WO2020102933A1 - 雷达组件及无人机 - Google Patents

雷达组件及无人机

Info

Publication number
WO2020102933A1
WO2020102933A1 PCT/CN2018/116163 CN2018116163W WO2020102933A1 WO 2020102933 A1 WO2020102933 A1 WO 2020102933A1 CN 2018116163 W CN2018116163 W CN 2018116163W WO 2020102933 A1 WO2020102933 A1 WO 2020102933A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
assembly according
motor
radar assembly
bracket
Prior art date
Application number
PCT/CN2018/116163
Other languages
English (en)
French (fr)
Inventor
王佳迪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201890000943.6U priority Critical patent/CN211417624U/zh
Priority to PCT/CN2018/116163 priority patent/WO2020102933A1/zh
Publication of WO2020102933A1 publication Critical patent/WO2020102933A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons

Definitions

  • This application relates to the technical field of unmanned aerial vehicles, in particular to a radar component and an unmanned aerial vehicle.
  • the radar is installed on the unmanned aerial vehicle, which can realize three-dimensional reconstruction, flight obstacle avoidance and other functions. Using screw locking and fixed installation, it is not convenient and fast for users to disassemble and install the radar, and the scanning area of the radar is limited. In addition, the attitude change of the drone during work is likely to cause the radar scanning area to continuously change, which is not conducive to later data. deal with.
  • Embodiments of the present invention provide a radar component and an unmanned aerial vehicle to improve the limited scanning area of the radar, and changes in the attitude of the unmanned aerial vehicle during operation are likely to cause the radar scanning area to continuously change, and the problem of insufficient and quick disassembly and assembly of the radar.
  • an embodiment of the present invention provides a radar assembly.
  • the radar assembly includes a radar, a gimbal, and a mounting structure.
  • the gimbal includes a rotating shaft mechanism.
  • the rotating shaft mechanism includes a motor and a bracket.
  • the motor Including a stator and a rotor rotating relative to the stator, the motor can drive the bracket to rotate.
  • the installation structure includes a first installation component and a second installation component, the first installation component is installed on the gimbal, the second installation component is installed on the radar, the first installation component and the first One of the two mounting components is provided as a flange, the other of the first mounting component and the second mounting component is provided as a mounting seat, the mounting seat is provided with a sliding groove, and the side wall of the mounting seat is provided with An engaging mechanism, when the flange is at least partially engaged with the chute, pushing the engaging mechanism may cause the gimbal and the radar to be in a locked or released state.
  • an embodiment of the present invention provides a drone, which includes a fuselage and a radar component, where the radar component is mounted on the top or bottom of the fuselage.
  • the radar assembly includes a radar, a gimbal, and a mounting structure.
  • the gimbal includes a rotating shaft mechanism including a motor and a bracket, wherein the motor includes a stator and a rotor rotating relative to the stator, and the motor can be driven The bracket rotates.
  • the installation structure includes a first installation component and a second installation component, the first installation component is installed on the gimbal, the second installation component is installed on the radar, the first installation component and the first One of the two mounting components is provided as a flange, the other of the first mounting component and the second mounting component is provided as a mounting seat, the mounting seat is provided with a sliding groove, and the side wall of the mounting seat is provided with An engaging mechanism, when the flange is at least partially engaged with the chute, pushing the engaging mechanism may cause the gimbal and the radar to be in a locked or released state.
  • the gimbal when the radar component is installed in the unmanned aerial vehicle, the gimbal can enhance the stability of the radar, so that during the operation of the unmanned aerial vehicle, the radar scanning area is not prone to jump. At the same time, the gimbal can adjust the direction of the radar and expand the scanning area of the radar. In addition, the cooperation of the flange, the chute and the clamping mechanism can make the disassembly and assembly of the radar more convenient and faster.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a drone provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a stereo structure of a radar component provided by an embodiment of the present application.
  • FIG. 3 is an exploded view of a radar and an installation structure provided by an embodiment of the present application.
  • FIG. 4a is a schematic diagram of an installation structure provided by an embodiment of the present application.
  • FIG. 4b is a cross-sectional view of a mounting structure along the E-E direction provided by an embodiment of the present application.
  • FIG. 5a is a side view of a first installation component provided by an embodiment of the present application.
  • 5b is a front view of a first installation component provided by an embodiment of the present application.
  • FIG. 6 is an exploded schematic view of a gimbal provided by an embodiment of the present application.
  • FIG. 7 is a partial exploded schematic view of a gimbal provided by an embodiment of the present application.
  • FIG. 8 is another partial exploded schematic view of a gimbal provided by an embodiment of the present application.
  • FIG. 9 is a schematic perspective view of another drone structure provided by an embodiment of the present application.
  • UAV 100 radar assembly 10, radar 11, pan / tilt 12, first rotating shaft mechanism 121, second rotating shaft mechanism 122, third rotating shaft mechanism 123, first motor 1211, rotor 1211a of first motor, first motor Stator 1211b, first bracket 1212, second motor 1221, second motor rotor 1221a, second motor stator 1221b, second bracket 1222, third motor 1231, third motor rotor 1231a, third motor stator 1231b , Mounting structure 13, first mounting assembly 131, locking slot 1312, second mounting assembly 132, slide slot 1322, engaging mechanism 1323, lock tongue 1324, convex portion 1324A, concave surface 1324B, inclined surface 1324C, latch 1325, terminal 134 , Insulation ring 1341, contact part 135, auxiliary shaft 14, body 20.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the first feature “above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Contact not directly but through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connect, or connect integrally. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium. It can be the connection between two elements or the interaction between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the drone 100 provided by the embodiment of the present application includes a fuselage 20 and a radar component 10.
  • the radar component 10 is installed at the bottom of the fuselage 20.
  • the radar assembly 10 includes a radar 11, a gimbal 12 and a mounting structure 13.
  • the radar 11 includes at least one of laser radar, millimeter wave radar, and ultrasonic radar, and can detect the surrounding environment to realize three-dimensional reconstruction, flight obstacle avoidance and other functions.
  • the gimbal 12 includes a rotating shaft mechanism including a motor and a bracket.
  • the motor includes a stator and a rotor rotating relative to the stator. The motor can drive the bracket to rotate, thereby enhancing the stability of the radar 11 and expanding the scanning area of the radar 11.
  • the mounting structure 13 includes a first mounting component 131 and a second mounting component 132.
  • the first mounting component 131 is mounted on the pan / tilt head 12 and the second mounting component 132 is mounted on the radar 11.
  • the first mounting component 131 is configured as a flange
  • the second mounting component 132 is configured as a mounting seat.
  • the flange can be installed on the pan / tilt head 12 by clamping or screwing.
  • the mounting base can be mounted on the housing of the radar 11 by screwing.
  • the flange can also be integrally formed with the gimbal 12. It should be noted that the above installation method is only exemplary and cannot be understood as a limitation to the present application.
  • the mounting structure 13 includes an electrical connection device for supplying power to the radar 11 and / or transmitting the communication signal of the radar 11, the electrical connection device includes a first connection member and a second connection member, the first connection member is disposed on the first installation assembly 131, The second connector is disposed on the second mounting assembly 132. When the radar 11 and the gimbal 12 are locked, the first connector, the second connector, and the radar 11 form an electrical connection.
  • the mounting base is provided with a sliding slot 1322, and the side wall of the second mounting assembly 132 is provided with an engaging mechanism 1323.
  • pushing the engaging mechanism 1323 can make the gimbal 12 and the radar 11 appear Locked or released state.
  • the first mounting component 131 is provided with a locking groove 1312
  • the side wall of the second mounting component 132 is provided with an engaging mechanism 1323, which includes a lock tongue 1324 and a lock 1325
  • One end of the locking tongue 1324 is provided with a convex portion 1324A. Pushing the lock 1325 upward can drive the locking tongue 1324 to rotate in a direction close to the locking groove 1312, so that the convex portion 1324A engages the locking groove 1312.
  • the surface facing the tongue 1324 of the lock 1325 includes a concave surface 1324B. Pushing the buckle 1325 upward may cause the buckle 1325 to be at least partially caught on the concave surface 1324B.
  • the buckle 1325 is T-shaped, and the buckle 1325 includes a portion parallel to the side of the slide slot 1322 and a portion perpendicular to the side of the slide slot 1322. Pushing the lock catch 1325 upward can cause the portion perpendicular to the side of the slide slot 1322 to be locked On the concave surface 1324B.
  • the shape of the lock 1325 is not limited to the T-shape. Those skilled in the art can change the shape of the lock according to actual needs, so that when the engaging mechanism 1323 is pushed up and down, the gimbal 12 and the radar 11 are in a locked or released state.
  • the locking tongue 1324 is made of an elastic material. In this way, the locking tongue 1324 can provide the locking buckle 1325 with an outward force perpendicular to the side wall of the mounting seat, so that when the locking buckle 1325 partially engages the concave surface 1324B, the locking buckle 1325
  • the relative position with the locking tongue 1324 can be fixed, so that the radar 11 and the gimbal 12 are in a locked state; when the lock 1325 is released from the concave surface 1324B, the radar 11 and the gimbal 12 are in a released state.
  • the locking tongue 1324 itself is a rigid material.
  • the end of the locking tongue 1324 away from the locking groove 1312 is provided with a spring. The spring can drive the locking tongue 1324 to provide an outward force perpendicular to the side wall of the mounting seat to the locking buckle 1325.
  • the surface of the tongue 1324 facing the lock 1325 includes a slope 1324C inclined from top to bottom away from the direction of the lock 1325, so that the lock 1325 is pushed upward, and the tongue 1324 is driven to rotate toward the lock groove 1312 At this time, the convex portion 1324A is more easily caught in the locking groove 1312.
  • the chute 1322 is U-shaped, the top of the chute 1322 is provided with an installation opening, and the flange is snapped into the chute 1322 from the installation opening and is engaged with the groove wall of the chute 1322.
  • the chute 1322 may have an inverted U shape.
  • the bottom of the chute 1322 is provided with an installation opening, and the flange is snapped into the chute 1322 from the installation opening and is engaged with the groove wall of the chute 1322.
  • the number of the locking grooves 1312 may be multiple, as shown in FIG. 5b, symmetrically distributed on both sides of the flange, and the distribution of the engaging mechanism 1323 matches the distribution of the locking grooves 1312.
  • a plurality of locking grooves 1312 and an engaging mechanism 1323 are provided, so that when the gimbal 12 and the radar 11 are in a locked state, the installation of the radar 11 and the gimbal 12 in the radar assembly 10 is more robust, and the radar 11 is not easily separated from the gimbal 12 .
  • the electrical connection device includes a wireless power supply module
  • the first connection member includes a power transmission module
  • the second connection member includes a power reception module
  • the power transmission module is electrically connected to the power supply
  • the power reception module is electrically connected to the radar 11.
  • the power transmitting module may include a transmitting coil
  • the power receiving module includes a receiving coil, and the transmitting coil supplies power to the radar 11 through electromagnetic induction.
  • the electrical connection device includes a wireless communication module, wherein the first connection member and the second connection member include a signal transceiving module.
  • signal transmission and reception modules can transmit signals through Wifi, Bluetooth, NFC (Near Field Communication), lightbridge, OcuSync and other transmission methods.
  • the first connector in the electrical connection device is provided with a terminal 134
  • the second connector is provided with a contact portion 135.
  • the terminal 134 It is electrically connected to the contact portion 135.
  • the terminal 134 and the contact portion 135 are used to supply power to the radar 11 and transmit communication signals.
  • One of the terminals 134 is used to supply power to the radar 11, and the remaining three terminals 134 are used to transmit the communication signal of the radar 11.
  • Those skilled in the art can also design the number of terminals 134 and contact parts 135 according to the actual situation, and combine the applications of the terminals 134, contact parts 135, wireless communication module and wireless power supply module.
  • the terminal 134 and the contact part 135 are used to supply power to the radar 11, and the communication signal transmission uses a wireless communication module to transmit signals through Wifi, Bluetooth, NFC (Near Field Communication), lightbridge, OcuSync and other transmission methods.
  • the terminal 134 and the contact portion 135 can be used to transmit the communication signal of the radar 11.
  • the power supply of the radar 11 uses a wireless power supply module.
  • the first connection includes a power transmission module, and the second connection includes a power reception module.
  • the power transmitting module is electrically connected to the power supply, and the power receiving module is electrically connected to the radar 11.
  • the power transmitting module includes a transmitting coil, and the power receiving module includes a receiving coil. The transmitting coil supplies power to the radar 11 through electromagnetic induction.
  • the terminal 134 is provided on the surface of the flange facing the mounting base, and an insulation ring 1341 for preventing short circuit is provided outside the terminal 134.
  • the terminal 134 may also be disposed on the surface of the mounting base facing the flange, the bottom of the flange, or the bottom of the mounting base, and the contact portion 135 is opposite to the terminal 134.
  • the terminal 134 can expand and contract along the axis direction of the terminal 134.
  • the terminal 134 may be driven to expand and contract in the axial direction of the terminal 134 by a spring.
  • the terminal 134 abuts the contact portion 135 so that the terminal 134 and the contact portion 135 form an electrical connection.
  • the number of the terminal 134 and the contact portion 135 is plural, the plurality of terminals 134 are arranged in a linear interval, the contact portion 135 is a metal sheet, a metal protrusion or a metal slot, the position of the contact portion 135 and the terminal 134 One to one correspondence.
  • the distribution method of the terminals is not limited to the linear interval distribution, and may also be other forms such as a ring.
  • the first connector in the electrical connection device is provided with a contact portion 135 and the second connector is provided with a terminal 134.
  • the electrical connection of the contact portion 135 and the terminal 134 is the same as described above.
  • the first connector and the second connector provided in the embodiments of the present invention do not require a complicated wiring layout.
  • electrical connection can be achieved. In this way, not only the assembly efficiency between the radar 11 and the gimbal 12 is effectively improved, but also the influence of the line twisting on the gimbal control when the radar rotates relative to the gimbal can be avoided.
  • the bracket of the gimbal 12 is provided with a passage through which the flexible connection device passes, and the flexible connection device is connected to the first connection member.
  • the first connector includes a PCB circuit board, and a terminal 134 is provided on the circuit board.
  • the flexible connection device is electrically connected to the terminal 134 through the PCB circuit board.
  • the flexible connection device can also be used to transmit communication signals of the motor and / or to provide electrical energy to the motor.
  • the flexible connection device may be a flexible circuit board (FPC) or a coaxial cable.
  • the flexible connection device is an FPC
  • the flexible connection device is at least partially wound around the motor shaft of the motor and then connected to the first connection member.
  • FPC can effectively avoid tangling between cables.
  • the flexible connection device is at least partially wound around the motor shaft of the motor and then connected to the first connection member to prevent the FPC from being twisted when the gimbal rotates.
  • the wirings in the embodiments of the present invention are all inside the bracket of the gimbal 12, which improves the structural reliability, avoids the aging and damage caused by line leakage, and facilitates the installation and maintenance of the product.
  • the above communication signal includes at least one of a data signal and a control signal, for example, a point cloud data signal acquired by a lidar, a motor angle control signal, and the like.
  • the gimbal 12 includes a rotating shaft mechanism.
  • the rotating shaft mechanism includes a motor and a bracket.
  • the motor includes a stator and a rotor rotating relative to the stator.
  • the motor can drive the bracket to rotate.
  • the rotating shaft mechanism includes a first rotating shaft mechanism 121, a second rotating shaft mechanism 122, and a third rotating shaft mechanism 123.
  • the first rotating shaft mechanism 121 includes a first motor 1211 and a first bracket 1212.
  • the first motor 1211 includes a first motor rotor 1211a and a first motor stator 1211b.
  • the second rotating shaft mechanism 122 includes a second motor 1221 and a second bracket 1222.
  • the second motor 1221 includes a second motor rotor 1221a and a second motor stator 1221b.
  • the third rotating shaft mechanism 123 includes a third motor 1231, and the third motor 1231 includes a third motor rotor 1231a and a third motor stator 1231b.
  • the first rotating shaft mechanism 121, the second rotating shaft mechanism 122 and the third rotating shaft mechanism 123 are connected in sequence.
  • the first rotation shaft mechanism 121 is a yaw mechanism
  • the second rotation shaft mechanism 122 is a roll mechanism
  • the third rotation shaft mechanism 123 is a pitch mechanism. In this way, the gimbal 12 can provide the radar 11 with angle adjustment in three directions of yaw, roll, and pitch, thereby expanding the scanning range of the radar 11.
  • the first bracket 1212 is bent and extended from the horizontal direction to the vertical direction
  • the second bracket 1222 is a U-shaped bracket bent and extended toward both sides of the radar 11.
  • One end of the U-shaped bracket is provided with an auxiliary shaft 14, and the other end is connected to a third motor 1231.
  • the auxiliary shaft 14 and the motor shafts of the third motor 1231 are located on opposite sides of the radar 11 respectively.
  • An auxiliary shaft 14 is provided at one end of the second bracket, and a third motor is provided at the other end, thereby reducing the vibration of the radar 11 in the direction of the pitch axis and increasing the stability of the pitch mechanism.
  • the rotor 1211a of the first motor is fixedly connected to the external device
  • the stator 1211b of the first motor is fixedly connected to the first bracket 1212
  • the first bracket 1212 is fixedly connected to the stator 1221b of the second motor
  • the rotor 1221a of the second motor The second bracket 1222 is fixedly connected to the second bracket 1222 and the rotor 1231a of the third motor
  • the stator 1231b of the third motor is connected to the radar 11 through the mounting structure 13.
  • a person skilled in the art may install the radar assembly 10 provided in the embodiment of the present application to an external device according to actual needs.
  • the radar assembly 10 may be installed on the top of the drone 100 as shown in FIG. 9, so as to conveniently detect hidden areas such as the bottom of the bridge.
  • the radar assembly 10 provided in the embodiments of the present application may also be installed on a fixed bracket to perform three-dimensional reconstruction of an indoor environment, or installed on other movable platforms, such as cars, ships, robots, and handheld devices, to achieve three-dimensional reconstruction , Obstacle avoidance and other functions.
  • connection method of the gimbal 12 is not limited to the above description, and those skilled in the art can design the connection method of the yaw mechanism, the roll mechanism, and the pitch mechanism according to actual needs.
  • the rotating shaft mechanism includes a yaw mechanism, a pitch mechanism, and a roll mechanism At least one of them.
  • the first rotating shaft mechanism 121 may be a pitch mechanism
  • the second rotating shaft mechanism 122 may be a yaw mechanism
  • the third rotating shaft mechanism 123 may be a roll mechanism.
  • the rotation mechanism of the gimbal 12 is not limited to three, and may be single-axis, double-axis, or other forms.
  • the extension line of the central axis of the first motor 1211 passes through the first bracket 1212, the second rotating shaft mechanism 122, the third rotating shaft mechanism 123, the mounting structure 13 and the center of gravity of the radar assembly 10 in the radar assembly 10.
  • the extension line of the central axis of the second motor 1221 passes through the second bracket 1222 in the radar assembly 10, the third rotating shaft mechanism 123, the mounting structure 13 and the center of gravity of the radar 11.
  • the extension line of the central axis of the third motor 1231 passes through the center of gravity of the mounting structure 13 and the radar 11 in the radar assembly 10.
  • the extension line of the motor central axis In actual situations, it is difficult for the extension line of the motor central axis to pass through the corresponding center of gravity, so the distance of the center of gravity from the extension line of the corresponding motor central axis is within a certain error range.
  • the center of gravity is considered to be located on the extension line of the corresponding motor central axis .
  • the extension line of the central axis of the above-mentioned motor passes through the corresponding center of gravity, so that the radar 11 and the gimbal 12 in the radar assembly 10 can meet the trim requirements and realize the rotation balance.
  • the gimbal 12 when the radar assembly 10 is installed in the drone 100, the gimbal 12 can enhance the stability of the radar 11 so that during the operation of the drone 100, the radar 11 The scanning area is not easy to jump. At the same time, the gimbal 12 can adjust the direction of the radar 11 to expand the scanning area of the radar 11. The cooperation of the flange, the chute 1322 and the engaging mechanism 1323 can make the disassembly and assembly of the radar 11 more convenient and faster.
  • the first mounting component 131 in the radar component 10 may be configured as a mounting base, and the second mounting component 132 may be configured as a flange.
  • the cooperation of the flange, the slide groove 1322 and the engaging mechanism 1323 can make the gimbal 12 and the radar 11 locked or released.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明实施例公开了一种雷达组件(10),其特征在于,雷达组件(10)包括雷达(11)、云台(12)和安装结构(13)。云台(12)包括转轴机构,转轴机构包括电机和支架。其中,电机包括定子和相对于定子旋转的转子,电机可驱动支架转动。安装结构(13)包括第一安装组件(131)和第二安装组件(132),第一安装组件(131)安装在云台(12),第二安装组件(132)安装在雷达(11),第一安装组件(131)和第二安装组件(132)中的一个设置为凸缘,第一安装组件(131)和第二安装组件(132)的另外一个设置为安装座,安装座开设有滑槽(1322),安装座的侧壁设置有卡合机构(1323),当凸缘至少部分地卡设滑槽(1322)时,推动卡合机构(1323)可使得云台(12)与雷达(11)呈锁紧或松开状态。本发明实施例还公开了一种无人机(100)。

Description

雷达组件及无人机 技术领域
本申请涉及无人机技术领域,特别涉及一种雷达组件及无人机。
背景技术
雷达安装至无人机上,可以实现三维重建、飞行避障等功能。采用螺丝锁紧、固定安装的方式,用户拆装雷达不够方便快捷,雷达的扫描区域有限,此外,无人机在工作时的姿态变化容易造成雷达扫描区域的不断跳变,不利于后期的数据处理。
发明内容
本发明实施例提供一种雷达组件和无人机,以改善雷达扫描区域有限,无人机在工作时的姿态变化容易造成雷达扫描区域不断跳变,以及雷达拆装不够方便快捷的问题。
第一方面,本发明实施例提供了一种雷达组件,所述雷达组件包括雷达、云台和安装结构,所述云台包括转轴机构,所述转轴机构包括电机和支架,其中,所述电机包括定子和相对于定子旋转的转子,所述电机可驱动所述支架转动。所述安装结构包括第一安装组件和第二安装组件,所述第一安装组件安装在所述云台,所述第二安装组件安装在所述雷达,所述第一安装组件和所述第二安装组件中的一个设置为凸缘,所述第一安装组件和所述第二安装组件的另外一个设置为安装座,所述安装座开设有滑槽,所述安装座的侧壁设置有卡合机构,当所述凸缘至少部分地卡设所述滑槽时,推动所述卡合机构可使得所述云台与所述雷达呈锁紧或松开状态。
第二方面,本发明实施例提供了一种无人机,其包括机身和雷达组件,所述雷达组件安装在所述机身的顶部或底部。所述雷达组件包括雷达、云台和安装结构,所述云台包括转轴机构,所述转轴机构包括电机和支架,其中,所述电机包括定子和相对于定子旋转的转子,所述电机可驱动所述支架转动。所述安装结构包括第一安装组件和第二安装组件,所述第一安装组件安装在所述云台,所述第二安装组件安装在所述雷达,所述第一安装组件和所述第二安装组件中的一个设置为凸缘,所述第一安装组件和所述第二安装组件的另外一个设置为安装座,所 述安装座开设有滑槽,所述安装座的侧壁设置有卡合机构,当所述凸缘至少部分地卡设所述滑槽时,推动所述卡合机构可使得所述云台与所述雷达呈锁紧或松开状态。
本发明实施例提供的雷达组件和无人机中,当雷达组件安装至无人机时,云台可以增强雷达的稳定性,使得无人机工作过程中,雷达的扫描区域不易产生跳变,同时,云台可以调整雷达的指向,扩大雷达的扫描区域。此外,凸缘、滑槽和卡合机构的配合可以使得雷达的拆装更加方便快捷。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例提供的一种无人机的立体结构示意图;
图2是本申请实施例提供的一种雷达组件的立体结构示意图;
图3是本申请实施例提供的一种雷达与安装结构的分解图。
图4a是本申请实施例提供的一种安装结构的示意图。
图4b是本申请实施例提供的一种安装结构沿E-E方向的剖面图。
图5a是本申请实施例提供的一种第一安装组件的侧视图。
图5b是本申请实施例提供的一种第一安装组件的主视图。
图6是本申请实施例提供的一种云台的分解示意图;
图7是本申请实施例提供的一种云台的部分分解示意图;
图8是本申请实施例提供的一种云台的另一部分分解示意图;
图9是本申请实施例提供的另一种无人机的立体结构示意图。
无人机100,雷达组件10,雷达11,云台12,第一转轴机构121,第二转轴机构122,第三转轴机构123,第一电机1211,第一电机的转子1211a,第一电机的定子1211b,第一支架1212,第二电机1221,第二电机的转子1221a,第二电机的定子1221b,第二支架1222,第三电机1231,第三电机的转子1231a,第三电机的定子1231b,安装结构13,第一安装组件131,锁定槽1312,第二安 装组件132,滑槽1322,卡合机构1323,锁舌1324,凸部1324A,凹面1324B,斜面1324C,锁扣1325,端子134,绝缘环1341,接触部135,辅助轴14,机身20。
具体实施例
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为 了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其它工艺的应用和/或其它材料的使用。
下面结合附图,对本申请实施例提供的雷达组件以及具有雷达组件的无人机的结构作详细说明,在不冲突的情况下,下属实施例以及实施例中的特征可以互相组合。
如图1,图2及图3所示,本申请实施例所提供的无人机100包括机身20和雷达组件10,雷达组件10安装于机身20的底部。雷达组件10包括雷达11、云台12和安装结构13。
雷达11包括激光雷达、毫米波雷达、超声波雷达中的至少一种,可对周围环境进行探测,以实现三维重建、飞行避障等功能。
云台12包括转轴机构,转轴机构包括电机和支架,其中,电机包括定子和相对于定子旋转的转子,电机可驱动所述支架转动,从而增强雷达11的稳定性,扩大雷达11的扫描区域。
安装结构13包括第一安装组件131和第二安装组件132,第一安装组件131安装在云台12,第二安装组件132安装在雷达11。第一安装组件131设置为凸缘,第二安装组件132设置为安装座。具体的,凸缘可通过卡紧或螺丝锁紧的方式安装于云台12。安装座可通过螺丝锁紧的方式安装于雷达11的外壳。此外,凸缘也可与云台12一体成型。需要说明的是,上述安装方式仅是示例性的,不能理解为对本申请的限制。
安装结构13包括电连接装置,用于给雷达11供电和/或传输雷达11的通信信号,电连接装置包括第一连接件和第二连接件,第一连接件设置在第一安装组件131,第二连接件设置在第二安装组件132,当雷达11与云台12呈锁紧状态时,第一连接件、第二连接件和雷达11形成电连接。
安装座开设有滑槽1322,第二安装组件132的侧壁设置有卡合机构1323,当凸缘至少部分地卡设滑槽1322时,推动卡合机构1323可使得云台12与雷达11呈锁紧或松开状态。
请参考图3、图4a、图4b,第一安装组件131设置有锁定槽1312,第二 安装组件132的侧壁设置有卡合机构1323,卡合机构1323包括锁舌1324和锁扣1325,锁舌1324的一端设置有凸部1324A,向上推动所述锁扣1325可驱动所述锁舌1324向靠近所述锁定槽1312的方向旋转,以使得凸部1324A卡设锁定槽1312。
可选的,朝向锁扣1325的锁舌1324的表面包括凹面1324B。向上推动锁扣1325可使得锁扣1325至少部分卡设在凹面1324B。
可选的,锁扣1325呈T型,锁扣1325包括平行于滑槽1322侧面的部分和垂直于滑槽1322侧面的部分,向上推动锁扣1325可使得垂直于滑槽1322侧面的部分卡设在凹面1324B。锁扣1325的形状不限于T型,本领域技术人员可根据实际需要变换锁扣的形状,以使得上下推动卡合机构1323时,云台12与雷达11呈锁紧或松开状态。
可选的,锁舌1324由弹性材料制成,如此,锁舌1324可以给锁扣1325提供一个垂直于安装座侧壁向外的力,使得锁扣1325部分卡设凹面1324B时,锁扣1325与锁舌1324可保持相对位置固定,从而雷达11和云台12呈锁紧状态;而当锁扣1325脱离凹面1324B时,雷达11和云台12呈松开状态。可选的,锁舌1324本身为刚性材料,锁舌1324远离锁定槽1312的一端设置有弹簧,弹簧可驱动锁舌1324给锁扣1325提供一个垂直于安装座侧壁向外的力。
可选的,朝向锁扣1325的锁舌1324的表面包括自上而下向远离锁扣1325方向倾斜的斜面1324C,以使得向上推动锁扣1325,驱动锁舌1324向靠近锁定槽1312的方向旋转时,凸部1324A更易卡设在锁定槽1312中。
可选的,滑槽1322呈U型,滑槽1322的顶部开设有安装开口,凸缘自安装开口卡入滑槽1322并卡设滑槽1322的槽壁。可选的,滑槽1322可为倒U形,对应的,滑槽1322的底部开设有安装开口,凸缘自安装开口卡入滑槽1322并卡设滑槽1322的槽壁。
可选的,锁定槽1312的数量可为多个,如图5b所示,对称分布在凸缘的两侧,卡合机构1323的分布方式与锁定槽1312的分布方式相匹配。设置多个锁定槽1312和卡合机构1323,可以使得云台12和雷达11呈锁紧状态时,雷达组件10中雷达11和云台12的安装更加坚固,雷达11不易从云台12上脱离。
可选的,电连接装置包括无线供电模块,第一连接件包括电量发射模块,第二连接件包括电量接收模块,其中,电量发射模块与电源电连接,电量接收模块与雷达11电连接。具体的,电量发射模块可包括发射线圈,电量接收模块包括 接收线圈,发射线圈通过电磁感应的方式为雷达11供电。
可选的,电连接装置包括无线通信模块,其中,第一连接件和第二连接件包括信号收发模块。示例的,信号收发模块之间可通过Wifi、蓝牙、NFC(近场通信),以及lightbridge、OcuSync等传输方式进行信号传输。
请参考图3、图5a和图5b,电连接装置中的第一连接件设置有端子134,第二连接件设置有接触部135,当雷达11与云台12呈锁紧状态时,端子134与接触部135电连接。端子134与接触部135用于给雷达11供电和传输通信信号。其中一个端子134用于给雷达11供电,其余三个端子134用于传输雷达11的通信信号。本领域技术人员也可根据实际情况设计端子134和接触部135的数量,并对端子134、接触部135,无线通信模块和无线供电模块的应用进行组合。示例的,端子134与接触部135用于给雷达11供电,通信信号传输则采用无线通信模块,通过Wifi、蓝牙、NFC(近场通信),以及lightbridge、OcuSync等传输方式进行信号传输。在另一个实施方式中,端子134与接触部135可用于传输雷达11的通信信号,雷达11的供电则采用无线供电模块,第一连接件包括电量发射模块,第二连接件包括电量接收模块。电量发射模块与电源电连接,电量接收模块与雷达11电连接。电量发射模块包括发射线圈,电量接收模块包括接收线圈,发射线圈通过电磁感应的方式为雷达11供电。
可选的,端子134设置在凸缘朝向安装座的表面,端子134的外部设置有用于防止短路的绝缘环1341。端子134还可设置在安装座朝向凸缘的表面、凸缘的底部或安装座的底部,接触部135与端子134相对设置。
可选的,端子134可沿端子134轴线方向伸缩。示例的,可由弹簧驱动端子134沿端子134轴线方向伸缩。当雷达11和云台12呈锁紧状态时,端子134与接触部135抵接,以使得端子134与接触部135之间形成电连接。
可选的,端子134和接触部135的数量为多个,多个端子134呈线状间隔排布,接触部135为金属片、金属凸起或金属插槽,接触部135的位置与端子134一一对应。端子的分布方式不限于线状间隔分布,也可为环状等其他形式。
在其他实施方式中,电连接装置中的第一连接件设置有接触部135,第二连接件设置有端子134。接触部135和端子134的电连接方式与上述描述相同。
本发明实施例提供的第一连接件和第二连接件之间不需要复杂的走线布局,当雷达11安装至云台12时,即可实现电连接。如此,不仅有效提高了雷达11与云台12之间的装配效率,并且可以避免雷达相对云台转动时,线路扭转对云 台控制造成的影响。
可选的,云台12的支架内设有供柔性连接装置穿过的通道,柔性连接装置与第一连接件连接。具体的,第一连接件包括PCB电路板,该电路板上设置有端子134,柔性连接装置通过该PCB电路板与端子134电连接,在雷达11与云台12呈锁紧状态时,柔性连接装置可为雷达11供电,或实现雷达11的通信信号传输。可选的,柔性连接装置还可用于传输电机的通信信号和/或给电机提供电能。其中,柔性连接装置可为柔性电路板(FPC)或同轴线。当柔性连接装置为FPC时,柔性连接装置至少部分缠绕电机的电机轴之后与第一连接件连接。使用FPC可有效避免线缆之间的缠绕。柔性连接装置至少部分缠绕电机的电机轴之后与第一连接件连接可以防止云台转动时扭断FPC。此外,本发明实施例中的走线均在云台12的支架内部,提高了结构可靠性,可避免线路外漏造成的老化和损坏,便于产品的安装及维护。
需要说明的是,上述通信信号包括数据信号和控制信号中的至少一种,例如激光雷达获取的点云数据信号、电机角度控制信号等。
请参考图2、图6、图7、图8,云台12包括转轴机构,转轴机构包括电机和支架,其中,电机包括定子和相对于定子旋转的转子,电机可驱动支架转动。转轴机构包括第一转轴机构121,第二转轴机构122和第三转轴机构123。其中,第一转轴机构121包括第一电机1211和第一支架1212。第一电机1211包括第一电机转子1211a和第一电机定子1211b。第二转轴机构122包括第二电机1221和第二支架1222,第二电机1221包括第二电机转子1221a和第二电机定子1221b。第三转轴机构123包括第三电机1231,第三电机1231包括第三电机转子1231a和第三电机定子1231b。第一转轴机构121,第二转轴机构122和第三转轴机构123依次相连。第一转轴机构121为偏航机构,第二转轴机构122为横滚机构,第三转轴机构123为俯仰机构。如此,云台12可为雷达11提供偏航、横滚、俯仰三个方向的角度调整,扩大雷达11的扫描范围。
可选的,第一支架1212自水平方向向竖直方向弯折延伸,第二支架1222为向雷达11两侧弯折延伸的U形支架。U形支架的一端设有辅助轴14,另外一端连接第三电机1231。其中,辅助轴14及第三电机1231的电机轴分别位于所述雷达11的相对两侧。第二支架的一端设有辅助轴14,另外一端设有第三电机,从而可以减小雷达11在俯仰轴方向产生的震动,增加了俯仰机构的稳定性。
可选的,第一电机的转子1211a与外部设备固定连接,第一电机的定子1211b 与第一支架1212固定连接,第一支架1212与第二电机的定子1221b固定连接,第二电机的转子1221a与第二支架1222固定连接,第二支架1222与第三电机的转子1231a固定连接,第三电机的定子1231b通过安装结构13与雷达11连接。
本领域技术人员可根据实际需求将本申请实施例提供的雷达组件10安装于外部设备。示例的,雷达组件10可如图9所示安装在无人机100的顶部,从而方便地对桥底等隐蔽区域进行探测。本申请实施例提供的雷达组件10还可以安装在固定支架上,以对室内环境进行三维重建,或安装在其他可移动平台上,比如安装于汽车、轮船、机器人、手持设备,以实现三维重建、避障等功能。
云台12的连接方式不限于上述描述,本领域技术人员可根据实际需求设计偏航机构,横滚机构和俯仰机构的连接方式,示例的,转轴机构包括偏航机构,俯仰机构,横滚机构中的至少一个。第一转轴机构121可为俯仰机构,第二转轴机构122可为偏航机构,第三转轴机构123可为横滚机构。此外,云台12的转轴机构不限于三个,也可以是单轴、双轴或其他形式。
可选的,第一电机1211中轴线的延长线穿过雷达组件10中的第一支架1212,第二转轴机构122,第三转轴机构123,安装结构13与雷达11的重心。第二电机1221中轴线的延长线穿过雷达组件10中的第二支架1222,第三转轴机构123,安装结构13与雷达11的重心。第三电机1231中轴线的延长线穿过雷达组件10中的安装结构13与雷达11的重心。
在实际情况中,上述电机中轴线的延长线难以刚好穿过对应的重心,故将重心偏离对应电机中轴线延长线的距离在一定误差范围内均认为上述重心位于对应电机中轴线的延长线上。上述电机中轴线的延长线穿过对应的重心,可使得雷达组件10中的雷达11与云台12满足配平要求,实现转动平衡。
本发明实施例提供的雷达组件10和无人机100中,当雷达组件10安装至无人机100时,云台12可以增强雷达11的稳定性,使得无人机100工作过程中,雷达11的扫描区域不易产生跳变,同时,云台12可以调整雷达11的指向,扩大雷达11的扫描区域。凸缘、滑槽1322和卡合机构1323的配合可以使得雷达11的拆装更加方便快捷。
在本申请的其他实施方式中,雷达组件10中的第一安装组件131可设置为安装座,第二安装组件132可设置为凸缘。凸缘、滑槽1322和卡合机构1323的配合可以使得云台12与雷达11呈锁紧或松开状态。
需要说明的是,上述雷达组件10的具体结构未在附图中示出,本领域的技 术人员可以根据已公开的雷达组件10的具体结构进行适当变换得到,在此不做详细展开。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (37)

  1. 一种雷达组件,其特征在于,所述雷达组件包括雷达、云台和安装结构,
    所述云台包括转轴机构,所述转轴机构包括电机和支架,其中,所述电机包括定子和相对于定子旋转的转子,所述电机可驱动所述支架转动;
    所述安装结构包括第一安装组件和第二安装组件,所述第一安装组件安装在所述云台,所述第二安装组件安装在所述雷达,所述第一安装组件和所述第二安装组件中的一个设置为凸缘,所述第一安装组件和所述第二安装组件的另外一个设置为安装座,所述安装座开设有滑槽,所述安装座的侧壁设置有卡合机构,当所述凸缘至少部分地卡设所述滑槽时,推动所述卡合机构可使得所述云台与所述雷达呈锁紧或松开状态。
  2. 根据权利要求1所述的雷达组件,其特征在于,所述凸缘设置有锁定槽,所述卡合机构包括锁舌和锁扣,所述锁舌的一端设置有凸部,向上推动所述锁扣可驱动所述锁舌向靠近所述锁定槽的方向旋转,以使得所述凸部卡设所述锁定槽。
  3. 根据权利要求2所述的雷达组件,其特征在于,朝向所述锁扣的所述锁舌的表面包括凹面;所述锁扣呈T型,向上推动所述锁扣可使得所述锁扣至少部分卡设在所述凹面。
  4. 根据权利要求2所述的雷达组件,其特征在于,朝向所述锁扣的所述锁舌的表面包括自上而下向远离所述锁扣方向倾斜的斜面。
  5. 根据权利要求2所述的雷达组件,其特征在于,所述锁定槽的数量为多个,对称分布在所述凸缘的两侧,所述卡合机构的分布方式与所述锁定槽的分布方式相匹配。
  6. 根据权利要求1所述的雷达组件,其特征在于,所述滑槽呈U型,所述滑槽的顶部开设有安装开口,所述凸缘自所述安装开口卡入所述滑槽并卡设所述滑槽的槽壁。
  7. 根据权利要求2所述的雷达组件,其特征在于,所述锁舌由弹性材料制成。
  8. 根据权利要求2所述的雷达组件,其特征在于,所述锁舌由刚性材料制成,所述锁舌远离所述锁定槽的一端设置有弹簧,所述弹簧可驱动所述锁舌给所述锁扣提供一个垂直于安装座侧壁向外的力。
  9. 根据权利要求1所述的雷达组件,其特征在于,所述安装结构包括电连接装置,用于给所述雷达供电和/或传输所述雷达的通信信号,所述电连接装置包括第一连接件和第二连接件,所述第一连接件设置在所述第一安装组件,所述第二连接件设置在所述第二安装组件,当所述雷达与所述云台呈锁紧状态时,所述第一连接件、所述第二连接件和所述雷达形成电连接。
  10. 根据权利要求9所述的雷达组件,其特征在于,所述电连接装置包括无线供电模块,所述第一连接件包括电量发射模块,所述第二连接件包括电量接收模块,其中,所述电量发射模块与电源电连接,所述电量接收模块与所述雷达电连接。
  11. 根据权利要求10所述的雷达组件,其特征在于,所述电量发射模块包括发射线圈,所述电量接收模块包括接收线圈,所述发射线圈通过电磁感应的方式为所述雷达供电。
  12. 根据权利要求9所述的雷达组件,其特征在于,所述电连接装置包括无线通信模块,其中,所述第一连接件和第二连接件包括信号收发模块。
  13. 根据权利要求9所述的雷达组件,其特征在于,所述第一连接件和所述第二连接件中的一个设置有端子,所述第一连接件和所述第二连接件中的另一个设置有接触部,当所述雷达与所述云台呈锁紧状态时,所述端子与所述接触部电连接。
  14. 根据权利要求13所述的雷达组件,其特征在于,所述端子与所述接触部用于给所述雷达供电和传输所述雷达的通信信号。
  15. 根据权利要求13所述的雷达组件,其特征在于,所述端子与所述接触部用于给所述雷达供电;所述电连接装置包括无线通信模块,其中,所述第一连接件和 第二连接件包括信号收发模块。
  16. 根据权利要求13所述的雷达组件,其特征在于,所述端子与所述接触部用于传输所述雷达的通信信号;所述电连接装置包括无线供电模块,所述第一连接件包括电量发射模块,所述第二连接件包括电量接收模块;其中,所述电量发射模块与电源电连接,所述电量接收模块与所述雷达电连接,所述电量发射模块包括发射线圈,所述电量接收模块包括接收线圈,所述发射线圈通过电磁感应的方式为所述雷达供电。
  17. 根据权利要求13所述的雷达组件,其特征在于,所述端子设置在所述凸缘朝向所述安装座的表面,或所述安装座朝向所述凸缘的表面,所述接触部与所述端子相对设置。
  18. 根据权利要求13所述的雷达组件,其特征在于,所述端子设置在所述凸缘或所述安装座的底部,所述接触部与所述端子相对设置。
  19. 根据权利要求13所述的雷达组件,其特征在于,所述端子可沿端子轴线方向伸缩。
  20. 根据权利要求13所述的雷达组件,其特征在于,所述端子和所述接触部的数量为多个,所述多个端子呈线状间隔排布;所述接触部为金属片、金属凸起或金属插槽,所述接触部的位置与所述端子一一对应。
  21. 根据权利要求9所述的雷达组件,其特征在于,所述支架内设有供柔性连接装置穿过的通道,所述柔性连接装置与所述第一连接件电连接。
  22. 根据权利要求21所述的雷达组件,其特征在于,所述柔性连接装置还用于传输所述电机的通信信号和/或给电机提供电能。
  23. 根据权利要求21所述的雷达组件,其特征在于,所述柔性连接装置为柔性电路板(FPC)或同轴线,当柔性连接装置为FPC时,所述柔性连接装置至少部分 缠绕所述电机的电机轴之后与所述第一连接件连接。
  24. 根据权利要求9至23所述的雷达组件,其特征在于,所述通信信号包括数据信号和控制信号中的至少一种。
  25. 根据权利要求1所述的雷达组件,其特征在于,所述转轴机构包括偏航机构,俯仰机构,横滚机构中的至少一个。
  26. 根据权利要求1所述的雷达组件,其特征在于,所述转轴机构包括第一转轴机构,第二转轴机构和第三转轴机构;其中,所述第一转轴机构包括第一电机和第一支架,所述第二转轴机构包括第二电机和第二支架,所述第三转轴机构包括第三电机;所述第一转轴机构,所述第二转轴机构和所述第三转轴机构依次相连。
  27. 根据权利要求26所述的雷达组件,其特征在于,所述第一转轴机构为偏航机构,所述第二转轴机构为横滚机构,所述第三转轴机构为俯仰机构。
  28. 根据权利要求26所述的雷达组件,其特征在于,所述第一电机的转子与外部设备固定连接,所述第一电机的定子与所述第一支架固定连接,所述第一支架与所述第二电机的定子固定连接,所述第二电机的转子与所述第二支架固定连接,所述第二支架与第三电机的转子固定连接,所述第三电机的定子通过所述安装结构与所述雷达连接。
  29. 根据权利要求28所述的雷达组件,其特征在于,所述外部设备包括无人机,汽车、轮船、机器人、手持设备和固定支架中的至少一个。
  30. 根据权利要求26所述的雷达组件,其特征在于,所述第一支架自水平方向向竖直方向弯折延伸。
  31. 根据权利要求26所述的雷达组件,其特征在于,所述第二支架为向雷达两侧弯折延伸的U形支架。
  32. 根据权利要求31所述的雷达组件,其特征在于,所述U形支架的一端设有辅助轴14,另外一端连接所述第三电机,其中,所述辅助轴及所述第三电机的电机轴分别位于所述雷达的相对两侧。
  33. 根据权利要求28至32任一所述的雷达组件,其特征在于,所述第一电机中轴线的延长线穿过所述雷达组件中的所述第一支架,所述第二转轴机构,所述第三转轴机构,所述安装结构与所述雷达的重心。
  34. 根据权利要求28至32任一所述的雷达组件,其特征在于,所述第二电机中轴线的延长线穿过所述雷达组件中的所述第二支架,所述第三转轴机构,所述安装结构与所述雷达的重心。
  35. 根据权利要求28至32任一所述的雷达组件,其特征在于,所述第三电机中轴线的延长线穿过所述雷达组件中的所述安装结构与所述雷达的重心。
  36. 根据权利要求1所述的雷达组件,其特征在于,所述雷达包括激光雷达、毫米波雷达、超声波雷达中的至少一种。
  37. 一种无人机,其特征在于,包括机身和本申请的上述雷达组件,所述雷达组件设置在所述机身的顶部或底部。
PCT/CN2018/116163 2018-11-19 2018-11-19 雷达组件及无人机 WO2020102933A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201890000943.6U CN211417624U (zh) 2018-11-19 2018-11-19 雷达组件及无人机
PCT/CN2018/116163 WO2020102933A1 (zh) 2018-11-19 2018-11-19 雷达组件及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116163 WO2020102933A1 (zh) 2018-11-19 2018-11-19 雷达组件及无人机

Publications (1)

Publication Number Publication Date
WO2020102933A1 true WO2020102933A1 (zh) 2020-05-28

Family

ID=70774123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116163 WO2020102933A1 (zh) 2018-11-19 2018-11-19 雷达组件及无人机

Country Status (2)

Country Link
CN (1) CN211417624U (zh)
WO (1) WO2020102933A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167884A (zh) * 2020-06-30 2021-07-23 深圳市大疆创新科技有限公司 雷达组件及具有该雷达组件的可移动平台
CN115571356B (zh) * 2022-11-10 2023-04-07 江苏雨能水利工程有限公司 一种无人机云台搭载的测流雷达

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080710A (ja) * 2014-10-21 2016-05-16 国立大学法人 千葉大学 楕円・円偏波合成開口レーダ並びにこれを搭載した航空機、人工衛星、車両、固定地上プラットフォーム及び成層圏プラットフォーム
WO2017041466A1 (zh) * 2015-09-11 2017-03-16 深圳市大疆创新科技有限公司 拍摄设备及无人机
CN206926813U (zh) * 2017-04-11 2018-01-26 深圳市大疆创新科技有限公司 雷达组件及无人机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080710A (ja) * 2014-10-21 2016-05-16 国立大学法人 千葉大学 楕円・円偏波合成開口レーダ並びにこれを搭載した航空機、人工衛星、車両、固定地上プラットフォーム及び成層圏プラットフォーム
WO2017041466A1 (zh) * 2015-09-11 2017-03-16 深圳市大疆创新科技有限公司 拍摄设备及无人机
CN206926813U (zh) * 2017-04-11 2018-01-26 深圳市大疆创新科技有限公司 雷达组件及无人机

Also Published As

Publication number Publication date
CN211417624U (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2020102933A1 (zh) 雷达组件及无人机
EP3515161B1 (en) Control boxes and system-on-module circuit boards for unmanned vehicles
WO2019119198A1 (zh) 雷达和具有该雷达的可移动设备
WO2019119242A1 (zh) 雷达装置及无人飞行器
US9525206B2 (en) Antenna unit, radar device, and composite sensor device
EP3515160B1 (en) Control boxes and system-on-module circuit boards for unmanned vehicles
US10827629B2 (en) Control boxes and system-on-module circuit boards for unmanned vehicles
US20200159209A1 (en) Drone tracking steered antenna system
US10895801B2 (en) Gimbal structure
WO2020001273A1 (zh) 散热结构及无人飞行器
US20170192338A1 (en) Gimbal and aircraft
WO2020038288A1 (zh) 天线及无人飞行器
WO2020062758A1 (zh) 无人机及倾转机构
JP7289872B2 (ja) 車両用充電システム
WO2021223082A1 (zh) 旋转雷达及可移动平台
US20180229763A1 (en) Electronic control unit of steering system for vehicle
WO2018072067A1 (zh) 天线组件及无人机
CN113511342B (zh) 电控装置及无人机
CN112623246A (zh) 云台及具该云台的无人机
US20170194883A1 (en) Platform system
US9615471B2 (en) Component carrier
EP4131726A1 (en) Contactless power supply and data communication apparatus and rotationally driven lidar system using same
US20130183870A1 (en) Ram air fan terminal stud
EP3517828B1 (en) Automotive lighting module and automotive lighting device
KR20220122846A (ko) 무접점 전력공급 및 데이터통신 장치와 이를 이용하는 회전구동 라이다 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940559

Country of ref document: EP

Kind code of ref document: A1