WO2020103305A1 - 一种路面自行车骑行振动预测系统及方法 - Google Patents

一种路面自行车骑行振动预测系统及方法

Info

Publication number
WO2020103305A1
WO2020103305A1 PCT/CN2018/125777 CN2018125777W WO2020103305A1 WO 2020103305 A1 WO2020103305 A1 WO 2020103305A1 CN 2018125777 W CN2018125777 W CN 2018125777W WO 2020103305 A1 WO2020103305 A1 WO 2020103305A1
Authority
WO
WIPO (PCT)
Prior art keywords
bicycle
pressure film
road
road surface
test
Prior art date
Application number
PCT/CN2018/125777
Other languages
English (en)
French (fr)
Inventor
沙爱民
高杰
栾博
胡力群
蒋玮
Original Assignee
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长安大学 filed Critical 长安大学
Publication of WO2020103305A1 publication Critical patent/WO2020103305A1/zh
Priority to US17/159,176 priority Critical patent/US20210150103A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention belongs to the technical field of transportation engineering, and in particular relates to a road bicycle riding vibration prediction system and method.
  • the surface texture of the asphalt pavement widely used in cities in China is very different due to the different types of asphalt mixtures, material characteristics and construction techniques. It is generally believed that the rougher the surface texture of the asphalt pavement, the more significant the vibration experienced by the rider during riding. Studies have shown that excessively high levels of riding vibration can hinder people's willingness to travel, and that long-term exposure to high-intensity vibrations can adversely affect the health of the rider.
  • the present invention provides a road bicycle cycling vibration prediction system and method, which can quantitatively and accurately evaluate the bicycle riding comfort of the asphalt road based on the characteristics of the asphalt road-bicycle tire contact interface.
  • a road bicycle cycling vibration prediction system which is characterized by comprising a bicycle, a support frame, an infrared thermal imager, a humidity sensor, a fixing belt, a level bubble and a pressure film, among them:
  • the support frame is provided on the road surface and is used to support the rear wheel of the bicycle and lift the rear wheel of the bicycle off the ground;
  • the fixing belt is used to fix the front wheel spoke and the front fork of the bicycle to prevent the front wheel from rotating during the test;
  • the infrared thermal imager is arranged on the road surface and is used to measure the road surface temperature of the road surface test area, and the humidity sensor is used to measure the road surface relative humidity of the road surface test area;
  • the level bubble is installed on the front fork of the bicycle, the pressure film is placed on the road test area, and at the beginning of the test, the front wheel of the bicycle is pressed against the pressure film.
  • the size of the pressure film is 10cm-15cm wide and 15cm-25cm long; the pressure test range of the pressure film is 0.5MPa-2.5MPa; the unit area of the dyeing unit on the film should not be higher than 0.016mm 2 .
  • the weight of the bicycle is 10kg-25kg.
  • the invention also provides a road bicycle riding vibration prediction method, which adopts the above road bicycle riding vibration prediction system, and specifically includes the following steps:
  • the tester first straddles the bicycle and adjusts the angle of the front tire of the bicycle by observing the level bubble; when it is determined that the front tire of the bicycle is perpendicular to the road surface, the tester places the front tire of the bicycle vertically on the pressure film;
  • the scanning mode is grayscale mode. In this mode, the information recorded by the pressure film is converted into a grayscale value between 1-255, and the scan quality is not less than 600x600dpi. ;
  • R p is the area of the real world corresponding to one pixel in the digital pressure film, mm 2 ; w and l are the width and length of the pressure film in the real world, mm; p w and p l are the digital pressure film in Number of pixels in width and length,
  • p is the total number of pixels in the digital pressure film whose gray level is not 255
  • n k is the number of areas in the digital pressure film that are distributed in a granular form
  • n is the number of stress peaks in a gray distribution curve
  • xi + 1 and xi are the coordinates of the i + 1th and ith stress peaks respectively on the x-axis with the direction of cycling forward;
  • test is performed when the road surface temperature is 15 ° C-30 ° C and the relative humidity is 20% -70%.
  • step S6 is 2 min.
  • step S13 comparing the riding vibration value and the vibration value threshold corresponding to the comfort level to obtain the riding comfort judgment.
  • the present invention has at least the following beneficial effects:
  • the technical scheme disclosed in the present invention does not require complicated testing procedures and expensive testing instruments, and can quickly, efficiently and accurately determine the comfort of bicycle riding on asphalt roads.
  • the implementation of the present invention is conducive to improving the detection and monitoring of bicycle lane riding quality. Through regular inspections, the sections with poor comfort can be repaired and maintained in time to ensure the riding comfort of the bicycle lane.
  • the present invention can provide the necessary reference for the bicycle lane builders in the selection of asphalt mixture. After the used asphalt mixture is formed, the technical solution provided by the present invention can verify whether the selected material is suitable for bicycle lane pavement.
  • Figure 1 is a digital pressure film.
  • Figure 2 is an example of curve extraction and curve filtering involved in the calculation of Sp a .
  • B u 3 is the relationship between the vibration and Sp a predicted value.
  • Figure 4 shows the degree of comfort based on the predicted vibration value.
  • Figure 5 is the digitized film of Examples 1-19.
  • FIG. 6 is a schematic diagram of the system results of the present invention.
  • the road bicycle riding vibration prediction system of the present invention includes a bicycle 2, a support frame 4, an infrared camera 7, a humidity sensor 8, a fixing belt 5, a level bubble 6, and a pressure film 9, wherein: the support frame 4 Set on the road, used to support the rear wheel of the bicycle 2 and make the rear wheel of the bicycle 2 off the ground; the fixing belt 5 is used to fix the front wheel spoke and the front fork of the bicycle 2 to prevent the front wheel from turning during the test; infrared The thermal imager 7 is set on the road and used to measure the road surface temperature in the road test area, and the humidity sensor 8 is used to measure the relative humidity of the road surface in the road test area. Place on the road test area and press the front wheel of the bicycle 2 against the pressure film 9 at the beginning of the test.
  • the size of the pressure film 9 is 10cm-15cm wide and 15cm-25cm long; the pressure test range of the pressure film 9 is 0.5MPa-2.5MPa; the unit area of the dyeing unit on the film should not be higher than 0.016mm 2 .
  • the weight of the bicycle 2 is 10kg-25kg.
  • the weight of tester 1 is 45kg-100kg.
  • the road bicycle riding vibration prediction method of the present invention includes the following steps:
  • the tester 1 first straddles the bicycle 2 and adjusts the angle of the front tire of the bicycle by observing the level bubble 6.
  • the tester placed the front tire of the bicycle vertically on the pressure film.
  • the weight of the tester is 75kg ⁇ 3kg; the weight of the bicycle is 10kg-25kg.
  • the scanning mode is gray mode, and the scanning quality should not be lower than 600x600dpi.
  • the digital pressure film is shown in Figure 1, where the granular contact area is defined as shown in Figure 1.
  • R p is the area of the real world corresponding to one pixel in the digital pressure film, mm 2 ; w and l are the width and length of the pressure film in the real world, mm; p w and p l are the digital pressure film in The number of pixels in the width and length directions.
  • p is the total number of pixels in the digital pressure film whose gray level is not 255
  • n k is the number of areas in the digital pressure film that are distributed in a granular form
  • n is the number of stress peaks in a gray distribution curve
  • xi + 1 and xi are the coordinates of the i + 1th and ith stress peaks respectively on the x-axis with the direction of cycling forward.
  • Examples 1-19 have in common that they are all paved with asphalt concrete; the difference is that they belong to 19 different urban non-motor vehicle lanes, have different surface textures, and therefore have different riding vibrations Level and comfort.
  • the pressure film produced by a certain brand is used, the test range is 0.5MPa-2.5MPa, and the unit area of the dyeing unit is 0.016mm 2 . Cut the pressure film into a rectangle with a width of 10 cm and a length of 20 cm.
  • the tester first straddled the bicycle and adjusted the angle of the front tire of the bicycle by observing the bubble.
  • the tester places the front tire of the bicycle vertically on the pressure film.
  • the test subject weighed 76 kg. The tester sat steadily on the bicycle saddle and kept the test state stable for 2 minutes. Then, the cyclist removes the front tire of the bicycle, removes the pressure film, and saves it in a dark environment. Three pressure films were measured at different positions in each tested section.
  • Example 1-19 The 1 # digital pressure film of Example 1-19 is shown in FIG. 5.
  • the unit pixel area in the digitized pressure film is determined by Equation 1, and the calculation result is that the area of the unit pixel is 0.003 mm 2 .
  • R p is the area of the real world corresponding to one pixel in the digital pressure film, mm 2 ; w and l are the width and length of the pressure film in the real world, mm; p w and p l are the digital pressure film in The number of pixels in the width and length directions.
  • the average bearing area Bu is calculated.
  • the road surface-bicycle tire contact area A c is calculated according to Equation 2, and the results are shown in Table 2.
  • calculate the average bearing area Bu according to Equation 3 and the results are shown in Table 3.
  • p is the total number of pixels in the digital pressure film whose gray level is not 255
  • n k is the number of areas in the digital pressure film that are distributed in a granular form
  • Example 1 # pressure film 2 # pressure film 3 # pressure film average value
  • Example 1 440.47 405.23 453.69 433.13
  • Example 2 252.93 232.69 260.51 248.71
  • Example 3 403.24 370.98 415.30 396.52
  • Example 4 267.54 246.13 275.56 263.08
  • Example 5 251.82 231.67 259.37 247.62
  • Example 6 289.16 266.03 297.84 284.34
  • Example 7 331.36 304.85 341.30 325.83
  • Example 8 355.90 327.43 366.58 349.97
  • Example 9 324.37 298.42 334.10 318.96
  • Example 10 324.03 298.11 333.75 318.63
  • Example 11 365.59 336.34 376.56 359.50
  • Example 12 343.36 315.89 353.66 337.63
  • Example 13 285.15 262.34 293.71 280.40
  • Example 14 217.
  • Example 5 4.42 4.06 4.55 4.34
  • Example 6 4.21 3.88 4.34 4.14
  • Example 7 6.30 5.79 6.49 6.19
  • Example 8 5.66 5.21 5.83 5.57
  • Example 9 7.03 6.47 7.24 6.91
  • Example 10 5.47 5.08 5.64 5.38
  • Example 11 6.92 6.36 7.12 6.80
  • Example 12 6.28 5.77 6.47 6.17
  • Example 13 8.21 7.55 8.46 8.07
  • Example 14 9.77 8.99 10.06 9.61
  • Example 15 9.17 8.44 9.45 9.02
  • Example 16 8.91 8.19 9.17 8.76
  • Example 17 7.55 6.95 7.78 7.43
  • Example 18 7.05 6.48 7.26 6.93
  • Example 19 12.51 11.50 12.88 12.30
  • the average stress peak spacing Sp a is calculated.
  • n is the number of stress peaks in a gray distribution curve
  • xi + 1 and xi are the coordinates of the i + 1th and ith stress peaks respectively on the x-axis with the direction of cycling forward.
  • Example 5 4.11 3.78 4.23 4.04 Example 6 5.36 4.93 5.52 5.27 Example 7 5.23 4.81 5.39 5.14 Example 8 5.13 4.72 5.28 5.04 Example 9 5.98 5.50 6.16 5.88 Example 10 4.95 4.55 5.10 4.87 Example 11 5.30 4.87 5.46 5.21 Example 12 5.84 5.37 6.01 5.74 Example 13 5.50 5.06 5.66 5.40 Example 14 5.75 5.29 5.92 5.65 Example 15 6.48 5.96 6.68 6.37 Example 16 5.01 4.61 5.16 4.93 Example 17 6.57 6.04 6.76 6.46 Example 18 6.36 5.85 6.55 6.25 Example 19 6.86 6.31 7.06 6.74
  • Example 1 # pressure film 2 # pressure film 3 # pressure film average value Example 1 1.13 0.96 0.94 1.01 Example 2 1.36 1.19 1.17 1.24 Example 3 1.08 0.91 0.89 0.96 Example 4 2.14 1.97 1.95 2.02 Example 5 1.23 1.06 1.04 1.11 Example 6 1.69 1.52 1.50 1.57 Example 7 1.94 1.77 1.75 1.82 Example 8 1.81 1.64 1.62 1.69 Example 9 2.34 2.17 2.15 2.22 Example 10 1.71 1.54 1.52 1.59 Example 11 2.06 1.89 1.87 1.94 Example 12 2.18 2.01 1.99 2.06
  • Example 13 2.32 2.15 2.13 2.20
  • Example 14 2.64 2.47 2.45 2.52
  • Example 15 2.85 2.68 2.66 2.73
  • Example 16 2.23 2.06 2.04 2.11
  • Example 17 2.65 2.48 2.46 2.53
  • Example 18 2.49 2.32 2.30 2.37
  • Example 19 3.47 3.30 3.28 3.35
  • Example 1 Example 2 Example 3 Example 4 Comfort Very comfortable Very comfortable Comfortable Examples Example 5 Example 6 Example 7 Example 8 Comfort Very comfortable Very comfortable Comfortable Very comfortable Examples Example 9 Example 10 Example 11 Example 12 Comfort uncomfortable Very comfortable Comfortable Comfortable Examples Example 13 Example 14 Example 15 Example 16 Comfort uncomfortable uncomfortable uncomfortable uncomfortable Examples Example 17 Example 18 Example 19 A Comfort uncomfortable uncomfortable uncomfortable A

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Tires In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种路面自行车(2)骑行振动预测系统及方法,首先,采用压力胶片(9)获取路面-自行车轮胎的接触界面,随后,以接触界面为基础,计算单位承载面积(B u)和平均应力峰间距(Sp a)。接着,以单位承载面积(B u)和平均应力峰间距(Sp a)为变量,通过计算公式计算得到预测骑行振动值(P v)。最后,将预测骑行振动值(P v)与自行车(2)骑行者对振动的感知阈值进行对比,可对一段沥青路面的骑行舒适性进行快速、有效的分级和预测。

Description

一种路面自行车骑行振动预测系统及方法 技术领域
本发明属于交通运输工程技术领域,具体涉及一种路面自行车骑行振动预测系统及方法。
背景技术
截至目前,我国的城市交通规划都是在机动交通的基础上来开展和实施的。以机动交通为主导的城市道路规划一定程度上导致了交通拥堵、空气污染和石化能源的大量消耗。自行车出行作为一种无碳排放的环境友好型交通方式在世界各地被愈发重视起来。2015年后,我国共享自行车产业迎来了高速发展期,随之而来的是越来越多的人们选择采用自行车作为主要的出行方式。最新数据显示,截至2018年,我国有超过77家共享自行车运营商为近4亿用户提供2300万辆共享自行车,超过17亿人次使用过共享自行车服务。
众所周知,我国城市广泛采用的沥青路面的表面纹理由于采用的沥青混合料类型、材料特点以及施工工艺的不同,其骑行的舒适性有很大差异。一般认为,沥青路面的表面纹理越粗糙,骑行中骑行者所感知的振动越显著。研究表明,过高的骑行振动水平会阻碍人们对自行车出行的意愿,且长时间处于高强度的振动中对骑行者的健康会产生不利影响。
然而,以机动交通为主导的城市道路建设标准并未充分考虑到自行车骑行者的舒适性。随着社会发展,和“以人为本”的城市建设理念的普及,越来越多的人们开始关注自行车骑行的舒适性。另一方面,当前还尚未出台相应的规范或研究来指导沥青混凝土自行车道的材料设计和既有沥青路面的骑行舒适性评价。因此,本发明所提出的技术方案是十分必要的。
发明内容
为解决上述问题,本发明提供了一种路面自行车骑行振动预测系统及方法, 能够基于沥青路面-自行车轮胎接触界面特征,定量地、准确地评价沥青路面的自行车骑行舒适性。
为实现上述目的,本发明采取的技术方案为:一种路面自行车骑行振动预测系统,其特征在于,包括自行车、支撑架、红外热像仪、湿度传感器、固定带、水准泡和压力胶片,其中:
所述支撑架设置在路面上,用于支撑自行车的后轮,使自行车的后轮离地;
所述固定带用于将自行车前轮辐条和前叉固定,防止在测试过程中前轮转动;
所述红外热像仪设置在路面上,用于测定路面测试区域的路表温度,所述湿度传感器用于测定路面测试区域的路表相对湿度;
所述水准泡安装在自行车的前叉上,所述压力胶片放置在路面测试区域上,并在测试开始时,将自行车的前轮压在压力胶片上。
进一步的,所述压力胶片的尺寸为宽10cm-15cm,长15cm-25cm;压力胶片的压力测试量程为0.5MPa-2.5MPa;胶片上染色单元的单位面积不得高于0.016mm 2
进一步的,所述自行车的重量为10kg-25kg。
本发明还提供了一种路面自行车骑行振动预测方法,采用上述路面自行车骑行振动预测系统,具体包括以下步骤:
S1、清除被测沥青路面表面所覆盖的杂物;
S2、使用红外热像仪测定测试区域的路表温度,并使用湿度传感器测定路表的相对湿度;
S3、将自行车后轮放置在支撑架上,使用固定带将自行车前轮辐条和前叉固定在一起,防止在测试过程中差生偏移;
S4、将压力胶片裁剪为需要尺寸,并将其平稳放置在测点;测试未开始时,压力胶片不与自行车前轮胎接触,此时自行车前轮胎处于压力胶片旁边;
S5、测试者先跨立于自行车之中,通过观察水准泡来调整自行车前轮胎的角 度;当确定自行车前轮胎与路面垂直时,测试者将自行车前轮胎垂直的放置在压力胶片上;
S6、随后,测试者坐在自行车鞍座上,保持测试状态稳定持续指定时间;
S7、骑行者移开自行车前轮胎,取出压力胶片,将其保存在避光的环境中;每个被测路段应在不同位置测取至少3个压力胶片,其步骤按照S1-S7重复,室外测试结束。
S8、将所获得的压力胶片通过扫描仪数字化,扫描模式为灰度模式,该模式下压力胶片所记录的信息被转化为介于1-255之间的灰度值,扫描质量不低于600x600dpi;
S9、通过式1确定数字化的压力胶片9中的单位像素面积;
Figure PCTCN2018125777-appb-000001
式中,R p为数字化压力胶片中一个像素所对应真实世界的面积,mm 2;w和l分别为真实世界中压力胶片的宽度和长度,mm;p w和p l分别为数字化压力胶片在宽度和长度方向上的像素数,个;
S10、计算平均承载面积B u;平均承载面积B u的定义为:压力胶片所记录的接触界面中,接触面积A c与颗粒状接触区域个数n k的比值;首先,按照式2计算路面-自行车轮胎的接触面积A c,然后,按照式3计算平均承载面积B u
A c=p×R p       式2
Figure PCTCN2018125777-appb-000002
式中,p为数字化压力胶片中灰度不为255的像素总数,个;n k为数字化压力胶片中呈颗粒状分布的面积个数,个;
S11、计算平均应力峰间距Sp a;使用数字图像分析软件从数字化的压力胶片中沿着骑行前进方向提取5条灰度值分布曲线,每条曲线均采用lowpass滤波处理提高应力峰的识别精度,如图2所示;由于灰度值与应力值为反比关系,因此 灰度谷值对应应力峰值,每条分布曲线沿图像宽度方向每间距0.5cm取一条,每一条曲线按照式4计算出平均应力峰间距Sp a,5条曲线所计算出的Sp a的平均值留用;
Figure PCTCN2018125777-appb-000003
式中,n为一条灰度分布曲线的应力峰的数量,xi+1和xi分别为第i+1和第i个应力峰在以骑行前进方向为x轴上的坐标;
S12、计算振动预测值P v;将Sp a和B u代入式5,计算得到振动预测值P v(m/s 2);
p v=0.145×B u+0.404×Sp a-1.155      式5。
进一步的,当路表温度为15℃-30℃且相对湿度为20%-70%时进行测试。
进一步的,所述步骤S6的指定时间为2min。
进一步的,还包括步骤S13、将骑行振动值和舒适程度对应振动值阈值相比较得到骑行舒适性判断。
与现有技术相比,本发明至少具有以下有益效果:
1.本发明所公开的技术方案无需复杂的测试流程和昂贵的测试仪器,可快速、高效和准确地测定沥青路面自行车骑行的舒适性。
2.本发明的实施有利于提高自行车道骑行质量的检测和监控。通过定期检测,可有针对性的对舒适性不佳的路段及时的进行维修和养护,保证自行车道的骑行舒适性。
3.本发明可为自行车道建设者对沥青混合料的选用提供必要的参考。所使用的沥青混合料在成型后,通过本发明提供的技术方案,可验证所选用材料是否适合于自行车道铺装。
附图说明
图1为数字化的压力胶片。
图2为Sp a计算过程中所涉及的曲线提取和曲线滤波示例。
图3为B u和Sp a与振动预计值的关系。
图4为以振动预计值为依据判断舒适程度。
图5为实施例1-19的数字化胶片。
图6为本发明的系统结果示意图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图6所示,本发明的路面自行车骑行振动预测系统包括自行车2、支撑架4、红外热像仪7、湿度传感器8、固定带5、水准泡6和压力胶片9,其中:支撑架4设置在路面上,用于支撑自行车2的后轮,使自行车2的后轮离地;固定带5用于将自行车2前轮辐条和前叉固定,防止在测试过程中前轮转动;红外热像仪7设置在路面上,用于测定路面测试区域的路表温度,湿度传感器8用于测定路面测试区域的路表相对湿度;水准泡6安装在自行车2的前叉上,压力角片放置在路面测试区域上,并在测试开始时,将自行车2的前轮压在压力胶片9上。
在本发明的某一实施例中,压力胶片9的尺寸为宽10cm-15cm,长15cm-25cm;压力胶片9的压力测试量程为0.5MPa-2.5MPa;胶片上染色单元的单位面积不得高于0.016mm 2。自行车2的重量为10kg-25kg。测试者1体重为45kg-100kg。
本发明的路面自行车骑行振动预测方法,包括如下步骤:
S1、清除被测沥青路面3表面所覆盖的杂物,包括灰尘、树叶、垃圾等。
S2、使用红外热像仪7测定测试区域的路表温度,并使用湿度传感器8测定路表的相对湿度。当路表温度为15℃-30℃且相对湿度为20%-70%时方可进行测试。
S3、将自行车后轮放置在支撑架4上,使用固定带5将自行车前轮辐条和前叉固定在一起,以防止在测试过程中差生偏移。
S4、将压力胶片9裁剪为固定尺寸,推荐尺寸为宽10cm-15cm,长15cm-25cm,并将其平稳放置在测点。测试未开始时,压力胶片不得与自行车前轮胎接触,此时轮胎应处于压力胶片旁边。压力胶片的压力测试量程为0.5MPa-2.5MPa;胶片上染色单元的单位面积不得高于0.016mm 2
S5、测试者1先跨立于自行车2之中,通过观察水准泡6来调整自行车前轮胎的角度。当确定自行车前轮胎与路面垂直时,测试者将自行车前轮胎垂直的放置在压力胶片上。在本实施例中,测试者体重为75kg±3kg;自行车重量为10kg-25kg。
S6、随后,测试者平稳的坐在自行车鞍座上,保持测试状态稳定,持续2min。
S7、骑行者移开自行车前轮胎,取出压力胶片,将其保存在避光的环境中。每个被测路段应在不同位置测取至少3个压力胶片,其步骤按照S1-S7重复,后述测试结果均采用从3个压力胶片得到的平均值。室外测试结束。
S8、将所获得的压力胶片通过扫描仪数字化,扫描模式为灰度模式,扫描质量不得低于600x600dpi。数字化的压力胶片如图1所示,其中,颗粒状接触区域的定义如图1所示。
S9、通过式1确定数字化的压力胶片中的单位像素面积,为后续计算提供依据。
Figure PCTCN2018125777-appb-000004
式中,R p为数字化压力胶片中一个像素所对应真实世界的面积,mm 2;w和l分别为真实世界中压力胶片的宽度和长度,mm;p w和p l分别为数字化压力胶片在宽度和长度方向上的像素数,个。
S10、计算平均承载面积B u。首先,按照式2计算路面-自行车轮胎的接触面积A c。然后,按照式3计算平均承载面积B u
A c=p×R p        式2
Figure PCTCN2018125777-appb-000005
式中,p为数字化压力胶片中灰度不为255的像素总数,个;n k为数字化压力胶片中呈颗粒状分布的面积个数,个;
S11、计算平均承载面积Sp a。使用数字图像分析软件从数字化的压力胶片中沿着骑行前进方向提取5条灰度值分布曲线。每条曲线均采用lowpass滤波处理,以提高应力峰的识别精度。由于灰度值与应力值为反比关系,因此灰度谷值对应应力峰值。每条分布曲线沿图像宽度方向每间距0.5cm取一条。以上内容如图2所示。每一条曲线按照式4计算出平均应力峰间距Sp a,5条曲线所计算出的Sp a的平均值留用。
Figure PCTCN2018125777-appb-000006
式中,n为一条灰度分布曲线的应力峰的数量,xi+1和xi分别为第i+1和第i个应力峰在以骑行前进方向为x轴上的坐标。
S12、计算振动预测值P v。通过试验研究,本方案经过前期大量的试验研究,得到了Sp a、B u分别与振动预测值P v(m/s 2)之间的关系,如图3所示;基于上述关系,建立了多元线性回归公式,如式5所示,通过多元线性回归建立了振动值和Sp a、B u的数学关系。因此,将Sp a和B u代入式5,可计算得到振动预测值P v(m/s 2)。
p v=0.145×B u+0.404×Sp a-1.155       式5
S13、舒适性判别。前期研究通过室外试验获得了11条被测路段的骑行振动值,同时通过17名志愿者在该11条被测路段骑行后的问卷调查获得了骑行者对振动的舒适性感知,建立了骑行振动和舒适程度的阈值,其结果如图4所示。将计算获得的振动预测值P v与振动-舒适度阈值(式6)进行对比,可以判别该沥青路面的骑行舒适性。
Figure PCTCN2018125777-appb-000007
实施例1-19
实施例1-19的共同之处在于,均由沥青混凝土铺筑而成;不同之处在于,它们分属于19条不同的城市非机动车道,具有不同的表面纹理,因此具有不同的骑行振动水平以及舒适性。
首先,使用毛刷将被测路段表面的灰尘、树叶、垃圾等杂物清除。
然后,使用红外热像仪测定测试区域的路表温度,并使用湿度传感器测定路表的相对湿度。测试结果显示所有被测路段的温度和湿度分别处于15℃-30℃和20%-70%,满足测试条件,其详细结果如表1所示。
表1被测路段的温度和湿度测试结果
Figure PCTCN2018125777-appb-000008
Figure PCTCN2018125777-appb-000009
接着,选用某品牌的共享自行车,其重量为25kg。将自行车后轮放置在支撑架上,使用固定带将自行车前轮辐条和前叉固定在一起,并将水准泡水平地安装在自行车把上。
接着,选用某品牌生产的压力胶片,其测试量程为0.5MPa-2.5MPa,染色单元的单位面积为0.016mm 2。将压力胶片裁剪成宽度为10cm、长度为20cm的长方形。
接着,测试者先跨立于自行车之中,通过观察水准泡来调整自行车前轮胎的角度。当水准泡处于中心位置时,测试者将自行车前轮胎垂直的放置在压力胶片上。测试者体重为76kg。测试者平稳的坐在自行车鞍座上,保持测试状态稳定,持续2min。然后,骑行者移开自行车前轮胎,取出压力胶片,将其保存在避光的环境中。每个被测路段在不同位置测取了3个压力胶片。
然后,采用某品牌的数字扫描仪以灰度模式扫描压力胶片,扫描质量为600x600dpi,实施例1-19的1#数字化压力胶片如图5所示。
然后,通过式1确定数字化的压力胶片中的单位像素面积,计算结果为单位像素的面积为0.003mm 2
Figure PCTCN2018125777-appb-000010
式中,R p为数字化压力胶片中一个像素所对应真实世界的面积,mm 2;w和l分别为真实世界中压力胶片的宽度和长度,mm;p w和p l分别为数字化压力胶片在宽度和长度方向上的像素数,个。
然后,计算平均承载面积B u。首先,按照式2计算路面-自行车轮胎的接触面积A c,其结果如表2所示。然后,按照式3计算平均承载面积B u,其结果如表3所示
A c=p×R p       式2
Figure PCTCN2018125777-appb-000011
式中,p为数字化压力胶片中灰度不为255的像素总数,个;n k为数字化压力胶片中呈颗粒状分布的面积个数,个;
表2路面-自行车轮胎的接触面积A c(mm 2)
实施例 1#压力胶片 2#压力胶片 3#压力胶片 平均值
实施例1 440.47 405.23 453.69 433.13
实施例2 252.93 232.69 260.51 248.71
实施例3 403.24 370.98 415.30 396.52
实施例4 267.54 246.13 275.56 263.08
实施例5 251.82 231.67 259.37 247.62
实施例6 289.16 266.03 297.84 284.34
实施例7 331.36 304.85 341.30 325.83
实施例8 355.90 327.43 366.58 349.97
实施例9 324.37 298.42 334.10 318.96
实施例10 324.03 298.11 333.75 318.63
实施例11 365.59 336.34 376.56 359.50
实施例12 343.36 315.89 353.66 337.63
实施例13 285.15 262.34 293.71 280.40
实施例14 217.79 200.37 224.32 214.16
实施例15 337.06 310.10 347.17 331.44
实施例16 279.57 257.21 287.96 274.91
实施例17 390.56 359.31 402.28 384.05
实施例18 299.04 275.12 308.01 294.06
实施例19 316.35 291.04 325.84 311.08
表3路面-自行车轮胎的单位承载面积B u(mm 2)
实施例 1#压力胶片 2#压力胶片 3#压力胶片 平均值
实施例1 3.87 3.56 3.98 3.80
实施例2 4.45 4.09 4.58 4.37
实施例3 3.46 3.19 3.57 3.41
实施例4 6.79 6.24 6.99 6.67
实施例5 4.42 4.06 4.55 4.34
实施例6 4.21 3.88 4.34 4.14
实施例7 6.30 5.79 6.49 6.19
实施例8 5.66 5.21 5.83 5.57
实施例9 7.03 6.47 7.24 6.91
实施例10 5.47 5.08 5.64 5.38
实施例11 6.92 6.36 7.12 6.80
实施例12 6.28 5.77 6.47 6.17
实施例13 8.21 7.55 8.46 8.07
实施例14 9.77 8.99 10.06 9.61
实施例15 9.17 8.44 9.45 9.02
实施例16 8.91 8.19 9.17 8.76
实施例17 7.55 6.95 7.78 7.43
实施例18 7.05 6.48 7.26 6.93
实施例19 12.51 11.50 12.88 12.30
然后,计算平均应力峰间距Sp a。使用数字图像分析软件从数字化的压力胶片中沿着骑行前进方向提取5条灰度值分布曲线,并对其进行lowpass滤波处理,如图4所示。每条分布曲线沿图像宽度方向每间距0.5cm取一条。每一条曲线按照式4计算出平均应力峰间距Sp a,5条曲线所计算出的Sp a的平均值留用,其结果如表4所示。
Figure PCTCN2018125777-appb-000012
式中,n为一条灰度分布曲线的应力峰的数量,xi+1和xi分别为第i+1和第i个应力峰在以骑行前进方向为x轴上的坐标。
表4路面-自行车轮胎的应力峰间距Sp a(mm)
实施例 1#压力胶片 2#压力胶片 3#压力胶片 平均值
实施例1 4.07 3.74 4.19 4.00
实施例2 4.42 4.07 4.55 4.35
实施例3 4.07 3.75 4.19 4.00
实施例4 5.55 5.11 5.72 5.46
实施例5 4.11 3.78 4.23 4.04
实施例6 5.36 4.93 5.52 5.27
实施例7 5.23 4.81 5.39 5.14
实施例8 5.13 4.72 5.28 5.04
实施例9 5.98 5.50 6.16 5.88
实施例10 4.95 4.55 5.10 4.87
实施例11 5.30 4.87 5.46 5.21
实施例12 5.84 5.37 6.01 5.74
实施例13 5.50 5.06 5.66 5.40
实施例14 5.75 5.29 5.92 5.65
实施例15 6.48 5.96 6.68 6.37
实施例16 5.01 4.61 5.16 4.93
实施例17 6.57 6.04 6.76 6.46
实施例18 6.36 5.85 6.55 6.25
实施例19 6.86 6.31 7.06 6.74
然后,将Sp a和B u代入式5,计算振动预测值P v(m/s 2)。其结果如表5所示。
p v=0.145×B u+0.404×Sp a-1.155      式5
表5自行车道的振动预测值P v(m/s 2)
实施例 1#压力胶片 2#压力胶片 3#压力胶片 平均值
实施例1 1.13 0.96 0.94 1.01
实施例2 1.36 1.19 1.17 1.24
实施例3 1.08 0.91 0.89 0.96
实施例4 2.14 1.97 1.95 2.02
实施例5 1.23 1.06 1.04 1.11
实施例6 1.69 1.52 1.50 1.57
实施例7 1.94 1.77 1.75 1.82
实施例8 1.81 1.64 1.62 1.69
实施例9 2.34 2.17 2.15 2.22
实施例10 1.71 1.54 1.52 1.59
实施例11 2.06 1.89 1.87 1.94
实施例12 2.18 2.01 1.99 2.06
实施例13 2.32 2.15 2.13 2.20
实施例14 2.64 2.47 2.45 2.52
实施例15 2.85 2.68 2.66 2.73
实施例16 2.23 2.06 2.04 2.11
实施例17 2.65 2.48 2.46 2.53
实施例18 2.49 2.32 2.30 2.37
实施例19 3.47 3.30 3.28 3.35
然后,判断舒适性。将表5的结果与式6所提供的振动-舒适性阈值进行对比,判断舒适性。实施例1-19的舒适性判别结果如表6所示。
Figure PCTCN2018125777-appb-000013
表6自行车道的舒适性判别
实施例 实施例1 实施例2 实施例3 实施例4
舒适性 非常舒适 非常舒适 非常舒适 舒适
实施例 实施例5 实施例6 实施例7 实施例8
舒适性 非常舒适 非常舒适 舒适 非常舒适
实施例 实施例9 实施例10 实施例11 实施例12
舒适性 不舒适 非常舒适 舒适 舒适
实施例 实施例13 实施例14 实施例15 实施例16
舒适性 不舒适 不舒适 不舒适 不舒适
实施例 实施例17 实施例18 实施例19  
舒适性 不舒适 不舒适 不舒适  
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种路面自行车骑行振动预测系统,其特征在于,包括自行车(2)、支撑架(4)、红外热像仪(7)、湿度传感器(8)、固定带(5)、水准泡(6)和压力胶片(9),其中:
    所述支撑架(4)设置在路面上,用于支撑自行车(2)的后轮,使自行车(2)的后轮离地;
    所述固定带(5)用于将自行车(2)前轮辐条和前叉固定,防止在测试过程中前轮转动;
    所述红外热像仪(7)设置在路面上,用于测定路面测试区域的路表温度,所述湿度传感器(8)用于测定路面测试区域的路表相对湿度;
    所述水准泡(6)安装在自行车(2)的前叉上,所述压力胶片放置在路面测试区域上,并在测试开始时,将自行车(2)的前轮压在压力胶片(9)上。
  2. 根据权利要求1所述的一种路面自行车骑行振动预测系统,其特征在于,所述压力胶片(9)的尺寸为宽10cm-15cm,长15cm-25cm;压力胶片(9)的压力测试量程为0.5MPa-2.5MPa;胶片上染色单元的单位面积不得高于0.016mm 2
  3. 根据权利要求1所述的一种路面自行车骑行振动预测系统,其特征在于,所述自行车(2)的重量为10kg-25kg。
  4. 一种路面自行车骑行振动预测方法,其特征在于,采用如权利要求1-3任一项所述的路面自行车骑行振动预测系统,具体包括以下步骤:
    S1、清除被测沥青路面(3)表面所覆盖的杂物;
    S2、使用红外热像仪(7)测定测试区域的路表温度,并使用湿度传感器(8)测定路表的相对湿度;
    S3、将自行车后轮放置在支撑架(4)上,使用固定带(5)将自行车前轮辐条和前叉固定在一起,防止在测试过程中差生偏移;
    S4、将压力胶片(9)裁剪为需要尺寸,并将其平稳放置在测点;测试未开始时,压力胶片(9)不与自行车前轮胎接触,此时自行车前轮胎处于压力胶片 (9)旁边;
    S5、测试者(1)先跨立于自行车(2)之中,通过观察水准泡(6)来调整自行车前轮胎的角度;当确定自行车前轮胎与路面垂直时,测试者将自行车前轮胎垂直的放置在压力胶片(9)上;
    S6、随后,测试者坐在自行车鞍座上,保持测试状态稳定持续指定时间;
    S7、骑行者移开自行车前轮胎,取出压力胶片(9),将其保存在避光的环境中;每个被测路段应在不同位置测取至少3个压力胶片(9),其步骤按照S1-S7重复,室外测试结束;
    S8、将所获得的压力胶片(9)通过扫描仪数字化,扫描模式为灰度模式,该模式下压力胶片(9)所记录的信息被转化为介于1-255之间的灰度值,扫描质量不低于600x600dpi;
    S9、通过式1确定数字化的压力胶片9中的单位像素面积;
    Figure PCTCN2018125777-appb-100001
    式中,R p为数字化压力胶片中一个像素所对应真实世界的面积,mm 2;w和l分别为真实世界中压力胶片的宽度和长度,mm;p w和p l分别为数字化压力胶片在宽度和长度方向上的像素数,个;
    S10、计算平均承载面积B u;平均承载面积B u的定义为:压力胶片所记录的接触界面中,接触面积A c与颗粒状接触区域个数n k的比值;首先,按照式2计算路面-自行车轮胎的接触面积A c,然后,按照式3计算平均承载面积B u
    A c=p×R p     式2
    Figure PCTCN2018125777-appb-100002
    式中,p为数字化压力胶片中灰度不为255的像素总数,个;n k为数字化压力胶片中呈颗粒状分布的面积个数,个;
    S11、计算平均应力峰间距Sp a;使用数字图像分析软件从数字化的压力胶片 中沿着骑行前进方向提取5条灰度值分布曲线,每条曲线均采用lowpass滤波处理提高应力峰的识别精度,如图2所示;由于灰度值与应力值为反比关系,因此灰度谷值对应应力峰值,每条分布曲线沿图像宽度方向每间距0.5cm取一条,每一条曲线按照式4计算出平均应力峰间距Sp a,5条曲线所计算出的Sp a的平均值留用;
    Figure PCTCN2018125777-appb-100003
    式中,n为一条灰度分布曲线的应力峰的数量,xi+1和xi分别为第i+1和第i个应力峰在以骑行前进方向为x轴上的坐标;
    S12、计算振动预测值P v;将Sp a和B u代入式5,计算得到振动预测值P v(m/s 2);
    p v=0.145×B u+0.404×Sp a-1.155    式5。
  5. 根据权利要求4所述的一种路面自行车骑行振动预测方法,其特征在于,当路表温度为15℃-30℃且相对湿度为20%-70%时进行测试。
  6. 根据权利要求4所述的一种路面自行车骑行振动预测方法,其特征在于,所述步骤S6的指定时间为2min。
  7. 根据权利要求4所述的一种路面自行车骑行振动预测方法,其特征在于,还包括步骤S13、将骑行振动预测值和舒适程度阈值相比较得到被测路段自行车骑行舒适性的程度。
PCT/CN2018/125777 2018-11-22 2018-12-29 一种路面自行车骑行振动预测系统及方法 WO2020103305A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/159,176 US20210150103A1 (en) 2018-11-22 2021-01-27 System and method for predicting vibration of bicycle when being rode on road

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811399621.6A CN109974954B (zh) 2018-11-22 2018-11-22 一种路面自行车骑行振动预测系统及方法
CN201811399621.6 2018-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/159,176 Continuation US20210150103A1 (en) 2018-11-22 2021-01-27 System and method for predicting vibration of bicycle when being rode on road

Publications (1)

Publication Number Publication Date
WO2020103305A1 true WO2020103305A1 (zh) 2020-05-28

Family

ID=67076077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125777 WO2020103305A1 (zh) 2018-11-22 2018-12-29 一种路面自行车骑行振动预测系统及方法

Country Status (3)

Country Link
US (1) US20210150103A1 (zh)
CN (1) CN109974954B (zh)
WO (1) WO2020103305A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566256Y (zh) * 2002-08-08 2003-08-13 浙江大学 电动自行车自动检测台
JP2004001714A (ja) * 2002-04-04 2004-01-08 Nobuo Oda タイヤ空気圧判定装置
TWI296707B (en) * 2005-12-14 2008-05-11 Ind Tech Res Inst A method for testing the performance of a bike with a suspension system
KR20110108867A (ko) * 2010-03-30 2011-10-06 주식회사 이고 자전거 바퀴 압력 측정장치, 자전거 무게 측정 장치 및 그 제어 방법
CN103512759A (zh) * 2013-10-17 2014-01-15 天津大学 可调式骑行试验台
CN204214626U (zh) * 2014-11-11 2015-03-18 江苏新日电动车股份有限公司 一种整车震动道路模拟试验机
CN204330358U (zh) * 2014-11-03 2015-05-13 中华人民共和国慈溪出入境检验检疫局 电助动自行车测试平台
CN107290156A (zh) * 2017-07-01 2017-10-24 长安大学 一种评价路面自行车骑行舒适性的方法及装置
CN107560873A (zh) * 2017-09-30 2018-01-09 天津铭志成科技有限责任公司 一种电动自行车或电动摩托车性能测试平台座椅压紧装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092869A (en) * 1977-05-09 1978-06-06 Kimball Industries, Inc. Slip plate assembly for vibration testing through temperature extreme thermal cycling
US6076056A (en) * 1997-09-19 2000-06-13 Microsoft Corporation Speech recognition system for recognizing continuous and isolated speech
US6986521B1 (en) * 2004-10-13 2006-01-17 Chung Shan Institute Of Science And Technology Vibration suppressed bicycle structure
CN2798069Y (zh) * 2004-12-20 2006-07-19 上海轻工控股(集团)公司科技发展中心 一种电动自行车前叉振动检测装置
JP4466465B2 (ja) * 2005-05-11 2010-05-26 トヨタ自動車株式会社 車両用加振装置
FR2917706B1 (fr) * 2007-06-21 2010-05-21 Dagg Velo adaptable a differentes pratiques du cyclisme.
JP4792049B2 (ja) * 2008-01-09 2011-10-12 住友ゴム工業株式会社 タイヤのノイズ性能のシミュレーション方法及びタイヤの製造方法
TW200940400A (en) * 2008-03-31 2009-10-01 Ind Tech Res Inst Intelligent bicycle and front fork thereof
US8960389B2 (en) * 2009-09-18 2015-02-24 Specialized Bicycle Components, Inc. Bicycle shock absorber with slidable inertia mass
US20120316800A1 (en) * 2011-06-07 2012-12-13 Gregory David Shteinhauz System for predicting vehicle vibration or acoustic response
CN102432228B (zh) * 2011-09-02 2013-06-19 中交第一公路勘察设计研究院有限公司 路面自破冰防滑铺装层混合料及其制备方法
TW201422475A (zh) * 2012-12-06 2014-06-16 Yuan Min An Entpr Co Ltd 吸震自行車車架及其製法
JP2016107954A (ja) * 2014-12-10 2016-06-20 オムロン株式会社 車両の状態監視装置および車両の状態監視システム
KR101554285B1 (ko) * 2015-08-21 2015-09-18 국방과학연구소 항공기의 지상진동시험용 착륙장치 지지형 공압 현가장치
US9797810B2 (en) * 2015-08-27 2017-10-24 Msh1 Llc Cycle frame fatigue and durability assembly
CN106295505A (zh) * 2016-07-25 2017-01-04 江苏中路新材料科技发展有限公司 路面使用过程中的状态测定系统
CN106250613A (zh) * 2016-07-28 2016-12-21 南京理工大学 一种车轮服役状态安全域估计及故障诊断方法
CN106710212A (zh) * 2016-12-20 2017-05-24 浙江中电智能科技有限公司 一种基于高速公路交通状况监测系统的监测方法
CN106934119A (zh) * 2017-02-23 2017-07-07 山西省交通科学研究院 一种利用轮地接触压力评价行车振动噪声的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001714A (ja) * 2002-04-04 2004-01-08 Nobuo Oda タイヤ空気圧判定装置
CN2566256Y (zh) * 2002-08-08 2003-08-13 浙江大学 电动自行车自动检测台
TWI296707B (en) * 2005-12-14 2008-05-11 Ind Tech Res Inst A method for testing the performance of a bike with a suspension system
KR20110108867A (ko) * 2010-03-30 2011-10-06 주식회사 이고 자전거 바퀴 압력 측정장치, 자전거 무게 측정 장치 및 그 제어 방법
CN103512759A (zh) * 2013-10-17 2014-01-15 天津大学 可调式骑行试验台
CN204330358U (zh) * 2014-11-03 2015-05-13 中华人民共和国慈溪出入境检验检疫局 电助动自行车测试平台
CN204214626U (zh) * 2014-11-11 2015-03-18 江苏新日电动车股份有限公司 一种整车震动道路模拟试验机
CN107290156A (zh) * 2017-07-01 2017-10-24 长安大学 一种评价路面自行车骑行舒适性的方法及装置
CN107560873A (zh) * 2017-09-30 2018-01-09 天津铭志成科技有限责任公司 一种电动自行车或电动摩托车性能测试平台座椅压紧装置

Also Published As

Publication number Publication date
CN109974954B (zh) 2021-02-02
CN109974954A (zh) 2019-07-05
US20210150103A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US7562563B2 (en) Apparatus for automatically inspecting road surface pavement condition
CN109870223B (zh) 一种视觉技术辅助的桥梁动态称重方法
US4958306A (en) Pavement inspection apparatus
CN106529593B (zh) 路面病害检测方法和系统
She et al. Feasibility study of asphalt pavement pothole properties measurement using 3D line laser technology
Gao et al. Cycling comfort on asphalt pavement: Influence of the pavement-tyre interface on vibration
CN106087679B (zh) 一种沥青路面病害识别与自动绘图系统及其方法
CN102636364B (zh) 车载桥面形态-结构安全监测系统及检测方法
Shtayat et al. Using e-bikes and private cars in dynamic road pavement monitoring
CN117057614A (zh) 一种基于遥感技术的公路安全运行动态变化预测方法及系统
WO2020103305A1 (zh) 一种路面自行车骑行振动预测系统及方法
Choi et al. Detection of cracks in paved road surface using laser scan image data
CN115493679A (zh) 一种基于多视场热成像技术的收费站车辆动态称重系统
Kotha et al. Potsense: Pothole detection on indian roads using smartphone sensors
CN116543549A (zh) 基于多传感器数据融合的货运车辆车况及行车异常辨识方法
CN106627416A (zh) 用于检测道路类型的方法、装置和系统
CN112698015B (zh) 一种道路桥梁裂缝检测系统
JPH09287933A (ja) 路面わだち状況計測装置
Jones et al. Development of bicycle compatibility index for rural roads in Nebraska
CN115123258B (zh) 一种车辆路面附着系数确定方法及系统
CN111778819B (zh) 一种智能化道路检测装置
Chen et al. Classification criteria and application of level of service for bicycle lanes in China
JAMES THE AUTOMATED DISTRESS DETECTION IN PAVEMENTS-A LITERATURE REVIEW ON THE INNOVATION METHOD
Khan et al. Impact of Road Pavement Condition on Vehicular Free Flow Speed, Vibration and In-Vehicle Noise
Shtayat et al. International Journal of Transportation Science and Technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941074

Country of ref document: EP

Kind code of ref document: A1