35は、タービン32を作動させる排気の流速を変化させる。可変ノズル機構35は、タービンホイール34の外周側に配置され、排気流入口から供給される排気をタービンホイール34に導く複数のノズルベーン(図示せず)と、複数のノズルベーンの各々を回転させることによって隣接するノズルベーン間の隙間(以下の説明においてこの隙間をVN開度と記載する)を変化させる駆動装置(図示せず)とを含む。可変ノズル機構35は、たとえば、制御装置200からの制御信号VN1に応じて駆動装置を用いてノズルベーンを回転させることによってVN開度を変化させる。
 セカンダリ過給機40は、コンプレッサ41とタービン42とを含むターボチャージャーである。この実施の形態においては、セカンダリ過給機40は、プライマリ過給機30と同じ構造およびサイズであることとする。セカンダリ過給機40のコンプレッサ41は、エンジン1の吸気通路において、コンプレッサ31に並列して設けられ、エンジン1の吸気を過給する。セカンダリ過給機40のタービン42は、エンジン1の排気通路において、タービン32に並列して設けられる。
 コンプレッサ41内には、コンプレッサホイール43が回転自在に収納される。タービン42内には、タービンホイール44と可変ノズル機構45とが設けられる。タービンホイール44は、回転自在にタービン42内に収納される。コンプレッサホイール43と、タービンホイール44とは、回転軸46によって連結されており、一体的に回転する。コンプレッサホイール43は、タービンホイール44に供給される排気エネルギーによって回転駆動される。セカンダリ過給機40、タービン42、及び可変ノズル機構45は本開示の第2過給機、第2タービン、第2可変ノズル機構にそれぞれ相当する。
 
 なお、可変ノズル機構45は、可変ノズル機構35と同様の構成を有するため、その詳細な説明は繰り返さない。可変ノズル機構45は、たとえば、制御装置200からの制御信号VN2に応じて駆動装置を用いてノズルベーンを回転させることによってVN開度を変化させる。
 エアクリーナ20は、吸気口(図示せず)から吸入された空気から異物を除去する。エアクリーナ20には、吸気管23の一方端が接続される。吸気管23の他方端は、分岐して吸気管21の一方端および吸気管22の一方端に接続される。
 吸気管21の他方端は、プライマリ過給機30のコンプレッサ31の吸気流入口に接続される。プライマリ過給機30のコンプレッサ31の吸気流出口には、吸気管37の一方端が接続される。吸気管37の他方端は、インタークーラ25に接続される。コンプレッサ31は、コンプレッサホイール33の回転によって吸気管21を通じて吸入される空気を過給して吸気管37に供給する。
 吸気管22の他方端は、セカンダリ過給機40のコンプレッサ41の吸気流入口に接続される。セカンダリ過給機40のコンプレッサ41の吸気流出口には、吸気管47の一方端が接続される。吸気管47の他方端は、吸気管37の途中の接続部J3に接続される。コンプレッサ41は、コンプレッサホイール43の回転によって吸気管22を通じて吸入される空気を過給して吸気管47に供給する。
 吸気管47の途中には第1制御弁62が設けられている。第1制御弁62は、たとえば、制御装置200からの制御信号CV1に応じてON(開)/OFF(閉)制御されるノーマリーオフのVSV(負圧切替弁)である。
 また、吸気管47において第1制御弁62よりも上流側(コンプレッサ41側)に位置する接続部J4に、還流管48の一方端が接続されている。また、還流管48の他方端は吸気管21に接続されている。還流管48は、吸気管47を流れる空気の少なくとも一部をプライマリ過給機30のコンプレッサ31よりも上流側に還流させるための通路である。還流管48を通じて吸気管21に還流した空気は、コンプレッサ31に供給される。
 還流管48の途中には第2制御弁64が設けられている。第2制御弁64は、たとえば、制御装置200からの制御信号CV2に応じてON(開)/OFF(閉)制御されるノーマリーオフの電磁弁(ソレノイドバルブ)である。
 接続部J3には、コンプレッサ31によって過給された空気と、コンプレッサ41によって過給され、第1制御弁62を通過した空気とが供給される。これらの空気は、接続部J3で合流してインタークーラ25に流入する。
 インタークーラ25は、流入した空気を冷却するように構成される。インタークーラ25は、たとえば空冷式又は水冷式の熱交換器である。インタークーラ25には、2カ所の吸気流出口が設けられる。インタークーラ25の一方の出口には、吸気管27Aの一方端が接続される。吸気管27Aの他方端は、吸気マニホールド28Aに接続される。インタークーラ25の他方の出口には、吸気管27Bの一方端が接続される。吸気管27Bの他方端は、吸気マニホールド28Bに接続される。
 吸気マニホールド28A、28Bは、それぞれバンク10A、10Bにおける気筒12A、12Bの吸気ポート(図示せず)に連結される。一方、排気マニホールド50A,50Bは、それぞれバンク10A,10Bにおける気筒12A,12Bの排気ポート(図示せず)に連結される。
 各気筒12A,12Bの燃焼室から排気ポートを通じて気筒外に排出された排気(燃焼後のガス)は、エンジン1の排気通路を経由して外に排出される。上記の排気通路は、排気マニホールド50A,50B、排気管51A,51Bと、接続部J1と、排気管52A,52B,53A,53Bと、接続部J2とを含む。排気管51Aの一方端は、排気マニホールド50Aに接続される。排気管51Bの一方端は、排気マニホールド50Bに接続される。排気管51Aの他方端と、排気管51Bの他方端とは、接続部J1において一旦合流した後に、分岐して排気管52Aの一方端および排気管52Bの一方端に接続される。
 排気管52Aの他方端は、タービン32の排気流入口に接続される。タービン32の排気流出口には、排気管53Aの一方端が接続される。排気管52Bの他方端は、タービン42の排気流入口に接続される。タービン42の排気流出口には、排気管53Bの一方端が接続される。
 排気管52Bの途中には第3制御弁66が設けられる。第3制御弁66は、たとえば、制御装置200からの制御信号CV3に応じてON(開)/OFF(閉)制御されるノーマリーオンのVSV(負圧切替弁)である。
 排気管53Aの他方端と排気管53Bの他方端とは、接続部J2において合流し、排気処理装置81に接続される。排気処理装置81は、たとえば、SCR触媒、酸化触媒、あるいは、PM除去フィルタ等によって構成され、排気管53Aおよび排気管53Bから流通する排気を浄化する。
 エンジン1の動作は、制御装置200によって制御される。制御装置200は、各種処理を行なうCPU(Central Processing Unit)と、プログラムおよびデータを記憶するROM(Read Only Memory)およびCPUの処理結果等を記憶するRAM(Random Access Memory)等を含むメモリと、外部との情報のやり取りを行なうための入出力ポート(いずれも図示せず)とを含む。入力ポートには、各種センサ類(たとえば、エアフローメータ102、第1圧力センサ106および第2圧力センサ108等)が接続される。出力ポートには、制御対象となる機器(たとえば、複数のインジェクタ、可変ノズル機構35,45、第1制御弁62、第2制御弁64、第3制御弁66等)が接続される。
 制御装置200は、各センサおよび機器からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、エンジン1が所望の運転状態となるように各種機器を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。また、制御装置200には、時間の計測を行うためのタイマー回路(図示せず)が内蔵されている。
 エアフローメータ102は、吸入空気量Qinを検出する。エアフローメータ102は、検出した吸入空気量Qinを示す信号を制御装置200に送信する。
 エンジン回転数センサ(図示なし)は、エンジン回転数NEを検出する。エンジン回転数センサは、検出したエンジン回転数NEを示す信号を制御装置200に送信する。
 第1圧力センサ106は、吸気管37の接続部J3における圧力(以下、第1過給圧と記載する)Ppを検出する。第1圧力センサ106は、検出した第1過給圧Ppを示す信号を制御装置200に送信する。
 第2圧力センサ108は、吸気管47の接続部J4における圧力(以下、第2過給圧Psと記載する)を検出する。第2圧力センサ108は、第2過給圧Psを示す信号を制御装置200に送信する。
 この実施の形態において、プライマリ過給機30とセカンダリ過給機40と制御装置200とによって「過給システム」が構成される。
 制御装置200は、第1制御弁62、第2制御弁64および第3制御弁66を制御することにより、プライマリ過給機30(プライマリターボ)のみで過給を行なうシングル過給モードと、プライマリ過給機30(プライマリターボ)およびセカンダリ過給機40(セカンダリターボ)の両方で過給を行なうツイン過給モードとのうちのいずれか一方から他方に切替える切替制御を実行可能に構成される。また、制御装置200は、シングル過給モードからツイン過給モードに切替える場合には、シングル過給モードから、セカンダリ過給機40による過給圧を一定以上に上昇させる助走モードでの運転を実行した後に、過給モードをツイン過給モードに切替える。シングル過給モードとツイン過給モードは本開示の第1過給モードと第2過給モードに相当する。
 以下、シングル過給モード、助走モードおよびツイン過給モードの各々における過給システムの動作について図2、図3および図4を参照しつつ説明する。
 <シングル過給モードについて>
 制御装置200は、所定の実行条件が成立する場合に、シングル過給モードで過給システムを動作させる。所定の実行条件とは、たとえば、エンジン回転数NEおよび吸入空気量Qinに基づくエンジン1の運転状態が低負荷運転状態であるという条件を含む。制御装置200は、過給モードがシングル過給モードである場合には、第1制御弁62、第2制御弁64および第3制御弁66をいずれも閉状態(オフ状態)にする。
 図2は、シングル過給モード時の過給システムの動作を説明するための図である。図2の矢印に示すように、排気マニホールド50A,50Bを流通する排気は、排気管52Aを経由してプライマリ過給機30のタービン32に流れ、排気管53Aを経由して排気処理装置81に流れる。タービン32に供給された排気によって、タービンホイール34が回転し、タービンホイール34の回転にともなってコンプレッサホイール33が回転する。
 エアクリーナ20から吸入される空気は、吸気管23および吸気管21を経由してコンプレッサ31に流れる。コンプレッサ31から吐出された吸気は、吸気管37を経由してインタークーラ25に流れる。インタークーラ25に流れた吸気は、吸気管27A,27Bに分岐して吸気マニホールド28A,28Bの各々に流れる。
 <助走モードについて>
 制御装置200は、たとえば、過給モードがシングル過給モードであって、かつ、プライマリ過給機30の回転数がしきい値を超える場合に、シングル過給モードからツイン過給モードへの切替要求があると判定する。
 制御装置200は、シングル過給モードからツイン過給モードへの切替要求がある場合には、ツイン過給モードに切替える前に助走モードを実行する。すなわち、制御装置200は、第2制御弁64および第3制御弁66の両方を開状態(オン状態)にし、第1制御弁62を閉状態(オフ状態)にする。
 図3は、助走モード時の過給システムの動作を説明するための図である。図3の矢印に示すように、排気マニホールド50A,50Bを流通する排気は、接続部J1で一旦合流した後に排気管52A,52Bに分岐し、プライマリ過給機30,セカンダリ過給機40のタービン32,42の両方に流れ、排気管53A,53Bを経由して排気処理装置81に流通する。
 タービン32に供給された排気によって、タービンホイール34が回転し、タービンホイール34の回転にともなってコンプレッサホイール33が回転する。タービン42に供給された排気によって、タービンホイール44が回転し、タービンホイール44の回転にともなってコンプレッサホイール43が回転する。
 エアクリーナ20から吸入される空気は、吸気管23から吸気管21,22に分岐してコンプレッサ31,41の両方に流れる。コンプレッサ31から吐出された吸気は、吸気管37を経由してインタークーラ25に流れる。コンプレッサ41から吐出された吸気は、吸気管47から接続部J4を経由して還流管48に流れ、還流管48から吸気管21を経由してコンプレッサ31に流れる。
 インタークーラ25に流れた吸気は、吸気管27A,27Bに分岐して吸気マニホールド28A,28Bの各々に流れる。助走モードにおいては、プライマリ過給機30によってインタークーラ25に流れる吸気を過給しつつ、セカンダリ過給機40の回転数が上昇される。セカンダリ過給機40の回転数が上昇するにつれてセカンダリ過給機40のコンプレッサ41から吐出される吸気の圧力が上昇していく。
 <ツイン過給モードについて>
 制御装置200は、助走モード中におけるセカンダリ過給機40の過給能力が十分高くなったタイミングで、ツイン過給モードで過給システムを動作させる。制御装置200は、過給モードがツイン過給モードである場合には、第1制御弁62を開状態(オン状態)にするとともに、第2制御弁64を閉状態(オフ状態)にする。また、第3制御弁66の両方を開状態(オン状態)にする。
 図4は、ツイン過給モード時の過給システムの動作を説明するための図である。助走モード時においては、セカンダリ過給機40のコンプレッサ41から吐出された吸気が吸気管47の途中から還流管48を経由して吸気管21に流れていたのに対して、ツイン過給モード時においては、図4の矢印に示すように、セカンダリ過給機40のコンプレッサ41から吐出された吸気が吸気管47から吸気管37を経由してインタークーラ25に流れる。
 なお、上述以外の排気および吸気の流れは助走モード時の排気および吸気の流れと同様である。そのため、その詳細な説明は繰り返さない。
 図11は、従来の過給圧の変化について説明するための図である。図11を参照して、実線はセカンダリ過給機40の第2過給圧Ps、破線はプライマリ過給機30の第1過給圧Ppを示す。シングル過給モードから上述の助走モードに切替えずにツイン過給モードに直接切替える場合、シングル過給モードにおいてプライマリ過給機30の第1過給圧Ppが上昇した後に、ツイン過給モードに切替えたとき、セカンダリ過給機40の第2過給圧Psの急激な上昇に伴い、プライマリ過給機30の第1過給圧Ppが急激に下がる。このため、第1過給圧Ppの過給圧の段差が大きくなる。これにより、たとえば過給圧の上昇のもたつきによりドライバビリティが悪化したり、たとえば過給圧の比較的大きな変動により過給機に負担が掛かることで過給機の信頼性が悪化したりする。
 この過給圧の段差を低減させるために、過給システムにおいて、2つ目のセカンダリ過給機40の始動を補助するためのモータを備えるようにすることが考えられる。しかし、このような過給システムでは、モータを搭載するためのコストが掛かり、モータを搭載するためのスペースを確保する必要があり、また、モータを搭載すると車両の重量が増加してしまう。
 そこで、この実施の形態においては、制御装置200は、シングル過給モードからツイン過給モードに切替える前に、セカンダリ過給機40に排気を供給しつつ、セカンダリ過給機40によって過給された空気をプライマリ過給機30に供給する助走モードでの運転を実行し、助走モードでの運転中に、セカンダリ過給機40の過給圧がプライマリ過給機30の過給圧に到達した場合にツイン過給モードに切替え、助走モードでの運転を開始する場合に、可変ノズル機構45の開度が、可変ノズル機構35の開度よりも小さくなるように可変ノズル機構45を制御する。
 これにより、セカンダリ過給機40の始動を補助する装置を追加することなく、過給圧の段差を低減することができる。その結果、ドライバビリティおよび過給機の信頼性が改善される。
 図5は、制御装置で実行される処理の一例を示すフローチャートである。この処理は、制御装置200によって、メイン処理から所定の制御周期ごとに繰返し呼出されて実行される。図5を参照して、制御装置200は、過給モードフラグがシングル過給モードを示す値であるか否かを判断する(ステップS101)。過給モードフラグは、現在制御されている過給モードを示すフラグであって、制御されている過給モードとして、シングル過給モード、ツイン過給モード、および、助走モードのいずれかを示す値を取り得る。
 過給モードフラグがシングル過給モードを示さない(ステップS101でNO)と判断した場合、制御装置200は、実行する処理をステップS111の処理に進める。
 一方、過給モードフラグがシングル過給モードを示す(ステップS101でYES)と判断した場合、制御装置200は、ツイン過給モードへの切替要求が有るか否かを判断する(ステップS102)。たとえば、前述したように、プライマリ過給機30の回転数がしきい値を超える場合に、ツイン過給モードへの切替要求が有ると判断する。切替要求が無い(ステップS102でNO)と判断した場合、制御装置200は、実行する処理をステップS111の処理に進める。
 一方、切替要求が有る(ステップS102でYES)と判断した場合、制御装置200は、過給モードフラグを助走モードを示す値に書換える(ステップS103)。次に、制御装置200は、可変ノズル機構35の制御信号VN1で指令開度として出力する制限開度VN1thを、制限開度の推定モデルで算出する(ステップS104)。
 図6は、制限開度の推定モデルを用いた制限開度の算出を説明するための図である。図6を参照して、まず、以下の数式(1)で示すノズル式を用いて目標有効開口面積μAを算出する。
Figure JPOXMLDOC01-appb-M000001
 なお、A:実開口面積、μA:目標有効開口面積、m:吸入空気量Ga+噴射燃料の質量流量Gf、R:気体定数、T4:エキマニ内温度、P6:排気通路の背圧、P4:エキマニ内圧力、a,b:P6/P4の値ごとに予め定められた定数、である。
 数式(1)のエキマニ内圧力P4として入力される制限エキマニ内圧力P4thは、排気バルブのバルブステムのオイルシールが吹き抜けたり、排気バルブが開弁したりしない値として予め定められる。吸入空気量Ga、エキマニ内温度T4、および、背圧P6は、それぞれ、エアフローメータ102、温度センサ114、および、圧力センサ116からの検出信号に応じて特定される。噴射燃料の質量流量Gfは、燃料の噴射のために制御装置200により算出される燃料噴射量から算出される。
 次に、VN開度と有効開口面積との関係を示す開度特性マップを用いて、算出された目標有効開口面積μAから制限開度VN1thを算出する。
 図5に戻って、制御装置200は、可変ノズル機構35のベース開度VN1bが、VN1thより大きいか否かを判断する(ステップS105)。
 図7は、プライマリ過給機30の可変ノズル機構35のベース開度の算出を説明するための図である。図7を参照して、実線はタービン仕事、破線はタービン効率を示す。可変ノズル機構35においては、制御信号VN1で示される開度が開き側から閉まり側に変化するのに従って、ピークまでは、排気の膨張比が増大することに伴って、プライマリ過給機30のタービン仕事が上昇するが、ピークに達した後、閉まり側にさらに変化するのに従って、プライマリ過給機30を通過する排気のガス量が低下することに伴って、プライマリ過給機30のタービン仕事が低下する。また、プライマリ過給機30のタービン効率は、プライマリ過給機30の特性によりある開度でピークを持つ。
 このタービン仕事がピークとなる開度と、タービン効率がピークとなる開度との間の開度を、ベース開度VN1bとする。たとえば、タービン仕事がピークとなる開度と、タービン効率がピークとなる開度との中間の開度を、ベース開度VN1bとする。この中間の開度は本開示の所定開度に相当する。
 この実施の形態のように、助走モードにおいて、制御信号VN1,VN2で示される指令開度を閉め側で制御すると、排気の流路面積が小さくなる一方、プライマリ過給機30の過給圧の段差が小さくなるため、エキマニ内圧力P4が上昇しやすくなってしまう。排気バルブのバルブステムのオイルシールが吹き抜けたり、排気バルブが開弁したりしないように、制限エキマニ内圧力P4thを設けているが、エキマニ内圧力P4が制限エキマニ内圧力P4thを超えてしまう懸念がある。
 図8は、エキマニ内圧力と制御信号VN1で示される指令開度との変化を示す図である。図8を参照して、制御信号VN1で示される指令開度に制限を設けず、指令開度をベース開度VN1bとした場合、助走モード中にエキマニ内圧力P4が制限エキマニ内圧力P4thを超えてしまう場合がある。
 このため、指令開度が制限開度VN1thを超える場合は、指令開度を制限晃度VN1thとする。これにより、エキマニ内圧力P4が制限エキマニ内圧力P4thを超えないようにすることができる。
 図5に戻って、VN1bがVN1thより大きくない(ステップS105でNO)と判断した場合、制御装置200は、制御信号VN1での指令開度を、ベース開度VN1bとして、制御信号VN1を出力する(ステップS106)。
 一方、VN1bがVN1thより大きい(ステップS105でYES)と判断した場合、制御装置200は、指令開度を制限開度VN1thとした制御信号VN1をプライマリ過給機30の可変ノズル機構35に出力する(ステップS107)。
 ステップS106またはステップS107の後、制御装置200は、指令開度を、制御上の最小の開度である制御全閉(開口面積が0である訳ではない。)の開度VN2bとした制御信号VN2をセカンダリ過給機40の可変ノズル機構45に出力する(ステップS108)。
Figure JPOXMLDOC01-appb-M000002
 なお、Cpg:定圧比熱(0.26)、K:排気ガスの比熱比(1.33)、G4:過給機通過ガス量、T4:エキマニ内温度、P4:エキマニ内圧力、P6:排気通路の背圧、である。
Figure JPOXMLDOC01-appb-M000003
 なお、Cpa:定温比熱(0.24)、k:空気の比熱比(1.4)、Ga:吸入空気量、T1:吸入空気温度、P3:過給機後吸気圧力、P2:過給機前吸気圧力、である。
Figure JPOXMLDOC01-appb-M000004
 上に示した数式(2)から数式(4)は過給機の物理式である。ステップS107およびステップS108で示すように、この実施の形態においては、助走モードにおいて、プライマリ過給機30の可変ノズル機構35の開度よりも、セカンダリ過給機40の可変ノズル機構45の開度を閉め側で使用する。このため、開き側で使用する場合と比較して、セカンダリ過給機40の側の圧力損失の増加により、プライマリ過給機30の過給機通過ガス量G4の低下を抑制することができる。また、開き側で使用する場合と比較して、エキマニ内圧力P4の低下を抑制することができるため、膨張比P4/P6の低下を抑制できる。これにより、数式(2)によれば、プライマリ過給機30のタービン仕事の低下を抑制することができ、コンプレッサ仕事の低下を抑制することができる。また、数式(3)によれば、プライマリ過給機30の過給機後吸気圧力P3=第1過給圧Ppの低下を抑制することができる。
 次に、制御装置200は、第2制御弁64の制御信号CV2を、第2制御弁64を開状態にする信号とし(ステップS109)、第3制御弁66の制御信号CV3を、第3制御弁66を開状態にする信号とする(ステップS110)。
 制御装置200は、過給モードフラグが、助走モードを示す値であるか否かを判断する(ステップS111)。助走モードでない(ステップS111でNO)と判断した場合、制御装置200は、実行する処理をこの助走モード処理の呼出元に戻す。
 一方、助走モードである(ステップS111でYES)と判断した場合、制御装置200は、セカンダリ過給機40の第2過給圧Psが停滞しているか否かを判断する(ステップS112)。たとえば、第2過給圧Psが停滞しているか否かは、第2過給圧Psの時間微分値が、停滞と判断し得る所定値より小さくなったか否かによって判断されるようにする。
 第2過給圧Psが停滞している(ステップS112でYES)と判断した場合、可変ノズル機構45の制御信号VN2での指令開度を制御信号VN1での指令開度と同じ開度に変更して、制御信号VN2を出力する(ステップS113)。
 図9は、セカンダリ過給機40の第2過給圧Psが停滞する場合を説明するための図である。図9を参照して、実線はセカンダリ過給機40の第2過給圧Ps、破線はプライマリ過給機30の第1過給圧Ppを示す。助走モードに切替えられる前に、第1過給圧Ppが高い場合、第2過給圧Psが第1過給圧Ppまで追付かずに、図9の二点鎖線で示すように、停滞してしまう場合がある。このような場合に、セカンダリ過給機40の可変ノズル機構45の開度を大きくすることで、図9で示すように、第2過給圧Psが第1過給圧Ppに追付き、第2過給圧Psの停滞を解消することができる。この場合に、この実施の形態においては、セカンダリ過給機40の可変ノズル機構45の開度を、プライマリ過給機30の可変ノズル機構35の開度と同じ開度まで大きくする。
 図5に戻って、第2過給圧Psが停滞していない(ステップS112でNO)と判断した場合、または、ステップS113の後、制御装置200は、セカンダリ過給機40の第2過給圧Psがプライマリ過給機30の第1過給圧Ppと等しくなったか否かを判断する(ステップS114)。等しくなっていない(ステップS114でNO)と判断した場合、制御装置200は、実行する処理をこの助走モード処理の呼出元に戻す。
 一方、第2過給圧Psが第1過給圧Ppと等しくなった(ステップS114でYES)と判断した場合、過給モードフラグをツイン過給モードを示す値に変更し(ステップS115)、第1制御弁62の制御信号CV1を、第1制御弁62を開状態にする信号とし(ステップS116)、第2制御弁64の制御信号CV2を、第2制御弁64を閉状態にする信号とする(ステップS117)。その後、制御装置200は、実行する処理をこの助走モード処理の呼出元に戻す。
 図10は、この実施の形態における過給圧の変化について説明するための図である。図10を参照して、実線はセカンダリ過給機40の第2過給圧Ps、破線はプライマリ過給機30の第1過給圧Pp、2点鎖線は、従来の第1過給圧Ppおよび第2過給圧Psを示す。図5で示した制御を実行することによって、シングル過給モードとツイン過給モードとの間に助走モードが設けられることで、図11で示した従来のプライマリ過給機30の第1過給圧Ppの段差と比較して、第1過給圧Ppの段差を低減することができる。
 [変形例]
 (1) 前述した実施の形態では、エンジン1の吸気通路には、プライマリ過給機30およびセカンダリ過給機40が設けられるものとして説明したが、エンジン1の吸気通路には、プライマリ過給機30およびセカンダリ過給機40に加えて、たとえば、吸気絞り弁や排気再循環装置のEGR(Exhaust Gas Recirculation)ガス流入口が設けられてもよい。
 (2) 前述した実施の形態では、エンジン1は、V型6気筒のエンジンを一例として説明したが、たとえば、その他の気筒レイアウト(たとえば、直列型あるいは水平型)のエンジンであってもよい。
 (3) 前述した実施の形態では、プライマリ過給機30の回転数によってシングル過給モードからツイン過給モードへの切替要求があるか否かを判定するものとして説明したが、プライマリ過給機30の回転数に加えて、プライマリ過給機30の効率や車両の運転状態(たとえば、加速状態)等のドライバビリティの観点からシングル過給モードからツイン過給モードへの切替要求があるか否かを判定してもよい。
 (4) 前述した実施の形態では、過給システムとして2つの過給機を備えるものとして説明したが、3つ以上の過給機を有するものであってもよい。
 (5) 前述した実施の形態では、第1圧力センサ106は、吸気管37内の圧力を検出するものとして説明したが、少なくともプライマリ過給機30のコンプレッサ31の第1過給圧Ppが検出できればよく、たとえば、吸気管27A内の圧力を検出してもよいし、あるいは、吸気管27B内の圧力を検出してもよい。
 (6) 前述した実施の形態では、制御装置200は、第2過給圧Psが第1過給圧Ppに到達したときに過給モードをツイン過給モードに切替えるものとして説明したが、少なくとも第2過給圧Psが第1過給圧Ppに到達していればよく、たとえば、制御装置200は、第2過給圧Psが第1過給圧Ppに到達した後の所定のタイミングで過給モードをツイン過給モードに切替えてもよい。
 (7) 前述した実施の形態においては、図5のステップS112で示したように、第2過給圧Psが停滞しているか否かは、第2過給圧Psの時間微分値が、停滞と判断し得る所定値より小さくなったか否かによって判断されるようにした。しかし、これに限定されず、第2過給圧Psが停滞しているか否かは、助走モードに切替えられてからの期間が、停滞と判断し得る所定期間以上となったか否かによって判断されるようにしてもよいし、Pp-Psの時間微分値が、停滞と判断し得る所定値より小さくなったか否かによって判断されるようにしてもよいし、第1過給圧Ppの時間微分値が、停滞と判断し得る所定値より小さくなったか否かによって判断されるようにしてもよい。
 (8) 前述した実施の形態においては、図5のステップS113で示したように、セカンダリ過給機40の可変ノズル機構45の開度を、プライマリ過給機30の可変ノズル機構35の開度と同じ開度まで大きくするようにした。しかし、これに限定されず、セカンダリ過給機40の可変ノズル機構45の開度を大きくすればよく、セカンダリ過給機40の可変ノズル機構45の開度とプライマリ過給機30の可変ノズル機構35の開度との間の所定開度まで大きくするようにしてもよい。
 (9) 前述した実施の形態を、プライマリ過給機30とセカンダリ過給機40と制御装置200とによって構成される過給システムの開示、エンジン1等の内燃機関の開示、エンジン1等の内燃機関のECU100等の制御装置の開示、このような制御装置による制御方法の開示、または、このような内燃機関と制御装置とを含む内燃機関システムの開示として捉えることができる。
 [効果]
 (1) 図1から図4で示したように、過給システムは、エンジン1から排出される排気によって駆動するタービン32と、タービン32へ流入する排気の流速を開度によって調整する可変ノズル機構35とを含み、エンジン1に吸入される空気を過給するプライマリ過給機30と、エンジン1から排出される排気によって駆動するタービン42と、タービン42へ流入する排気の流速を開度によって調整する可変ノズル機構45とを含み、エンジン1に吸入される空気を過給するセカンダリ過給機40と、プライマリ過給機30において過給された空気がエンジン1に供給されるシングル過給モードから、プライマリ過給機30において過給された空気とセカンダリ過給機40において過給された空気とがエンジン1に供給されるツイン過給モードに切替える制御装置200とを備える。
 図5で示したように、制御装置200は、シングル過給モードからツイン過給モードに切替える前に、セカンダリ過給機40に排気を供給しつつ、セカンダリ過給機40によって過給された空気をプライマリ過給機30に供給する助走モードでの運転を実行する。図5のステップS114からステップS117で示したように、助走モードでの運転中に、セカンダリ過給機40の第2過給圧Psがプライマリ過給機30の第1過給圧Ppに到達した場合にツイン過給モードに切替える。図5のステップS106からステップS108で示したように、助走モードでの運転を開始する場合に、セカンダリ過給機40の可変ノズル機構45の開度が、プライマリ過給機30の可変ノズル機構35の開度よりも小さくなるように可変ノズル機構45を制御する。
 これにより、セカンダリ過給機40の始動を補助する装置を追加することなく、過給圧の段差を低減することができる。その結果、ドライバビリティおよび過給機の信頼性が改善される。
 (2) 制御装置200は、助走モードでの運転中に、セカンダリ過給機40の第2過給圧Psの上昇が停滞する場合、セカンダリ過給機40の可変ノズル機構45の開度がプライマリ過給機30の可変ノズル機構35の開度と同じとなるように可変ノズル機構45を制御する。これにより、セカンダリ過給機40の可変ノズル機構45の開度を小さくすることにより、第2過給圧Psの上昇が停滞する場合であっても、停滞を解消することができる。
 (3) 制御装置200は、助走モードでの運転中、プライマリ過給機30の可変ノズル機構35のベース開度VN1bが、プライマリ過給機30のタービン効率が最も良くなる開度とプライマリ過給機30のタービン仕事が最も良くなる開度との中間の開度となるようプライマリ過給機30の可変ノズル機構35を制御する。これにより、セカンダリ過給機40の可変ノズル機構45の開度が、プライマリ過給機30の可変ノズル機構35の開度よりも小さくなるように制御する場合であっても、プライマリ過給機30のタービン効率およびタービン仕事をバランス良く高い値とすることができる。
 (4) 制御装置200は、エンジン1から排出される排気の圧力が制限エキマニ内圧力P4thに達する場合のプライマリ過給機30の可変ノズル機構35の制限開度VN1thを算出し、算出された制限開度VN1thをベース開度VN1bが上回る場合、可変ノズル機構35の開度が制限開度VN1thとなるよう可変ノズル機構35を制御する。これにより、エキマニ内圧力P4が制限エキマニ内圧力P4thを超えないようにすることができる。
 今回開示された各実施の形態は、適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1  エンジン
 10A,10B  バンク
 12A,12B  気筒
 20  エアクリーナ
 21,22,23,27A,27B,37,47  吸気管
 25  インタークーラ
 28A,28B  吸気マニホールド
 30  プライマリ過給機
 31,41  コンプレッサ
 32,42  タービン
 33,43  コンプレッサホイール
 34,44  タービンホイール
 35,45  可変ノズル機構
 36,46  回転軸
 40  セカンダリ過給機
 48  還流管
 50A,50B  排気マニホールド
 51A,51B,52A,52B,53A,53B  排気管
 62  第1制御弁
 64  第2制御弁
 66  第3制御弁
 81  排気処理装置
 102  エアフローメータ
 104  エンジン回転数センサ
 106  第1圧力センサ
 108  第2圧力センサ
 114  温度センサ
 116  圧力センサ
 200  制御装置
 

Claims (4)

  1.  エンジンから排出される排気によって駆動する第1タービンと、前記第1タービンへ流入する排気の流速を開度によって調整する第1可変ノズル機構とを含み、前記エンジンに吸入される空気を過給する第1過給機と、
     前記エンジンから排出される排気によって駆動する第2タービンと、前記第2タービンへ流入する排気の流速を開度によって調整する第2可変ノズル機構とを含み、前記エンジンに吸入される空気を過給する第2過給機と、
     前記第1過給機において過給された空気が前記エンジンに供給される第1過給モードから、前記第1過給機において過給された空気と前記第2過給機において過給された空気とが前記エンジンに供給される第2過給モードに切替える制御装置とを備え、
     前記制御装置は、
      前記第1過給モードから前記第2過給モードに切替える前に、前記第2過給機に排気を供給しつつ、前記第2過給機によって過給された空気を前記第1過給機に供給する助走運転を実行し、
      前記助走運転中に、前記第2過給機の過給圧が前記第1過給機の過給圧に到達した場合に前記第2過給モードに切替え、
      前記助走運転を開始する場合に、前記第2可変ノズル機構の開度が、前記第1可変ノズル機構の開度よりも小さくなるように前記第2可変ノズル機構を制御する、過給システム。
  2.  前記制御装置は、前記助走運転中に、前記第2過給機の過給圧の上昇が停滞する場合、前記第2可変ノズル機構の開度が前記第1可変ノズル機構の開度と同じとなるように前記第2可変ノズル機構を制御する、請求項1に記載の過給システム。
  3.  前記制御装置は、前記助走運転中、前記第1可変ノズル機構の開度が、前記第1過給機のタービン効率が最も良くなる開度と前記第1過給機のタービン仕事が最も良くなる開度との間の所定開度となるよう前記第1可変ノズル機構を制御する、請求項1に記載の過給システム。
  4.  前記制御装置は、
      前記エンジンから排出される排気の圧力が制限圧力に達する場合の前記第1可変ノズル機構の制限開度を算出し、
      算出された前記制限開度を前記所定開度が上回る場合、前記第1可変ノズル機構の開度が制限開度となるよう前記第1可変ノズル機構を制御する、請求項3に記載の過給システム。
PCT/JP2019/044647 2018-11-21 2019-11-14 過給システム WO2020105533A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019383763A AU2019383763B2 (en) 2018-11-21 2019-11-14 Supercharging system
RU2021116466A RU2760416C1 (ru) 2018-11-21 2019-11-14 Система наддува

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-218071 2018-11-21
JP2018218071A JP7020380B2 (ja) 2018-11-21 2018-11-21 過給システム

Publications (1)

Publication Number Publication Date
WO2020105533A1 true WO2020105533A1 (ja) 2020-05-28

Family

ID=70773635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044647 WO2020105533A1 (ja) 2018-11-21 2019-11-14 過給システム

Country Status (4)

Country Link
JP (1) JP7020380B2 (ja)
AU (1) AU2019383763B2 (ja)
RU (1) RU2760416C1 (ja)
WO (1) WO2020105533A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257720A (ja) * 1988-04-05 1989-10-13 Mazda Motor Corp 過給機付エンジンの制御装置
JP2005098250A (ja) * 2003-09-26 2005-04-14 Toyota Motor Corp 過給装置
JP2005155356A (ja) * 2003-11-21 2005-06-16 Toyota Motor Corp 並列2連ターボ過給機による機関過給装置
JP2008255902A (ja) * 2007-04-05 2008-10-23 Toyota Motor Corp ツインターボ制御装置
JP2010209845A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 内燃機関の制御装置
JP2020002787A (ja) * 2018-06-25 2020-01-09 株式会社豊田自動織機 過給システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903563C1 (ja) * 1988-07-19 1990-03-22 Mtu Friedrichshafen Gmbh
DE102004030259A1 (de) * 2004-06-23 2005-11-24 Audi Ag Turbo-Registeraufladevorrichtung für eine Brennkraftmaschine und Verfahren zur Betriebsführung einer Turbo-Registeraufladevorrichtung für eine Brennkraftmaschine
JP4300364B2 (ja) * 2004-09-29 2009-07-22 日産自動車株式会社 可変過給システムの過給圧調整装置
DE102008018133A1 (de) * 2008-04-10 2010-03-18 Ford Global Technologies, LLC, Dearborn Verfahren zum Betrieb einer Brennkraftmaschine mit einer Abgasturboladeranordnung sowie Brennkraftmaschine mit Abgasturboladeranordnung
DE102009013040A1 (de) * 2009-03-13 2010-09-16 Volkswagen Ag Brennkraftmaschine mit Registeraufladung
US9151217B2 (en) * 2012-12-21 2015-10-06 Ford Global Technologies, Llc Twin turbocharger wastegate control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257720A (ja) * 1988-04-05 1989-10-13 Mazda Motor Corp 過給機付エンジンの制御装置
JP2005098250A (ja) * 2003-09-26 2005-04-14 Toyota Motor Corp 過給装置
JP2005155356A (ja) * 2003-11-21 2005-06-16 Toyota Motor Corp 並列2連ターボ過給機による機関過給装置
JP2008255902A (ja) * 2007-04-05 2008-10-23 Toyota Motor Corp ツインターボ制御装置
JP2010209845A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 内燃機関の制御装置
JP2020002787A (ja) * 2018-06-25 2020-01-09 株式会社豊田自動織機 過給システム

Also Published As

Publication number Publication date
JP2020084856A (ja) 2020-06-04
AU2019383763B2 (en) 2022-10-06
RU2760416C1 (ru) 2021-11-24
AU2019383763A1 (en) 2021-06-03
JP7020380B2 (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
JP5277351B2 (ja) 内燃機関の制御装置
CN105026722A (zh) 用于内燃机的控制装置
JP5912240B2 (ja) 排気ガス還流装置
JP7012611B2 (ja) 過給システム
RU2704592C1 (ru) Способ управления и устройство управления для двигателя внутреннего сгорания
JP6772901B2 (ja) 内燃機関の排気システム
JP7159980B2 (ja) 過給システム
WO2020105533A1 (ja) 過給システム
WO2020158405A1 (ja) 過給システム
JP7056596B2 (ja) 過給システム
JP2010168954A (ja) 内燃機関の制御装置
JP7070368B2 (ja) 過給システム
JP7099406B2 (ja) 過給システム
JP7121563B2 (ja) 過給システム
JP2018184870A (ja) エンジンの制御装置
JP2009250209A (ja) 内燃機関の排気再循環装置
JP2021085342A (ja) 過給システム
JP2010024995A (ja) 内燃機関の制御装置
JP6835655B2 (ja) Egr装置
JP2007177656A (ja) 内燃機関
JP2607624Y2 (ja) 過給機付エンジンの吸気装置
JP6332210B2 (ja) エンジンの過給装置
JP2021131040A (ja) 内燃機関
JPH04262046A (ja) 過給機付エンジンの排気ガス還流装置
JPH04262045A (ja) 過給機付エンジンの排気ガス還流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019383763

Country of ref document: AU

Date of ref document: 20191114

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19886761

Country of ref document: EP

Kind code of ref document: A1