WO2020100328A1 - Saw wire - Google Patents

Saw wire Download PDF

Info

Publication number
WO2020100328A1
WO2020100328A1 PCT/JP2019/019933 JP2019019933W WO2020100328A1 WO 2020100328 A1 WO2020100328 A1 WO 2020100328A1 JP 2019019933 W JP2019019933 W JP 2019019933W WO 2020100328 A1 WO2020100328 A1 WO 2020100328A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
saw wire
wave component
less
squeezing
Prior art date
Application number
PCT/JP2019/019933
Other languages
French (fr)
Japanese (ja)
Inventor
伸彦 藤原
政志 飛田
Original Assignee
トクセン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクセン工業株式会社 filed Critical トクセン工業株式会社
Priority to KR1020217008834A priority Critical patent/KR102531328B1/en
Priority to CN201980067898.5A priority patent/CN112839771B/en
Publication of WO2020100328A1 publication Critical patent/WO2020100328A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to saw wire.
  • the present invention relates to improving the squirting of saw wires.
  • Saw wire is used for slicing semiconductor ingots.
  • a wafer is obtained by slicing.
  • Fixed-abrasive saw wires and loose-abrasive saw wires have been used.
  • the fixed-abrasive saw wire has excellent cutting efficiency.
  • the cutting surface obtained by the fixed-abrasive saw wire has poor dimensional accuracy. From the viewpoint of wafer performance, a free-abrasive saw wire is advantageous.
  • slurry is sprayed onto this saw wire prior to slicing.
  • This slurry contains abrasive grains.
  • the traveling of the saw wire causes the abrasive grains to be drawn between the ingot and the saw wire.
  • the movement of the abrasive grains cuts the ingot to achieve slicing.
  • a saw wire that can draw in many abrasive grains has excellent cutting efficiency.
  • the saw wire that can draw in many abrasive grains can also contribute to the dimensional accuracy of the cutting surface.
  • Japanese Unexamined Patent Application Publication No. 2004-276207 discloses a stiff saw wire. This habit has a wavy shape. The wave has peaks and valleys. Abrasive grains are trapped in the valleys and travel inside the ingot. This saw wire can pull in many abrasive grains.
  • a similar sewn wire is disclosed in Japanese Patent Publication No. 2008-519698.
  • This saw wire has two waves. The vibration direction of one wave is different from the vibration direction of the other wave.
  • An object of the present invention is to provide a saw wire that can meet these demands.
  • the saw wire according to the present invention has a first squeezing portion and a second squeezing portion.
  • the first baffle portion has a wave shape that oscillates in a plane.
  • the second peculiar portion has a peculiarity that includes a first wave component that vibrates in a plane and a second wave component that vibrates in a plane different from the plane of the first wave component.
  • the vibration direction of the second wave component is substantially perpendicular to the vibration direction of the first wave component.
  • mountains and valleys can alternate.
  • the number of peaks in one first squeezing portion is 5 or more and 300 or less.
  • peaks and valleys can be arranged alternately.
  • the number of peaks of the first wave component in one second squeezing portion is 5 or more and 300 or less.
  • peaks and valleys can be arranged alternately.
  • the number of peaks of the second wave component in one second squeezing portion is 5 or more and 300 or less.
  • the saw wire further includes a third baffle portion.
  • the third peculiar portion has a wave shape that oscillates in a plane different from the plane of the first peculiar portion.
  • the vibration direction of the waves in the third peculiar portion is substantially perpendicular to the vibration direction of the waves in the first peculiar portion.
  • the vibration direction of the first wave component is substantially the same as the vibration direction of the wave in the first squeezing portion
  • the vibration direction of the second wave component is substantially the same as the vibration direction of the wave in the third squeezing portion. Match.
  • mountains and valleys can be arranged alternately.
  • the number of peaks in one third failing portion is 5 or more and 300 or less.
  • the saw wire further includes a straight portion.
  • the saw wire according to the present invention has two or more squeezing portions, it has excellent abrasive grain drawing performance. With this saw wire, efficient cutting can be performed. With this saw wire, a cutting surface with good dimensional accuracy can be obtained.
  • FIG. 1A is a front view showing a part of a saw wire according to an embodiment of the present invention
  • FIG. 1B is a plan view showing the saw wire of FIG. 1A
  • FIG. 2 is an enlarged right side view showing the first gusset portion of the saw wire of FIG. 1.
  • FIG. 3 is an enlarged front view showing a part of the first baffle portion of FIG. 2.
  • FIG. 4 is an enlarged right side view showing a part of the second squeezing portion of the saw wire of FIG. 1.
  • FIG. 5 is a schematic diagram showing the first wave component of the second squeezing portion of FIG.
  • FIG. 6 is a schematic diagram showing the second wave component of the second squeezing portion of FIG.
  • FIG. 1A is a front view showing a part of a saw wire according to an embodiment of the present invention
  • FIG. 1B is a plan view showing the saw wire of FIG. 1A.
  • FIG. 2 is an enlarged right side view showing the first gusset
  • FIG. 4 is an enlarged right side view showing the third brace portion of the saw wire of FIG. 1.
  • FIG. 8 is an enlarged front view showing a part of the third baffle portion of FIG. 7.
  • FIG. 9 is a schematic view showing a part of the brace device for the saw wire of FIG. 1.
  • the saw wire 2 is shown in FIGS. 1 (a) and (b) and FIG. 2.
  • the vertical direction (Y direction) is the vertical direction
  • the horizontal direction (X direction) is the horizontal direction.
  • the vertical direction (Z direction) is the horizontal direction
  • the horizontal direction (X direction) is also the horizontal direction.
  • the X direction is also the length direction of the saw wire 2.
  • the saw wire 2 is attached to a saw machine and runs leftward in FIG.
  • the saw wire 2 has a first squeezing portion 4, a second squeezing portion 6, a third squeezing portion 8 and a straight portion 10.
  • the second peculiar portion 6 is located downstream of the first peculiar portion 4.
  • the third peculiar portion 8 is located downstream of the second peculiar portion 6.
  • the straight portion 10 is located downstream of the third straightening portion 8.
  • the first squeezing portion 4, the second squeezing portion 6, the third squeezing portion 8 and the straight portion 10 form one cycle.
  • a plurality of cycles are regularly arranged along the length direction.
  • the plurality of first squeezing portions 4, the plurality of second squeezing portions 6, the plurality of third squeezing portions 8, and the plurality of straight portions 10 may be arranged irregularly.
  • FIG. 2 shows the first baffle unit 4.
  • the first squeezing portion 4 has a wave shape. As is clear from referring to FIGS. 1A and 1B and FIG. 2 together, the wave of the first squeezing portion 4 vibrates in the XY plane. This wave is not oscillating in other planes. This wave is a two-dimensional wave. This wave oscillates at a constant wavelength. The vibration direction of this wave is the Y direction.
  • the third is an enlarged front view showing a part of the first squeezing portion 4 of the saw wire 2 of FIG. 1 (a).
  • the shape of the first baffle portion 4 is a wave that vibrates in the Y direction.
  • the first peculiar portion 4 has a mountain 12 and a valley 14.
  • a large number of peaks 12 and a large number of valleys 14 are alternately arranged (see also FIG. 1A).
  • the first peculiarizing portion 4 supplements the ridges 12 or the valleys 14 with abrasive grains and draws them into the cutting surface.
  • the number of peaks 12 in one first squeezing portion 4 is preferably 5 or more and 300 or less, and more preferably 10 or more and 200 or less.
  • the number of valleys 14 is approximately the same as the number of peaks 12.
  • the arrow WL1 indicates the wavelength
  • the arrow WH1 indicates the wave height.
  • the wavelength WL1 is preferably 0.2 mm or more and 50 mm or less, and particularly preferably 0.3 mm or more and 40 mm or less.
  • the wave height WH1 is preferably 0.10 mm or more and 0.25 mm or less, and particularly preferably 0.11 mm or more and 0.20 mm or less.
  • the wavelength WL1 satisfies the following formula. 1.1 * Di ⁇ WL1 ⁇ 50 * Di
  • Di represents the wire diameter (see FIG. 2).
  • the wavelength WL1 is 1.1 times or more and 50 times or less the wire diameter Di.
  • the wavelength WL1 is 3 times or more and 40 times or less of the wire diameter Di.
  • the wave height WH1 satisfies the following mathematical formula. 1.05 * Di ⁇ WH1 ⁇ 5 * Di
  • Di represents the wire diameter (see FIG. 2).
  • the wave height WH1 is 1.05 times or more and 5 times or less the wire diameter Di.
  • the wave height WH1 is 1.10 times or more and 3 times or less of the wire diameter Di.
  • FIG. 4 is an enlarged right side view showing a part of the second squeezing portion 6 of the saw wire 2 of FIG.
  • the second peculiar portion 6 has a wavy peculiarity.
  • This habit has a shape in which the first wave component 16 and the second wave component 18 are compounded, which is schematically shown in FIG. In other words, in the second brace 6, the vibration of the first wave component 16 and the vibration of the second wave component 18 simultaneously proceed along the length direction of the saw wire 2.
  • the habit may have a shape in which three or more wave components are combined.
  • the first wave component 16 is schematically shown in FIG. As is clear from FIGS. 4 and 5, the first wave component 16 is oscillating in the XY plane. The first wave component 16 does not vibrate on other planes.
  • the first wave component 16 is a two-dimensional wave.
  • the first wave component 16 vibrates at a constant wavelength.
  • the vibration direction of the wave of the first wave component 16 is the Y direction.
  • the vibration direction of the wave of the first wave component 16 coincides with the wave vibration direction of the first squeezing portion 4.
  • the vibration direction of the wave of the first wave component 16 may be different from the vibration direction of the wave of the first inclining portion 4.
  • the first wave component 16 has many peaks 20 and many valleys 22. These peaks 20 and valleys 22 are alternately arranged along the X direction.
  • the saw wire 2 captures the abrasive grains at the peaks 20 or the valleys 22 of the first wave component 16 and draws them into the cutting surface.
  • the number of peaks 20 of the first wave component 16 in one second squeezing portion 6 is preferably 5 or more and 300 or less, and more preferably 10 or more and 200 or less.
  • the number of valleys 22 is almost the same as the number of peaks 20.
  • arrow WL21 represents the wavelength of the first wave component 16
  • arrow WH21 represents the wave height of the first wave component 16.
  • the wavelength WL21 of the first wave component 16 satisfies the following formula. 1.1 * Di ⁇ WL21 ⁇ 50 * Di
  • Di represents the wire diameter (see FIG. 4).
  • the wavelength WL21 of the first wave component 16 is 1.1 times or more and 50 times or less the wire diameter Di.
  • the wavelength WL21 is 3 times or more and 40 times or less of the wire diameter Di.
  • the wave height WH21 of the first wave component 16 satisfies the following formula. 1.05 * Di ⁇ WH21 ⁇ 5 * Di
  • Di represents the wire diameter (see FIG. 4).
  • the wave height WH21 of the first wave component 16 is 1.05 times or more and 5 times or less the wire diameter Di.
  • the wave height WH21 is 1.10 times or more and 3 times or less of the wire diameter Di.
  • the second wave component 18 is schematically shown in FIG. As is clear from FIGS. 4 and 6, the second wave component 18 is oscillating in the XZ plane. The second wave component 18 does not vibrate on other planes.
  • the second wave component 18 is a two-dimensional wave.
  • the second wave component 18 vibrates at a constant wavelength.
  • the vibration direction of the wave of the second wave component 18 is the Z direction.
  • the vibration direction of the second wave component 18 is different from the vibration direction of the first wave component 16.
  • the vibration direction of the first wave component 16 is substantially perpendicular to the vibration direction of the second wave component 18.
  • the angle ⁇ 21-22 of the vibration direction of the second wave component 18 with respect to the vibration direction of the first wave component 16 is 90 ° (see FIG. 4).
  • the angle ⁇ 21-22 may be a value other than 90 °.
  • the angle ⁇ 21-22 is preferably 20 ° or more and 160 ° or less, and particularly preferably 30 ° or more and 150 ° or less.
  • the second wave component 18 has many peaks 24 and many valleys 26. These peaks 24 and valleys 26 are alternately arranged along the X direction.
  • the saw wire 2 captures the abrasive grains at the peaks 24 or the valleys 26 of the second wave component 18 and draws them into the cutting surface.
  • the number of peaks 24 of the second wave component 18 in one second squeezing portion 6 is preferably 5 or more and 300 or less, and preferably 10 or more and 200 or less.
  • the number of valleys 26 is approximately the same as the number of peaks 24.
  • the arrow WL22 represents the wavelength of the second wave component 18, and the arrow WH22 represents the wave height of the second wave component 18.
  • the wavelength WL22 of the second wave component 18 satisfies the following formula. 1.1 * Di ⁇ WL22 ⁇ 50 * Di
  • Di represents the wire diameter (see FIG. 4).
  • the wavelength WL22 of the second wave component 18 is 1.1 times or more and 50 times or less of the wire diameter Di.
  • the wavelength WL22 is 3 times or more and 40 times or less of the wire diameter Di.
  • the wave height WH22 of the second wave component 18 satisfies the following mathematical formula. 1.05 * Di ⁇ WH22 ⁇ 5 * Di
  • Di represents the wire diameter (see FIG. 4).
  • the wave height WH22 of the second wave component 18 is 1.05 times or more and 5 times or less the wire diameter Di.
  • the wave height WH22 is 1.10 times or more and 3 times or less of the wire diameter Di.
  • the wavelength WL22 of the second wave component 18 may be the same as the wavelength WL21 of the first wave component 16. The wavelength WL22 may be different from the wavelength WL21.
  • the wave height WH22 of the second wave component 18 may be the same as the wave height WH21 of the first wave component 16. The wave height WH22 may be different from the wave height WH21.
  • the first wave component 16 and the second wave component 18 are two-dimensional waves as described above.
  • a three-dimensional wave is formed by combining the first wave component 16 and the second wave component 18.
  • the habit of the second compliant portion 6 of the saw wire 22 has a three-dimensional shape.
  • FIG. 7 shows the third baffle portion 8.
  • the third peculiar portion 8 has a wave shape.
  • the wave of the third inclining portion 8 vibrates in the XZ plane. This wave is not oscillating in other planes. This wave is a two-dimensional wave. This wave oscillates at a constant wavelength. The vibration direction of this wave is the Z direction. This vibrating direction is different from the vibrating direction of the wave of the first baffle portion 4. This vibrating direction is substantially perpendicular to the vibrating direction of the waves of the first baffle portion 4.
  • the angle ⁇ 1-3 formed by the vibration direction of the wave of the third peculiar portion 8 with respect to the vibration direction of the wave of the first peculiar portion 4 is 90 °.
  • the angle ⁇ 1-3 may be a value other than 90 °.
  • the angle ⁇ 1-3 is preferably 20 ° or more and 160 ° or less, and particularly preferably 30 ° or more and 150 ° or less.
  • the vibration direction of the wave of the third squeezing unit 8 matches the vibration direction of the wave of the second wave component.
  • the vibration direction of the wave of the third baffle portion 8 may be different from the vibration direction of the wave of the second wave component.
  • FIG. 8 is an enlarged front view showing a part of the third gusseted portion 8 of FIG. 7.
  • the third peculiar portion 8 has a mountain 28 and a valley 30. A large number of peaks 28 and a large number of valleys 30 are alternately arranged (see also FIG. 1B).
  • the third peculiar portion 8 supplements the ridges 28 or the valleys 30 with the abrasive grains and draws them into the cutting surface.
  • the number of peaks 28 in one third squeezing portion 8 is preferably 5 or more and 300 or less, and more preferably 10 or more and 200 or less.
  • the number of valleys 30 is approximately the same as the number of peaks 28.
  • the arrow WL3 indicates the wavelength
  • the arrow WH3 indicates the wave height.
  • the wavelength WL3 is preferably 0.2 mm or more and 50 mm or less, and particularly preferably 0.3 mm or more and 40 mm or less.
  • the wave height WH3 is preferably 0.10 mm or more and 0.25 mm or less, and particularly preferably 0.11 mm or more and 0.20 mm or less.
  • the wavelength WL3 satisfies the following formula. 1.1 * Di ⁇ WL3 ⁇ 50 * Di
  • Di represents the wire diameter (see FIG. 7).
  • the wavelength WL3 is 1.1 times or more and 50 times or less of the wire diameter Di.
  • the wavelength WL3 is 3 times or more and 40 times or less of the wire diameter Di.
  • the wave height WH3 satisfies the following formula. 1.05 * Di ⁇ WH3 ⁇ 5 * Di
  • Di represents the wire diameter (see FIG. 7).
  • the wave height WH3 is 1.05 times or more and 5 times or less the wire diameter Di.
  • the wave height WH3 is 1.10 times or more and 3 times or less of the wire diameter Di.
  • the wavelength WL3 of the third squeezing unit 8 may be the same as the wavelength WL1 of the first squeezing unit 4.
  • the wavelength WL3 may be different from the wavelength WL1.
  • the wave height WH3 of the third peculiarizing portion 8 may be the same as the wave height WH1 of the first peculiarizing portion 4.
  • the wave height WH3 may be different from the wave height WH1.
  • the saw wire 2 may not have the third baffle portion 8.
  • the saw wire 2 that does not have the third peculiar part 8 has two kinds of peculiar parts, that is, the first peculiar part 4 and the second peculiar part 6.
  • the saw wire 2 may have four or more types of compliant parts.
  • this saw wire 2 plural kinds of squeezing parts draw in the abrasive grains. Since these knuckles have different habits, many abrasive grains are drawn in. Moreover, these abrasive grains can be evenly drawn. With this saw wire 2, excellent cutting efficiency can be achieved. The saw wire 2 can also contribute to the dimensional accuracy of the cut surface.
  • the straight part 10 does not have a wave shape.
  • the form of the saw wire 2 having the straight portion 10 is varied as a whole. This straight portion 10 can also contribute to the drawing of the abrasive grains.
  • the saw wire 2 may not have the straight portion 10. What is indicated by an arrow Lm in FIG. 1B is the length of the straight portion 10. The length is preferably 5 mm or more and 50 mm or less, and preferably 10 mm or more and 40 mm or less.
  • the straight portion 10 is sandwiched between the first squeezing portion 4 and the third squeezing portion 8.
  • the straight portion 10 may be sandwiched between the first squeezing portion 4 and the second squeezing portion 6.
  • the straight portion 10 may be sandwiched between the second squeezing portion 6 and the third squeezing portion 8.
  • the straight portion 10 may be sandwiched between the two first brace portions 4.
  • the straight portion 10 may be sandwiched between the two second gusset portions 6.
  • the straight portion 10 may be sandwiched between the two third straightening portions 8.
  • the saw wire 2 may not have the straight portion 10.
  • the wire diameter Di of the saw wire 2 is preferably 0.05 mm or more and 1.00 mm or less, and particularly preferably 0.10 mm or more and 0.20 mm or less.
  • the material of the saw wire 2 is metal.
  • a typical metal is carbon steel.
  • the saw wire 2 in which the surface of the main part made of carbon steel is plated with brass is preferable.
  • FIG. 9 is a schematic diagram showing a part of the habituating device 32 for the saw wire 2 of FIG. 1.
  • the busbar 34 for the saw wire 2 is also shown in FIG.
  • the bus bar 34 travels in the direction of arrow A in FIG.
  • the squeezing device has a first gear pair 36 and a second gear pair 38.
  • the second gear pair 38 is located downstream of the first gear pair 36.
  • the axial direction of the second gear pair 38 is different from the axial direction of the first gear pair 36.
  • the angle of the axial direction of the second gear pair 38 with respect to the axial direction of the first gear pair 36 is preferably 20 ° or more and 160 ° or less, and particularly preferably 30 ° or more and 150 ° or less. In this embodiment, this angle is 90 °.
  • the first gear pair 36 includes an upper gear 40 and a lower gear 42.
  • the upper gear 40 includes a tooth portion 44 and an empty portion 46. A large number of teeth 48 are carved on the tooth portion 44.
  • the hollow portion 46 does not have the tooth 48.
  • the lower gear 42 also includes a tooth portion 44 and an empty portion 46. A large number of teeth 48 are carved on the tooth portion 44.
  • the hollow portion 46 does not have the tooth 48.
  • the tooth portion 44 of the lower gear 42 is located at a position corresponding to the tooth portion 44 of the upper gear 40. Therefore, the tooth portion 44 of the lower gear 42 meshes with the tooth portion 44 of the lower gear 42.
  • the empty part 46 of the lower gear 42 is at a position corresponding to the empty part 46 of the upper gear 40.
  • the second gear pair 38 includes a left gear 50 and a right gear.
  • the right gear is not shown.
  • the right gear is hidden by the left gear 50.
  • the left gear 50 includes a tooth portion 44 and an empty portion 46.
  • a large number of teeth 48 are carved on the tooth portion 44.
  • the hollow portion 46 does not have the tooth 48.
  • the right gear like the left gear 50, also includes a tooth portion 44 and an empty portion 46.
  • a large number of teeth 48 are carved on the tooth portion 44.
  • the hollow portion 46 does not have the tooth 48.
  • the tooth portion 44 of the right gear is located at a position corresponding to the tooth portion 44 of the left gear 50. Therefore, the tooth portion 44 of the right gear meshes with the tooth portion 44 of the left gear 50.
  • the empty part 46 of the right gear is located at a position corresponding to the empty part 46 of the left gear 50.
  • the bus 34 passes through the first gear pair 36. Plastic deformation occurs in the portion of the busbar 34 that has passed through the first gear pair 36 when the nip is the tooth portion 44. This plastic deformation gives the busbar 34 a component of a wave vibrating in the Y direction. No plastic deformation occurs in the portion of the busbar 34 that has passed through the first gear pair 36 when the nip is the vacant portion 46.
  • the busbar 34 passes through the second gear pair 38.
  • Plastic deformation occurs in a portion of the busbar 34 that passes through the second gear pair 38 when the nip is the tooth portion 44. This plastic deformation gives the busbar 34 a component of a wave vibrating in the Z direction. No plastic deformation occurs in the portion of the busbar 34 that passes through the second gear pair 38 when the nip is the vacant portion 46.
  • a portion of the busbar 34 that is plastically deformed by the first gear pair 36 and is not plastically deformed by the second gear pair 38 has a wave shape that vibrates in the Y direction. This portion is the first baffle portion 4.
  • the portion of the busbar 34 that is plastically deformed by the first gear pair 36 and also plastically deformed by the second gear pair 38 has a characteristic that it includes a wave component that vibrates in the Y direction and a wave component that vibrates in the Z direction. Have. This portion is the second peculiar portion 6.
  • a portion of the busbar 34 that is not plastically deformed by the first gear pair 36 but plastically deformed by the second gear pair 38 has a wave shape that vibrates in the Z direction. This portion is the third baffle portion 8.
  • the portion of the busbar 34 that is not plastically deformed by the first gear pair 36 and is not plastically deformed by the second gear pair 38 does not have a wave shape. This portion is the straight portion 10.
  • Example 1 The saw wire shown in FIGS. 1-8 was manufactured. The specifications of this saw wire are shown in Table 1 below. This saw wire is made of brass plated carbon steel.
  • Example 2 A saw wire of Example 2 was obtained in the same manner as in Example 1 except that the straight portion was not provided.
  • Example 3 A saw wire of Example 3 was obtained in the same manner as in Example 1 except that the third brace was not provided.
  • Example 4 A saw wire of Example 4 was obtained in the same manner as in Example 1 except that the straight portion and the third squeezing portion were not provided.
  • Comparative Example 1 A saw wire of Comparative Example 1 was obtained in the same manner as in Example 1 except that only the second gusset portion was provided.
  • the saw wire of the example is evaluated better than the saw wire of the comparative example. From this evaluation result, the superiority of the present invention is clear.
  • the saw wire according to the present invention can be used for cutting various articles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A saw wire 2 according to the present invention comprises a first kinked section 4, a second kinked section 6, a third kinked section 8, and a straight section 10. The first kinked section 4 has the shape of a wave oscillating in a plane. The second kinked section 6 has kinks including a first wave component that oscillates in a plane, and a second wave component that oscillates in a plane different from the plane of the first wave component. The third kinked section 6 has the shape of a wave that oscillates in a plane different from the plane the first kinked section 4. The straight section 10 does not have a wave shape. The oscillation direction of the first wave component substantially matches the oscillation direction of the wave in the first kinked section. The oscillation direction of the second wave component substantially matches the oscillation direction of the wave in the third kinked section.

Description

ソーワイヤSaw wire
 本発明は、ソーワイヤに関する。詳細には、本発明は、ソーワイヤのくせ付けの改良に関する。 The present invention relates to saw wire. In particular, the present invention relates to improving the squirting of saw wires.
 半導体インゴットのスライスに、ソーワイヤが用いられている。スライスにより、ウエハが得られる。固定砥粒式のソーワイヤ及び遊離砥粒式のソーワイヤが、使用されている。固定砥粒式のソーワイヤは、切削効率に優れる。しかし、固定砥粒式のソーワイヤで得られた切削面は、寸法精度に劣る。ウエハの性能の観点から、遊離砥粒式のソーワイヤが有利である。 Saw wire is used for slicing semiconductor ingots. A wafer is obtained by slicing. Fixed-abrasive saw wires and loose-abrasive saw wires have been used. The fixed-abrasive saw wire has excellent cutting efficiency. However, the cutting surface obtained by the fixed-abrasive saw wire has poor dimensional accuracy. From the viewpoint of wafer performance, a free-abrasive saw wire is advantageous.
 遊離砥粒式のソーワイヤでは、スライスに先だってこのソーワイヤにスラリーが吹き付けられる。このスラリーは、砥粒を含んでいる。ソーワイヤの走行により、砥粒はインゴットとソーワイヤとの間に引き込まれる。この砥粒の移動によってインゴットが切削され、スライスが達成される。多くの砥粒を引き込みうるソーワイヤは、切削効率に優れる。多くの砥粒を引き込みうるソーワイヤは、切削面の寸法精度にも寄与しうる。 With a loose-abrasive saw wire, slurry is sprayed onto this saw wire prior to slicing. This slurry contains abrasive grains. The traveling of the saw wire causes the abrasive grains to be drawn between the ingot and the saw wire. The movement of the abrasive grains cuts the ingot to achieve slicing. A saw wire that can draw in many abrasive grains has excellent cutting efficiency. The saw wire that can draw in many abrasive grains can also contribute to the dimensional accuracy of the cutting surface.
 特開2004-276207公報には、くせ付けされたソーワイヤが開示されている。このくせは、波形状を有する。波は、山と谷とを有する。砥粒は谷に補足され、インゴットの内部を進行する。このソーワイヤは、多くの砥粒を引き込みうる。 Japanese Unexamined Patent Application Publication No. 2004-276207 discloses a stiff saw wire. This habit has a wavy shape. The wave has peaks and valleys. Abrasive grains are trapped in the valleys and travel inside the ingot. This saw wire can pull in many abrasive grains.
 同様のくせ付けがなされたソーワイヤが、特表2008-519698公報に開示されている。このソーワイヤは、2の波を有する。一方の波の振動方向は、他方の波の振動方向とは異なる。 A similar sewn wire is disclosed in Japanese Patent Publication No. 2008-519698. This saw wire has two waves. The vibration direction of one wave is different from the vibration direction of the other wave.
特開2004-276207公報Japanese Patent Laid-Open No. 2004-276207 特表2008-519698公報Special table 2008-519698
 ソーワイヤの切削効率の向上が、望まれている。切削面の精度のさらなる向上も、望まれている。本発明の目的は、これらの要望に応えうるソーワイヤの提供にある。 Improvement of cutting efficiency of saw wire is desired. Further improvement in the accuracy of the cutting surface is also desired. An object of the present invention is to provide a saw wire that can meet these demands.
 本発明に係るソーワイヤは、第一くせ付け部と第二くせ付け部とを有する。第一くせ付け部は、平面において振動する波の形状を有する。第二くせ付け部は、平面において振動する第一波成分と、この第一波成分の平面とは異なる平面で振動する第二波成分とを含むくせを有する。 The saw wire according to the present invention has a first squeezing portion and a second squeezing portion. The first baffle portion has a wave shape that oscillates in a plane. The second peculiar portion has a peculiarity that includes a first wave component that vibrates in a plane and a second wave component that vibrates in a plane different from the plane of the first wave component.
 好ましくは、第二波成分の振動方向は、第一波成分の振動方向と実質的に垂直である。 Preferably, the vibration direction of the second wave component is substantially perpendicular to the vibration direction of the first wave component.
 第一くせ付け部において、山と谷とは交互に並びうる。好ましくは、1つの第一くせ付け部における山の数は、5以上300以下である。 In the first habituation section, mountains and valleys can alternate. Preferably, the number of peaks in one first squeezing portion is 5 or more and 300 or less.
 第二くせ付け部の第一波成分において、山と谷とは交互に並びうる。好ましくは、1つの第二くせ付け部における第一波成分の山の数は、5以上300以下である。 In the first wave component of the second habitual part, peaks and valleys can be arranged alternately. Preferably, the number of peaks of the first wave component in one second squeezing portion is 5 or more and 300 or less.
 第二くせ付け部の第二波成分において、山と谷とは交互に並びうる。好ましくは、1つの第二くせ付け部における第二波成分の山の数は、5以上300以下である。 In the second wave component of the second habitual part, peaks and valleys can be arranged alternately. Preferably, the number of peaks of the second wave component in one second squeezing portion is 5 or more and 300 or less.
 好ましくは、ソーワイヤは、第三くせ付け部をさらに備える。この第三くせ付け部は、第一くせ付け部の平面とは異なる平面において振動する波の形状を有する。 Preferably, the saw wire further includes a third baffle portion. The third peculiar portion has a wave shape that oscillates in a plane different from the plane of the first peculiar portion.
 好ましくは、第三くせ付け部における波の振動方向は、第一くせ付け部における波の振動方向と実質的に垂直である。 Preferably, the vibration direction of the waves in the third peculiar portion is substantially perpendicular to the vibration direction of the waves in the first peculiar portion.
 好ましくは、第一波成分の振動方向は第一くせ付け部における波の振動方向と実質的に一致し、第二波成分の振動方向は第三くせ付け部における波の振動方向と実質的に一致する。 Preferably, the vibration direction of the first wave component is substantially the same as the vibration direction of the wave in the first squeezing portion, and the vibration direction of the second wave component is substantially the same as the vibration direction of the wave in the third squeezing portion. Match.
 第三くせ付け部において、山と谷とは交互に並びうる。1つの第三くせ付け部における山の数は、5以上300以下である。 In the third setting section, mountains and valleys can be arranged alternately. The number of peaks in one third quirky portion is 5 or more and 300 or less.
 好ましくは、ソーワイヤは、ストレート部をさらに備える。 Preferably, the saw wire further includes a straight portion.
 本発明に係るソーワイヤは2以上のくせ付け部を有するので、砥粒の引き込み性能に優れている。このソーワイヤにより、効率のよい切削がなされうる。このソーワイヤにより、寸法精度のよい切削面が得られる。 Since the saw wire according to the present invention has two or more squeezing portions, it has excellent abrasive grain drawing performance. With this saw wire, efficient cutting can be performed. With this saw wire, a cutting surface with good dimensional accuracy can be obtained.
図1(a)は本発明の一実施形態に係るソーワイヤの一部が示された正面図であり、図1(b)は図1(a)のソーワイヤが示された平面図である。1A is a front view showing a part of a saw wire according to an embodiment of the present invention, and FIG. 1B is a plan view showing the saw wire of FIG. 1A. 図2は、図1のソーワイヤの第一くせ付け部が示された拡大右側面図である。FIG. 2 is an enlarged right side view showing the first gusset portion of the saw wire of FIG. 1. 図3は、図2の第一くせ付け部の一部が示された拡大正面図である。FIG. 3 is an enlarged front view showing a part of the first baffle portion of FIG. 2. 図4は、図1のソーワイヤの第二くせ付け部の一部が示された拡大右側面図である。FIG. 4 is an enlarged right side view showing a part of the second squeezing portion of the saw wire of FIG. 1. 図5は、図4の第二くせ付け部の第一波成分が示された模式図である。FIG. 5 is a schematic diagram showing the first wave component of the second squeezing portion of FIG. 図6は、図4の第二くせ付け部の第二波成分が示された模式図である。FIG. 6 is a schematic diagram showing the second wave component of the second squeezing portion of FIG. 図4は、図1のソーワイヤの第三くせ付け部が示された拡大右側面図である。FIG. 4 is an enlarged right side view showing the third brace portion of the saw wire of FIG. 1. 図8は、図7の第三くせ付け部の一部が示された拡大正面図である。FIG. 8 is an enlarged front view showing a part of the third baffle portion of FIG. 7. 図9は、図1のソーワイヤのためのくせ付け装置の一部が示された模式図である。FIG. 9 is a schematic view showing a part of the brace device for the saw wire of FIG. 1.
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。 Hereinafter, the present invention will be described in detail based on preferred embodiments with reference to the drawings as appropriate.
 図1(a)及び(b)並びに図2に、ソーワイヤ2が示されている。図1(a)において、上下方向(Y方向)は鉛直方向であり、左右方向(X方向)は水平方向である。図1(b)において、上下方向(Z方向)は水平方向であり、左右方向(X方向)も水平方向である。X方向は、このソーワイヤ2の長さ方向でもある。このソーワイヤ2は、ソーマシンに装着されて、図1(a)の左向きに走行する。 The saw wire 2 is shown in FIGS. 1 (a) and (b) and FIG. 2. In FIG. 1A, the vertical direction (Y direction) is the vertical direction, and the horizontal direction (X direction) is the horizontal direction. In FIG. 1B, the vertical direction (Z direction) is the horizontal direction, and the horizontal direction (X direction) is also the horizontal direction. The X direction is also the length direction of the saw wire 2. The saw wire 2 is attached to a saw machine and runs leftward in FIG.
 このソーワイヤ2は、第一くせ付け部4、第二くせ付け部6、第三くせ付け部8及びストレート部10を有している。第二くせ付け部6は、第一くせ付け部4よりも下流に位置している。第三くせ付け部8は、第二くせ付け部6よりも下流に位置している。ストレート部10は、第三くせ付け部8よりも下流に位置している。第一くせ付け部4、第二くせ付け部6、第三くせ付け部8及びストレート部10が、1つのサイクルを形成している。このソーワイヤ2では、長さ方向に沿って複数のサイクルが規則的に配置されている。複数の第一くせ付け部4、複数の第二くせ付け部6、複数の第三くせ付け部8及び複数のストレート部10が、不規則に配置されてもよい。 The saw wire 2 has a first squeezing portion 4, a second squeezing portion 6, a third squeezing portion 8 and a straight portion 10. The second peculiar portion 6 is located downstream of the first peculiar portion 4. The third peculiar portion 8 is located downstream of the second peculiar portion 6. The straight portion 10 is located downstream of the third straightening portion 8. The first squeezing portion 4, the second squeezing portion 6, the third squeezing portion 8 and the straight portion 10 form one cycle. In the saw wire 2, a plurality of cycles are regularly arranged along the length direction. The plurality of first squeezing portions 4, the plurality of second squeezing portions 6, the plurality of third squeezing portions 8, and the plurality of straight portions 10 may be arranged irregularly.
 図2には、第一くせ付け部4が示されている。第一くせ付け部4は、波の形状を有する。図1(a)及び(b)並びに図2を併せて参照すれば明らかな通り、第一くせ付け部4の波は、X-Y平面において振動している。この波は、他の平面では振動していない。この波は、二次元の波である。この波は、一定波長で振動している。この波の振動方向は、Y方向である。 FIG. 2 shows the first baffle unit 4. The first squeezing portion 4 has a wave shape. As is clear from referring to FIGS. 1A and 1B and FIG. 2 together, the wave of the first squeezing portion 4 vibrates in the XY plane. This wave is not oscillating in other planes. This wave is a two-dimensional wave. This wave oscillates at a constant wavelength. The vibration direction of this wave is the Y direction.
 図3は、図1(a)のソーワイヤ2の第一くせ付け部4の一部が示された拡大正面図である。前述の通り、第一くせ付け部4の形状は、Y方向に振動する波である。第一くせ付け部4は、山12と谷14とを有している。多数の山12と多数の谷14とが、交互に並んでいる(図1(a)も参照)。第一くせ付け部4は、山12又は谷14に砥粒を補足し、切削面へと引き込む。1つの第一くせ付け部4における山12の数は、5以上300以下が好ましく、10以上200以下が好ましい。谷14の数は、山12の数とほぼ同じである。 3 is an enlarged front view showing a part of the first squeezing portion 4 of the saw wire 2 of FIG. 1 (a). As described above, the shape of the first baffle portion 4 is a wave that vibrates in the Y direction. The first peculiar portion 4 has a mountain 12 and a valley 14. A large number of peaks 12 and a large number of valleys 14 are alternately arranged (see also FIG. 1A). The first peculiarizing portion 4 supplements the ridges 12 or the valleys 14 with abrasive grains and draws them into the cutting surface. The number of peaks 12 in one first squeezing portion 4 is preferably 5 or more and 300 or less, and more preferably 10 or more and 200 or less. The number of valleys 14 is approximately the same as the number of peaks 12.
 図3において、矢印WL1で示されているのは波長であり、矢印WH1で示されているのは波高である。波長WL1は0.2mm以上50mm以下が好ましく、0.3mm以上40mm以下が特に好ましい。波高WH1は0.10mm以上0.25mm以下が好ましく、0.11mm以上0.20mm以下が特に好ましい。 In FIG. 3, the arrow WL1 indicates the wavelength, and the arrow WH1 indicates the wave height. The wavelength WL1 is preferably 0.2 mm or more and 50 mm or less, and particularly preferably 0.3 mm or more and 40 mm or less. The wave height WH1 is preferably 0.10 mm or more and 0.25 mm or less, and particularly preferably 0.11 mm or more and 0.20 mm or less.
 好ましくは、波長WL1は、下記の数式を満たす。
  1.1 * Di ≦ WL1 ≦ 50 * Di
この数式においてDiは、線径を表す(図2参照)。換言すれば、波長WL1は、線径Diの1.1倍以上50倍以下である。好ましくは、波長WL1は、線径Diの3倍以上40倍以下である。
Preferably, the wavelength WL1 satisfies the following formula.
1.1 * Di ≤ WL1 ≤ 50 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 2). In other words, the wavelength WL1 is 1.1 times or more and 50 times or less the wire diameter Di. Preferably, the wavelength WL1 is 3 times or more and 40 times or less of the wire diameter Di.
 好ましくは、波高WH1は、下記の数式を満たす。
  1.05 * Di ≦ WH1 ≦ 5 * Di
この数式においてDiは、線径を表す(図2参照)。換言すれば、波高WH1は、線径Diの1.05倍以上5倍以下である。好ましくは、波高WH1は、線径Diの1.10倍以上3倍以下である。
Preferably, the wave height WH1 satisfies the following mathematical formula.
1.05 * Di ≤ WH1 ≤ 5 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 2). In other words, the wave height WH1 is 1.05 times or more and 5 times or less the wire diameter Di. Preferably, the wave height WH1 is 1.10 times or more and 3 times or less of the wire diameter Di.
 図4は、図1のソーワイヤ2の第二くせ付け部6の一部が示された拡大右側面図である。第二くせ付け部6は、波状のくせを有している。このくせは、図4に模式的に示された、第一波成分16及び第二波成分18が複合された形状を有する。換言すれば、第二くせ付け部6では、ソーワイヤ2の長さ方向に沿って、第一波成分16の振動及び第二波成分18の振動が、同時に進行する。くせが、3以上の波成分が複合された形状を有してもよい。 FIG. 4 is an enlarged right side view showing a part of the second squeezing portion 6 of the saw wire 2 of FIG. The second peculiar portion 6 has a wavy peculiarity. This habit has a shape in which the first wave component 16 and the second wave component 18 are compounded, which is schematically shown in FIG. In other words, in the second brace 6, the vibration of the first wave component 16 and the vibration of the second wave component 18 simultaneously proceed along the length direction of the saw wire 2. The habit may have a shape in which three or more wave components are combined.
 図5には、第一波成分16が模式的に示されている。図4及び5から明らかな通り、第一波成分16は、X-Y平面において、振動している。第一波成分16は、他の平面では振動していない。第一波成分16は、二次元の波である。第一波成分16は、一定波長で振動している。第一波成分16の波の振動方向は、Y方向である。第一波成分16の波の振動方向は、第一くせ付け部4の波振動方向と一致している。第一波成分16の波の振動方向が、第一くせ付け部4の波振動方向と異なってもよい。 The first wave component 16 is schematically shown in FIG. As is clear from FIGS. 4 and 5, the first wave component 16 is oscillating in the XY plane. The first wave component 16 does not vibrate on other planes. The first wave component 16 is a two-dimensional wave. The first wave component 16 vibrates at a constant wavelength. The vibration direction of the wave of the first wave component 16 is the Y direction. The vibration direction of the wave of the first wave component 16 coincides with the wave vibration direction of the first squeezing portion 4. The vibration direction of the wave of the first wave component 16 may be different from the vibration direction of the wave of the first inclining portion 4.
 図5に示されるように、第一波成分16は、多数の山20と多数の谷22とを有している。これらの山20及び谷22は、X方向に沿って交互に配置されている。ソーワイヤ2は、第一波成分16の山20又は谷22において砥粒を補足し、切削面へと引き込む。1つの第二くせ付け部6における、第一波成分16の山20の数は、5以上300以下が好ましく、10以上200以下が好ましい。谷22の数は、山20の数とほぼ同じである。図5において、矢印WL21は第一波成分16の波長を表し、矢印WH21は第一波成分16の波高を表す。 As shown in FIG. 5, the first wave component 16 has many peaks 20 and many valleys 22. These peaks 20 and valleys 22 are alternately arranged along the X direction. The saw wire 2 captures the abrasive grains at the peaks 20 or the valleys 22 of the first wave component 16 and draws them into the cutting surface. The number of peaks 20 of the first wave component 16 in one second squeezing portion 6 is preferably 5 or more and 300 or less, and more preferably 10 or more and 200 or less. The number of valleys 22 is almost the same as the number of peaks 20. In FIG. 5, arrow WL21 represents the wavelength of the first wave component 16, and arrow WH21 represents the wave height of the first wave component 16.
 好ましくは、第一波成分16の波長WL21は、下記の数式を満たす。
  1.1 * Di ≦ WL21 ≦ 50 * Di
この数式においてDiは、線径を表す(図4参照)。換言すれば、第一波成分16の波長WL21は、線径Diの1.1倍以上50倍以下である。好ましくは、波長WL21は、線径Diの3倍以上40倍以下である。
Preferably, the wavelength WL21 of the first wave component 16 satisfies the following formula.
1.1 * Di ≤ WL21 ≤ 50 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 4). In other words, the wavelength WL21 of the first wave component 16 is 1.1 times or more and 50 times or less the wire diameter Di. Preferably, the wavelength WL21 is 3 times or more and 40 times or less of the wire diameter Di.
 好ましくは、第一波成分16の波高WH21は、下記の数式を満たす。
  1.05 * Di ≦ WH21 ≦ 5 * Di
この数式においてDiは、線径を表す(図4参照)。換言すれば、第一波成分16の波高WH21は、線径Diの1.05倍以上5倍以下である。好ましくは、波高WH21は、線径Diの1.10倍以上3倍以下である。
Preferably, the wave height WH21 of the first wave component 16 satisfies the following formula.
1.05 * Di ≦ WH21 ≦ 5 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 4). In other words, the wave height WH21 of the first wave component 16 is 1.05 times or more and 5 times or less the wire diameter Di. Preferably, the wave height WH21 is 1.10 times or more and 3 times or less of the wire diameter Di.
 図6には、第二波成分18が模式的に示されている。図4及び6から明らかな通り、第二波成分18は、X-Z平面において、振動している。第二波成分18は、他の平面では振動していない。第二波成分18は、二次元の波である。第二波成分18は、一定波長で振動している。第二波成分18の波の振動方向は、Z方向である。第二波成分18の振動方向は、第一波成分16の振動方向と異なる。本実施形態では、第一波成分16の振動方向は、第二波成分18の振動方向と実質的に垂直である。換言すれば、第二波成分18の振動方向の、第一波成分16の振動方向に対する角度θ21-22は、90°である(図4参照)。角度θ21-22が90°以外の値であってもよい。角度θ21-22は、20°以上160°以下が好ましく、30°以上150°以下が特に好ましい。 The second wave component 18 is schematically shown in FIG. As is clear from FIGS. 4 and 6, the second wave component 18 is oscillating in the XZ plane. The second wave component 18 does not vibrate on other planes. The second wave component 18 is a two-dimensional wave. The second wave component 18 vibrates at a constant wavelength. The vibration direction of the wave of the second wave component 18 is the Z direction. The vibration direction of the second wave component 18 is different from the vibration direction of the first wave component 16. In the present embodiment, the vibration direction of the first wave component 16 is substantially perpendicular to the vibration direction of the second wave component 18. In other words, the angle θ 21-22 of the vibration direction of the second wave component 18 with respect to the vibration direction of the first wave component 16 is 90 ° (see FIG. 4). The angle θ 21-22 may be a value other than 90 °. The angle θ 21-22 is preferably 20 ° or more and 160 ° or less, and particularly preferably 30 ° or more and 150 ° or less.
 図6に示されるように、第二波成分18は、多数の山24と多数の谷26とを有している。これらの山24及び谷26は、X方向に沿って交互に配置されている。ソーワイヤ2は、第二波成分18の山24又は谷26において砥粒を補足し、切削面へと引き込む。1つの第二くせ付け部6における、第二波成分18の山24の数は、5以上300以下が好ましく、10以上200以下が好ましい。谷26の数は、山24の数とほぼ同じである。図6において、矢印WL22は第二波成分18の波長を表し、矢印WH22は第二波成分18の波高を表す。 As shown in FIG. 6, the second wave component 18 has many peaks 24 and many valleys 26. These peaks 24 and valleys 26 are alternately arranged along the X direction. The saw wire 2 captures the abrasive grains at the peaks 24 or the valleys 26 of the second wave component 18 and draws them into the cutting surface. The number of peaks 24 of the second wave component 18 in one second squeezing portion 6 is preferably 5 or more and 300 or less, and preferably 10 or more and 200 or less. The number of valleys 26 is approximately the same as the number of peaks 24. In FIG. 6, the arrow WL22 represents the wavelength of the second wave component 18, and the arrow WH22 represents the wave height of the second wave component 18.
 好ましくは、第二波成分18の波長WL22は、下記の数式を満たす。
  1.1 * Di ≦ WL22 ≦ 50 * Di
この数式においてDiは、線径を表す(図4参照)。換言すれば、第二波成分18の波長WL22は、線径Diの1.1倍以上50倍以下である。好ましくは、波長WL22は、線径Diの3倍以上40倍以下である。
Preferably, the wavelength WL22 of the second wave component 18 satisfies the following formula.
1.1 * Di ≤ WL22 ≤ 50 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 4). In other words, the wavelength WL22 of the second wave component 18 is 1.1 times or more and 50 times or less of the wire diameter Di. Preferably, the wavelength WL22 is 3 times or more and 40 times or less of the wire diameter Di.
 好ましくは、第二波成分18の波高WH22は、下記の数式を満たす。
  1.05 * Di ≦ WH22 ≦ 5 * Di
この数式においてDiは、線径を表す(図4参照)。換言すれば、第二波成分18の波高WH22は、線径Diの1.05倍以上5倍以下である。好ましくは、波高WH22は、線径Diの1.10倍以上3倍以下である。
Preferably, the wave height WH22 of the second wave component 18 satisfies the following mathematical formula.
1.05 * Di ≤ WH22 ≤ 5 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 4). In other words, the wave height WH22 of the second wave component 18 is 1.05 times or more and 5 times or less the wire diameter Di. Preferably, the wave height WH22 is 1.10 times or more and 3 times or less of the wire diameter Di.
 第二波成分18の波長WL22が、第一波成分16の波長WL21と同じであってもよい。波長WL22が、波長WL21と異なってもよい。第二波成分18の波高WH22が、第一波成分16の波高WH21と同じであってもよい。波高WH22が、波高WH21と異なってもよい。 The wavelength WL22 of the second wave component 18 may be the same as the wavelength WL21 of the first wave component 16. The wavelength WL22 may be different from the wavelength WL21. The wave height WH22 of the second wave component 18 may be the same as the wave height WH21 of the first wave component 16. The wave height WH22 may be different from the wave height WH21.
 第一波成分16及び第二波成分18は、前述の通り、二次元の波である。第一波成分16及び第二波成分18が複合することで、三次元の波が形成される。このソーワイヤ22の第二くせ付け部6のくせは、三次元形状を有する。 The first wave component 16 and the second wave component 18 are two-dimensional waves as described above. A three-dimensional wave is formed by combining the first wave component 16 and the second wave component 18. The habit of the second compliant portion 6 of the saw wire 22 has a three-dimensional shape.
 図7には、第三くせ付け部8が示されている。第三くせ付け部8は、波の形状を有する。図1(a)及び(b)並びに図7を併せて参照すれば明らかな通り、第三くせ付け部8の波は、X-Z平面において振動している。この波は、他の平面では振動していない。この波は、二次元の波である。この波は、一定波長で振動している。この波の振動方向は、Z方向である。この振動方向は、第一くせ付け部4の波の振動方向と異なる。この振動方向は、第一くせ付け部4の波の振動方向と実質的に垂直である。換言すれば、第三くせ付け部8の波の振動方向が、第一くせ付け部4の波の振動方向に対してなす角度θ1-3は、90°である。角度θ1-3が90°以外の値であってもよい。角度θ1-3は、20°以上160°以下が好ましく、30°以上150°以下が特に好ましい。 FIG. 7 shows the third baffle portion 8. The third peculiar portion 8 has a wave shape. As will be apparent with reference to FIGS. 1A and 1B and FIG. 7 together, the wave of the third inclining portion 8 vibrates in the XZ plane. This wave is not oscillating in other planes. This wave is a two-dimensional wave. This wave oscillates at a constant wavelength. The vibration direction of this wave is the Z direction. This vibrating direction is different from the vibrating direction of the wave of the first baffle portion 4. This vibrating direction is substantially perpendicular to the vibrating direction of the waves of the first baffle portion 4. In other words, the angle θ 1-3 formed by the vibration direction of the wave of the third peculiar portion 8 with respect to the vibration direction of the wave of the first peculiar portion 4 is 90 °. The angle θ 1-3 may be a value other than 90 °. The angle θ 1-3 is preferably 20 ° or more and 160 ° or less, and particularly preferably 30 ° or more and 150 ° or less.
 第三くせ付け部8の波の振動方向は、第二波成分の波の振動方向と一致している。第三くせ付け部8の波の振動方向が、第二波成分の波の振動方向と異なってもよい。 The vibration direction of the wave of the third squeezing unit 8 matches the vibration direction of the wave of the second wave component. The vibration direction of the wave of the third baffle portion 8 may be different from the vibration direction of the wave of the second wave component.
 図8は、図7の第三くせ付け部8の一部が示された拡大正面図である。前述の通り、第三くせ付け部8の形状は、Z方向に振動する波である。第三くせ付け部8は、山28と谷30とを有している。多数の山28と多数の谷30とが、交互に並んでいる(図1(b)も参照)。第三くせ付け部8は、山28又は谷30に砥粒を補足し、切削面へと引き込む。1つの第三くせ付け部8における山28の数は、5以上300以下が好ましく、10以上200以下が好ましい。谷30の数は、山28の数とほぼ同じである。 FIG. 8 is an enlarged front view showing a part of the third gusseted portion 8 of FIG. 7. As described above, the shape of the third baffle portion 8 is a wave vibrating in the Z direction. The third peculiar portion 8 has a mountain 28 and a valley 30. A large number of peaks 28 and a large number of valleys 30 are alternately arranged (see also FIG. 1B). The third peculiar portion 8 supplements the ridges 28 or the valleys 30 with the abrasive grains and draws them into the cutting surface. The number of peaks 28 in one third squeezing portion 8 is preferably 5 or more and 300 or less, and more preferably 10 or more and 200 or less. The number of valleys 30 is approximately the same as the number of peaks 28.
 図8において、矢印WL3で示されているのは波長であり、矢印WH3で示されているのは波高である。波長WL3は0.2mm以上50mm以下が好ましく、0.3mm以上40mm以下が特に好ましい。波高WH3は0.10mm以上0.25mm以下が好ましく、0.11mm以上0.20mm以下が特に好ましい。 In FIG. 8, the arrow WL3 indicates the wavelength, and the arrow WH3 indicates the wave height. The wavelength WL3 is preferably 0.2 mm or more and 50 mm or less, and particularly preferably 0.3 mm or more and 40 mm or less. The wave height WH3 is preferably 0.10 mm or more and 0.25 mm or less, and particularly preferably 0.11 mm or more and 0.20 mm or less.
 好ましくは、波長WL3は、下記の数式を満たす。
  1.1 * Di ≦ WL3 ≦ 50 * Di
この数式においてDiは、線径を表す(図7参照)。換言すれば、波長WL3は、線径Diの1.1倍以上50倍以下である。好ましくは、波長WL3は、線径Diの3倍以上40倍以下である。
Preferably, the wavelength WL3 satisfies the following formula.
1.1 * Di ≤ WL3 ≤ 50 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 7). In other words, the wavelength WL3 is 1.1 times or more and 50 times or less of the wire diameter Di. Preferably, the wavelength WL3 is 3 times or more and 40 times or less of the wire diameter Di.
 好ましくは、波高WH3は、下記の数式を満たす。
  1.05 * Di ≦ WH3 ≦ 5 * Di
この数式においてDiは、線径を表す(図7参照)。換言すれば、波高WH3は、線径Diの1.05倍以上5倍以下である。好ましくは、波高WH3は、線径Diの1.10倍以上3倍以下である。
Preferably, the wave height WH3 satisfies the following formula.
1.05 * Di ≤ WH3 ≤ 5 * Di
In this mathematical formula, Di represents the wire diameter (see FIG. 7). In other words, the wave height WH3 is 1.05 times or more and 5 times or less the wire diameter Di. Preferably, the wave height WH3 is 1.10 times or more and 3 times or less of the wire diameter Di.
 第三くせ付け部8の波長WL3が、第一くせ付け部4の波長WL1と同じであってもよい。波長WL3が波長WL1と異なってもよい。第三くせ付け部8の波高WH3が、第一くせ付け部4の波高WH1と同じであってもよい。波高WH3が波高WH1と異なってもよい。ソーワイヤ2が、第三くせ付け部8を有さなくてもよい。第三くせ付け部8を有さないソーワイヤ2は、第一くせ付け部4及び第二くせ付け部6の、2種のくせ付け部を有する。ソーワイヤ2が、4種以上のくせ付け部を有してもよい。 The wavelength WL3 of the third squeezing unit 8 may be the same as the wavelength WL1 of the first squeezing unit 4. The wavelength WL3 may be different from the wavelength WL1. The wave height WH3 of the third peculiarizing portion 8 may be the same as the wave height WH1 of the first peculiarizing portion 4. The wave height WH3 may be different from the wave height WH1. The saw wire 2 may not have the third baffle portion 8. The saw wire 2 that does not have the third peculiar part 8 has two kinds of peculiar parts, that is, the first peculiar part 4 and the second peculiar part 6. The saw wire 2 may have four or more types of compliant parts.
 このソーワイヤ2では、複数種類のくせ付け部が、砥粒を引き込む。これらのくせ付け部が互いに異なるくせを有するので、多くの砥粒が引き込まれる。しかも、これらの砥粒が偏りなく引き込まれうる。このソーワイヤ2により、優れた切削効率が達成されうる。このソーワイヤ2は、切削面の寸法精度にも寄与しうる。 In this saw wire 2, plural kinds of squeezing parts draw in the abrasive grains. Since these knuckles have different habits, many abrasive grains are drawn in. Moreover, these abrasive grains can be evenly drawn. With this saw wire 2, excellent cutting efficiency can be achieved. The saw wire 2 can also contribute to the dimensional accuracy of the cut surface.
 ストレート部10は、波の形状を有さない。ストレート部10を有するソーワイヤ2の形態は、全体として変化に富む。このストレート部10も、砥粒の引き込みに寄与しうる。ソーワイヤ2がストレート部10を有さなくてもよい。図1(b)において矢印Lmで示されているのは、ストレート部10の長さである。長さは5mm以上50mm以下が好ましく、10mm以上40mm以下が好ましい。 The straight part 10 does not have a wave shape. The form of the saw wire 2 having the straight portion 10 is varied as a whole. This straight portion 10 can also contribute to the drawing of the abrasive grains. The saw wire 2 may not have the straight portion 10. What is indicated by an arrow Lm in FIG. 1B is the length of the straight portion 10. The length is preferably 5 mm or more and 50 mm or less, and preferably 10 mm or more and 40 mm or less.
 本実施形態では、ストレート部10は、第一くせ付け部4と第三くせ付け部8とに挟まれている。ストレート部10が、第一くせ付け部4と第二くせ付け部6とに挟まれてもよい。ストレート部10が、第二くせ付け部6と第三くせ付け部8とに挟まれてもよい。ストレート部10が、2つの第一くせ付け部4に挟まれてもよい。ストレート部10が、2つの第二くせ付け部6に挟まれてもよい。ストレート部10が、2つの第三くせ付け部8に挟まれてもよい。ソーワイヤ2が、ストレート部10を有さなくてもよい。 In the present embodiment, the straight portion 10 is sandwiched between the first squeezing portion 4 and the third squeezing portion 8. The straight portion 10 may be sandwiched between the first squeezing portion 4 and the second squeezing portion 6. The straight portion 10 may be sandwiched between the second squeezing portion 6 and the third squeezing portion 8. The straight portion 10 may be sandwiched between the two first brace portions 4. The straight portion 10 may be sandwiched between the two second gusset portions 6. The straight portion 10 may be sandwiched between the two third straightening portions 8. The saw wire 2 may not have the straight portion 10.
 ソーワイヤ2の線径Diは、0.05mm以上1.00mm以下が好ましく、0.10mm以上0.20mm以下が特に好ましい。このソーワイヤ2の材質は、金属である。典型的な金属は、炭素鋼である。炭素鋼からなる主部の表面に、ブラスメッキが施されたソーワイヤ2が好ましい。 The wire diameter Di of the saw wire 2 is preferably 0.05 mm or more and 1.00 mm or less, and particularly preferably 0.10 mm or more and 0.20 mm or less. The material of the saw wire 2 is metal. A typical metal is carbon steel. The saw wire 2 in which the surface of the main part made of carbon steel is plated with brass is preferable.
 図9は、図1のソーワイヤ2のためのくせ付け装置32の一部が示された模式図である。図9には、ソーワイヤ2のための母線34も示されている。母線34は、図9における矢印Aの方向に進行する。このくせ付け装置は、第一歯車対36及び第二歯車対38を有している。第二歯車対38は、第一歯車対36よりも下流に位置している。第二歯車対38の軸方向は、第一歯車対36の軸方向とは異なっている。第二歯車対38の軸方向の、第一歯車対36の軸方向に対する角度は、20°以上160°以下が好ましく、30°以上150°以下が特に好ましい。本実施形態では、この角度は、90°である。 FIG. 9 is a schematic diagram showing a part of the habituating device 32 for the saw wire 2 of FIG. 1. The busbar 34 for the saw wire 2 is also shown in FIG. The bus bar 34 travels in the direction of arrow A in FIG. The squeezing device has a first gear pair 36 and a second gear pair 38. The second gear pair 38 is located downstream of the first gear pair 36. The axial direction of the second gear pair 38 is different from the axial direction of the first gear pair 36. The angle of the axial direction of the second gear pair 38 with respect to the axial direction of the first gear pair 36 is preferably 20 ° or more and 160 ° or less, and particularly preferably 30 ° or more and 150 ° or less. In this embodiment, this angle is 90 °.
 第一歯車対36は、上歯車40及び下歯車42からなる。上歯車40は、歯部44と空虚部46とからなる。歯部44には、多数の歯48が刻まれている。空虚部46は、歯48を有していない。下歯車42も、歯部44と空虚部46とからなる。歯部44には、多数の歯48が刻まれている。空虚部46は、歯48を有していない。下歯車42の歯部44は、上歯車40の歯部44に対応する位置にある。従って、下歯車42の歯部44は、下歯車42の歯部44と噛み合う。下歯車42の空虚部46は、上歯車40の空虚部46に対応する位置にある。第一歯車対36が回転すると、上歯車40と下歯車42とのニップには、歯部44と空虚部46とが交互に表れる。 The first gear pair 36 includes an upper gear 40 and a lower gear 42. The upper gear 40 includes a tooth portion 44 and an empty portion 46. A large number of teeth 48 are carved on the tooth portion 44. The hollow portion 46 does not have the tooth 48. The lower gear 42 also includes a tooth portion 44 and an empty portion 46. A large number of teeth 48 are carved on the tooth portion 44. The hollow portion 46 does not have the tooth 48. The tooth portion 44 of the lower gear 42 is located at a position corresponding to the tooth portion 44 of the upper gear 40. Therefore, the tooth portion 44 of the lower gear 42 meshes with the tooth portion 44 of the lower gear 42. The empty part 46 of the lower gear 42 is at a position corresponding to the empty part 46 of the upper gear 40. When the first gear pair 36 rotates, tooth portions 44 and empty portions 46 alternate in the nip between the upper gear 40 and the lower gear 42.
 第二歯車対38は、左歯車50及び右歯車からなる。図9では、右歯車は示されていない。右歯車は、左歯車50に隠れている。左歯車50は、歯部44と空虚部46とからなる。歯部44には、多数の歯48が刻まれている。空虚部46は、歯48を有していない。図示されていないが、右歯車も、左歯車50と同様、歯部44と空虚部46とからなる。歯部44には、多数の歯48が刻まれている。空虚部46は、歯48を有していない。右歯車の歯部44は、左歯車50の歯部44に対応する位置にある。従って、右歯車の歯部44は、左歯車50の歯部44と噛み合う。右歯車の空虚部46は、左歯車50の空虚部46に対応する位置にある。第二歯車対38が回転すると、左歯車50と右歯車とのニップには、歯部44と空虚部46とが交互に表れる。 The second gear pair 38 includes a left gear 50 and a right gear. In FIG. 9, the right gear is not shown. The right gear is hidden by the left gear 50. The left gear 50 includes a tooth portion 44 and an empty portion 46. A large number of teeth 48 are carved on the tooth portion 44. The hollow portion 46 does not have the tooth 48. Although not shown, the right gear, like the left gear 50, also includes a tooth portion 44 and an empty portion 46. A large number of teeth 48 are carved on the tooth portion 44. The hollow portion 46 does not have the tooth 48. The tooth portion 44 of the right gear is located at a position corresponding to the tooth portion 44 of the left gear 50. Therefore, the tooth portion 44 of the right gear meshes with the tooth portion 44 of the left gear 50. The empty part 46 of the right gear is located at a position corresponding to the empty part 46 of the left gear 50. When the second gear pair 38 rotates, the tooth portions 44 and the empty portions 46 alternate in the nip between the left gear 50 and the right gear.
 母線34は、第一歯車対36を通過する。母線34のうち、ニップが歯部44であるときに第一歯車対36を通過した部分には、塑性変形が生じる。この塑性変形は、母線34に、Y方向に振動する波の成分を付与する。母線34のうち、ニップが空虚部46であるときに第一歯車対36を通過した部分には、塑性変形が生じない。 The bus 34 passes through the first gear pair 36. Plastic deformation occurs in the portion of the busbar 34 that has passed through the first gear pair 36 when the nip is the tooth portion 44. This plastic deformation gives the busbar 34 a component of a wave vibrating in the Y direction. No plastic deformation occurs in the portion of the busbar 34 that has passed through the first gear pair 36 when the nip is the vacant portion 46.
 第一歯車対36に続いて、母線34は、第二歯車対38を通過する。母線34のうち、ニップが歯部44であるときに第二歯車対38を通過した部分には、塑性変形が生じる。この塑性変形は、母線34に、Z方向に振動する波の成分を付与する。母線34のうち、ニップが空虚部46であるときに第二歯車対38を通過した部分には、塑性変形が生じない。 After the first gear pair 36, the busbar 34 passes through the second gear pair 38. Plastic deformation occurs in a portion of the busbar 34 that passes through the second gear pair 38 when the nip is the tooth portion 44. This plastic deformation gives the busbar 34 a component of a wave vibrating in the Z direction. No plastic deformation occurs in the portion of the busbar 34 that passes through the second gear pair 38 when the nip is the vacant portion 46.
 母線34のうち、第一歯車対36にて塑性変形させられ第二歯車対38にて塑性変形させられない部分は、Y方向に振動する波の形状を有する。この部分は、第一くせ付け部4である。 A portion of the busbar 34 that is plastically deformed by the first gear pair 36 and is not plastically deformed by the second gear pair 38 has a wave shape that vibrates in the Y direction. This portion is the first baffle portion 4.
 母線34のうち、第一歯車対36にて塑性変形させられ第二歯車対38にても塑性変形させられる部分は、Y方向に振動する波成分とZ方向に振動する波成分とを含むくせを有する。この部分は、第二くせ付け部6である。 The portion of the busbar 34 that is plastically deformed by the first gear pair 36 and also plastically deformed by the second gear pair 38 has a characteristic that it includes a wave component that vibrates in the Y direction and a wave component that vibrates in the Z direction. Have. This portion is the second peculiar portion 6.
 母線34のうち、第一歯車対36にて塑性変形させられず第二歯車対38にて塑性変形させられる部分は、Z方向に振動する波の形状を有する。この部分は、第三くせ付け部8である。 A portion of the busbar 34 that is not plastically deformed by the first gear pair 36 but plastically deformed by the second gear pair 38 has a wave shape that vibrates in the Z direction. This portion is the third baffle portion 8.
 母線34のうち、第一歯車対36にて塑性変形させられず第二歯車対38にても塑性変形させられない部分は、波の形状を有さない。この部分は、ストレート部10である。 The portion of the busbar 34 that is not plastically deformed by the first gear pair 36 and is not plastically deformed by the second gear pair 38 does not have a wave shape. This portion is the straight portion 10.
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by examples, but the present invention should not be construed in a limited way based on the description of the examples.
[実施例1]
 図1-8に示されたソーワイヤを製作した。このソーワイヤの仕様が、下記の表1に示されている。このソーワイヤは、ブラスメッキが施された炭素鋼からなる。
[Example 1]
The saw wire shown in FIGS. 1-8 was manufactured. The specifications of this saw wire are shown in Table 1 below. This saw wire is made of brass plated carbon steel.
[実施例2]
 ストレート部を設けなかった他は実施例1と同様にして、実施例2のソーワイヤを得た。
[Example 2]
A saw wire of Example 2 was obtained in the same manner as in Example 1 except that the straight portion was not provided.
[実施例3]
 第三くせ付け部を設けなかった他は実施例1と同様にして、実施例3のソーワイヤを得た。
[Example 3]
A saw wire of Example 3 was obtained in the same manner as in Example 1 except that the third brace was not provided.
[実施例4]
 ストレート部及び第三くせ付け部を設けなかった他は実施例1と同様にして、実施例4のソーワイヤを得た。
[Example 4]
A saw wire of Example 4 was obtained in the same manner as in Example 1 except that the straight portion and the third squeezing portion were not provided.
[比較例1]
 第二くせ付け部のみを設けた他は実施例1と同様にして、比較例1のソーワイヤを得た。
[Comparative Example 1]
A saw wire of Comparative Example 1 was obtained in the same manner as in Example 1 except that only the second gusset portion was provided.
[比較例2]
 従来のソーワイヤを準備した。このソーワイヤは、波の形状を有さない。
[Comparative example 2]
A conventional saw wire was prepared. This saw wire has no wave shape.
[試験1]
 各ソーワイヤをソーマシンに装着した。このソーワイヤの表面に、砥粒を含むスラリーを塗布した。このソーワイヤを0.6mm/minの速度で走行させて、ガラス板をスライスした。得られた切削面の粗さとうねりとを観察し、評価した。この結果が、指数として下記の表1及び2に示されている。数値が大きいほど、評価が優れている。
[Test 1]
Each saw wire was attached to the saw machine. A slurry containing abrasive grains was applied to the surface of the saw wire. This saw wire was run at a speed of 0.6 mm / min to slice a glass plate. The roughness and waviness of the obtained cut surface were observed and evaluated. The results are shown in Tables 1 and 2 below as indexes. The larger the value, the better the evaluation.
[試験2]
 このソーワイヤの走行速度を0.8mm/minとした他は実験1と同様にして、切削面の粗さとうねりとを評価した。この結果が、指数として下記の表1及び2に示されている。数値が大きいほど、評価が優れている。
[Test 2]
The roughness and waviness of the cut surface were evaluated in the same manner as in Experiment 1 except that the traveling speed of the saw wire was 0.8 mm / min. The results are shown in Tables 1 and 2 below as indexes. The larger the value, the better the evaluation.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1及び2に示されるように、実施例のソーワイヤは、比較例のソーワイヤに比べて優れた評価が得られている。この評価結果から、本発明の優位性は明らかである。 As shown in Tables 1 and 2, the saw wire of the example is evaluated better than the saw wire of the comparative example. From this evaluation result, the superiority of the present invention is clear.
 本発明に係るソーワイヤは、種々の物品の切断に用いられ得る。 The saw wire according to the present invention can be used for cutting various articles.
 2・・・ソーワイヤ
 4・・・第一くせ付け部
 6・・・第二くせ付け部
 8・・・第三くせ付け部
 10・・・ストレート部
 12、20、24、28・・・山
 14、22、26、30・・・谷
 16・・・第一波成分
 18・・・第二波成分
 32・・・くせ付け装置
 34・・・母線
 36・・・第一歯車対
 38・・・第二歯車対
 40・・・上歯車
 42・・・下歯車
 44・・・歯部
 46・・・空虚部
 48・・・歯
 50・・・左歯車
2 ... Saw wire 4 ... 1st peculiar part 6 ... 2nd peculiar part 8 ... 3rd peculiar part 10 ... Straight part 12, 20, 24, 28 ... Mountain 14 , 22, 26, 30 ... Valley 16 ... First wave component 18 ... Second wave component 32 ... Fake device 34 ... Busbar 36 ... First gear pair 38 ... Second gear pair 40 ... Upper gear 42 ... Lower gear 44 ... Tooth portion 46 ... Empty portion 48 ... Tooth 50 ... Left gear

Claims (9)

  1.  第一くせ付け部と第二くせ付け部とを備えており、
     上記第一くせ付け部が、平面において振動する波の形状を有しており、
     上記第二くせ付け部が、平面において振動する第一波成分と、この第一波成分の平面とは異なる平面で振動する第二波成分とを含むくせを有しているソーワイヤ。
    It has a first peculiar portion and a second peculiar portion,
    The first baffle portion has a wave shape that oscillates in a plane,
    The saw wire, wherein the second squeezing portion has a habit that includes a first wave component that oscillates in a plane and a second wave component that oscillates in a plane different from the plane of the first wave component.
  2.  上記第二波成分の振動方向が、上記第一波成分の振動方向と実質的に垂直である請求項1に記載のソーワイヤ。 The saw wire according to claim 1, wherein the vibration direction of the second wave component is substantially perpendicular to the vibration direction of the first wave component.
  3.  上記第一くせ付け部において、山と谷とが交互に並んでおり、1つの第一くせ付け部における山の数が5以上300以下である請求項1又は2に記載のソーワイヤ。 The saw wire according to claim 1 or 2, wherein peaks and valleys are alternately arranged in the first gusset portion, and the number of ridges in one first gusset portion is 5 or more and 300 or less.
  4.  上記第二くせ付け部の第一波成分において、山と谷とが交互に並んでおり、1つの第二くせ付け部における、第一波成分の山の数が5以上300以下であり、
     上記第二くせ付け部の第二波成分において、山と谷とが交互に並んでおり、1つの第二くせ付け部における、第二波成分の山の数が5以上300以下である請求項1から3のいずれかに記載のソーワイヤ。
    In the first wave component of the second peculiar portion, peaks and valleys are alternately arranged, and the number of peaks of the first wave component in one second peculiar portion is 5 or more and 300 or less,
    In the second wave component of the second peculiar portion, peaks and valleys are alternately arranged, and the number of peaks of the second wave component in one second peculiar portion is 5 or more and 300 or less. The saw wire according to any one of 1 to 3.
  5.  第三くせ付け部をさらに備えており、この第三くせ付け部が、上記第一くせ付け部の平面とは異なる平面において振動する波の形状を有する請求項1から4のいずれかに記載のソーワイヤ。 5. The method according to claim 1, further comprising a third squeezing portion, the third squeezing portion having a wave shape that oscillates in a plane different from the plane of the first squeezing portion. Saw wire.
  6.  上記第三くせ付け部における波の振動方向が、上記第一くせ付け部における波の振動方向と実質的に垂直である請求項5に記載のソーワイヤ。 The saw wire according to claim 5, wherein the vibration direction of the wave in the third squeezing portion is substantially perpendicular to the vibration direction of the wave in the first squeezing portion.
  7.  上記第一波成分の振動方向が上記第一くせ付け部における波の振動方向と実質的に一致しており、上記第二波成分の振動方向が上記第三くせ付け部における波の振動方向と実質的に一致している請求項5又は6に記載のソーワイヤ。 The vibration direction of the first wave component is substantially the same as the vibration direction of the wave in the first baffle portion, and the vibration direction of the second wave component is the vibration direction of the wave in the third baffle portion. A saw wire according to claim 5 or 6 which is substantially coincident.
  8.  上記第三くせ付け部において、山と谷とが交互に並んでおり、1つの第三くせ付け部における山の数が5以上300以下である請求項5から7のいずれかに記載のソーワイヤ。 The saw wire according to any one of claims 5 to 7, wherein peaks and valleys are alternately arranged in the third peculiar portion, and the number of peaks in one third peculiar portion is 5 or more and 300 or less.
  9.  ストレート部をさらに備える請求項1から8のいずれかに記載のソーワイヤ。 The saw wire according to any one of claims 1 to 8, further comprising a straight portion.
PCT/JP2019/019933 2018-11-15 2019-05-20 Saw wire WO2020100328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217008834A KR102531328B1 (en) 2018-11-15 2019-05-20 saw wire
CN201980067898.5A CN112839771B (en) 2018-11-15 2019-05-20 Saw wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214416 2018-11-15
JP2018214416A JP6514821B1 (en) 2018-11-15 2018-11-15 Saw wire

Publications (1)

Publication Number Publication Date
WO2020100328A1 true WO2020100328A1 (en) 2020-05-22

Family

ID=66530882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019933 WO2020100328A1 (en) 2018-11-15 2019-05-20 Saw wire

Country Status (5)

Country Link
JP (1) JP6514821B1 (en)
KR (1) KR102531328B1 (en)
CN (1) CN112839771B (en)
TW (1) TWI691378B (en)
WO (1) WO2020100328A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519698A (en) * 2004-12-23 2008-06-12 アルセロールミッタル ベッテンブルグ エス エイ Monofilament metal saw wire
JP2016150393A (en) * 2015-02-16 2016-08-22 ジャパンファインスチール株式会社 Saw wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276207A (en) * 2003-03-18 2004-10-07 Kanai Hiroaki Saw wire for multi-wire saw
DE102009048436B4 (en) * 2009-10-07 2012-12-20 Siltronic Ag Method for grinding a semiconductor wafer
EP2857143A4 (en) * 2012-05-31 2016-05-18 Read Co Ltd Fixed-abrasive-grain wire-saw, method for manufacturing same, and method for cutting workpiece using same
WO2014036714A1 (en) * 2012-09-07 2014-03-13 Nv Bekaert Sa A shaped sawing wire with subsurface tensile residual stresses
KR101652062B1 (en) * 2014-02-04 2016-08-29 홍덕산업 주식회사 A structure saw wire maintaining crimp property under high slicing tension
KR101427554B1 (en) * 2014-04-29 2014-08-08 주식회사 효성 Wavy-patterned Monowire for Cutting
KR101736657B1 (en) * 2016-01-29 2017-05-16 주식회사 효성 Corrugated monowire for cutting
WO2017131273A1 (en) * 2016-01-29 2017-08-03 주식회사 효성 Wavy monowire for cutting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519698A (en) * 2004-12-23 2008-06-12 アルセロールミッタル ベッテンブルグ エス エイ Monofilament metal saw wire
JP2016150393A (en) * 2015-02-16 2016-08-22 ジャパンファインスチール株式会社 Saw wire

Also Published As

Publication number Publication date
CN112839771A (en) 2021-05-25
KR20210042397A (en) 2021-04-19
JP6514821B1 (en) 2019-05-15
JP2020082201A (en) 2020-06-04
TWI691378B (en) 2020-04-21
CN112839771B (en) 2023-05-12
KR102531328B1 (en) 2023-05-10
TW202019616A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP6564011B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
CN102528940B (en) Hacksaw line and production method thereof
WO1996029173A1 (en) Synchronized variable tooth arrangements for saws
CN104043872B (en) Reciprocating motion saw blade for toolroom machine
JP6349090B2 (en) Saw blade
JP2012139743A (en) Saw wire
CN112739495B (en) Saw wire
JP6272345B2 (en) Cutting insert, cutting tool, and method of manufacturing a cut product using the same
WO2020100328A1 (en) Saw wire
CN103507173B (en) Cut the method for multiple wafer from cylindrical workpiece simultaneously
US20080156061A1 (en) Method of producing honeycomb structure molding die
JP6689941B1 (en) Saw wire
JP4815212B2 (en) Memory card manufacturing method
JP6247679B2 (en) Band saw blade manufacturing method and band saw blade
CN106182153B (en) Ultrasonic micron precision processing and forming device
JP2002292501A (en) Elliptic vibration cutting method
JP6966182B2 (en) Abrasive band saw blade
JP2016509544A (en) Saw wire with asymmetric crimp
US20130156514A1 (en) Push broach
JP6045960B2 (en) Band saw
JP2004114207A (en) Thomson blade
JP4649555B2 (en) Cutting device
JP7149358B2 (en) Abrasive band saw blade
CN207272212U (en) Forming cutter
JP2004130450A (en) Saw blade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217008834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884715

Country of ref document: EP

Kind code of ref document: A1