WO2024027777A1 - 超声波流量计 - Google Patents

超声波流量计 Download PDF

Info

Publication number
WO2024027777A1
WO2024027777A1 PCT/CN2023/110866 CN2023110866W WO2024027777A1 WO 2024027777 A1 WO2024027777 A1 WO 2024027777A1 CN 2023110866 W CN2023110866 W CN 2023110866W WO 2024027777 A1 WO2024027777 A1 WO 2024027777A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
transducer
limiting device
gaskets
peripheral wall
Prior art date
Application number
PCT/CN2023/110866
Other languages
English (en)
French (fr)
Inventor
丁渊明
宋兴健
Original Assignee
金卡智能集团股份有限公司
天信仪表集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金卡智能集团股份有限公司, 天信仪表集团有限公司 filed Critical 金卡智能集团股份有限公司
Publication of WO2024027777A1 publication Critical patent/WO2024027777A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B43/00Washers or equivalent devices; Other devices for supporting bolt-heads or nuts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave

Definitions

  • the present application relates to the technical field of fluid metering equipment, and in particular to an ultrasonic flow meter.
  • Ultrasonic flowmeter is an instrument that measures fluid flow by detecting the effect of fluid flow on ultrasonic waves. Its core component is a transducer. The main function of the transducer is to emit ultrasonic vibrations and receive ultrasonic vibrations.
  • the transducer is fixedly connected to the meter body of the ultrasonic flow meter.
  • the noise outside the meter body and the vibration generated by the collision between the meter body surface and foreign objects will pass through the connection between the transducer and the meter body. transmitted to the transducer, thereby affecting the ultrasonic signal received by the transducer.
  • signal processing is generally used to filter out clutter or noise to filter the signal received by the transducer, thereby filtering out the clutter received by the transducer.
  • the ultrasonic flowmeter of the above-mentioned related technologies has a poor filtering effect on clutter, and the transducer receives more clutter, resulting in a lower measurement accuracy of the ultrasonic flowmeter.
  • Embodiments of the present application provide an ultrasonic flowmeter, which is used to solve the problem that the ultrasonic flowmeter in related technologies has poor filtering effect on clutter, and the transducer receives more clutter, resulting in low measurement accuracy of the ultrasonic flowmeter. technical issues.
  • Embodiments of the present application provide an ultrasonic flowmeter, which includes: a meter body, a transducer component, a limiting device and a gasket component;
  • the body of the meter has an accommodation cavity for the flow of the fluid to be measured.
  • the side wall of the meter body is provided with a fixed hole that communicates with the accommodation cavity.
  • the transducer component, the gasket assembly and the limiting device are located in the fixed hole;
  • the transducer component is sealingly connected to the inner peripheral wall of the fixed hole, and the first end of the transducer component faces the accommodation cavity.
  • the second end of the transducing component faces the limiting device and has a clearance fit with the limiting device.
  • the gasket component is sleeved on the second end of the transducing component, and the limiting device contacts the transducing component through the gasket component; the limiting device is in contact with the transducing component.
  • the inner peripheral walls of the fixing holes are tightly connected;
  • the gasket assembly includes at least one gasket, and one or more protrusions are provided on at least one side of the at least one gasket.
  • the gasket is provided with a through hole, and the gasket is sleeved on the second end of the transducing component through the through hole;
  • Each bump has a contact surface, and the sum of the areas of all contact surfaces is less than the surface area of the side of the gasket on which the bump is located.
  • the gasket assembly includes multiple gaskets, and the multiple gaskets include metal gaskets and/or non-metallic gaskets.
  • the gasket assembly includes three gaskets, two of the three gaskets are metal gaskets, and the other is a non-metallic gasket;
  • One of the metal gaskets is disposed between the non-metallic gasket and the limiting device, and the other metal gasket is disposed between the non-metallic gasket and the transducing component;
  • Both metal pads are provided with protrusions.
  • the gasket assembly includes four gaskets, three of which are metal gaskets and one is a non-metallic gasket;
  • Two of the metal gaskets are arranged between the non-metallic gaskets and the limiting device;
  • Another metal gasket is disposed between the non-metallic gasket and the transducer component;
  • Protrusions are provided on the metal pads close to the limiting device and the metal pads close to the transducing component.
  • the material of the non-metallic gasket is plastic
  • the plastic is one of polyphenylene sulfide, polyimide, polyetheretherketone, liquid crystal polymer or polysulfone.
  • the limiting device is provided with a communication hole along its installation direction, the second end is located in the communication hole, and there is a clearance fit between the second end located in the communication hole and the communication hole;
  • the surface of the limiting device in contact with the gasket assembly is provided with a groove or a convex portion, and the groove is connected with the communication hole;
  • the outer peripheral wall of the limiting device and the inner peripheral wall of the fixing hole are tightly connected through threads.
  • the transducing component includes a transducer and an isolation device
  • the transducer has a first end and a second end
  • the isolation device is sleeved on the first end along the axial direction of the transducer, and the first end is sealingly connected to the isolation device, so that the first end is sealingly connected to the fixing hole through the isolation device;
  • the side of the first end facing the gasket has a first contact surface against the gasket
  • the side of the isolation device facing the gasket has a second contact surface against the gasket, so that the protrusions on the gasket are in contact with the first contact surface.
  • the contact surface and/or the second contact surface are in contact.
  • the first end is provided with a connecting portion, and the connecting portion is sealingly connected to the isolation device; the connecting portion has a first contact surface.
  • the isolation device includes an isolation sleeve and at least one first sealing ring;
  • the isolation sleeve is set on the connection part, and the isolation sleeve and the connection part are sealingly connected;
  • the outer peripheral wall of the isolation sleeve is provided with at least one first annular groove, the first annular groove is arranged around the outer peripheral wall of the isolation sleeve, the first sealing ring is fixed in the first annular groove, and the inner peripheral wall of the isolation sleeve and the fixing hole passes through The first sealing ring is sealingly connected, and there is a first gap between the outer wall of the isolation sleeve and the inner peripheral wall of the fixing hole.
  • the transducer further includes at least one second sealing ring
  • At least one second annular groove is formed on the outer peripheral wall of the connecting part.
  • the second annular groove is arranged around the outer peripheral wall of the connecting part.
  • the second sealing ring is fixed in the second annular groove.
  • the connecting part and the isolation sleeve pass through the second sealing ring.
  • the ring is sealed and connected, and there is a second gap between the outer wall of the connecting part and the inner peripheral wall of the isolation sleeve.
  • Embodiments of the present application provide an ultrasonic flowmeter.
  • the second end of the transducer component is gap-fitted with the limiting device, and the gasket assembly is sleeved on the second end.
  • the transducer component forms indirect contact with the watch body through the gasket component and the limiting device at the second end, and reduces the clutter intensity transmitted from the watch body to the transducer component through the gasket component, thereby reducing the surface body
  • the impact of clutter on the transducer components will improve the measurement accuracy of the ultrasonic flowmeter.
  • Figure 1 is a cross-sectional view of an ultrasonic flowmeter provided by an embodiment of the present application
  • Figure 2 is a partial cross-sectional view of position A in Figure 1;
  • Figure 3 is a schematic structural diagram of a gasket with protrusions provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another gasket with protrusions provided by an embodiment of the present application.
  • Figure 5 is an exploded view of the limiting device, gasket assembly and transducer assembly in Figure 2;
  • Figure 6 is a schematic structural diagram of the limiting device in Figure 3.
  • Figure 7 is an exploded view of the transducer component in Figure 3.
  • Figure 8 is a schematic cross-sectional view of the transducer component in Figure 3;
  • Figure 9 is a schematic cross-sectional view of another transducer component in Figure 3.
  • signal processing is generally used to filter out the clutter or noise, so as to filter the signal received by the transducer, thereby filtering out the transducer. Received clutter.
  • the related art ultrasonic flowmeter has a poor filtering effect on clutter, and the transducer receives more clutter, resulting in a lower measurement accuracy of the ultrasonic flowmeter.
  • the reason for this problem is that the signal processing method only indirectly processes the clutter in all signals received by the transducer, but does not prevent the transducer from receiving clutter signals from the source. Therefore, when ultrasonic waves When the flow meter faces a more complex use environment, this indirect method of secondary signal processing cannot completely eliminate the impact of clutter or noise on the signal received by the transducer.
  • filtering the signals received by the transducer requires more complex software and hardware design, which improves the production of ultrasonic flow meters. production complexity and production costs.
  • embodiments of the present application provide an ultrasonic flowmeter.
  • the second end of the transducer component is clearance-fitted with the limiting device, and the gasket assembly is Set on the second end, so that the transducer component forms indirect contact with the watch body at the second end through the gasket component and the limiting device, and reduces the clutter transmitted from the watch body to the transducer component through the gasket component Strength, thereby reducing the impact of clutter on the meter body on the transducer components, thereby improving the measurement accuracy of the ultrasonic flow meter.
  • an ultrasonic flowmeter which includes: a meter body 100 , a transducer component 200 , a limiting device 300 and a gasket component 400 .
  • the meter body 100 has an accommodating cavity 110 for the flow of fluid to be measured.
  • the side wall of the meter body 100 is provided with a fixing hole 120 that communicates with the accommodating cavity 110.
  • the transducer assembly 200, the gasket assembly 400 and the limiting device 300 are located in the fixing hole. Within 120.
  • the transducer component 200 is sealingly connected to the inner peripheral wall of the fixing hole 120 .
  • the first end 214 of the transducer component 200 faces the accommodation cavity 110 .
  • the second end 215 of the transducer component 200 faces the limiting device 300 and has a clearance fit with the limiting device 300 .
  • the gasket assembly 400 is sleeved on the second end 215 of the transducer assembly 200, and the limiting device 300 contacts the transducer assembly 200 through the gasket assembly 400.
  • the limiting device 300 is tightly connected with the inner peripheral wall of the fixing hole 120 .
  • the gasket assembly 400 includes at least one gasket 410, and one or more protrusions 420 are provided on at least one side of the at least one gasket 410.
  • the meter body 100 of the ultrasonic flow meter can be connected to the pipe where the fluid to be measured is located, so that the fluid to be measured can flow through the accommodation cavity 110 of the meter body 100, thereby
  • the transducer component 200 located in the fixing hole 120 measures the flow rate of the fluid by emitting ultrasonic waves to the fluid to be measured and receiving the ultrasonic waves acting on the fluid. That is to say, when the accommodation cavity 110 is connected with the fixing hole 120, the fluid flowing in the accommodation cavity 110 will enter the fixing hole 120. Therefore, in order to prevent the fluid from leaking out of the watch body 100 through the fixing hole 120, the transducer assembly 200 A sealed connection is required with the inner peripheral wall of the fixing hole 120 .
  • the fixed holes 120 on the watch body 100 include multiple, the plurality of fixing holes 120 are arranged along the radial direction of the watch body 100, and each fixing hole 120 is provided with a transducer component. 200.
  • a limiting device 300 and a gasket assembly 400 are placed on the second end 215 of the transducer assembly 200, and then the assembly of the transducer assembly 200 and the gasket assembly 400 is inserted into the fixing hole 120, and then the limiting device 300 is inserted from the outside of the watch body 100. into the fixing hole 120 and abuts with the gasket assembly 400 .
  • the first end 214 of the transducer assembly 200 faces the accommodating cavity 110 , and the first end 214 can serve as a means for the transducer assembly 200 to generate and receive ultrasonic waves to the fluid in the accommodating cavity 110 .
  • the working end in order to better generate and receive ultrasonic waves, there is no direct contact between the first end 214 and the inner peripheral wall of the fixing hole 120 .
  • the second end 215 of the transducer assembly 200 is clearance-fitted with the limiting device 300, and a gasket assembly 400 is set on the second end 215 of the transducer assembly 200, so that the transducer assembly 200 It is in indirect contact with the limiting device 300 through the gasket assembly 400, thereby preventing the clutter or noise from being transmitted from the watch body 100 to the limiting device 300, and directly transmitting it to the transducing component 200 through the limiting device 300, thus reducing the amount of noise transmitted to the transducing component 200.
  • the intensity of the clutter is the intensity of the clutter.
  • the gasket assembly 400 may include at least one gasket 410.
  • the gasket assembly 400 When clutter passes through the gasket assembly 400, it will be absorbed by the gasket assembly 400, thereby reducing the intensity of the clutter. Reduce the impact of clutter on the transducer component 200.
  • Protrusions 420 are provided on at least one side of at least one of the gaskets 410 in the gasket assembly 400. That is to say, the protrusions 420 can be provided on one side of the gasket 410, or on two opposite sides of the gasket 410, The protrusions 420 on the gasket 410 can face the limiting device 300 or the transducing assembly 200, or can also face the limiting device 300 and the transducing assembly 200 at the same time.
  • the protrusions 420 on the pads 410 face the limiting device 300, the protrusions 420 on one pad 410 may contact the limiting device 300 or contact an adjacent pad 410.
  • the protrusion 420 on the gasket 410 can contact the limiting device 300, while the gasket assembly 400 has two gaskets 410, and both gaskets 410 have protrusions 420.
  • the protrusion 420 of one of the gaskets 410 may contact the limiting device 300, and the protrusion 420 of the other gasket 410 may contact the adjacent gasket 410.
  • the protrusions 420 on the pads 410 may contact the transducer assembly 200 or the adjacent pad 410.
  • the protrusion 420 on the gasket 410 can contact the transducer assembly 200, while the gasket assembly 400 has two gaskets 410 and both pads 410 have protrusions.
  • the protrusion 420 of one of the pads 410 may contact the transducer assembly 200
  • the protrusion 420 of the other pad 410 may contact the adjacent pad 410 .
  • the protrusion 420 on one gasket 410 can be in contact with the transducer assembly 200 and the limiting device 300 at the same time, or with the transducer assembly 200 and the adjacent gasket 410 at the same time, or with the limiting device 300 and the adjacent device at the same time.
  • the pads 410 are in contact with each other, or are in contact with two adjacent pads 410 at the same time.
  • the protrusion 420 on the gasket 410 can contact the transducing assembly 200 and the limiting device 300 at the same time.
  • the gasket assembly 400 has three gaskets 410 and one of the gaskets 410 has protrusions 420 on both sides
  • the gaskets 410 if the gasket 410 with the protrusions 420 is disposed close to the limiting device 300, the gaskets 410
  • the protrusions 420 on the gasket 410 can contact the limiting device 300 and the adjacent gasket 410 at the same time; if the gasket 410 with the protrusions 420 is disposed close to the transducer assembly 200, the protrusions 420 on the gasket 410 can contact the transducer assembly 410 at the same time.
  • the assembly 200 is in contact with the adjacent gasket 410; if the gasket 410 with the protrusion 420 is disposed between two gaskets 410 without the protrusion 420, the protrusion 420 on the gasket 410 can contact two adjacent pads at the same time.
  • the adjacent gasket 410 contacts.
  • a protrusion 420 can be provided on one side of the gasket 410.
  • the protrusion 420 can be an annular protrusion or a folded line protrusion.
  • the annular protrusion can be Concentric with gasket 410.
  • the annular protrusion can be in the shape of a circular ring or a polygonal ring.
  • a plurality of protrusions 420 may also be provided on one side of the gasket 410.
  • the plurality of protrusions 420 may be a plurality of the above-mentioned annular protrusions. When two annular protrusions are provided on one side of the gasket 410 , the two annular protrusions may contact different areas on the transducer component 200 respectively.
  • the plurality of protrusions 420 may be at least one of strip-shaped protrusions, block-shaped protrusions, boss-shaped protrusions, and arc-shaped protrusions.
  • the plurality of arc-shaped protrusions can be formed into discontinuous annular protrusions coaxial with the gasket 410 (as shown in FIG. 3 ).
  • the annular protrusion may include multiple ones.
  • the two discontinuous annular protrusions can be connected to the transducing assembly 200 respectively. contact with different areas.
  • the gasket assembly 400 in the embodiment of the present application may include at least one gasket 410.
  • the gasket assembly 400 may include one gasket 410 or multiple gaskets 410.
  • multiple gaskets 410 are set on the second end 215 of the transducer assembly 200.
  • the gasket assembly 400 can have two gaskets 410, three gaskets 410, four gaskets 410, or even more.
  • Multiple spacers 410 The greater the number of spacers 410 , the more beneficial it is to extend the path for clutter to be transmitted from the limiting device 300 to the transducing component 200 , thereby weakening the intensity of the clutter to a certain extent.
  • the number of gaskets 410 can be set according to actual needs.
  • the embodiment of the present application provides an ultrasonic flowmeter.
  • the second end 215 of the transducing component 200 is connected to the limiting device 300.
  • the gasket assembly 400 is sleeved on the second end 215, so that the transducer assembly 200 forms indirect contact with the watch body 100 through the gasket assembly 400 and the limiting device at the second end 215, and passes through the gasket.
  • the chip assembly 400 reduces the intensity of clutter transmitted from the meter body 100 to the transducer assembly 200, thereby reducing the impact of the clutter on the meter body 100 on the transducer assembly 200, thereby improving the measurement accuracy of the ultrasonic flow meter.
  • connection structure between the transducer component 200 and the meter body 100 is improved, there is no need to perform secondary signal processing through complex software and hardware design, thereby reducing the production cost of the ultrasonic flow meter and simplifying the ultrasonic flow meter. preparation process.
  • the gasket 410 is provided with a through hole 413 , and the gasket 410 is sleeved on the second end 215 of the transducer component 200 through the through hole 413 .
  • Each protrusion has a contact surface 430, and the sum of the areas of all contact surfaces 430 is less than the surface area of the side of the gasket where the protrusion is located.
  • each protrusion 420 on the gasket 410 has a contact surface 430 at one end facing away from the gasket 410 , and the sum of the areas of all contact surfaces 430 is smaller than the gasket 410 The surface area on the side where the upper protrusion 420 is located.
  • the contact surface 430 may be in contact with the limiting device 300, or with the adjacent pad 410, or with the transducer assembly 200.
  • the sum of the areas of the multiple contact surfaces 430 should be at least smaller than the surface area of the limiting device 300 facing the gasket 410, so that The clutter on the limiting device 300 is transmitted to the gasket 410 through the plurality of contact surfaces 430, thereby reducing the transmission path of the clutter between the limiting device 300 and the gasket 410, thereby reducing the noise transmitted by the limiting device 300. to the amount of clutter on the pad 410.
  • the clutter on the pad 410 can pass through.
  • the contact surface 430 propagates, thereby reducing the propagation path of clutter between the two pads 410 , thereby reducing the amount of clutter transmitted between the two adjacent pads 410 .
  • the contact surface 430 when the contact surface 430 is located between the protrusion 420 and the transducing component 200, the sum of the areas of the multiple contact surfaces 430 should be at least smaller than the surface area of the transducing component 200 facing the gasket 410. , so that the clutter on the gasket 410 is transmitted to the transducer component 200 through the plurality of contact surfaces 430, thereby reducing the propagation path of the clutter between the gasket 410 and the transducer component 200, thereby reducing the noise caused by The amount of clutter transmitted to the transducing assembly 200 by the spacer 410.
  • the gasket assembly 400 has a gasket 410 and the gasket 410 has protrusions 420 on two opposite sides, a portion of the gasket 410 facing the limiting device 300
  • the protrusion 420 on the surface contacts the limiting device 300. Since the contact area between the protrusion 420 and the limiting device 300 is smaller than the contact area when the side surface of the gasket 410 contacts the limiting device 300, the limiting device 300 is transferred to the gasket 410. The amount of clutter is reduced, thereby reducing the impact of clutter on the transducing component 200. Similarly, the protrusion 420 on the side of the gasket 410 facing the transducer component 200 is in contact with the transducer component 200.
  • the contact area between the protrusion 420 and the transducer component 200 is smaller than that between the side of the gasket 410 and the transducer component 200.
  • the contact area during contact reduces the amount of noise transmitted by the gasket 410 to the transducer assembly 200, thereby further reducing the impact of noise on the transducer assembly 200.
  • the distance between the limiting device 300 and the gasket 410 and adjacent gaskets 410 can be reduced. Or the contact area between the gasket 410 and the transducing component 200, thereby reducing the amount of clutter transmitted from the limiting device 300 to the transducing component 200 through the gasket component 400, thereby improving the measurement accuracy of the ultrasonic flow meter.
  • the gasket assembly 400 includes a plurality of gaskets 410 , and the plurality of gaskets 410 may include metal gaskets 411 and/or non-metallic gaskets 412 .
  • the plurality of gaskets 410 may all be metal gaskets 411 .
  • the metal gasket 411 has good extrusion resistance and can extend the service life of the gasket 410.
  • the metal material of the metal gasket 411 may be iron alloy, iron, copper alloy, copper or aluminum alloy, etc.
  • the plurality of gaskets can also be non-metallic gaskets 412.
  • the non-metallic gaskets 412 can be made of materials with cushioning and noise reduction effects.
  • the plurality of gaskets 410 may also include both metal gaskets 411 and non-metallic gaskets 412. Through the combined use of metal gaskets 411 and non-metallic gaskets 412, the service life of the gaskets 410 can be taken into consideration while clutter can be reduced. Effect on transducer assembly 200.
  • protrusions 420 can be provided on both the non-metal gasket 412 and the metal gasket 411 .
  • the plurality of gaskets 410 are all metal gaskets 411, at least one of the metal gaskets 411 is provided with a protrusion 420, so that the metal gasket 411 is at least in contact with the transducing component 200 through the protrusion 420.
  • the plurality of gaskets 410 are all non-metallic gaskets 412
  • at least one of the non-metallic gaskets 412 is provided with a protrusion 420, so that the non-metallic gasket 412 is at least connected to the transducer component 200 through the protrusion 420. touch.
  • protrusions 420 can be provided on both the metal gaskets 411 and the non-metallic gaskets 412, so that the metal gaskets 411 are at least in contact with the transducer.
  • the components 200 are in contact with each other through the protrusions 420, or so that the non-metallic spacers 412 are at least It is in contact with the transducing component 200 through the protrusion 420 .
  • the gasket 410 with the protrusion 420 in the gasket assembly 400 may be a metal gasket 411 or a non-metallic gasket 412.
  • the gasket assembly 400 has three gaskets 410, two of the gaskets 410 can be metal gaskets 411, and the other can be a non-metallic gasket 412.
  • the non-metallic gasket 412 can be provided on the two metal gaskets 411. between.
  • a protrusion 420 is provided on the metal gasket 411 close to the transducer component 200, which can reduce the amount of clutter transmitted to the transducer component 200.
  • any two of the gasket components 400 can be non-metallic gaskets 412 and the other is a metal gasket 411 , and the gasket 410 with the protrusion 420 can be two non-metallic gaskets 412 .
  • the material of the non-metal gasket 412 is plastic.
  • the plastic is one of polyphenylene sulfide, polyimide, polyetheretherketone, liquid crystal polymer or polysulfone.
  • the plastic can be a special engineering plastic with high comprehensive performance and a long-term use temperature above 150°C, and the special engineering plastic can have good cushioning and noise reduction effects.
  • the cushioning and noise reduction effects of the non-metallic gasket 412 can be improved, thereby reducing the intensity and amount of clutter or noise transmitted to the transducer component 200, thereby improving the signal accuracy of the transducer component 200. , thereby improving the measurement accuracy of the ultrasonic flowmeter.
  • the gasket assembly 400 includes three gaskets 410, two of the three gaskets 410 are metal gaskets 411, and the other is a non-metallic gasket 412.
  • One of the metal gaskets 411 is disposed between the non-metallic gasket 412 and the limiting device 300
  • the other metal gasket 411 is disposed between the non-metallic gasket 412 and the transducing component 200
  • the two metal gaskets 411 Both are provided with protrusions 420 .
  • a metal gasket 411 is provided between the limiting device 300 and the non-metallic gasket 412.
  • the noise on the watch body 100 is transmitted to the limiting device 300, it is transmitted to the limiting device 300 through the metal gasket 411.
  • protrusions 420 are provided on the metal gasket 411 so that the contact surface between the metal gasket 411 and the non-metallic gasket 412 is reduced, so that the limiting device 300 is transmitted through the metal gasket 411 The amount of clutter on the non-metallic pad 412 is reduced.
  • the intensity of the clutter transmitted to the non-metallic gasket 412 is weakened because the non-metallic gasket 412 has a cushioning and noise reduction effect.
  • a metal gasket 411 is provided between the non-metallic gasket 412 and the transducer component 200, and the protrusions 420 are provided on the metal gasket 411 to reduce the contact surface between the metal gasket 411 and the transducer component 200. Small, the amount of clutter transmitted by the non-metallic gasket 412 to the transducer component 200 through the metal gasket 411 is further reduced, thereby reducing the impact of clutter on the transducer component 200 and thereby improving the measurement accuracy of the ultrasonic flowmeter.
  • the gasket assembly 400 includes four gaskets 410 , three of which are metal gaskets 411 and the other is a non-metallic gasket 412 .
  • Two metal gaskets 411 are disposed between the non-metallic gaskets 412 and the limiting device 300 .
  • Another metal pad 411 is disposed between the non-metal pad 412 and the transducer component 200 .
  • Protrusions 420 are provided on both the metal pad 411 close to the limiting device 300 and the metal pad 411 close to the transducing assembly 200 .
  • the pressure exerted by the fluid on the transducer component 200 in the fixed hole 120 is also relatively large.
  • the metal gasket 411 By disposing a metal gasket 411 between the metal gasket 411 with the protrusion 420 and the non-metal gasket 412, and the metal gasket 411 is a flat gasket with a smooth surface, the protrusion of the metal gasket 411 can be prevented.
  • 420 is in direct contact with the non-metallic gasket 412, thereby preventing the non-metallic gasket 412 from being damaged and improving the service life of the gasket assembly 400.
  • the limiting device 300 is provided with a communication hole 310 along its installation direction.
  • the second end 215 is located in the communication hole 310.
  • the second end 215 located in the communication hole 310 is in contact with the communication hole. Clearance fit between 310.
  • a groove 320 or a convex portion (not shown in the figure) is provided on the surface of the limiting device 300 that is in contact with the gasket assembly 400 .
  • the groove 320 is connected with the communication hole 310 .
  • the outer peripheral wall of the limiting device 300 and the inner peripheral wall of the fixing hole 120 are tightly connected through threads, or the outer peripheral wall of the limiting device 300 and the inner peripheral wall of the fixing hole 120 are tightly connected through a circlip.
  • the gasket assembly 400 can be prevented from connecting with the limiting device 300 from the second end 215 of the transducing assembly 200 .
  • the gap between them falls off, improving the connection stability of the gasket assembly 400.
  • the clearance fit between the second end 215 extending into the communication hole 310 and the inner peripheral wall of the communication hole 310 can prevent the clutter of the watch body 100 from passing through the second end.
  • the position where the end 215 is in direct contact with the limiting device 300 is transmitted to the transducing component 200, thereby reducing the impact of clutter on the transducing component 200.
  • the groove 320 communicating with the communication hole 310 on the surface of the limiting component that is in contact with the gasket 410, so that the surface in the opening direction of the groove 320 is in contact with the gasket component 400, thereby reducing the number of contacts between the limiting device 300 and the gasket 400.
  • the contact surfaces 430 between the gasket assemblies 400 thereby reduce the amount of clutter transmitted to the gasket assembly 400 through the confinement device 300 .
  • the protrusion 420 of the limiting device 300 and the protrusion 420 of the gasket 410 can be in mating contact, so that the limiting device The contact area between 300 and the gasket 410 is further reduced, so that the amount of noise transmitted from the confinement device 300 to the gasket 410 is less.
  • the outer peripheral wall of the limiting device 300 and the inner peripheral wall of the fixing hole 120 are tightly connected through threads, thereby improving the connection stability of the limiting device 300.
  • the limiting device 300 can be a fixing nut, the fixing nut is provided with threads on its outer peripheral side, and the inner peripheral wall of the fixing hole 120 can also be provided with threads that match the threads on the outer peripheral side of the fixing nut, so that the fixing nut is connected to the fixing nut.
  • the inner peripheral walls of the hole 120 are connected by threads.
  • the outer peripheral wall of the limiting device 300 and the inner peripheral wall of the fixing hole 120 may also be tightly connected through a retaining spring (not shown in the figure), thereby improving the detachability convenience of the limiting device 300 .
  • the transducer assembly 200 includes a transducer 210 and an isolation device 220 .
  • Transducer 210 has a first end 214 and a second end 215 .
  • the isolation device 220 is sleeved on the first end 214 along the axial direction of the transducer 210, and the first end 214 is sealed with the isolation device 220, so that the first end 214 is sealed with the fixing hole 120 through the isolation device 220. .
  • the side of the connecting portion 211 facing the gasket 410 has a first contact surface that abuts the gasket 410
  • the side of the isolation device 220 facing the gasket 410 has a second contact surface that abuts the gasket 410 , so that the gasket 410 can
  • the protrusion 420 is in contact with the first contact surface and/or the second contact surface.
  • the transducer 210 by connecting the transducer 210 to the inner peripheral wall of the fixing hole 120 through the isolation device 220, it is possible to prevent the clutter of the watch body 100 from being directly transmitted to the watch body through the outer peripheral wall of the fixing hole 120. on the transducer 210, thereby reducing the intensity of the clutter transmitted to the transducer 210.
  • the first end 214 and the second end 215 of the transducer assembly 200 are both located on the transducer 210 , and the first end 214 is used for sealing connection with the isolation device 220 .
  • the isolation device 220 By placing the isolation device 220 on the first end 214, the first end 214 is sealed with the isolation device 220 to achieve a sealed connection between the isolation device 220 and the transducer 210, and the outer peripheral wall of the isolation device 220 is Sealing connection with the inner peripheral wall of the fixing hole 120 realizes an indirect sealing connection between the transducer 210 and the fixing hole 120 , thereby preventing the fluid in the accommodation cavity 110 of the watch body 100 from passing between the isolation device 220 and the fixing hole 120 The gap leaks or flows out through the gap between the isolation device 220 and the transducer 210 , thereby improving the sealing performance between the transducer assembly 200 and the fixing hole 120 .
  • the transducer 210 may be cylindrical in shape.
  • the outer diameter of the first end 214 may be larger relative to the second end 215 so that the side of the first end 214 close to the second end 215 forms a first contact surface extending along the radial direction of the first end 214 216, and the isolation device 220 sleeved on the first end 214 also has a second contact surface 224, which is disposed on the same side as the first contact surface 216.
  • the first contact surface 216 and the second contact surface 224 are used to contact the gasket 410 .
  • the plurality of protrusions 420 on the gasket 410 close to the transducer assembly 200 may be two discontinuous annular protrusions. Start the concentric setting.
  • the plurality of protrusions 420 near the center of the gasket 410 can contact the first contact surface 216, and the sum of the areas of the plurality of contact surfaces 430 between the plurality of protrusions 420 and the first contact surface 216 is less than The surface area of the first contact surface 216; wherein, the plurality of protrusions 420 in the gasket 410 can abut against the second contact surface 224, and the plurality of contacts between the plurality of protrusions 420 and the second contact surface 224 The sum of the areas of the surfaces 430 is smaller than the surface area of the second contact surface 224 .
  • the gasket 410 with two annular protrusions can not only reduce the contact area with the transducer 210 but also reduce the contact area with the isolation device 220 , thereby reducing the transmission of clutter to the transducer 210 through the gasket 410 the amount on.
  • the first end 214 is provided with a connecting portion 211 , and the connecting portion 211 is sealingly connected to the isolation device 220 ; the connecting portion 211 has a first contact surface 216 .
  • the connecting portion 211 may be a partial area on the first end 214 , the connecting portion 211 may be located on a side close to the second end 215 , and the connecting portion 211 is close to the gasket.
  • Assembly 400 has a first contact surface 216 on one side.
  • the connecting portion 211 can also be the entire area on the first end 214 .
  • the first end 214 is the connecting portion 211 , and the entire outer peripheral surface of the first end 214 is located within the isolation device 220 .
  • the first end 214 of the transducer 210 may be a columnar structure with a variable outer diameter or a columnar structure with the same outer diameter.
  • the outer diameter of the connecting portion 211 is larger than the outer diameters of other parts of the first end 214; when the first end 214 is a columnar structure with the same outer diameter, The outer diameter of the connecting portion 211 is the same as the outer diameter of other parts of the first end 214 .
  • the outer circumferential surface dimensions of the connecting portion 211 and the outer circumferential surface dimensions of other parts of the first end 214 can be adjusted according to actual needs and are not specifically limited here.
  • the isolation device 220 includes an isolation sleeve 221 and at least one first sealing ring 222.
  • the isolation sleeve 221 is set on the connecting part 211, and the isolation sleeve 221 and the connecting part 211 are sealingly connected.
  • the outer peripheral wall of the isolation sleeve 221 is provided with at least one first annular groove 223.
  • the first annular groove 223 is arranged around the outer peripheral wall of the isolation sleeve 221.
  • Each first sealing groove 223 is provided on the outer peripheral wall of the isolation sleeve 221.
  • the sealing ring 222 is fixed in a first annular groove 223, the isolation sleeve 221 and the inner peripheral wall of the fixing hole 120 are sealingly connected through at least one first sealing ring 222, and there is a gap between the outer wall of the isolation sleeve 221 and the inner peripheral wall of the fixing hole 120.
  • First gap 225 is fixed in a first annular groove 223, the isolation sleeve 221 and the inner peripheral wall of the fixing hole 120 are sealingly connected through at least one first sealing ring 222, and there is a gap between the outer wall of the isolation sleeve 221 and the inner peripheral wall of the fixing hole 120.
  • the isolation device 220 includes an isolation sleeve 221 and a first sealing ring 222.
  • the isolation sleeve 221 is sleeved on the connecting portion 211, and the second contact surface can be located on the isolation sleeve 221.
  • the first annular groove 223 can be coaxial with the isolation sleeve 221 , and the first sealing ring 222 can have a certain elasticity.
  • the inner peripheral wall of the fixed hole 120 is sealed and connected, and the contact between the isolation sleeve 221 and the inner peripheral wall of the fixing hole 120 is only through the first sealing ring 222, thereby reducing the contact area between the inner peripheral wall of the fixing hole 120 and the isolation sleeve 221, thereby reducing the surface
  • the amount of clutter or noise transmitted from the body 100 to the isolation sleeve 221 is thereby reduced, thereby reducing the amount of clutter transmitted to the transducer 210 through the isolation sleeve 221 and reducing the impact of clutter on the transducer 210 .
  • first sealing rings 222 can be disposed in a first annular groove 223 on the isolation sleeve 221 .
  • the inner peripheral wall of the isolation sleeve 221 and the fixing hole 120 can be improved. sealing between them.
  • the isolation sleeve 221 has a second contact surface 224, that is, the second contact surface 224 is located on an end of the isolation sleeve close to the gasket assembly 400.
  • the transducer 210 further includes at least one second sealing ring 212.
  • At least one second annular groove 213 is formed on the outer peripheral wall of the connecting part 211.
  • the second annular groove 213 is arranged around the outer peripheral wall of the connecting part 211.
  • Each second sealing ring 212 is fixed in a second annular groove 213.
  • the connecting part 211 and the isolation sleeve 221 are sealingly connected through at least one second sealing ring 212 , and there is a second gap 217 between the outer wall of the connecting part 211 and the inner peripheral wall of the isolation sleeve 221 .
  • a second annular groove 213 is provided on the connecting part 211, and the second sealing ring 212 is fixed in the second annular groove 213, so that the connecting part 211 and the isolation sleeve 221
  • the inner peripheral walls are sealedly connected by the second sealing ring 212 to reduce the contact area between the connecting part 211 and the isolation sleeve 221, thereby reducing the amount of clutter transmitted to the connecting part 211 through the isolation sleeve 221 and reducing clutter exchange.
  • the second sealing ring 212 can be made of a certain elastic material, so that an interference fit connection is formed between the connecting portion 211 where the second sealing ring 212 is installed and the inner peripheral wall of the isolation sleeve 221 .
  • the connecting part 211 may have a plurality of second annular grooves 213, and each second annular groove 213
  • One or more second sealing rings 212 can be fixed inside.
  • the material of the isolation sleeve 221 is special engineering plastic or metal.
  • the material of the first sealing ring 222 and the second sealing ring 212 is rubber.
  • the material of the isolation sleeve 221 is a special engineering plastic.
  • the special engineering plastic and the material of the non-metal gasket 412 can be the same material, which can further improve the cushioning and noise reduction effects of the isolation sleeve 221, thereby The impact of clutter on the transducer 210 is further reduced, thereby improving the measurement accuracy of the ultrasonic flow meter.
  • the first sealing ring 222 and the second sealing ring 212 can be made of rubber material, because the rubber material has good sound absorption and noise reduction effects.
  • the intensity of clutter and the transmission amount of clutter can be reduced, thereby reducing the impact of clutter on the transducer 210, thereby improving the ultrasonic flow meter. measurement accuracy.
  • references in the specification to "one embodiment,” “an embodiment,” “exemplary embodiments,” “some embodiments,” etc. mean that the described embodiments may include specific features, structures or characteristics, but not necessarily Each embodiment includes this particular feature, structure, or characteristic. Furthermore, such phrases are not necessarily referring to the same embodiment. Furthermore, where a particular feature, structure or characteristic is described in connection with an embodiment, it is within the knowledge of a person skilled in the art to implement such feature, structure or characteristic in conjunction with other embodiments, explicitly or not explicitly described.
  • spatial relative terms may be used in the text for convenience of explanation, such as “below”, “below”, “Below,””above,””above,” etc., are used to describe the relationship of one element or feature to other elements or features as illustrated in the figures. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation illustrated in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Abstract

本申请提供一种超声波流量计,包括表体、换能组件、限定装置和垫片组件;表体内具有容纳腔,表体的侧壁开设有与容纳腔连通的固定孔,换能组件、垫片组件和限定装置位于固定孔内;换能组件与固定孔的内周壁密封连接,换能组件的第一端朝向容纳腔,换能组件的第二端朝向限定装置且与限定装置之间间隙配合,垫片组件套设在换能组件的第二端上,且限定装置通过垫片组件与换能组件接触;限定装置与固定孔的内周壁紧固相连;垫片组件包括垫片,垫片的至少一面上设有一个或多个凸起。本申请实施例的超声波流量计,通过设置垫片组件,降低表体上的杂波对换能组件的影响,提高超声波流量计的测量精度。

Description

超声波流量计
本申请要求于2022年08月03日提交中国专利局、申请号为202210929417.0、申请名称为“超声波流量计”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及流体计量设备技术领域,尤其涉及一种超声波流量计。
背景技术
超声波流量计是通过检测流体流动对超声波的作用以测量流体流量的仪表,其核心部件为换能器,换能器的主要作用在于发出超声波振动,以及接收超声波振动。
相关技术中,换能器与超声波流量计的表体固定连接,表体外的噪声、表体表面与外物的碰撞产生的振动所形成的杂波,会通过换能器与表体的连接处传递至换能器上,从而影响换能器接收到的超声波信号。为了降低杂波对换能器的影响,一般会采用信号处理的方式过滤掉杂波或噪声,以对换能器接收到的信号进行滤波处理,从而滤除换能器接收到的杂波。
然而,上述相关技术的超声波流量计对杂波的滤除效果较差,换能器接收到的杂波较多,导致超声波流量计的测量精度较低。
发明内容
本申请实施例提供一种超声波流量计,用于解决相关技术的超声波流量计对杂波的滤除效果较差,换能器接收到的杂波较多,导致超声波流量计的测量精度较低的技术问题。
为了实现上述目的,本申请实施例提供如下技术方案:
本申请实施例提供一种超声波流量计,其包括:表体、换能组件、限定装置和垫片组件;
表体内具有可供待测流体流动的容纳腔,表体的侧壁开设有与容纳腔连通的固定孔,换能组件、垫片组件和限定装置位于固定孔内;
换能组件与固定孔的内周壁密封连接,换能组件的第一端朝向容纳腔, 换能组件的第二端朝向限定装置且与限定装置之间间隙配合,垫片组件套设在换能组件的第二端上,且限定装置通过垫片组件与换能组件接触;限定装置与固定孔的内周壁紧固相连;
垫片组件包括至少一个垫片,至少一个垫片的至少一面上设有一个或多个凸起。
在上述技术方案的基础上,本申请还可以做如下改进。
在一种可能的实现方式中,垫片上开设有通孔,垫片通过通孔套设于换能组件的第二端上;
每个凸起均具有接触面,且所有接触面的面积之和,小于垫片上凸起所在一侧的表面积。
在一种可能的实现方式中,垫片组件包括多个垫片,多个垫片包括金属垫片和/或非金属垫片。
在一种可能的实现方式中,垫片组件包括三个垫片,三个垫片中的其中两个为金属垫片,另一个为非金属垫片;
其中一个金属垫片设置于非金属垫片和限定装置之间,其中另一个金属垫片设置于非金属垫片与换能组件之间;
两个金属垫片上均设置有凸起。
在一种可能的实现方式中,垫片组件包括四个垫片,其中三个垫片为金属垫片,另一个为非金属垫片;
其中两个金属垫片设置于非金属垫片与限定装置之间;
其中另一金属垫片设置于非金属垫片与换能组件之间;
靠近限定装置的金属垫片和靠近换能组件的金属垫片上均设置有凸起。
在一种可能的实现方式中,非金属垫片的材料为塑料;
其中,塑料为聚苯硫醚、聚酰亚胺、聚醚醚酮、液晶聚合物或者聚砜中的其中之一。
在一种可能的实现方式中,限定装置沿其安装方向开设有连通孔,第二端位于连通孔内,位于连通孔内的第二端与连通孔之间间隙配合;
限定装置上与垫片组件接触的表面上设有凹槽或者凸部,凹槽与连通孔连通;
限定装置的外周壁与固定孔的内周壁之间通过螺纹紧密连接,
或者限定装置的外周壁与固定孔的内周壁之间通过卡簧紧固连接。
在一种可能的实现方式中,换能组件包括换能器和隔离装置;
换能器具有第一端和第二端;
隔离装置沿换能器的轴向套设于第一端上,且第一端与隔离装置密封连接,以使第一端通过隔离装置与固定孔密封连接;
第一端朝向垫片的一侧具有与垫片相抵的第一接触面,隔离装置朝向垫片的一侧具有与垫片相抵的第二接触面,以使垫片上的凸起与第一接触面和/或第二接触面接触。
在一中可能的实现方式中,第一端设有连接部,连接部与隔离装置密封连接;连接部具有第一接触面。
在一种可能的实现方式中,隔离装置包括隔离套和至少一个第一密封圈;
隔离套套设于连接部上,隔离套与连接部密封连接;
隔离套的外周壁上开设有至少一个第一环形槽,第一环形槽绕设于隔离套的外周壁上,第一密封圈固定于第一环形槽内,隔离套与固定孔的内周壁通过第一密封圈密封连接,且隔离套的外壁与固定孔的内周壁之间具有第一间隙。
在一种可能的实现方式中,换能器还包括至少一个第二密封圈;
连接部的外周壁上开设有至少一个第二环形槽,第二环形槽绕设于连接部的外周壁上,第二密封圈固定于第二环形槽内,连接部和隔离套通过第二密封圈密封连接,且连接部的外壁与隔离套的内周壁之间具有第二间隙。
本申请实施例提供一种超声波流量计,通过将限定装置与表体的固定孔紧固连接,换能组件的第二端与限定装置间隙配合,且将垫片组件套设在第二端上,以使换能组件在第二端处依次通过垫片组件和限定装置与表体形成间接接触,并通过垫片组件降低由表体传递至换能组件上的杂波强度,从而降低表体上的杂波对换能组件的影响,进而提高超声波流量计的测量精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的超声波流量计的剖视图;
图2为图1中A处的局部剖视图;
图3为本申请实施例提供的一种具有凸起的垫片的结构示意图;
图4为本申请实施例提供的另一种具有凸起的垫片的结构示意图;
图5为图2中的限定装置、垫片组件和换能组件的爆炸图;
图6为图3中的限定装置的结构示意图;
图7为图3中的换能组件的爆炸图;
图8为图3中的换能组件的截面示意图;
图9为图3中的另一种换能组件的截面示意图。
附图标记说明:
100、表体;
110、容纳腔;120、固定孔;
200、换能组件;
210、换能器;220、隔离装置;211、连接部;
212、第二密封圈;213、第二环形槽;221、隔离套;
222、第一密封圈;223、第一环形槽;214、第一端;
215、第二端;216、第一接触面;217、第二间隙;
224、第二接触面;225、第一间隙;
300、限定装置;
310、连通孔;320、凹槽;
400、垫片组件;
410、垫片;420、凸起;430、接触面;411、金属垫片;412、非金
属垫片;413、通孔。
具体实施方式
正如背景技术所述,为了降低杂波对换能器的影响,一般会采用信号处理的方式过滤掉杂波或噪声,以对换能器接收到的信号进行滤波处理,从而滤除换能器接收到的杂波。
然而,相关技术的超声波流量计对杂波的滤除效果较差,换能器接收到的杂波较多,导致超声波流量计的测量精度较低。出现这种问题的原因在于,信号处理的方式只是对换能器接收到的所有信号中的杂波进行间接的处理,而并没有从源头上来阻碍换能器接收杂波信号,因此,当超声波流量计在面对较为复杂的使用环境时,这种间接的对信号进行二次处理的方式并不能完全消除杂波或噪声对换能器接收到的信号的影响。此外,对换能器接收到的信号进行滤波处理需要较为复杂的软件和硬件设计,提高超声波流量计的生 产复杂度和生产成本。
针对上述技术问题,本申请实施例提供一种超声波流量计,通过将限定装置与表体的固定孔紧固连接,换能组件的第二端与所述限定装置间隙配合,且将垫片组件套设在第二端上,以使换能组件在第二端处通过垫片组件和限定装置与表体形成间接接触,并通过垫片组件降低由表体传递至换能组件上的杂波强度,从而降低表体上的杂波对换能组件的影响,进而提高超声波流量计的测量精度。
为了使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
参考图1至图4,本申请实施例提供一种超声波流量计,其包括:表体100、换能组件200、限定装置300和垫片组件400。表体100内具有可供待测流体流动的容纳腔110,表体100的侧壁开设有与容纳腔110连通的固定孔120,换能组件200、垫片组件400和限定装置300位于固定孔120内。换能组件200与固定孔120的内周壁密封连接,换能组件200的第一端214朝向容纳腔110,换能组件200的第二端215朝向限定装置300且与限定装置300之间间隙配合,垫片组件400套设在换能组件200的第二端215上,且限定装置300通过垫片组件400与换能组件200接触。限定装置300与固定孔120的内周壁紧固相连。垫片组件400包括至少一个垫片410,至少一个垫片410的至少一面上设有一个或多个凸起420。
参考图1和图2,在本实施例中,超声波流量计的表体100能够连接在待测流体所在的管道上,以使待测流体能够从表体100的容纳腔110内流过,从而使位于固定孔120中的换能组件200通过向待测流体发生超声波,并接收经过流体作用的超声波来测量流体的流速。也就是说,当容纳腔110与固定孔120连通时,容纳腔110内流过的流体会进入固定孔120内,因此,为了防止流体通过固定孔120泄漏至表体100外,换能组件200与固定孔120的内周壁之间需要进行密封连接。
参考图1,在具体实现时,表体100上的固定孔120包括多个,该多个固定孔120均沿表体100的径向设置,每个固定孔120内均设置有一个换能组件200、一个限定装置300和一个垫片组件400。在一示例性的实施例中, 将垫片组件400套设在换能组件200的第二端215,之后将换能组件200与垫片组件400的组合件插入固定孔120内,然后将限定装置300由表体100的外侧插入固定孔120内,并与垫片组件400抵接。
参考图1和图2,在一些实施例中,换能组件200的第一端214朝向容纳腔110,该第一端214可以作为换能组件200向容纳腔110内的流体发生和接收超声波的工作端,为了能够更好的发生和接收超声波,该第一端214与固定孔120的内周壁之间不直接接触。
参考图2,在一些实施例中,换能组件200的第二端215与限定装置300间隙配合,且换能组件200的第二端215上套设有垫片组件400,使得换能组件200与限定装置300通过垫片组件400间接接触,从而避免表体100传递至限定装置300的杂波或者噪声,直接通过限定装置300传递至换能组件200上,降低了传递至换能组件200上的杂波的强度。
参考图2至图5,在一些实施例中,垫片组件400可以包括至少一个垫片410,杂波在经过垫片组件400时,会被垫片组件400吸收,从而降低杂波的强度,降低杂波对换能组件200的影响。垫片组件400中的至少一个垫片410上的至少一面设置有凸起420,也就是说,凸起420可以设置在垫片410的一个侧面上,或者垫片410相对的两个侧面上,使得垫片410上的凸起420可以朝向于限定装置300,或者朝向于换能组件200,还可以同时朝向于限定装置300和换能组件200。
可以理解的是,当垫片410上的凸起420朝向限定装置300时,一个垫片410上的凸起420可以与限定装置300接触,或者与相邻的垫片410接触。例如垫片组件400具有一个垫片410时,该垫片410上的凸起420能够与限定装置300接触,而垫片组件400具有两个垫片410且两个垫片410均具有凸起420时,其中一个垫片410的凸起420可以与限定装置300接触,其中另一个垫片410的凸起420可以与相邻的垫片410接触。同理,当垫片410上的凸起420朝向换能组件200时,一个垫片410上的凸起420可以与换能组件200接触,或者与相邻的垫片410接触。例如垫片组件400具有一个垫片410时,该垫片410上的凸起420能够与换能组件200接触,而垫片组件400具有两个垫片410且两个垫片410均具有凸起420时,其中一个垫片410的凸起420可以与换能组件200接触,其中另一个垫片410的凸起420可以与相邻的垫片410接触。
在一示例性实施例中,当垫片410上的两个相对的侧面上均具有凸起420 时,一个垫片410上的凸起420可以同时与换能组件200和限定装置300接触,或者同时与换能组件200和相邻的垫片410接触,再或者同时与限定装置300和相邻的垫片410接触,又或者同时与相邻的两个垫片410接触。例如,当垫片组件400具有一个垫片410时,垫片410上的凸起420可以同时与换能组件200和限定装置300接触。再例如,当垫片组件400具有三个垫片410,且其中一个垫片410的两侧具有凸起420时,若该具有凸起420的垫片410靠近限定装置300设置,则垫片410上的凸起420能够同时与限定装置300和相邻的垫片410接触;若具有凸起420的垫片410靠近换能组件200设置,则垫片410上的凸起420能够同时与换能组件200和相邻的垫片410接触;若具有凸起420的垫片410设置于没有凸起420的两个垫片410之间,则垫片410上的凸起420能够同时与两个相邻的垫片410接触。
参考图3和图4,在具体实现时,垫片410的一个侧面上可以设有一个凸起420,例如,该一个凸起420可以为环形凸起或者折线形凸起,该环形凸起可以与垫片410同心。环形凸起可以为圆环形、多边形环形。垫片410的一个侧面上还可以设有多个凸起420,例如,多个凸起420可以为多个上述的环形凸起,当垫片410的一个侧面上设置有两个环形凸起时,该两个环形凸起可以分别与换能组件200上的不同区域接触。
参考图3和图4,在一些实施例中,多个凸起420可以为条形凸起、块状凸起、凸台状凸起和弧形凸起中的至少其中之一。当多个凸起420均为弧形凸起时,该多个弧形凸起可以围设成与垫片410同轴的不连续的环形凸起(如图3所示),该不连续的环形凸起可以包括多个。在一示例性实施例中,当垫片410的一个侧面上具有两个不连续的环形凸起时(如图4所示),该两个不连续的环形凸起可以分别与换能组件200上的不同区域接触。
需要说明的是,本申请实施例中的垫片组件400可以包括至少一个垫片410,例如,垫片组件400可以包括一个垫片410或者多个垫片410,当垫片组件400包括多个垫片410时,多个垫片410均套设在换能组件200的第二端215,垫片组件400可以具有两个垫片410、三个垫片410、四个垫片410,甚至更多个垫片410。垫片410的数量越多,越有利于延长杂波由限定装置300传递至换能组件200的路径,从而在一定程度上减弱杂波的强度。其中,垫片410的数量可以根据实际需求进行设定。
本申请实施例提供一种超声波流量计,通过将限定装置300与表体100的固定孔120紧固连接,换能组件200的第二端215与所述限定装置300间 隙配合,且将垫片组件400套设在第二端215上,以使换能组件200在第二端215处依次通过垫片组件400和限定装置与表体100形成间接接触,并通过垫片组件400降低由表体100传递至换能组件200上的杂波强度,从而降低表体100上的杂波对换能组件200的影响,进而提高超声波流量计的测量精度。
此外,由于对换能组件200与表体100之间的连接结构进行改进,而不需要通过复杂的软硬件设计来进行二次信号处理,从而降低超声波流量计的生产成本,且简化超声波流量计的制备工艺。
参考图3至图5,在上述实施例的基础上,垫片410上开设有通孔413,垫片410通过通孔413套设于换能组件200的第二端215上。每个凸起均具有接触面430,且所有接触面430的面积之和,小于垫片上凸起所在一侧的表面积。
参考图1至图4,在本实施例中,垫片410上每个凸起420的背向该垫片410的一端均具有接触面430,且所有接触面430的面积之和小于垫片410上凸起420所在一侧的表面积。该接触面430可以与限定装置300接触、或者与相邻的垫片410接触、还可以与换能组件200接触。
在一示例性实施例中,该接触面430位于凸起420与限定装置300之间时,且该多个接触面430的面积之和应该至少小于限定装置300朝向垫片410的表面面积,以使限定装置300上的杂波通过该多个接触面430传递至垫片410上,从而减小了杂波在限定装置300与垫片410之间的传递路径,进而减少了由限定装置300传递至垫片410上的杂波量。
在另一实施例中,当该接触面430位于凸起420与相邻的垫片410之间时,且相邻的两个垫片410的尺寸相同,以使垫片410上的杂波通过该接触面430传播,从而减少了杂波在该两个垫片410之间的传播路径,进而减少了杂波在该两个相邻的垫片410之间的传递量。
在又一实施例中,当该接触面430位于凸起420与换能组件200之间时,且该多个接触面430的面积之和应该至少小于换能组件200朝向垫片410的表面面积,以使垫片410上的杂波通过该多个接触面430传递至换能组件200上,从而减小了杂波在垫片410与换能组件200之间的传播路径,进而减少了由垫片410传递至换能组件200上的杂波量。
在一示例性实施例中,当垫片组件400具有一个垫片410,且垫片410的两个相对的侧面上均具有凸起420时,垫片410上朝向限定装置300的一 面上的凸起420与限定装置300接触,由于凸起420与限定装置300之间的接触面积小于垫片410的侧面与限定装置300接触时的接触面积,所以限定装置300传递至垫片410的杂波量减少,从而降低了杂波对换能组件200的影响。同理,垫片410上朝向换能组件200的一面上的凸起420与换能组件200接触,凸起420与换能组件200之间的接触面积小于垫片410的侧面与换能组件200接触时的接触面积,所以降低了垫片410传递至换能组件200上的杂波量,从而进一步降低了杂波对换能组200的影响。
参考图2至图5,在具体实现时,通过在至少一个垫片410的至少一个面上设置一个或多个凸起420,能够减少限定装置300与垫片410、相邻垫片410之间或者垫片410与换能组件200之间的接触面积,从而减少杂波从限定装置300通过垫片组件400传递至换能组件200上的杂波量,进而提高超声波流量计的测量精度。
参考图5,在上述实施例的基础上,垫片组件400包括多个垫片410,多个垫片410可以包括金属垫片411和/或非金属垫片412。
参考图5,在本实施例中,多个垫片410可以均为金属垫片411,表体100的容纳腔110内有流体经过时,该流体会产生一定强度的压力施加在换能组件200上,而金属垫片411具有较好的抗挤压能力,能够提高垫片410的使用寿命。例如,金属垫片411的金属材料可以为铁合金、铁、铜合金、铜或者铝合金等。多个垫片也可以均为非金属垫片412,该非金属垫片412可以为具有缓震降噪作用的材料制成,通过设置非金属垫片412,能够吸收杂波产生的震动,从而降低杂波的强度,进而降低杂波对换能组件200的影响。多个垫片410还可以既包括金属垫片411又包括非金属垫片412,通过金属垫片411和非金属垫片412的组合使用,既能够兼顾垫片410的使用寿命又能够降低杂波对换能组件200的影响。
可以理解的是,非金属垫片412和金属垫片411上均可以设置有凸420起。当多个垫片410均为金属垫片411时,金属垫片411中的至少一个上设置有凸起420,以使金属垫片411至少与换能组件200之间通过凸起420接触。当多个垫片410均为非金属垫片412时,非金属垫片412中的至少一个上设置有凸起420,以使非金属垫片412至少与换能组件200之间通过凸起420接触。当多个垫片410既包括金属垫片411又包括非金属垫片412时,金属垫片411和非金属垫片412上均可以设置有凸起420,以使金属垫片411至少与换能组件200之间通过凸起420接触,或者以使非金属垫片412至少 与换能组件200之间通过凸起420接触。
在一示例性实施例中,垫片组件400中具有凸起420的垫片410可以为金属垫片411,也可以为非金属垫片412。当垫片组件400具有三个垫片410时,其中两个垫片410可以为金属垫片411,另一个可以为非金属垫片412,非金属垫片412可以设置于两个金属垫片411之间。其中,靠近换能组件200的金属垫片411上设置有凸起420,能够减小杂波传递至换能组件200上的量,通过设置非金属垫片412能够弱化由限定组件传递至另一金属垫片411上的杂波的强度。再例如,垫片组件400中的任意两个可以为非金属垫片412,另一个为金属垫片411,具有凸起420的垫片410可以为两个非金属垫片412。
在上述实施例的基础上,非金属垫片412的材料为塑料。其中,塑料为聚苯硫醚、聚酰亚胺、聚醚醚酮、液晶聚合物或者聚砜中的其中之一。
需要说明的是,塑料可以为综合性能较高,长期使用温度在150℃以上的特种工程塑料,并且该特种工程塑料可以具有较好的缓震和降噪的作用。通过使用特种工程塑料,能够提高非金属垫片412的缓震和降噪的作用,从而减少杂波或者噪声传递至换能组件200的强度和杂波量,从而提高换能组件200的信号精度,进而提高超声波流量计的测量精度。
在上述实施例的基础上,垫片组件400包括三个垫片410,三个垫片410中的其中两个为金属垫片411,另一个为非金属垫片412。其中一个金属垫片411设置于非金属垫片412和限定装置300之间,其中另一个金属垫片411设置于非金属垫片412与换能组件200之间,且两个金属垫片411上均设置有凸起420。
在本实施例中,在限定装置300与非金属垫片412之间设置有金属垫片411,当表体100的杂波传递至限定装置300,并由限定装置300通过金属垫片411传递至非金属垫片412时,通过在该金属垫片411上设置凸起420,使得金属垫片411与非金属垫片412之间的接触面减小,从而使限定装置300通过金属垫片411传递至非金属垫片412上的杂波量减少。当杂波传递至非金属垫片412上时,由于非金属垫片412具有缓震降噪的作用,从而使传递至非金属垫片412上的杂波的强度减弱。进一步地,在非金属垫片412和换能组件200之间设置金属垫片411,通过该金属垫片411上设置凸起420,使金属垫片411与换能组件200之间的接触面减小,使非金属垫片412通过金属垫片411传递至换能组件200上的杂波量进一步减少,从而降低杂波对换能组件200的影响,进而提高超声波流量计的测量精度。
参考图5,在上述实施例的基础上,垫片组件400包括四个垫片410,其中三个垫片410为金属垫片411,另一个为非金属垫片412。其中两个金属垫片411设置于非金属垫片412与限定装置300之间。其中另一金属垫片411设置于非金属垫片412与换能组件200之间。靠近限定装置300的金属垫片411和靠近换能组件200的金属垫片411上均设置有凸起420。
参考图5,在本实施例中,当表体100的容纳腔110内流体的速度较大或者压力较大时,流体对固定孔120内的换能组件200施加的压力也相对较大,此时,由于金属垫片411上的凸起420与非金属垫片412之间的接触面较小,且非金属垫片412的抗挤压能力较弱,所以金属垫片411上的凸起420容易导致非金属垫片412损坏。通过在具有凸起420的金属垫片411与非金属垫片412之间设置一金属垫片411,且该金属垫片411为表面平整的平垫片,从而能够防止金属垫片411的凸起420与非金属垫片412直接接触,从而防止非金属垫片412损坏,提高垫片组件400的使用寿命。
参考图1至6,在上述实施例的基础上,限定装置300沿其安装方向开设有连通孔310,第二端215位于连通孔310内,位于连通孔310内的第二端215与连通孔310之间间隙配合。限定装置300上与垫片组件400接触的表面上开设有凹槽320或者凸部(图中未示出),凹槽320与连通孔310连通。限定装置300的外周壁与固定孔120的内周壁之间通过螺纹紧密连接,或者限定装置300的外周壁与固定孔120的内周壁之间通过卡簧紧固连接
参考图1至图6,通过将换能组件200的第二端215伸入至限定装置300的连通孔310内,能够防止垫片组件400从换能组件200的第二端215与限定装置300之间的缝隙脱落,提高垫片组件400的连接稳定性,伸入连通孔310内的第二端215与连通孔310的内周壁之间间隙配合,能够防止表体100的杂波通过第二端215与限定装置300直接接触的位置传递至换能组件200上,从而降低杂波对换能组件200的影响。另外,通过在限定组件上与垫片410接触的表面上设置与连通孔310连通的凹槽320,以使凹槽320开口方向所在的表面与垫片组件400抵接,能够减少限定装置300与垫片组件400之间的接触面430,从而减少杂波通过限定装置300传递至垫片组件400上的量。
可以理解的是,通过在限定装置300朝向垫片410的一侧设置凸部,以使限定装置300与垫片410通过凸部接触,能够减少限定装置300与垫片410之间的接触面积,从而减少杂波通过限定装置300传递至垫片组件400上的 量。进一步地,当靠近限定装置300的垫片410的朝向限定装置300的一侧具有凸起420时,限定装置300的凸部与垫片410的凸起420之间可以配合接触,以使限定装置300和垫片410之间的接触面积进一步缩小,从而使限定装置300传递至垫片410上的杂波量更少。
参考图6,在具体实现时,限定装置300的外周壁与固定孔120的内周壁之间通过螺纹紧密连接,从而提高限定装置300的连接稳定性,当容纳腔110内的流体施加在换能组件200上的压力较大时,避免换能组件200从固定孔120内蹿出。在一些实施例中,限定装置300可以为固定螺母,固定螺母的外周侧设置有螺纹,固定孔120的内周壁也可以设置有与固定螺母外周侧螺纹相匹配的螺纹,以使固定螺母与固定孔120的内周壁通过螺纹连接。在另一些实施例中,限定装置300的外周壁与固定孔120的内周壁之间还可以通过卡簧(图中未示出)紧固连接,从而能够提高限定装置300的可拆卸便利性。
参考图7和图8,在上述实施例的基础上,换能组件200包括换能器210和隔离装置220。换能器210具有第一端214和第二端215。隔离装置220沿换能器210的轴向套设于第一端214上,且第一端214与隔离装置220之间密封连接,以使第一端214通过隔离装置220与固定孔120密封连接。连接部211朝向垫片410的一侧具有与垫片410相抵的第一接触面,隔离装置220朝向垫片410的一侧具有与垫片410相抵的第二接触面,以使垫片410上的凸起420与第一接触面和/或第二接触面接触。
参考图7和图8,在本实施例中,通过将换能器210与固定孔120的内周壁通过隔离装置220连接,能够避免表体100的杂波通过固定孔120的外周壁直接传递至换能器210上,从而降低传递至换能器210上的杂波的强度。
参考图5和图7,在另一些实施例中,换能组件200上的第一端214和第二端215均位于换能器210上,该第一端214用于与隔离装置220密封连接。通过将隔离装置220套设于第一端214上,使第一端214与隔离装置220密封连接,以实现隔离装置220与换能器210之间的密封连接,而将隔离装置220的外周壁与固定孔120的内周壁密封连接,则实现换能器210与固定孔120之间的间接密封连接,从而能够防止表体100的容纳腔110内的流体通过隔离装置220与固定孔120之间的缝隙泄漏或者通过隔离装置220与换能器210之间的缝隙流出,提高换能组件200与固定孔120之间的密封性。
继续参考图7和图8,在一些实施例中,换能器210的形状可以为圆柱 体形,第一端214的外径可以相对于第二端215较大,以使第一端214靠近第二端215的一侧形成沿所述第一端214的径向延伸的第一接触面216,并且套设于第一端214上的隔离装置220也具有第二接触面224,该第二接触面224与第一接触面216同侧设置。该第一接触面216和第二接触面224用于与垫片410抵接。
参考图5和图7,在一示例性实施例中,靠近换能组件200的垫片410上的多个凸起420可以为两个不连续的环形凸起,该两个不连续的环形凸起同心设置。其中,靠近垫片410中心的多个凸起420可以与第一接触面216抵接,且该多个凸起420与第一接触面216之间的多个接触面430的面积之和,小于第一接触面216的表面积;其中,远离垫片410中的多个凸起420可以与第二接触面224抵接,且该多个凸起420与第二接触面224之间的多个接触面430的面积之和,小于第二接触面224的表面积。因此,具有两个环形凸起的垫片410既能够减少与换能器210的接触面积,又能够减少与隔离装置220的接触面积,从而减少杂波通过该垫片410传递至换能器210上的量。
参考图5至图9,在上述实施例的基础上,第一端214设有连接部211,连接部211与隔离装置220密封连接;连接部211具有第一接触面216。
参考图7至图9,在一示例性实施例中,连接部211可以为第一端214上的部分区域,连接部211可以位于靠近第二端215的一侧,连接部211的靠近垫片组件400的一侧具有第一接触面216。连接部211还可以为第一端214上的全部区域,例如,第一端214为连接部211,第一端214的外周面全部位于隔离装置220内。
参考图8和图9,需要说明的是,换能器210的第一端214可以为可变外径的柱状结构或者外径相同的柱状结构。当第一端214为可变外径的柱状结构时,连接部211的外径相对于第一端214上其他部分的外径较大;当第一端214为外径相同的柱状结构时,连接部211的外径与第一端214上其他部位的外径相同。其中,连接部211的外周面尺寸与第一端214上其他部位的外周面尺寸,可以根据实际需要进行调整,在此不做具体限定。
参考图2、图7和图8,在上述实施例的基础上,隔离装置220包括隔离套221和至少一个第一密封圈222。隔离套221套设于连接部211上,隔离套221与连接部211密封连接。隔离套221的外周壁上开设有至少一个第一环形槽223,第一环形槽223绕设于隔离套221的外周壁上,每一个第一密 封圈222固定于一个第一环形槽223内,隔离套221与固定孔120的内周壁通过至少一个第一密封圈222密封连接,且隔离套221的外壁与固定孔120的内周壁之间具有第一间隙225。
参考图8和图9,在本实施例中,隔离装置220包括隔离套221和第一密封圈222,隔离套221套设于连接部211上,第二接触面可以位于隔离套221上。第一环形槽223可以与隔离套221同轴,第一密封圈222可以具有一定的弹性,通过第一密封圈222与固定孔120的内周壁的过盈配合,实现隔离套221与固定孔120的内周壁的密封连接,并且使得隔离套221与固定孔120的内周壁之间只通过第一密封圈222接触,减少固定孔120的内周壁与隔离套221之间的接触面积,从而降低表体100的杂波或者噪声传递至隔离套221的量,进而减少杂波通过隔离套221传递至换能器210的量,降低杂波对换能器210的影响。
可以理解的是,隔离套221上的一个第一环形槽223内可以设置多个第一密封圈222。隔离套221上的第一环形槽223可以为多个,且第一密封圈222的数量也可以为多个,通过设置多个第一密封圈222能够提高隔离套221与固定孔120的内周壁之间的密封性。需要说明的是,当隔离装置包括隔离套221和第一密封圈222时,隔离套221具有第二接触面224,即第二接触面224位于隔离套上靠近垫片组件400的一端。
参考图2、图7和图8和图9,在上述实施例的基础上,换能器210还包括至少一个第二密封圈212。连接部211的外周壁上开设有至少一个第二环形槽213,第二环形槽213绕设于连接部211的外周壁上,每一个第二密封圈212固定于一个第二环形槽213内,连接部211和隔离套221通过至少一个第二密封圈212密封连接,且连接部211的外壁与隔离套221的内周壁之间具有第二间隙217。
参考图8和图9,在本实施中,通过在连接部211上设置第二环形槽213,并将第二密封圈212固定于第二环形槽213内,以使连接部211与隔离套221的内周壁之间通过第二密封圈212密封连接,减少连接部211与隔离套221之间的接触面积,从而降低杂波通过隔离套221传递至连接部211上的量,降低杂波对换能器210的影响。
可以理解的是,第二密封圈212可以为具有一定弹性的材料制成,以使安装有第二密封圈212的连接部211与隔离套221的内周壁之间形成过盈配合连接。连接部211上可以具有多个第二环形槽213,每个第二环形槽213 内均可以固定一个或多个第二密封圈212,通过增加第二密封圈212的数量,可以提高隔离套221与连接部211之间的密封性和连接稳定性。
在上述实施例的基础上,隔离套221的材料为特种工程塑料或者金属。第一密封圈222和第二密封圈212的材料为橡胶。
在一些实施例中,隔离套221的材料采用特种工程塑料,该特种工程塑料与非金属垫片412的材料可以为同种材料,能够进一步提高隔离套221的缓震和降噪的作用,从而进一步降低杂波对换能器210的影响,进而提高超声波流量计的测量精度。另外,将第一密封圈222和第二密封圈212可以采用橡胶材料制成,由于橡胶材料具有较好的吸声和降噪的作用。通过使用橡胶材料制成的第一密封圈222和第二密封圈212,能够降低杂波的的强度和杂波的传递量,从而降低杂波对换能器210的影响,进而提高超声波流量计的测量精度。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
应当指出,在说明书中提到的“一个实施例”、“实施例”、“示例性实施例”、“一些实施例”等表示所述的实施例可以包括特定特征、结构或特性,但未必每个实施例都包括该特定特征、结构或特性。此外,这样的短语未必是指同一实施例。此外,在结合实施例描述特定特征、结构或特性时,结合明确或未明确描述的其他实施例实现这样的特征、结构或特性处于本领域技术人员的知识范围之内。
一般而言,应当至少部分地由语境下的使用来理解术语。例如,至少部分地根据语境,文中使用的术语“一个或多个”可以用于描述单数的意义的任何特征、结构或特性,或者可以用于描述复数的意义的特征、结构或特性的组合。类似地,至少部分地根据语境,还可以将诸如“一”或“所述”的术语理解为传达单数用法或者传达复数用法。
应当容易地理解,应当按照最宽的方式解释本公开中的“在……上”、“在……以上”和“在……之上”,以使得“在……上”不仅意味着“直接处于某物上”,还包括“在某物上”且其间具有中间特征或层的含义,并且“在……以上”或者“在……之上”不仅包括“在某物以上”或“之上”的含义,还可以包括“在某物以上”或“之上”且其间没有中间特征或层(即,直接处于某物上)的含义。
此外,文中为了便于说明可以使用空间相对术语,例如,“下面”、“以下”、 “下方”、“以上”、“上方”等,以描述一个元件或特征相对于其他元件或特征的如图所示的关系。空间相对术语意在包含除了附图所示的取向之外的处于使用或操作中的器件的不同取向。装置可以具有其他取向(旋转90度或者处于其他取向上),并且文中使用的空间相对描述词可以同样被相应地解释。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种超声波流量计,其特征在于,包括表体、换能组件、限定装置和垫片组件;
    所述表体内具有可供待测流体流动的容纳腔,所述表体的侧壁开设有与所述容纳腔连通的固定孔,所述换能组件、所述垫片组件和所述限定装置位于所述固定孔内;
    所述换能组件与所述固定孔的内周壁密封连接,所述换能组件的第一端朝向所述容纳腔,所述换能组件的第二端朝向所述限定装置且与所述限定装置之间间隙配合,所述垫片组件套设在所述换能组件的第二端上,且所述限定装置通过所述垫片组件与所述换能组件接触;所述限定装置与所述固定孔的内周壁紧固相连;
    所述垫片组件包括至少一个垫片,至少一个所述垫片的至少一面上设有一个或多个凸起。
  2. 根据权利要求1所述的超声波流量计,其特征在于,所述垫片上开设有通孔,所述垫片通过所述通孔套设于所述换能组件的所述第二端上;
    每个所述凸起均具有接触面,且所有所述接触面的面积之和,小于所述垫片上所述凸起所在一侧的表面积。
  3. 根据权利要求2所述的超声波流量计,其特征在于,所述垫片组件包括多个所述垫片,多个所述垫片包括金属垫片和/或非金属垫片。
  4. 根据权利要求3所述的超声波流量计,其特征在于,所述垫片组件包括三个所述垫片,三个所述垫片中的其中两个为所述金属垫片,另一个为所述非金属垫片;
    其中一个所述金属垫片设置于所述非金属垫片和所述限定装置之间,其中另一个所述金属垫片设置于所述非金属垫片与所述换能组件之间;
    两个所述金属垫片上均设置有所述凸起。
  5. 根据权利要求3所述的超声波流量计,其特征在于,所述垫片组件包括四个所述垫片,其中三个所述垫片为所述金属垫片,另一个为所述非金属垫片;
    其中两个所述金属垫片设置于所述非金属垫片与所述限定装置之间;
    其中另一所述金属垫片设置于所述非金属垫片与所述换能组件之间;
    靠近所述限定装置的所述金属垫片和靠近所述换能组件的所述金属垫片上均设置有凸起。
  6. 根据权利要求3至5中任一项所述的超声波流量计,其特征在于,所述非金属垫片的材料为塑料;
    其中,所述塑料为聚苯硫醚、聚酰亚胺、聚醚醚酮、液晶聚合物或者聚砜中的其中之一。
  7. 根据权利要求1至5中任一项所述的超声波流量计,其特征在于,所述限定装置沿其安装方向开设有连通孔,所述第二端位于所述连通孔内,位于所述连通孔内的所述第二端与所述连通孔之间间隙配合;
    所述限定装置上与所述垫片组件接触的表面上设有凹槽或者凸部,所述凹槽与所述连通孔连通;
    所述限定装置的外周壁与所述固定孔的内周壁之间通过螺纹紧密连接,
    或者所述限定装置的外周壁与所述固定孔的内周壁之间通过卡簧紧固连接。
  8. 根据权利要求2所述的超声波流量计,其特征在于,所述换能组件包括换能器和隔离装置;
    所述换能器具有所述第一端和所述第二端;
    所述隔离装置沿所述换能器的轴向套设于所述第一端上,且所述第一端与所述隔离装置密封连接,以使所述第一端通过所述隔离装置与所述固定孔密封连接;
    所述第一端朝向所述垫片的一侧具有与所述垫片相抵的第一接触面,所述隔离装置朝向所述垫片的一侧具有与所述垫片相抵的第二接触面,以使所述垫片上的所述凸起与所述第一接触面和/或所述第二接触面接触。
  9. 根据权利要求8所述的超声波流量计,其特征在于,所述第一端设有连接部,所述连接部与所述隔离装置密封连接;所述连接部具有所述第一接触面。
  10. 根据权利要求9所述的超声波流量计,其特征在于,所述隔离装置包括隔离套和至少一个第一密封圈;
    所述隔离套套设于所述连接部上,所述隔离套与所述连接部密封连接;
    所述隔离套的外周壁上开设有至少一个第一环形槽,所述第一环形槽绕设于所述隔离套的外周壁上,所述第一密封圈固定于所述第一环形槽内, 所述隔离套与所述固定孔的内周壁通过所述第一密封圈密封连接,且所述隔离套的外壁与所述固定孔的内周壁之间具有第一间隙。
  11. 根据权利要求10所述的超声波流量计,其特征在于,还包括至少一个第二密封圈;
    所述连接部的外周壁上开设有至少一个第二环形槽,所述第二环形槽绕设于所述连接部的外周壁上,所述第二密封圈固定于一个所述第二环形槽内,所述连接部和所述隔离套通过至少一个所述第二密封圈密封连接;
    且所述连接部的外壁与所述隔离套的内周壁之间具有第二间隙。
PCT/CN2023/110866 2022-08-03 2023-08-02 超声波流量计 WO2024027777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210929417.0A CN117553869A (zh) 2022-08-03 2022-08-03 超声波流量计
CN202210929417.0 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024027777A1 true WO2024027777A1 (zh) 2024-02-08

Family

ID=89815299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110866 WO2024027777A1 (zh) 2022-08-03 2023-08-02 超声波流量计

Country Status (2)

Country Link
CN (1) CN117553869A (zh)
WO (1) WO2024027777A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013472A1 (en) * 2013-07-12 2015-01-15 Gill Corporate Limited Ultrasonic Flowmeter
CN206440316U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种多通道超声波流量计
CN206546192U (zh) * 2017-03-07 2017-10-10 垫江县新民小学校 一种基于超声波的流体检测装置
CN107356299A (zh) * 2017-09-07 2017-11-17 上海诺仪表有限公司 一种超声流量计
US20180328768A1 (en) * 2017-05-12 2018-11-15 Krohne Ag Ultrasonic flowmeter
CN209945455U (zh) * 2019-06-14 2020-01-14 杭州思筑智能设备有限公司 一种降低超声波换能器噪声的封装装置
CN209959690U (zh) * 2019-04-30 2020-01-17 浙江林氏汽车零部件有限公司 一种金属垫片
CN111473825A (zh) * 2013-08-08 2020-07-31 通用电气公司 换能器系统
CN111720484A (zh) * 2020-07-27 2020-09-29 吉林大学 一种硬质合金射流元件用多层垫片保护装置
CN114413983A (zh) * 2022-03-30 2022-04-29 济南沛华信息科技有限公司 一种分体式换能器封装结构及超声流量计
CN217818870U (zh) * 2022-08-03 2022-11-15 金卡智能集团股份有限公司 超声波流量计
US20230130690A1 (en) * 2021-10-22 2023-04-27 Krohne Ag Ultrasonic Transducer and Ultrasonic Flowmeter

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013472A1 (en) * 2013-07-12 2015-01-15 Gill Corporate Limited Ultrasonic Flowmeter
CN111473825A (zh) * 2013-08-08 2020-07-31 通用电气公司 换能器系统
CN206440316U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种多通道超声波流量计
CN206546192U (zh) * 2017-03-07 2017-10-10 垫江县新民小学校 一种基于超声波的流体检测装置
US20180328768A1 (en) * 2017-05-12 2018-11-15 Krohne Ag Ultrasonic flowmeter
CN107356299A (zh) * 2017-09-07 2017-11-17 上海诺仪表有限公司 一种超声流量计
CN209959690U (zh) * 2019-04-30 2020-01-17 浙江林氏汽车零部件有限公司 一种金属垫片
CN209945455U (zh) * 2019-06-14 2020-01-14 杭州思筑智能设备有限公司 一种降低超声波换能器噪声的封装装置
CN111720484A (zh) * 2020-07-27 2020-09-29 吉林大学 一种硬质合金射流元件用多层垫片保护装置
US20230130690A1 (en) * 2021-10-22 2023-04-27 Krohne Ag Ultrasonic Transducer and Ultrasonic Flowmeter
CN114413983A (zh) * 2022-03-30 2022-04-29 济南沛华信息科技有限公司 一种分体式换能器封装结构及超声流量计
CN217818870U (zh) * 2022-08-03 2022-11-15 金卡智能集团股份有限公司 超声波流量计

Also Published As

Publication number Publication date
CN117553869A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US7795783B2 (en) Transducer assembly
JP6411807B2 (ja) トランスデューサシステム
US9175994B2 (en) Ultrasonic transducer for a flow measuring device
US10199028B2 (en) Ultrasonic transducer mounting assembly
KR20100008357A (ko) 초음파 변환기
US8844347B2 (en) Sensor port insert apparatus
US10557733B2 (en) Multi-channel ultrasonic flow meter
CN106768120B (zh) 一种水下多相流量计相分率检测系统
CN217818870U (zh) 超声波流量计
WO2024027777A1 (zh) 超声波流量计
US7963174B2 (en) Ultrasonic flowmeter having a rubber transmitting body
JP4647944B2 (ja) 超音波変換器用の振動減衰装置
CN216283726U (zh) 超声波流量计换能器安装结构
WO2022142758A1 (zh) 一种超声波换能器
CN213779146U (zh) 一种超声波换能器
CN111157166B (zh) 一种液相色谱泵压力测量装置及泵头
US20220154848A1 (en) Piston valve core structure with rigid ring surface combined with flexible base surface and method thereof
CN102313097A (zh) 反球面型多弹簧旋转接头
CN218496171U (zh) 一种法兰取压流量测量装置
CN207325222U (zh) 超声波水表、热能表的变送器用声电换能器
CN216593605U (zh) 防腐防爆减震超声换能器
CN216385831U (zh) 一种超声波换能器及气体超声波流量计
US20240060805A1 (en) Acoustic isolators for gas transducers
CN219038090U (zh) 超声波换能器及气体超声波流量计
CN216323107U (zh) 一种橄榄型超声换能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849481

Country of ref document: EP

Kind code of ref document: A1