WO2020103596A1 - 一种雷达物位计 - Google Patents

一种雷达物位计

Info

Publication number
WO2020103596A1
WO2020103596A1 PCT/CN2019/110362 CN2019110362W WO2020103596A1 WO 2020103596 A1 WO2020103596 A1 WO 2020103596A1 CN 2019110362 W CN2019110362 W CN 2019110362W WO 2020103596 A1 WO2020103596 A1 WO 2020103596A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
lens
insert
tapered
level gauge
Prior art date
Application number
PCT/CN2019/110362
Other languages
English (en)
French (fr)
Inventor
周雷
Original Assignee
北京古大仪表有限公司
周雷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821928173.XU external-priority patent/CN209131783U/zh
Priority claimed from CN201811392887.8A external-priority patent/CN109708723B/zh
Priority claimed from CN201910851838.4A external-priority patent/CN110595566A/zh
Application filed by 北京古大仪表有限公司, 周雷 filed Critical 北京古大仪表有限公司
Publication of WO2020103596A1 publication Critical patent/WO2020103596A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of level gauges, and particularly to but not limited to a radar level gauge.
  • the electromagnetic wave loss is severe, which leads to a decrease in the accuracy of the radar level gauge, and the measurement accuracy cannot be guaranteed.
  • the embodiment of the present application provides a radar level gauge, the electromagnetic wave loss of the connection between the wave conductor and the upper end of the lens is small, and the overall measurement accuracy of the radar level gauge is high.
  • a radar level gauge includes a wave conductor and a lens, a waveguide channel and a mounting cavity are formed in the waveguide body, the lens is mounted to the mounting cavity, and a tapered section is formed on the upper end surface of the lens
  • the tapered section includes a loading section extending into the wave guide path and a loading buffer section located outside the wave guide path.
  • FIG. 1 is a schematic cross-sectional structural view of a radar level gauge according to an embodiment of the application
  • FIG. 2 is an enlarged schematic view of the structure of part A in FIG. 1;
  • Figure 3 is an enlarged schematic view of the structure of Part B in Figure 1;
  • FIG. 4 is an exploded schematic view of the radar level gauge shown in FIG. 1;
  • FIG. 5 is a schematic cross-sectional structural view of a radar level gauge according to another embodiment of this application.
  • FIG. 6 is an enlarged schematic view of the structure of part C in FIG. 5;
  • FIG. 7 is a schematic cross-sectional structural view of a radar level gauge according to another embodiment of the present application.
  • FIG. 8 is an enlarged schematic view of the structure of the D part of FIG. 7;
  • FIG. 9 is a schematic diagram of the exploded structure of the radar level meter shown in FIG. 7;
  • FIG. 10 is a schematic cross-sectional structural view of a radar level gauge according to yet another embodiment of the present application.
  • FIG. 11 is an enlarged schematic view of the structure of the E part of FIG. 10;
  • FIG. 12 is a schematic exploded view of the radar level gauge shown in FIG. 10;
  • FIG. 13 is a schematic cross-sectional structural view of a radar level gauge according to yet another embodiment of the present application.
  • FIG. 14 is a schematic exploded view of the radar level gauge shown in FIG. 13;
  • 15 is a schematic cross-sectional structural diagram of a radar level gauge according to still another embodiment of the present application.
  • FIG. 16 is a schematic exploded view of the radar level gauge shown in FIG. 15.
  • the radar level gauge provided by the embodiment of the present application, as shown in FIGS. 1 and 4 to 6, includes a wave conductor 1 and a lens 2, a wave guide path 11 and an installation cavity 12 are formed in the wave conductor 1, and the lens 2 is mounted to In the mounting cavity 12, a tapered section 21 is formed on the upper end surface of the lens 2.
  • the tapered section 21 includes a loading section 211 extending into the waveguide 11 and a loading buffer section 212 located outside the waveguide 11.
  • the upper end surface of the lens 2 is provided with a tapered section 21, so that when the electromagnetic wave of the waveguide 11 enters the lens 2 through the tapered section 21, the effect of the lens 2 on the electromagnetic wave is reduced.
  • the reflection effect makes electromagnetic waves enter the lens 2 more, thereby improving the measurement accuracy of the radar level gauge;
  • the cone section 21 of the radar level gauge includes a loading section 211 and a loading buffer section 212, and the loading section 211 extends into the guide In the wave path 11, receiving the electromagnetic wave, the loading buffer section 212 can make the electromagnetic wave propagate downward more after passing through the loading section 211, reduce the scattering of electromagnetic waves to the surroundings, and improve the accuracy of the radar level gauge.
  • a corner is formed between the outer side wall surface of the tapered section 21 and the upper end surface of the lens 2, and a wave absorbing material may be provided at the corner.
  • a corner is formed between the outer side wall surface of the tapered section 21 and the upper end surface of the lens 2, electromagnetic waves are easily reflected at the corners, and the placement of a wave absorbing material at this corner position can effectively reduce the reflection of electromagnetic waves.
  • the wave absorbing material may be a tapered member 3 with a hollow interior, the tapered member 3 is sleeved on the lower portion of the loading buffer section 212, and the lower end surface of the tapered member 3 It can resist the upper end surface of the lens 2.
  • the hollow portion in the tapered member 3 may be tapered or cylindrical.
  • FIG. 1 and FIG. 2 it is a schematic structural view of the hollow part of the tapered member 3 being tapered.
  • the absorbing material is the cone 3, and the hollow part in the cone 3 is tapered, so that the shape of the cone 3 is adapted to the shape of the loading buffer section 212, so that the cone 3 is sleeved on the loading buffer On paragraph 212.
  • the cone 3 can fit well with the loading buffer section 212 of the lens 2 in order to limit the position of the cone 3 and prevent the cone 3 from moving.
  • the absorbing material is a cylindrical member 3 ′ with a hollow inside
  • the cylindrical member 3 ′ is sleeved on the lower portion of the loading buffer section 212
  • the cylindrical member 3 ′ The lower end surface of can be offset with the upper end surface of the lens 2.
  • the hollow portion in the cylindrical member 3 ' may be tapered or cylindrical.
  • FIGs. 5 and 6 it is a schematic view of the structure in which the hollow part of the cylindrical member 3 'is cylindrical.
  • the wave absorbing material is provided as a cylindrical member 3 'and sleeved on the lower portion of the loading buffer section 212, which can reduce the reflection of electromagnetic waves at the corner (the corner between the tapered section 21 and the upper end surface of the lens 2).
  • the cylindrical member 3 ' is easier to process, which is beneficial to reduce the overall manufacturing cost of the radar level gauge.
  • a supporting block 4 may be sleeved outside the loading buffer section 212, and the upper end surface of the supporting block 4 may be against the upper end surface of the installation cavity 12,
  • the lower end surface of the support block 4 can be in contact with the upper end surface of the lens 2, and there can be a gap 40 between the inner side wall surface of the support block 4 and the outer side wall surface of the loading buffer section 212, the absorbing material (ie, the tapered member 3 or the cylindrical member 3 ') Can be set in the gap 40.
  • a support block 4 is provided between the wave conductor 1 and the lens 2 so that the upper end surface and the outer side wall surface of the support block 4 are both in contact with the installation cavity 12, the lower end surface of the support block 4 is in contact with the upper end surface of the lens 2
  • the loading buffer section 212 of the lens 2 can be accommodated inside.
  • the support block 4 is used to support and fix the lens 2 to avoid the design of the internal structure of the wave conductor 1 being too complicated (the tapered hole is processed inside the wave conductor 1 to match the shape of the loading buffer section 212), simplifying the wave conductor
  • the internal structure of 1 improves the processing efficiency of the waveguide 1.
  • the lens 2 is supported by the support block 4 so that the upper end surface of the lens 2 bears the load, and the excessive force on the tapered section 21 is avoided.
  • the height of the loading buffer section 212 may be greater than the height of the loading section 211.
  • the ratio of the height of the loading section 211 and the loading buffer section 212 may be 2: 3.
  • the cone angle ⁇ of the tapered section 21 may be 30 ° -60 °.
  • the lower portion of the waveguide 11 may be a tapered opening 111, and the shape of the tapered opening 111 may be adapted to the shape of the loading section 211. In this way, the loading section 211 can better cooperate with the waveguide 11.
  • the lens 2 and the wave conductor 1 are axially fixed by an elastic collar 5.
  • the lens 2 and the wave conductor 1 are axially fixed by the elastic collar 5 to ensure the stability of the two in the axial direction, which greatly increases the connection reliability of the lens 2 and the wave conductor 1 and is fixed by the elastic collar 5
  • the method is simple and easy to operate.
  • an outer ring groove 221 is provided on the outer wall surface of the lens 2
  • an inner ring groove 121 is provided on the inner wall surface of the mounting cavity 12, the outer ring groove 221 accommodates the inner portion of the elastic collar 5, the inner ring groove 121 accommodates the outer portion of the elastic collar 5.
  • the outer ring groove 221 and the inner ring groove 121 cooperate to form an annular groove with a rectangular cross section, and the elastic snap ring 5 is installed in the annular groove.
  • the elastic collar 5 may be a non-metallic collar, such as a rubber collar or a plastic collar.
  • the elastic collar 5 uses materials with good elasticity, such as rubber or plastic, which can be conveniently placed in the annular groove while supporting and fixing well.
  • the elastic collar 5 is made of rubber or plastic material, which can avoid reflection of electromagnetic waves.
  • the elastic collar 5 is located below the tapered section 21, and the elastic collar 5 is located on the downward extension line of the tapered section 21 (shown by the broken line in FIG. 1) Outside.
  • the elastic collar 5 is located outside the downwardly extending contour extension line of the tapered section 21 of the lens 2, which can reduce or prevent the elastic collar 5 from reflecting electromagnetic waves.
  • the elastic collar 5 may use a metal collar or a non-metallic collar.
  • the lens 2 and the wave conductor 1 are sealed only by a side seal 61.
  • the side seal 61 is disposed on the outer wall surface of the lens 2 and the mounting cavity 12. Between the inner wall surfaces.
  • the side seal 61 may be an O-ring.
  • a side seal 61 is provided between the outer side wall surface of the lens 2 and the inner side wall surface of the mounting cavity 12 of the wave conductor 1, which can play a good sealing role and effectively prevent dust, corrosive gas, etc. from entering the wave conductor 1 and affecting
  • the normal operation of the radar level gauge has further improved the service life and measurement accuracy of the radar level gauge.
  • the side seal 61 is used to seal between the lens 2 and the wave conductor 1 without using the end seal to avoid the squeezing force in the axial direction required when using the end seal to seal, so that The axial support force required by the lens 2 is small, which reduces the structural strength requirement of the elastic collar 5 and is beneficial to maintain the stability of the axial fixation of the lens 2 and the wave conductor 1.
  • the outer wall surface of the lens 2 includes a first side sealing and fitting surface 22, and the inner wall surface of the mounting cavity 12 includes a second side sealing and fitting surface 122 that cooperates with the first side sealing and fitting surface 22
  • an installation groove 222 for installing the side seal 61 is provided.
  • the mounting groove 222 may be provided on the first side sealing mating surface 22, and the elastic collar 5 may be located above or below the side seal 61.
  • the mounting groove can also be provided on the second side sealing mating surface, in this case, the elastic collar can be located below the side seal, so as to avoid the elastic locking when the lens 2 is installed and fixed to the mounting cavity 12 of the wave conductor 1 from below The interference between the ring and the side seal affects the installation and fixation of the lens 2.
  • the lower end of the second side sealing and fitting surface 122 is a guide inclined surface or a guide arc surface.
  • the arrangement of the guide inclined surface or guide arc surface is convenient for mounting the lens 2 to the installation cavity 12 of the wave conductor 1 from below, as well as the first side sealing mating surface 22 and the elastic collar 5 and side seal 61 installed on it The second side is sealed within the mating surface 122.
  • the outer ring groove 221 of the lens 2 for installing the elastic collar 5 is provided on the first side sealing and fitting surface 22, and accordingly, the wave conductor 1 is used for installing the elastic card
  • the inner ring groove 121 of the ring 5 is provided on the second side sealing and fitting surface 122.
  • the first side sealing mating surface 22 is located below the tapered section 21, and the outer ring groove 221 for installing the elastic collar 5 and the mounting groove 222 for installing the side seal 61 are located on the lens 2
  • the elastic collar 5 and the side seal 61 are arranged reasonably, and the product has a compact structure.
  • the first side seal fitting surface 22 and the second side seal fitting surface 122 are cylindrical surfaces.
  • a side seal 61 is provided between the cylindrical surfaces for sealing, and the sealing effect is good.
  • multiple side seals 61 may be provided to enhance the sealing effect. As shown in FIGS. 1, 3 and 4, two side seals 61 can be provided, and two mounting grooves 222 are correspondingly provided.
  • a ring flange 23 may be provided on the outer wall surface of the lens 2, and the flange 23 abuts the lower end surface of the wave conductor 1.
  • the flange 23 has a certain limiting effect on the installation of the lens 2, and the flange 23 can play a certain sealing role on the waveguide 11 in the wave conductor 1.
  • a mounting flange 7 may be installed on the wave conductor 1 for fixing with a tank that requires level measurement.
  • the lens 2 may include an insert block 25 and an outer cladding 24, the upper end of the insert block 25 may be provided with a tapered section 21, and the outer cladding 24 may be wrapped around the insert block 25 And the insert block 25 and the outer cladding 24 can be formed by an insert injection molding process. During injection molding, the insert block 25 is injection-molded into the outer envelope 24 as an insert.
  • the lens 2 may include an insert 25, an outer cladding 24, and a positioning filler 26.
  • the outer cladding 24 may be wrapped around the insert 25, the insert 25, and the outer cladding 24 can be formed by insert injection molding process.
  • a positioning hole 255 with an upward opening can be provided on the insert block 25, and the center line of the positioning hole 255 can coincide with the center line of the insert block 25.
  • the lower end of the positioning filling column 26 can be set in the positioning hole 255 to position
  • the upper end may be provided with a tapered section 21, and the lower end surface of the tapered section 21 may be flush with the upper end surface of the insert block 25.
  • the positioning hole 255 on the insert block 25 can cooperate with the positioning member in the mold to fix the insert block 25 and facilitate injection molding.
  • the positioning filling column 26 is filled in the positioning hole 255 of the insert 25, and the positioning hole 255 is filled.
  • the positioning filling column 26 and the positioning hole 255 can have an interference fit, so as to achieve the fixing between the positioning filling column 26 and the positioning hole 255.
  • the center line of the positioning hole 255 coincides with the center line of the insert 25, so that the center line of the positioning filling column 26 coincides with the center line of the insert 25.
  • a waveguide 11 may be formed in the waveguide 1
  • a waveguide conversion section 112 may be provided at the upper end of the waveguide 11
  • a tapered opening 111 may be provided at the lower end of the waveguide 11.
  • the tapered section 21 can extend into the tapered opening 111 or pass through the tapered opening 111, and there is a gap between the outer wall surface of the tapered section 21 and the inner wall surface of the tapered opening 111.
  • the insert 25 may be made of polytetrafluoroethylene PTFE, which may be formed by turning using a bar material.
  • the outer envelope 24 may be made of fluorinated ethylene propylene copolymer FEP or perfluoroalkylate PFA.
  • the FEP or PFA material can be injection molded, so that the outer envelope 24 and the insert 25 are molded together by an insert injection molding process.
  • FEP or PFA materials have the same dielectric constant and density as PTFE materials, and have good corrosion resistance.
  • the wall thickness of the outer cladding 24 may be substantially equal, and the wall thickness value may be an odd multiple of the half-wavelength of the electromagnetic wave, such as 3 times the half-wavelength.
  • the positioning packed column 26 may be made of polytetrafluoroethylene PTFE.
  • the upper end surface of the outer cladding 24 may protrude from the upper end surface of the insert 25, and the outer cladding 24 may be provided with There is a metal cushion block 8 which can be supported on the upper end surface of the insert block 25.
  • the upper end of the outer cladding 24 protrudes from the upper end of the insert 25, so that a cavity is formed in the upper portion of the outer cladding 24, and the metal cushion block 8 can be disposed in the cavity and supported on the upper end surface of the insert 25.
  • the metal pad 8 may be provided with a tapered through hole 81, and the tapered section 21 at the upper end of the lens 2 may pass through the tapered through hole 81 and then extend into the tapered opening 111 of the wave conductor 1 or through the tapered opening 111 .
  • the reason why the separate metal pad 8 is provided in the outer cladding 24 is that if the metal pad 8 is not provided, the tapered opening 111 with a large depth needs to be processed in the wave conductor 1, which is inconvenient for processing.
  • a tapered through hole 81 can be processed in the metal pad block 8 and a tapered opening 111 with a small depth can be processed on the wave conductor 1, which is convenient for processing.
  • the upper end surface of the metal spacer 8 can be flush with the upper end surface of the outer cladding 24, so that the upper end surface of the metal spacer 8 and the upper end surface of the outer cladding 24 can simultaneously abut the upper end surface of the installation cavity in the wave conductor 1 for the lens 2. Positioning.
  • the taper angle of the tapered through hole 81 in the metal pad 8 may be the same as the taper angle of the tapered opening 111 in the wave conductor 1.
  • the hole diameter of the upper end of the tapered through hole 81 of the metal pad 8 may be larger than the hole diameter of the lower end of the tapered opening 111 in the wave conductor 1 to avoid misalignment of the tapered through hole 81 and the tapered opening 111 when processing errors occur, resulting in influence In the transmission of electromagnetic waves, problems such as reflection of electromagnetic waves occur at the contact portion of the tapered through hole 81 and the tapered opening 111.
  • the hole diameter of the lower end of the tapered through hole 81 of the metal pad 8 may be smaller than the hole diameter of the cylindrical section (located below the tapered section 21) of the positioning packing column 26, so that the upper end surface of the cylindrical section of the positioning packing column 26 may be in contact with the metal pad The lower end face of 8 abuts.
  • the insert 25 may be a multi-mode structure, which may include a cylindrical section 251 located at the upper portion and a conical section 252 located below the cylindrical section 251.
  • the diameter (outer diameter) of the lower end of the cylindrical section 251 may be smaller than the diameter (outer diameter) of the upper end of the conical section 252, so a step surface 253 is formed between the cylindrical section 251 and the conical section 252.
  • the outer cladding 24 may include an upper annular shell segment 241 and a conical shell segment 242 below the annular shell segment 241, and the conical segment 252 of the insert 25 may be located in the conical shell segment 242, cylindrical Segment 251 may be located within annular housing segment 241.
  • the upper end surface of the annular shell section 241 may protrude from the upper end surface of the cylindrical section 251, the metal cushion block 8 may be disposed in the annular shell section 241, and the upper end surface of the metal cushion block 8 may be The upper end is flush.
  • the insert 25 may include a conical section 252 at the upper portion
  • the outer cladding 24 may include an annular shell section 241 at the upper portion and a conical shell located below the circular shell section 241.
  • the body section 242 and the conical section 252 are located in the conical shell section 242.
  • the upper end surface of the conical section 252 of the insert 25 may be flush with the upper end of the conical shell section 242, the upper end surface of the annular shell section 241 may protrude from the upper end surface of the conical section 252 of the insert 25, the metal cushion block 8 It can be arranged in the annular shell section 241, and the upper end surface of the metal pad 8 can be flush with the upper end surface of the annular shell section 241.
  • the lower portion of the insert block 25 may be a spherical segment 254 located below the conical segment 252.
  • the upper portion of the outer envelope 24 may have an opening 244, and the lower portion may be a spherical shell segment 243, which may be located below the tapered shell segment 242.
  • the spherical section 254 of the insert 25 is located within the spherical housing section 243 of the outer envelope 24, and the diameter (outer diameter) of the spherical section 254 is larger than the diameter of the opening 244 of the outer envelope 24.
  • the insert 25 may have a structure with a small upper diameter and a large lower diameter, and the diameter of the spherical section 254 at the lower portion of the insert 25 may be larger than the diameter of the opening 244 of the outer envelope 24, so that the cross-sectional area of the lower portion of the insert 25 may be larger than the outer envelope
  • the cross-sectional area of the opening 244 in the upper portion of the shell 24, the lens 2 of this structure, can be molded into the outer envelope 24 by an injection molding process.
  • the outer wall surface of the annular housing segment 241 may be provided with a mounting groove 222 for mounting the side seal 61, and the side seal 61 may be installed in the mounting groove 222 to realize the lens 2 and the waveguide Seal of body 1.
  • the mounting groove 222 may be provided at the upper portion of the ring-shaped housing section 241 so that the height of the side seal 61 is equal to that of the metal pad block 8 to avoid reflection of electromagnetic waves at the side seal 61.
  • the lens 2 can be fixed on the wave conductor 1 by an elastic collar 5.
  • the outer wall surface of the tapered shell section 242 of the outer envelope 24 may be provided with an outer ring groove, and the inner wall surface of the installation cavity of the wave conductor 1 There is an inner ring groove, the inner side of the elastic collar 5 is accommodated in the outer ring groove, and the outer side of the elastic collar 5 is accommodated in the inner ring groove.
  • the outer ring groove may be provided at the upper portion of the outer side wall surface of the tapered housing section 242, so that the elastic collar 5 may be located below the metal cushion block 8 and close to the lower end surface of the metal cushion block 8, avoiding the elastic collar 5 Electromagnetic wave emission occurs.
  • the outer ring groove for installing the elastic collar 5 is provided on the outer side wall surface of the annular housing section 241 of the outer cladding 24, and the outer ring groove is located on the side seal 61 Below the mounting groove 222, the elastic collar 5 is positioned below the side seal 61.
  • the outer ring groove may be located below the metal cushion block 8 and close to the lower end surface of the metal cushion block 8 so as not to reflect electromagnetic waves at the elastic collar 5.
  • a mounting flange 7 is fixed on the wave conductor 1 for fixing the tank to be tested.
  • a flange 23 is provided on the outer envelope 24 of the lens 2, and a seal ring 62 is provided between the lower end surface of the mounting flange 7 and the upper end surface of the flange 23, and the seal ring 62 may be an O-ring.
  • the wave conductor 1 may be provided with a heat sink 22, and the heat sink 22 and the wave conductor 1 may be integrally formed.
  • the wave conductor 1 may be made of 316L stainless steel, etc.
  • the metal pad 8 may be made of brass H65, etc.
  • the side seal 61 and the seal ring 62 may be made of fluorine rubber FKM, etc.
  • the elastic snap ring 5 can be made of 304 stainless steel, etc.
  • the mounting flange 7 can be made of 316L stainless steel, etc.
  • the material of each component is not limited to the above.
  • connection may be a fixed connection or a detachable connection. It is integrally connected; it can be directly connected, it can be indirectly connected through an intermediate medium, or it can be the connection between two components. Those of ordinary skill in the art can understand the meaning of the above terms in the embodiments of the present application.

Abstract

一种雷达物位计,包括波导体(1)和透镜(2),波导体(1)内形成有导波通路(11)和安装腔(12),透镜(2)安装至安装腔(12),透镜(2)的上端面上形成有锥形段(21),锥形段(21)包括伸入导波通路(11)内的加载段(211)和位于导波通路(11)外的加载缓冲段(212)。

Description

一种雷达物位计 技术领域
本申请实施例涉及但不限于物位计领域,特别是涉及但不限于一种雷达物位计。
背景技术
在一些雷达物位计中,在其波导体的下端与透镜的上端的连接处,电磁波损失严重,导致雷达物位计的精度降低,测量准确度得不到保证。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种雷达物位计,其波导体与透镜上端的连接处电磁波损失小,雷达物位计整体的测量精度高。
本申请实施例采取的技术方案如下:
一种雷达物位计,包括波导体和透镜,所述波导体内形成有导波通路和安装腔,所述透镜安装至所述安装腔,所述透镜的上端面上形成有锥形段,所述锥形段包括伸入所述导波通路内的加载段和位于所述导波通路外的加载缓冲段。
在阅读并理解了附图概述和本申请的实施方式后,可以明白其他方面。
附图概述
图1为本申请一实施例所述的雷达物位计的剖视结构示意图;
图2为图1中A部结构的放大示意图;
图3为图1中B部结构的放大示意图;
图4为图1所示的雷达物位计的分解示意图;
图5为本申请另一实施例所述的雷达物位计的剖视结构示意图;
图6为图5中C部结构的放大示意图;
图7为根据本申请另外一个实施例所述的雷达物位计的剖视结构示意图;
图8为图7的D部结构的放大示意图;
图9为图7所示的雷达物位计的分解结构示意图;
图10为根据本申请又一实施例所述的雷达物位计的剖视结构示意图;
图11为图10的E部结构的放大示意图;
图12为图10所示的雷达物位计的分解结构示意图;
图13为根据本申请再一实施例所述的雷达物位计的剖视结构示意图;
图14为图13所示的雷达物位计的分解结构示意图;
图15为根据本申请还一实施例所述的雷达物位计的剖视结构示意图;
图16为图15所示的雷达物位计的分解结构示意图。
附图标记:
1-波导体,11-导波通路,111-锥形开口,112-波导转换段,12-安装腔,121-内环槽,122-第二侧密封配合面,13-散热片,2-透镜,21-锥形段,211-加载段,212-加载缓冲段,22-第一侧密封配合面,221-外环槽,222-安装槽,23-凸缘,24-外包壳,241-环形壳体段,242-锥形壳体段,243-球形壳体段,244-开口,25-镶块,251-圆柱段,252-圆锥段,253-台阶面,254-球形段,255-定位孔,26-定位填充柱,3-锥形件,3’-柱形件,4-支撑块,40-间隙,5-弹性卡圈,61-侧密封件,62-密封圈,7-安装法兰,8-金属垫块,81-锥形通孔。
详述
下文中将结合附图对本申请实施例的实施例进行详细说明。
本申请实施例提供的雷达物位计,如图1、图4-图6所示,包括波导体1和透镜2,波导体1内形成有导波通路11和安装腔12,透镜2安装至安装腔12,透镜2的上端面上形成有锥形段21,锥形段21包括伸入导波通路11内的加载段211和位于导波通路11外的加载缓冲段212。
本申请实施例提供的雷达物位计,透镜2的上端面上设置有锥形段21,这样当导波通路11的电磁波通过锥形段21进入透镜2内时,降低了透镜2对电磁波的反射作用,使电磁波更多地进入透镜2,从而提高雷达物位计的测量精度;并且,该雷达物位计的锥形段21包括加载段211和加载缓冲段212,加载段211伸入导波通路11中,接收电磁波,加载缓冲段212可使电磁波经过加载段211后,更多地向下传播,减少电磁波向四周散射,提高雷达物位计的准确度。
在一些实施例中,如图2和图6所示,锥形段21的外侧壁面与透镜2的上端面之间形成拐角,拐角处可设有吸波材料。
锥形段21的外侧壁面与透镜2的上端面之间形成拐角,在拐角处电磁波容易发生反射,在该拐角位置设置吸波材料可有效减少电磁波的反射。
在一些实施例中,如图1和图2所示,吸波材料可为内部中空的锥形件3,锥形件3套设在加载缓冲段212的下部,且锥形件3的下端面可与透镜2的上端面相抵。
锥形件3内的中空部分可呈锥形或柱形。
如图1和图2所示即为锥形件3的中空部分呈锥形的结构示意图。
吸波材料为锥形件3,且锥形件3内的中空部分呈锥形,使得锥形件3的形状与加载缓冲段212的形状相适配,以便锥形件3套设在加载缓冲段212上。此外,锥形件3可与透镜2的加载缓冲段212很好地贴合,以便限制锥形件3的位置,防止锥形件3移动。
在另一些实施例中,如图5和图6所示,吸波材料为内部中空的柱形件3’,柱形件3’套设在加载缓冲段212的下部,且柱形件3’的下端面可与透镜2的上端面相抵。
柱形件3’内的中空部分可呈锥形或柱形。
如图5和图6所示即为柱形件3’的中空部分呈柱形的结构示意图。
将吸波材料设置为柱形件3’,并套设在加载缓冲段212的下部,可减少电磁波在拐角(锥形段21与透镜2的上端面之间的拐角)处的反射。此外,柱形件3’更容易加工,有利于降低雷达物位计整体的制造成本。
在一些实施例中,如图1-图2、图5-图6所示,加载缓冲段212外可套设有支撑块4,支撑块4的上端面可与安装腔12的上端面相抵,支撑块4的下端面可与透镜2的上端面相抵,支撑块4的内侧壁面与加载缓冲段212的外侧壁面之间可具有间隙40,吸波材料(即锥形件3或柱形件3’)可设置于间隙40内。
在波导体1与透镜2之间设置支撑块4,使支撑块4的上端面和外侧壁面均与安装腔12贴合,支撑块4的下端面与透镜2的上端面相抵,支撑块3的内部可容纳透镜2的加载缓冲段212。通过支撑块4对透镜2进行支撑固定,避免波导体1内部结构设计地过于复杂(将波导体1的内部加工出锥形孔,以与加载缓冲段212的形状适配),简化了波导体1的内部结构,提高了波导体1的加工效率。此外,通过支撑块4对透镜2进行支撑,使得透镜2的上端面均承受载荷,避免了锥形段21受力过大。
在一些实施例中,如图2、图6所示,加载缓冲段212的高度可大于加载段211的高度。例如:加载段211与加载缓冲段212的高度之比可为2:3。
在一些实施例中,如图2、图6所示,锥形段21的锥角α可为30°-60°。
将锥形段21的锥角α设置为30°-60°,可有效减少电磁波的反射现象,保证电磁波更多地从导波通路11进入透镜2的锥形段21中。
在一些实施例中,如图2、图6所示,导波通路11的下部部分可为锥形开口111,锥形开口111的形状可与加载段211的形状相适配。这样设置,可使得加载段211与导波通路11更好地配合。
在一些实施例中,如图1和图3所示,透镜2与波导体1通过弹性卡圈5轴向固定。
透镜2与波导体1通过弹性卡圈5轴向固定,保证了二者在轴向方向上的稳定性,大大增加了透镜2与波导体1的连接可靠性,且通过弹性卡圈5进行固定的方式简单,操作方便。
如图3所示,透镜2的外侧壁面上设有外环槽221,安装腔12的内侧壁面上设有内环槽121,外环槽221容置弹性卡圈5的内侧部分,内环槽121容置弹性卡圈5的外侧部分。
外环槽221与内环槽121配合可组成截面为矩形的环形槽,弹性卡圈5安装在该环形槽中。
在一些实施例中,弹性卡圈5可为非金属卡圈,如橡胶卡圈或塑料卡圈等。
弹性卡圈5使用橡胶或塑料等弹性较好的材料,在起到良好地支撑、固定作用的同时,可较为方便地放入环形槽中。此外,弹性卡圈5使用橡胶或塑料材料制成,可避免对电磁波产生反射。
在一些实施例中,如图1所示,弹性卡圈5位于锥形段21的下方,且弹性卡圈5位于锥形段21的向下延伸的轮廓延长线(图1中虚线所示)的外侧。
弹性卡圈5位于透镜2的锥形段21的向下延伸的轮廓延长线的外侧,可减少或避免弹性卡圈5对电磁波产生反射。在这种情况下,弹性卡圈5可采用金属卡圈或非金属卡圈。
在一些实施例中,如图1、图3和图4所示,透镜2和波导体1之间仅通过侧密封件61密封,侧密封件61设置在透镜2的外侧壁面与安装腔12的内侧壁面之间。侧密封件61可为O型圈。
在透镜2的外侧壁面与波导体1的安装腔12的内侧壁面之间设有侧密封件61,可起到很好的密封作用,有效防止灰尘、腐蚀气体等进入到波导体1内部,影响雷达物位计的正常工作,进而提高了雷达物位计的使用寿命及测量精度。
此外,在透镜2和波导体1之间仅通过侧密封件61密封,而不采用端密封件进行密封,避免了使用端密封件密封时所需提供的沿轴向方向的挤压力,使得透镜2所需的轴向支撑力较小,降低了对弹性卡圈5的结构强度的要求,且有利于保持透镜2与波导体1的轴向固定的稳定性。
在一些实施例中,如图3所示,透镜2的外侧壁面包括第一侧密封配合面22,安装腔12的内侧壁面包括与第一侧密封配合面22配合的第二侧密封配合面122,第一侧密封配合面22和第二侧密封配合面122中的一个上设有用于安装侧密封件61的安装槽222。
如图3所示,安装槽222可设置在第一侧密封配合面22上,弹性卡圈5 可位于侧密封件61的上方或下方。
在弹性卡圈5位于侧密封件61的上方的情况下,由于侧密封件61的密封作用,可避免腐蚀气体对弹性卡圈5造成腐蚀,延长了弹性卡圈5的寿命,提高了透镜2与波导体1的轴向固定的牢固性。
当然,安装槽也可设置在第二侧密封配合面上,此时弹性卡圈可位于侧密封件的下方,以避免将透镜2从下方安装固定到波导体1的安装腔12时,弹性卡圈与侧密封件发生干涉,影响透镜2的安装固定。
在一些实施例中,如图3所示,第二侧密封配合面122的下端为导向斜面或导向弧面。
导向斜面或导向弧面的设置,便于将透镜2从下方安装固定到波导体1的安装腔12,以及第一侧密封配合面22及其上安装的弹性卡圈5、侧密封件61等进入第二侧密封配合面122内。
在一些实施例中,如图3所示,透镜2的用于安装弹性卡圈5的外环槽221设置在第一侧密封配合面22上,相应地,波导体1的用于安装弹性卡圈5的内环槽121设置在第二侧密封配合面122上。
如图1和图3所示,第一侧密封配合面22位于锥形段21的下方,用于安装弹性卡圈5的外环槽221和安装侧密封件61的安装槽222均位于透镜2的第一侧密封配合面22上,使得弹性卡圈5和侧密封件61的布置合理,产品的结构紧凑。
如图1和图3所示,第一侧密封配合面22和第二侧密封配合面122为圆柱面。在圆柱面之间设置侧密封件61进行密封,密封效果好。
在一些实施例中,侧密封件61可设置有多个,以增强密封效果。如图1、图3和图4所示,侧密封件61可设置为2个,安装槽222也相应地设置有2个。
在一些实施例中,如图1和图4所示,透镜2的外侧壁面上可设有一圈凸缘23,凸缘23与波导体1的下端面抵接。
凸缘23对透镜2的安装具有一定的限位作用,且凸缘23可对波导体1内的导波通路11起到一定的密封作用。
在一些实施例中,如图1和图4所示,波导体1上可安装有安装法兰7,用于与需要进行物位测量的料罐进行固定。
在一些实施例中,如图13-图16所示,透镜2可包括镶块25和外包壳24,镶块25的上端可设有锥形段21,外包壳24可包裹在镶块25外,且镶块25和外包壳24可通过嵌件注塑工艺成型。注塑成型时,镶块25作为镶嵌件注塑成型到外包壳24内。
在另一些实施例中,如图7-图12所示,透镜2可包括镶块25、外包壳24和定位填充柱26,外包壳24可包裹在镶块25外,镶块25和外包壳24可通过嵌件注塑工艺成型。镶块25上可开设有开口向上的定位孔255,且定位孔255的中心线可与镶块25的中心线重合,定位填充柱26的下端可设置在定位孔255内,定位填充柱26的上端可设有锥形段21,且锥形段21的下端面可与镶块25的上端面平齐。
镶块25和外包壳24通过嵌件注塑工艺成型时,镶块25上的定位孔255可与模具内的定位件配合,以便固定镶块25,便于进行注塑。注塑完成后,在镶块25的定位孔255内填充定位填充柱26,将定位孔255进行填充。
定位填充柱26与定位孔255之间可过盈配合,以便实现定位填充柱26与定位孔255之间的固定。定位孔255的中心线与镶块25的中心线重合,使得定位填充柱26的中心线与镶块25的中心线重合。
如图7和图8所示,波导体1内可形成有导波通路11,导波通路11的上端可设有波导转换段112,导波通路11的下端可设有锥形开口111。锥形段21可伸入锥形开口111内或穿过锥形开口111,且锥形段21的外侧壁面与锥形开口111的内侧壁面之间具有间隙。
在一些实施例中,镶块25可采用聚四氟乙烯PTFE制成,其可采用棒材通过车削加工成型。
在一些实施例中,外包壳24可采用氟化乙烯丙烯共聚物FEP或过氟烷基化物PFA制成。FEP或PFA材料可注塑,以便通过嵌件注塑工艺将外包壳24与镶块25成型到一起。此外,FEP或PFA材料的介电常数、密度和PTFE材料相同,且具有良好的耐腐蚀性能。
注塑成型时,外包壳24的壁厚可大体上等厚,壁厚值可采用电磁波半波长的奇数倍,如可采用半波长的3倍等。
在一些实施例中,定位填充柱26可采用聚四氟乙烯PTFE制成。
在一些实施例中,如图7-图8、图10-图11、图13和图15所示,外包壳24的上端面可凸出于镶块25的上端面,外包壳24内可设有金属垫块8,金属垫块8可支撑于镶块25的上端面上。
外包壳24的上端凸出于镶块25的上端,这样在外包壳24的上部形成一空腔,金属垫块8可设置于该空腔内,并支撑在镶块25的上端面上。
金属垫块8内可设有锥形通孔81,透镜2上端的锥形段21可穿过锥形通孔81,然后伸入波导体1的锥形开口111内或穿过锥形开口111。
在外包壳24内设置单独的金属垫块8是因为:若不设置金属垫块8,则在波导体1内需加工深度较大的锥形开口111,加工不便。设置金属垫块8后,可在金属垫块8内加工锥形通孔81,在波导体1上加工深度较小的锥形开口111,加工方便。
金属垫块8的上端面可与外包壳24的上端面齐平,使得金属垫块8的上端面与外包壳24的上端面可同时与波导体1内安装腔的上端面抵接,以便透镜2的定位。
在一些实施例中,金属垫块8内的锥形通孔81的锥角可与波导体1内锥形开口111的锥角一致。
金属垫块8的锥形通孔81的上端的孔径可大于波导体1内锥形开口111的下端的孔径,以免存在加工误差时,锥形通孔81与锥形开口111发生错位,导致影响电磁波的传输,在锥形通孔81与锥形开口111的接触部位发生电磁波的反射等问题。
金属垫块8的锥形通孔81的下端的孔径可小于定位填充柱26的圆柱段(位于锥形段21下方)的孔径,使得定位填充柱26的圆柱段的上端面可与金属垫块8的下端面抵接。
在一些实施例中,如图7、图13和图15所示,镶块25可为多模结构,其可包括位于上部的圆柱段251和位于圆柱段251下方的圆锥段252。其中, 圆柱段251下端的直径(外径)可小于圆锥段252上端的直径(外径),因此在圆柱段251与圆锥段252之间形成台阶面253。
相应地,外包壳24可包括位于上部的环形壳体段241和位于环形壳体段241下方的锥形壳体段242,镶块25的圆锥段252可位于锥形壳体段242内,圆柱段251可位于环形壳体段241内。环形壳体段241的上端面可凸出于圆柱段251的上端面,金属垫块8可设置于该环形壳体段241内,且金属垫块8的上端面可与环形壳体段241的上端面齐平。
在另一些实施例中,如图10所示,镶块25可包括位于上部的圆锥段252,外包壳24可包括位于上部的环形壳体段241和位于环形壳体段241下方的锥形壳体段242,圆锥段252位于锥形壳体段242内。
镶块25的圆锥段252的上端面可与锥形壳体段242的上端齐平,环形壳体段241的上端面可凸出于镶块25的圆锥段252的上端面,金属垫块8可设置于该环形壳体段241内,且金属垫块8的上端面可与环形壳体段241的上端面齐平。
在一些实施例中,如图7、图9-图10、图13和图15所示,镶块25的下部可为球形段254,球形段254位于圆锥段252的下方。外包壳24的上部可具有开口244,且下部可为球形壳体段243,球形壳体段243可位于锥形壳体段242的下方。镶块25的球形段254位于外包壳24的球形壳体段243内,且球形段254的直径(外径)大于外包壳24的开口244的直径。
镶块25可为上部直径小、下部直径大的结构,且镶块25下部的球形段254的直径可大于外包壳24的开口244的直径,使得镶块25的下部部分的截面积可大于外包壳24上部的开口244的截面积,该结构的透镜2,可利用注塑工艺将镶块25成型到外包壳24内。
如图7和图8所示,环形壳体段241的外侧壁面上可设有安装侧密封件61的安装槽222,侧密封件61可安装在该安装槽222内,以便实现透镜2与波导体1的密封。
其中,安装槽222可设置在环形壳体段241的上部,使得侧密封件61与金属垫块8的高度相当,避免在侧密封件61处发生电磁波的反射。
透镜2可通过弹性卡圈5固定在波导体1上。在一些实施例中,如图7、图10和图13所示,外包壳24的锥形壳体段242的外侧壁面上可设有外环槽,波导体1的安装腔的内侧壁面上设有内环槽,弹性卡圈5的内侧容纳在外环槽内,弹性卡圈5的外侧容纳在内环槽内。
外环槽可设置在锥形壳体段242的外侧壁面的上部,使得弹性卡圈5可位于金属垫块8的下方,并接近金属垫块8的下端面,避免了在弹性卡圈5处发生电磁波的发射。
在另一些实施例中,如图15所示,用于安装弹性卡圈5的外环槽设置在外包壳24的环形壳体段241的外侧壁面上,且外环槽位于侧密封件61的安装槽222的下方,使得弹性卡圈5位于侧密封件61的下方。
外环槽可位于金属垫块8的下方,并接近金属垫块8的下端面,以免在弹性卡圈5处发生电磁波的反射。
如图7、图10、图13和图15所示,波导体1上固定有安装法兰7,用于固定待测的料罐。透镜2的外包壳24上设有凸缘23,安装法兰7的下端面与凸缘23的上端面之间设有密封圈62,密封圈62可为O型圈。
在一些实施例中,如图7所示,波导体1上可设有散热片22,且散热片22与波导体1可一体成型。
在一些实施例中,波导体1可采用316L不锈钢等制成,金属垫块8可采用黄铜H65等制成,侧密封件61和密封圈62可采用氟橡胶FKM等制成,弹性卡圈5可采用304不锈钢等制成,安装法兰7可采用316L不锈钢等制成。当然,各部件的材料并不限于以上所述。
在本申请实施例中的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,术语“连接”、“安装”等应做广义理解,例如,术语“连接”可以是固定连接,可以是可拆卸连接,可以是一体地连接;可以是直接相连,可以通过中间媒介间接相 连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以理解上述术语在本申请实施例中的含义。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (15)

  1. 一种雷达物位计,包括波导体和透镜,所述波导体内形成有导波通路和安装腔,所述透镜安装至所述安装腔,所述透镜的上端面上形成有锥形段,所述锥形段包括伸入所述导波通路内的加载段和位于所述导波通路外的加载缓冲段。
  2. 根据权利要求1所述的雷达物位计,其中:所述锥形段的外侧壁面与所述透镜的上端面之间形成拐角,所述拐角处设有吸波材料。
  3. 根据权利要求2所述的雷达物位计,其中:所述吸波材料为内部中空的锥形件,所述锥形件套设在所述加载缓冲段的下部,且所述锥形件的下端面与所述透镜的上端面相抵;
    或者,所述吸波材料为内部中空的柱形件,所述柱形件套设在所述加载缓冲段的下部,且所述柱形件的下端面与所述透镜的上端面相抵。
  4. 根据权利要求3所述的雷达物位计,其中:所述锥形件或所述柱形件内的中空部分呈锥形或柱形。
  5. 根据权利要求2-4中任一项所述的雷达物位计,其中:所述加载缓冲段外套设有支撑块,所述支撑块的上端面与所述安装腔的上端面相抵,所述支撑块的下端面与所述透镜的上端面相抵,所述支撑块的内侧壁面与所述加载缓冲段的外侧壁面之间具有间隙,所述吸波材料设置于所述间隙内。
  6. 根据权利要求1-4中任一项所述的雷达物位计,其中:所述加载缓冲段的高度大于所述加载段的高度。
  7. 根据权利要求1-4中任一项所述的雷达物位计,其中:所述锥形段的锥角为30°-60°。
  8. 根据权利要求1-4中任一项所述的雷达物位计,其中:所述导波通路的下部部分为锥形开口,所述锥形开口的形状与所述加载段的形状相适配。
  9. 根据权利要求1-4中任一项所述的雷达物位计,其中:所述透镜与所述波导体通过弹性卡圈轴向固定,所述弹性卡圈位于所述锥形段的下方,且所述弹性卡圈位于所述锥形段的向下延伸的轮廓延长线的外侧。
  10. 根据权利要求1-4中任一项所述的雷达物位计,其中:所述透镜和所述波导体之间仅通过侧密封件密封,所述侧密封件设置在所述透镜的外侧壁面与所述安装腔的内侧壁面之间。
  11. 根据权利要求1所述的雷达物位计,其中:所述透镜包括镶块和外包壳,所述外包壳包裹在所述镶块外,所述镶块和所述外包壳通过嵌件注塑工艺成型,所述镶块的上端设有所述锥形段。
  12. 根据权利要求1所述的雷达物位计,其中:所述透镜包括镶块、外包壳和定位填充柱,所述外包壳包裹在所述镶块外,所述镶块和所述外包壳通过嵌件注塑工艺成型,所述镶块上开设有开口向上的定位孔,所述定位孔的中心线与所述镶块的中心线重合,所述定位填充柱的下端设置在所述定位孔内,所述定位填充柱的上端设有所述锥形段。
  13. 根据权利要求11或12所述的雷达物位计,其中:所述外包壳的上端面凸出于所述镶块的上端面,所述外包壳内设有金属垫块,所述金属垫块内设有锥形通孔,所述锥形段穿过所述锥形通孔,且所述金属垫块的下端面支撑于所述镶块的上端面上,所述金属垫块的上端面与所述安装腔的上端面相抵。
  14. 根据权利要求11或12所述的雷达物位计,其中:所述镶块包括位于上部的圆柱段和位于所述圆柱段下方的圆锥段,所述外包壳包括位于上部的环形壳体段和位于所述环形壳体段下方的锥形壳体段,所述圆锥段位于所述锥形壳体段内,所述圆柱段位于所述环形壳体段内;
    或者,所述镶块包括位于上部的圆锥段,所述外包壳包括位于上部的环形壳体段和位于所述环形壳体段下方的锥形壳体段,所述圆锥段位于所述锥形壳体段内。
  15. 根据权利要求11或12所述的雷达物位计,其中:所述镶块的下部为球形段,所述外包壳的上部具有开口,且下部为球形壳体段,所述球形段位于所述球形壳体段内,且所述球形段的直径大于所述外包壳的开口的直径。
PCT/CN2019/110362 2018-11-21 2019-10-10 一种雷达物位计 WO2020103596A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201821928173.XU CN209131783U (zh) 2018-11-21 2018-11-21 一种雷达物位计
CN201811392887.8 2018-11-21
CN201821928173.X 2018-11-21
CN201811392887.8A CN109708723B (zh) 2018-11-21 2018-11-21 一种雷达物位计
CN201910851838.4 2019-09-10
CN201910851838.4A CN110595566A (zh) 2019-09-10 2019-09-10 一种雷达天线和雷达物位计

Publications (1)

Publication Number Publication Date
WO2020103596A1 true WO2020103596A1 (zh) 2020-05-28

Family

ID=70773078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110362 WO2020103596A1 (zh) 2018-11-21 2019-10-10 一种雷达物位计

Country Status (1)

Country Link
WO (1) WO2020103596A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056781A1 (en) * 2004-09-15 2006-03-16 Takeshi Okada Optoelectronic module
CN101313200A (zh) * 2005-11-24 2008-11-26 Vega格里沙贝两合公司 用于料位雷达的金属化塑料天线漏斗状物
CN203642995U (zh) * 2013-11-28 2014-06-11 桓达科技股份有限公司 具整合式透镜天线的物位检测装置
CN106972274A (zh) * 2015-11-13 2017-07-21 Vega格里沙贝两合公司 喇叭天线和包括喇叭天线的雷达物位计
CN208536978U (zh) * 2018-06-15 2019-02-22 北京古大仪表有限公司 一种雷达物位计
CN109708723A (zh) * 2018-11-21 2019-05-03 北京古大仪表有限公司 一种雷达物位计
CN209131783U (zh) * 2018-11-21 2019-07-19 北京古大仪表有限公司 一种雷达物位计

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056781A1 (en) * 2004-09-15 2006-03-16 Takeshi Okada Optoelectronic module
CN101313200A (zh) * 2005-11-24 2008-11-26 Vega格里沙贝两合公司 用于料位雷达的金属化塑料天线漏斗状物
CN203642995U (zh) * 2013-11-28 2014-06-11 桓达科技股份有限公司 具整合式透镜天线的物位检测装置
CN106972274A (zh) * 2015-11-13 2017-07-21 Vega格里沙贝两合公司 喇叭天线和包括喇叭天线的雷达物位计
CN208536978U (zh) * 2018-06-15 2019-02-22 北京古大仪表有限公司 一种雷达物位计
CN109708723A (zh) * 2018-11-21 2019-05-03 北京古大仪表有限公司 一种雷达物位计
CN209131783U (zh) * 2018-11-21 2019-07-19 北京古大仪表有限公司 一种雷达物位计

Similar Documents

Publication Publication Date Title
US8890759B2 (en) Horn antenna for a radar device
JP6263738B2 (ja) ガス流量計
CN109708723B (zh) 一种雷达物位计
RU2656027C2 (ru) Радиолокационный уровнемер
WO2015118809A1 (ja) ガス流量計
WO2020103596A1 (zh) 一种雷达物位计
CN208536978U (zh) 一种雷达物位计
JP4862530B2 (ja) 導波管
CN109713452A (zh) 一种喇叭天线和雷达物位计
CN208605769U (zh) 一种阀用双波纹管密封结构
US20120081847A1 (en) Socket for holding electronic device and flame sensor
JP2019023594A (ja) タイヤ空気圧検知装置
CN217818870U (zh) 超声波流量计
CN207441263U (zh) 用于核电站高能管道声发射仪表固定的波导杆安装组件
CN205826398U (zh) 分析仪用消解器
CN111982240B (zh) 一种雷达物位计
US6962438B2 (en) Temperature sensor temperature sensing tube
CN104749244B (zh) 一种组合式超声‑涡流检测探头夹持结构
WO2020103416A1 (zh) 一种喇叭天线和雷达物位计
CN208805239U (zh) 用于电磁流量计的电极、电极组件和安装组件
CN208984298U (zh) 一种用于检测喷油器芯筒焊缝的氦气检测装置
CN209416423U (zh) 一种智能在线维修超声波流量计表体
CN209524972U (zh) 用于高压质量流量计的歧管装置和歧管组件
WO2024027777A1 (zh) 超声波流量计
CN110595566A (zh) 一种雷达天线和雷达物位计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887572

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19887572

Country of ref document: EP

Kind code of ref document: A1