WO2020099966A1 - Método hidrometalúrgico sólido-líquido-sólido para la solubilización de metales a partir de minerales y/o concentrados sulfurados de cobre - Google Patents

Método hidrometalúrgico sólido-líquido-sólido para la solubilización de metales a partir de minerales y/o concentrados sulfurados de cobre Download PDF

Info

Publication number
WO2020099966A1
WO2020099966A1 PCT/IB2019/059258 IB2019059258W WO2020099966A1 WO 2020099966 A1 WO2020099966 A1 WO 2020099966A1 IB 2019059258 W IB2019059258 W IB 2019059258W WO 2020099966 A1 WO2020099966 A1 WO 2020099966A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
stage
mineral
solid
copper
Prior art date
Application number
PCT/IB2019/059258
Other languages
English (en)
French (fr)
Inventor
Rodrigo Andrés CORTÉS CORTÉS
Original Assignee
Nova Mineralis S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nova Mineralis S.A. filed Critical Nova Mineralis S.A.
Priority to MX2021005466A priority Critical patent/MX2021005466A/es
Priority to BR112021009356-7A priority patent/BR112021009356A2/pt
Priority to PE2021000715A priority patent/PE20211766A1/es
Priority to CN201980080843.8A priority patent/CN113166845B/zh
Priority to CA3120395A priority patent/CA3120395C/en
Priority to US17/292,585 priority patent/US20220002838A1/en
Priority to EP19809914.5A priority patent/EP3882366A1/en
Publication of WO2020099966A1 publication Critical patent/WO2020099966A1/es
Priority to EP20800781.5A priority patent/EP4053297A1/en
Priority to BR112022008222A priority patent/BR112022008222A2/pt
Priority to US17/772,470 priority patent/US20220356544A1/en
Priority to PCT/CL2020/050110 priority patent/WO2021081679A1/es
Priority to CN202080082881.XA priority patent/CN114761586A/zh
Priority to CA3159331A priority patent/CA3159331A1/en
Priority to PE2022000690A priority patent/PE20221212A1/es
Priority to AU2020376989A priority patent/AU2020376989B2/en
Priority to MX2022005072A priority patent/MX2022005072A/es
Priority to CL2021003432A priority patent/CL2021003432A1/es
Priority to ECSENADI202241277A priority patent/ECSP22041277A/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0069Leaching or slurrying with acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention refers to a Solid-Liquid-Solid hydrometallurgical method that is capable of achieving, under the same method, the solubilization of minerals and concentrates, both in the form of oxides, as well as secondary and primary sulphides, mainly chalcopyrite, to obtain a desired metal.
  • Copper is a widely used metal and is essential in various economic sectors, such as infrastructure, cabling, electric vehicles, electrical and electronic equipment, and renewable energy (Elshkaki
  • Chalcopyrite is the most abundant primary copper sulfide and represents approximately 70-80% of the world's copper reserves (Hall S. et al., 1973; Kaplun et al., 2011). This mineral is stable and is the sulfide most refractory to hydrometallurgical processes. Furthermore, the formation of a passivating layer has been observed, when it is subjected to a variety of leaching agents, making its dissolution even more difficult (Dreisinger., 2006; Veloso el al., 2016). Enargite is also a primary copper sulfide and is present mainly in deposits in Peru and Chile, being of environmental concern as a source of arsenic and requires special concern in smelters. Therefore, most foundries penalize the content of arsenic in concentrates. Furthermore, arsenic is considered the most dangerous inorganic pollutant, causing environmental and health emergencies in various areas of the world (Mandal B. et al., 2002).
  • hydrometallurgical processes that have been developed to leach the minerals and / or copper concentrates are based on solid-liquid, solid-liquid-gas or solid-liquid-gas-bacteria methods, where different reagents are used that act mainly as agents. oxidants, these processes could be divided into: chlorides, nitrates, sulfates, ammonia, iodides and bacteria, among others.
  • the decrease in the hydrometallurgical participation in the type of mineral extracted is due to the exhaustion of leachable resources, to the appearance of primary refractory minerals (chalcopyrite) and therefore the closure of mining sites.
  • the appearance of primary sulphides leads to high-grade ore being processed mainly by flotation, which will lead to generation of idle capacity in hydrometallurgical facilities, due to the fact that hydrometallurgical technology has not been reported at the industrial level. cost effective, for the treatment of primary low-grade copper sulphides (Cochilco, 2017).
  • the increase in the production of concentrates will lead to an increase in the environmental liabilities (tailings) and in the processing capacity of the smelters.
  • Hydrometallurgy is a science and technology of extraction of metals or materials by aqueous methods (Habashi F, 1993). In general, this discipline of extractive metallurgy is it develops in three different and sequential physical-chemical stages, called selective dissolution or leaching, purification / concentration and precipitation (Domic, 2001). This well-established science has competed vigorously with pyrometallurgical techniques, and in some cases has displaced such processes. In recent times, with the depletion of high-grade minerals and abundant low-grade primary minerals, hydrometallurgy appears as a possible economically viable option to treat primary minerals with low grades (Habashi, 2005).
  • Chalcopyrite (CUFCST), enargite (CU 3 ASS 4 ) and bornite (CusFeSz are sulphide and primary copper minerals, refractory and semiconductor like the vast majority of sulfur minerals, with a crystalline structure where iron and copper ions they are in tetrahedral coordination with sulfur, in the case of chalcopyrite (Hall S. et al., 1973; Nikiforov K., 1999).
  • Scope spectrum measurements of chalcopyrite and bornite have identified that the The electronic structure of both minerals is the same for copper (Cu 1+ ) and iron (Fe 3+ ), with a molecular weight for the first of 183.52 g / mol and for the second of 501.8 g / mol , providing each atom in its atomic weight the following percentages; Cu 34.6%; Fe 30.4%; S 34.9% and Cu
  • Enargite (CU 3 ASS 4 ) is a copper sulfide with arsenic, like chalcopyrite and bornite has a valence +1 for copper; however, it has a molecular weight of
  • This last phenomenon is proposed to be generated by the formation of different compounds, such as disulfide dichloride (S 2 CI 2 ), elemental sulfur, non-stoichiometric secondary sulphides and chlorocuprate I complexes, which are absorbed by the mineral surface ( Lu et al., 2000; Carneiro, 2007; Lundstróm et al., 2016; Nicol, 2017; Liu et al., 2017).
  • S 2 CI 2 disulfide dichloride
  • elemental sulfur elemental sulfur
  • non-stoichiometric secondary sulphides and chlorocuprate I complexes
  • Copper ions can form complexes with chloride ions and the prevalence of the complex will depend on the chloride concentration and leaching environment. In solutions with a high chloride concentration, there is a prevalence of cuprous complexes [CuCh],
  • chlorocuprate (I) complexes increase their solubility as chloride concentration increases (Berger and Winand, 1983; Fritz, 1980, 1981; Lin et al., 1991; Winand, 1991; Yoo et al. , 2010).
  • the beneficial effect of chlorocuprate complexes I on the dissolution of chalcopyrite has been little studied and they are considered dissolution inhibiting agents, for which reason, the aim is to maximize the presence of cupric ions as an oxidizing agent, over chlorocuprate complexes I (Winand, 1991; Liu el al., 2017).
  • chalcopyrite is oxidized to covelin, different from that proposed by Pihlaso et al. (2008), who mentions the formation of chalcosine.
  • the use of high concentrations of a reagent can generate an increase in the reaction rate; however, it could also generate unwanted side reactions and be economically not viable (Habashi F., 1999);
  • Agglomeration is a stage that is generally carried out before leaching in oxide and secondary sulphide piles, and consists of joining the fine particles to the coarser ones, in order to increase the permeability coefficient in the pile, and thus be able to have efficient irrigation and aeration conditions to improve the extraction process (Bouffard SC, 2005, 2008). Therefore, the agglomeration stage is of vital importance to maintain good hydrodynamics in the pile and to avoid overturning.
  • the simplest agglomeration stage is carried out by adding water and acid, in order to moisten the mineral until achieving optimum surface tension.
  • the presence of water in the agglomeration stage is of vital importance, since without the presence of water there are no glomers, nor an adequate distribution of the acid, which would cause inefficient curing (Domic E., 2001; Lu. J. el al., 2017).
  • the mineral is also cured, by adding concentrated sulfuric acid so that it acts on all the mineral particles and generates the best conditions for the leaching process.
  • the acidity, the curing stage and the Leaching solutions is very important, since it interacts with the mineral and with the gangue, therefore, the lack of acid could harm the extraction of copper (Bouffard SC, 2005; Lu J. et al., 2017).
  • the mechanism and equipment for agglomeration and curing can be done by adding water and then acid to the mineral on a conveyor belt or by using an agglomerator drum that allows a wet particle to rotate around itself, allowing efficient formation of the glomer. (Domic E., 2001).
  • Weathering is defined as the fragmentation or partial or total degradation of rocks and minerals when in contact with atmospheric agents. Natural weathering of rocks or minerals is carried out by chemical reactions (chemical weathering) and various processes of mechanical disintegration (physical weathering), such as thermal stress, increased volume of clay minerals and crystal growth in rock joints due to changes of phases.
  • solvent crystallization The relevant changes that occur due to solutions in rock pores are called solvent crystallization and correspond to a freezing crystallization process; however, when the process occurs by a solute, it is called salt weathering or haloclasty, in both cases an increase in pressure occurs in the internal walls of the rock, which promotes wear or rupture of it (Wellman H al al, 1965; Goudies A. al al., 1997; Smith J., 2006).
  • Chemical weathering and salt weathering represent different rock breakage mechanisms and generally operate in concert. However, it is difficult to differentiate its effects separately, since they are phenomena that are interrelated, because the products that can be generated by the dissolution of minerals are used for a new process of weathering by salts.
  • An example of this is the generation of sulfates, which can be produced by the attack of sulfuric acid, which can be of volcanic origin, deposition of atmospheric sulfur dioxide or by the reactions of the dissolution of a rock.
  • Sodium chloride and hydrated magnesium chloride are abundant salts found in nature, playing an active role as antifreeze and road pollution controllers.
  • Inorganic chloride is born from the dissolution of hydrazic compounds and binary salts in aqueous media under certain homogeneous solubility conditions.
  • the intermolecular forces of the solvent cause the total destruction of ionic and covalent bonds allowing the dissociation of the salts in their primitive polar ions, that is to say; a valent metal or non-metal cation (H + , Na + , Mg 2+ , Fe 3+ , K + , etc.) and the chloride anion in question.
  • Bischofita is a hydrated salt whose chemical formula is MgClixótLO, being the active compound of bischofita magnesium chloride, which has various physical properties, such as deliquescence, the ability to increase the surface tension of water and vapor pressure.
  • This salt is obtained as waste or discarded from the solar evaporation process to which the brines extracted from certain salt flats are subjected, mainly in the lithium triangle, made up of Chile, Argentina and Venezuela, necessary for the extraction of lithium and potassium.
  • the Magnesium Chloride Hydrate or Bischofite Crystals is available worldwide. However, the bischofita produced in Chile has the advantage that it has a low level of impurities.
  • Sodium and magnesium chloride salts are soluble salts with a tendency to supersaturation, which in solution are very mobile and can penetrate deeply into fractures or joints of rocks, generating efflorescence and crystallization of salts on the surface or inside of the mineral or rock, as special characteristics of these two salts.
  • the location of soluble chloride salts with respect to the outer surface of a mineral depends on the saturation or supersaturation mechanism of the solution. In the case of being generated by an evaporation process, the mechanism will be controlled by two processes that act simultaneously. On the one hand, the rate of evaporation, and on the other, the rate of contribution of solution through the mineral.
  • the diffusion rate of the steam is less than the migration rate of the solution, the latter can reach the external surface where the salts will evaporate and crystallize, this depends on the form of heat transfer, either by convection or radiation ( Gómez-Heras el al., 2016). This last phenomenon is called efflorescence. If, on the other hand, the solution migration rate is less than the water vapor diffusion rate, equilibrium will be reached at a certain distance from the surface, producing cryptoeflorescence. When the water vapor diffusion rates are higher, it will generate a greater precipitation of salts, which will enhance said phenomenon.
  • Evaporation of a liquid in a porous medium involves complex phenomena of liquid, vapor transport, and phase changes.
  • the determination of the rate of evaporation, together with the evolution of the distribution of the liquid within the pore space as the liquid phase is replaced by the gaseous phase are important for the supersaturation condition and predicting damage induced by the crystallization of salts.
  • the slow evaporation processes are well known and can be exemplified by the process of evaporation of water from a solid at room temperature, in this case the evaporation rates are very small, therefore, the temperature variations due to the phase change they are insignificant (Prat M. et al., 2007).
  • the REDOX potential is an important parameter in the methods and in a large part of the technologies proposed for the dissolution of chalcopyrite, since it has been proposed that the formation of leaching products, considered passivating agents, are dependent on the potential of the medium, favoring low potentials a greater extraction and high potentials a lower copper extraction (Elsherief, 2002; Hiroyoshi el al., 2001; Velásquez-Yévenes el al., 2010; 2018).
  • the potential window in which these higher copper extractions are achieved is limited and difficult to control, which means that once the critical dissolution potential is exceeded, the extraction of chalcopyrite stops completely.
  • Publication US20040060395 discloses a solid-liquid-gas oxidative procedure, and relates to a process that uses a chlorinated environment for the leaching of concentrates by the action of cupric chloride in the presence of oxygen at elevated temperatures.
  • Publication US7491372 shows a solid-liquid oxidative procedure, and refers to a process that uses calcium chloride in order to improve the quality of the glomers and thus the permeability of a cell.
  • the phenomenology of the process is based on favoring the generation of oxidizing agents (Fe 3+ and Cu 2+ ) by the action of oxygen and the double redox copper and iron, which causes the solubilization of sulfur minerals.
  • Publication W02007134343 (Muller el al., 2007) refers to a hydrometallurgical method consisting of two stages: the first non-oxidative in an acid medium; and a second oxidative stage, which involves solid-liquid-gas interaction, for the recovery of copper from primary and secondary minerals, which involves leaching the material in an acidic solution with chloride at redox potentials less than 600 mV in the presence of oxygen dissolved and cupric ions as oxidizing agents.
  • Publication W02016026062 (Pati ⁇ o el al., 2016) discloses a solid-liquid oxidative procedure that involves the addition of oxidizing agent and a pretreatment of the mineral in the presence of high concentrations of chloride and minimal presence of oxygen, with a redox potential greater than 700 mV for the solubilization of primary and secondary copper sulphides.
  • Publication WO2016026062 ( ⁇ lvarez, 2016) reveals a chemical and bacterial procedure in a solid-liquid-gas medium, and is related to a leaching process of secondary and primary copper sulphides in a ferrous-ferric-chloride medium, with bacteria and archaea iron-oxidants adapted to high concentrations of chloride ions. In addition, it involves the injection of heated air, to raise the temperature and enhance the dissolution reactions of the mineral.
  • WO2016179718 (Engdahl el al., 2017) refers to a solid-liquid-gas oxidative method, which is carried out in a three-phase mixing agglomeration drum, and to a mineral agglomeration procedure carried out inside said drum for mineral pretreatment in the presence of sodium chloride, both used mainly in hydrometallurgy. Said drum and method employ a chlorine gas recirculation system and step as part of the invention.
  • the present invention differs from the state of the art, since it refers to a Solid-Liquid-Solid (SLS) hydrometallurgical method that is capable of achieving the solubilization of oxidized minerals, secondary and primary sulfides, mainly primary sulfides, such as chalcopyrite, under the same SLS method; without depending on parameters such as redox potential, oxygen and acid concentration.
  • SLS Solid-Liquid-Solid
  • the method of the present application is not a pretreatment or a prolonged stage of curing and irrigation-rest, but rather a continuous solid-liquid-solid method in a condition of supersaturation of unhydrated and / or hydrated chloride salts , such as sodium chloride and / or bischofita, a condition that is generated by the intentional and repetitive application of drying stages, wetting and rewetting stages, enhancing chemical and physical phenomena on the mineral or concentrates, thus causing the crystallization, recrystallization and release of copper and subsequent precipitation of it with chlorine in a non-stoichiometric decomposition of the primary or secondary sulfide.
  • unhydrated and / or hydrated chloride salts such as sodium chloride and / or bischofita
  • the method is carried out at a temperature of 20 to 40 ° C, with no or minimal addition of water and acid, without the need to add oxidizing or reducing agents, nor oxygen.
  • This method in its entirety can be executed independently of the presence of habitual impurities, such as is the case of arsenic, since the decomposition of the mineral or concentrate occurs in a non-stoichiometric relationship.
  • habitual impurities such as is the case of arsenic
  • the method of the present application has the benefits of hydrometallurgy, in addition to reducing the consumption of acid and water, since the transformation of sulfide can be carried out only with the presence of water and / or the minimal addition of acid.
  • this method reduces the use of water in the agglomerate and / or agglomerate-curing stage, since when a hydrated chloride salt (for example, bischofita) is mixed with the mineral, the water molecules of said salt hydrated they moisturize the mineral, reducing the volume of water that must be added in the agglomerate and / or curing stages.
  • a hydrated chloride salt for example, bischofita
  • the present invention would make the resources available to reserves, which would allow supplying the future demand for copper, reactivating the hydrometallurgical plants, and would change the projections of the final product of copper in the next decade, reducing the use of flotation, which generates a great environmental impact, due to the high consumption of energy and water; in addition to the generation of environmental liabilities and pollutants from the operation of the smelters.
  • the present invention relates to a Solid-Liquid-Solid (SLS) hydrometallurgical method in the presence of non-hydrated and / or hydrated chloride salts such as, for example, sodium chloride and / or bischophyte, in a supersaturated condition, which It is achieved by the intentional and repeated application of wetting, rewetting and drying stages, enhancing the phenomena chemical and physical on the mineral or concentrates, thus causing the crystallization, recrystallization and release of copper in a non-stoichiometric decomposition of the sulfide and subsequent precipitation of it with chloride.
  • SLS Solid-Liquid-Solid
  • the method occurs at a temperature of 20 to 40 ° C, independent of the redox potential, with a minimum consumption of water and acid, without the need to add oxygen.
  • the method allows to reduce the consumption of acid and water, since the transformation of the sulfide can be carried out only with the presence of hydrated salts and / or the minimal addition of acid and water.
  • the method of the present invention allows to reduce the use of water in the agglomerate and / or agglomerate-curing stage, because when a hydrated chloride salt is mixed with the mineral, the water molecules of said hydrated salt (for For example, bischofita) wet the mineral, reducing the volume of water that must be added in the agglomerate and / or curing stages.
  • the present invention refers to a Solid-Liquid-Solid method in a chlorinated medium, governed by physical and chemical weathering processes for the solubilization of sulfur minerals, by supersaturation and crystallization of salts, using the addition of: a) a salt of non-hydrated chloride, or b) a hydrated chloride salt, or c) a mixture of both salts, in a supersaturated condition, which is reached by repetitive and intentional drying stages, which promotes rapid evaporation kinetics, and consequently the solubilization of the mineral, particularly chalcopyrite.
  • This method is made up of 3 stages, called “Wetting Stage,” Drying and Supersaturation Stage “and” Washing and Rewetting Stage ". These stages can be repeated as many times as necessary to achieve maximum solubilization of the primary and / or secondary copper sulfide, either in the mineral or in the concentrate, achieving greater extraction of the desired metal.
  • the first stage corresponds to a stage of wetting the mineral with water or water and acid, in the presence of salts in a condition of non-supersaturation, non-oxidative, or reductive agglomeration, but always in the presence of a) an unhydrated chloride salt, or b) a hydrated chloride salt, or c) a mixture of both salts.
  • the addition of water there may or may not be the addition of water, since in the case of the hydrated chloride salt, the humidification provided by the water molecules of said salt is sufficient when mixing it with the mineral, without adding water or adding a minimal dose; however, for the use of a non-hydrated chloride salt (for example, sodium chloride) the addition of a solution is required, the addition of liquid at this stage generates the solvation process of the salts, allowing to leave active ions to react and migrate through the joints of the mineral. All these conditions cause variable conditions of pH and minimal presence of oxygen to be generated, achieving the optimal conditions for the second stage of the process.
  • a non-hydrated chloride salt for example, sodium chloride
  • the second stage corresponds to a Drying process that promotes the supersaturation, crystallization, recrystallization and precipitation of salts, both inside and outside the mineral or concentrate. Drying can start on the conveyor belt and continue on the stack or be done directly on the stack, by injecting dry or hot air, increasing the temperature and / or promoting low relative humidity. In this stage, physical and chemical weathering is promoted, generated by the use of chloride salts in a supersaturated condition.
  • the dissolution of the primary and / or secondary copper sulfide is governed by a supersaturation and precipitation condition, which causes a non-stoichiometric decomposition of the sulfide, therefore, the process does not depend on the redox potential , pH, presence of oxygen or reducing or oxidizing agents.
  • the drying time is variable and concludes with the beginning of the mineral or concentrate washing stage.
  • the third stage corresponds to a washing stage in which an acidulated or unsaturated acidified solution of chloride salts is added to remove the chlorinated soluble species from the target metal (for example, copper), generated in the second stage, in addition to restoring salt concentrations and mineral wetting.
  • a new stage of Drying and Oversaturation begins, where the mineral is dried again to promote the evaporation and supersaturation of salts, during periods of variable times.
  • the wash can be acid-chlorinated and / or simply sea water and is aimed at removing the precipitated copper in the second process stage.
  • Figure 1 Graph of copper extraction in relation to the concentration of acid in the stage of
  • Figure 4 Graph of copper extraction in relation to the drying time in the Drying and Oversaturation stage, using Mineral 1.
  • Figure 5 Graph of copper extraction in relation to the simulation of a continuous regime, using Mineral 1.
  • Figure 6 Graph of Copper Extraction in relation to the first cycle of the Solid-Liquid-Solid method versus Prolonged Curing Times, using Mineral 1.
  • Figure 7 Graph of Copper Extraction in relation to two cycles of the Solid-Liquid method- Solid versus Prolonged Cure Times of 120 days, using Mineral 1.
  • Figure 8 Graph of Copper Extraction in relation to a first cycle of the Solid-Liquid-Solid method, using a mixture of salts and Mineral 1.
  • Figure 11 Graph of copper extraction in relation to the Solid-Liquid-Solid method versus
  • Figure 12 Graph of Copper Extraction in relation to the solid-liquid-solid method (S-L-S) versus Bio leaching and Chlorinated Leaching, using Mineral 3.
  • Figure 13 Graph of water contribution by use of bischofita in the wetting stage to achieve a humidity of 6% and 10%.
  • the present invention relates to a Solid-Liquid-Solid hydrometallurgical method in the presence of an unhydrated chloride salt and / or a hydrated chloride salt, in a supersaturated condition, which is achieved by the intentional and repeated application of steps drying and wetting, enhancing the chemical and physical phenomena on the mineral or concentrates, thus causing the crystallization, recrystallization and release of copper in a non-stoichiometric decomposition of the sulfide and subsequent precipitation of it with chloride.
  • the method occurs at a temperature of 20 to 40 ° C, independent of the redox potential, with a minimum consumption of water and acid, without the need to add oxygen.
  • the method allows to reduce the consumption of acid and water, since the transformation of the sulfide can be carried out only with the presence of hydrated salts and / or by the minimal addition of acid and water. Furthermore, the method of the present invention allows to reduce the use of water in the agglomerate and / or agglomerate-curing stage, because when the hydrated salt is mixed with the mineral, the water molecules of the hydrated chloride salt wet the mineral, reducing the volume of water that must be added in the agglomerate and / or curing stages.
  • the present invention refers to a Solid-Liquid-Solid hydrometallurgical method in a chlorinated medium, governed by physical and chemical weathering processes for the solubilization of sulphurated minerals, by supersaturation and crystallization of salts, using the addition of: a) an unhydrated chloride salt, or b) a hydrated chloride salt, or c) a mixture of both salts, in a supersaturated condition, which is reached by repetitive and intentional drying stages, which generates a rapid evaporation kinetics, and consequently the supersaturation of the salts, which promotes the solubilization of the sulphurated minerals, particularly chalcopyrite.
  • This method is made up of 3 stages, called “Wetting Stage,” Drying and Oversaturation Stage “and” Washing and Rewetting Stage “. These stages can be repeated as many times as necessary to achieve maximum solubilization of the primary and / or secondary copper sulfide, either in the mineral or in the concentrate, achieving greater extraction of the desired metal.
  • an unhydrated chloride salt selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, anhydrous ferrous chloride, anhydrous ferric chloride can be used.
  • the hydrated chloride salt is selected from the group consisting of magnesium chloride hexahydrate (bischofite), ferrous chloride heptahydrate, ferric chloride hexahydrate, among others.
  • This stage begins with exposing the crushed ore to a step of agglomerate or agglomerate and curing in an agglomerator drum or on a conveyor belt, in order to wet, form glomers and dissolve the sodium chloride, or bischofita, using methods and conventional procedures.
  • This stage can be carried out in the following ways:
  • the first is that the addition of water and acid is joint. On the contrary, in a classic process of agglomerate and curing, the acid and the water are added separately.
  • the second is that bischofite and / or sodium chloride can be added in solid form, depending on the characteristics of the mineral itself and the concentration of salts necessary for the dissolution of the mineral, which range between 20 and 80 kg / t.
  • the third is that this stage can only be carried out with the addition of bischofite, without the addition of water and acid, which would allow the salt to be added directly to the conveyor belt.
  • this stage can be carried out with the addition of a mixture of salts and water or with water and acid. In the case of using only water, the curing stage would not be carried out.
  • the circulating or recirculating solutions will be used for the wetting and / or agglomerate-curing process; in addition to the replacement of the concentration of salts that were retained in the rubble of the treated mineral.
  • Bischofita and / or sodium chloride will be replaced by adding solid in an amount of 5 to 15 kg / t, depending on the chloride content in the process recirculation solution.
  • the addition of fresh and / or circulating sulfuric acid ranges from 0 to 30 kg / t of mineral, with a final moisture content of the agglomerated mineral that varies between 8 and 15%, depending on the characteristics of the gangue, hygroscopicity and granulometry of the mineral. .
  • This second stage occurs in a solid-liquid-solid (SLS) condition and consists of promoting the supersaturation of the salts by drying the mineral by vaporization and / or evaporation methods, which includes injection of dry and / or hot air, low temperature or relative humidity.
  • This stage can begin on the conveyor belt, partially reducing the surface moisture of the mineral and / or directly in the pile, by using some of the drying methods that allow generating and promoting constant drying kinetics, while promoting supersaturation and physical phenomena in the mineral, such as crystallization, precipitation, and haloclasty.
  • the first cycle of the method ends when the copper extraction decreases significantly, because the vaporization or evaporation kinetics stops, because the mineral surface is covered by the precipitated copper-chloride complexes and the salt crystals, since in the case of sodium chloride the crystallization process takes place mainly on the surface of the solid.
  • the first wash begins, in order to remove the extracted copper.
  • a second drying and supersaturation cycle begins, in order to achieve maximum supersaturation and copper extraction.
  • Bischophyte and / or sodium chloride, water or acid and water are required at this stage. No need for the addition of oxidizing agents such as cupric ions, nor the addition of oxygen by constant irrigation.
  • This Drying and Oversaturation Stage ends with the start of continuous or intermittent irrigation of variable duration, using an acidic and unsaturated solution of bischofite and / or sodium chloride.
  • the third stage of washing and re-wetting begins, by irrigation with an unsaturated acidic chloride solution.
  • the objective of the Wash is to remove copper and soluble species, replace salts, clean the mineral surface and re-wet the bed.
  • the three stages, Wetting, Drying and Oversaturation and Washing, can be repeated as many times as necessary, as long as wetting and chloride concentrations are promoted again, to achieve maximum solubilization of the copper contained in the primary or secondary mineral .
  • This stage begins with the mixing of the concentrate with the bischofite and / or sodium chloride, and after that, water or water and acid are added, in order to achieve optimal wetting of the concentrate and solvation.
  • concentration of bischophyte and / or sodium chloride used ranges from 20 to 120 kg / t in a solid-liquid-solid condition.
  • concentration of fresh and / or circulating sulfuric acid will be necessary to achieve a pH between 0.5 and 3.
  • the final humidity varies between 8 to 20%, depending on the hygroscopic characteristics of the salt and the concentrate. .
  • This second stage of Drying and Oversaturation consists of drying the wet concentrate for a variable time, in order to generate the condition of chloride supersaturation and the Selective transformation of the concentrate to soluble chlorinated copper species and the precipitation of soluble species.
  • the drying time increases, the humidity decreases and the supersaturation condition is enhanced, due to the vaporization and / or evaporation of the water.
  • the prolonged drying period encourages salt crystallization and the cryptoeflorescence phenomenon in the concentrate particles.
  • the drying process of the concentrate is carried out in greenhouses that have temperatures ranging from 25 to 40 degrees Celsius, promoting low relative humidity, allowing constant evaporation kinetics in the stacks or piles of concentrates, to promote supersaturation and copper extraction.
  • the concentrate that was subjected to the Drying and Oversaturation stage is transported to washing pools, where the concentrate is subjected to a Washing stage with an acidulated solution or chloride and acid, to obtain soluble copper. Subsequently the concentrate is filtered and dried, in order to start a new process cycle if the total copper extraction is insufficient.
  • the copper-rich solution, obtained from washing the concentrate is sent to a solvent extraction plant and subsequently to an electrowinning plant. However, the solution can also pass directly to new electrowinning plants, which can generate a cathode without a previous solvent extraction step and directly treat copper-rich solutions.
  • the present invention specifically refers to a Solid-Liquid-Solid hydrometallurgical method for the solubilization of metals from minerals and / or concentrates of sulphurated minerals of primary and / or secondary origin that contain them, comprising the following sequential steps and / or overlapping: I. Humidification, where the mineral or concentrate is humidified by the addition of water or water-acid and hydrated and / or non-hydrated chloride salts;
  • stage I the contact of the mineral or concentrate is made with recirculating solutions of the same process that may contain chloride, iron and copper ions, in an unsaturated environment, and where the Three stages are carried out independently of the potential REDOX that the medium has.
  • the hydrated chloride salt is selected from the group consisting of magnesium chloride hexahydrate (bischofite), ferrous chloride heptahydrate, ferric chloride hexahydrate, among others.
  • the non-hydrated chloride salt is selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, anhydrous ferrous chloride, anhydrous ferric chloride, and calcium chloride, among others.
  • the non-hydrated and / or hydrated chloride salt is sodium chloride and / or bischophyte which is added in solid or in solution, preferably in an amount of sodium chloride and / or bischophyte that is added goes between 20 to 80 kg per ton of material, preferably between 30 and 60 kg / t.
  • steps I and II can be carried out only with the addition of bischofita and / or bischofita and water and / or process solutions.
  • the addition of chloride salts can include a mixture of hydrated and / or non-hydrated salts.
  • step I the addition of water and acid in step I is carried out separately or together, preferably together.
  • addition of sulfuric acid ranges from 0 to 30 kg per ton of material, preferably between 5 and 15 kg / t.
  • the final moisture of the agglomerated mineral can be between 6 and 20%, preferably between 8 and 10%.
  • stage I can be carried out in an agglomerating drum or directly on the conveyor belt.
  • stage II in stage II the drying of the mineral is carried out with the pile covered and protected to generate the increase in temperature.
  • stage II in stage II the condition of supersaturation of species and salts is achieved by means of intentional and repetitive drying cycles and / or by drying the mineral by air injection and / or temperature increase and / or by periods without addition of solutions and, where in stage II the cell can be covered or covered during the drying cycles.
  • the concentrations of salts to be replaced in the continuous regime system are between 5 and 20 kg / t.
  • steps I, II and III of the method can be repeated one or more successive times until the greatest extraction of the desired metal is achieved.
  • the sulphurated minerals and / or mineral concentrates are subjected to drying cycles ranging from 15 to 90 days, where it generates the supersaturation condition and the crystallization of salts and precipitation of soluble chlorinated metal species occurs.
  • the sulphided mineral that can be of primary origin mainly chalcopyrite
  • the sulphurized mineral that may be of secondary origin mainly chalcosine and covelin, is subjected to 2 or 3 drying cycles ranging from 15 to 45 days, preferably 15-day cycles.
  • step III the mineral is washed by continuous or intermittent irrigation with a solution containing acidified water, or acid and chloride.
  • the metals to be solubilized are selected from the group that includes copper, zinc, nickel, molybdenum, cobalt, lead, among others.
  • stage III in stage III it is washed, by limited or prolonged irrigation, promoting the presence of Cu (I) or Cu (II), respectively.
  • the solubilization of the target metal can be carried out in the same way from sulphured minerals with arsenical contents and / or concentrated arsenical sulphurous minerals that contain it.
  • steps I, II and III can be applied to copper minerals and / or concentrates, preferably chalcopyrite, bornite, tennantite, enargite, chalcoxin and covelin.
  • stage II can be applied in a drying chamber or greenhouse, which allows a constant kinetics of evaporation of the liquid to be generated.
  • the chloride ions can be incorporated into the method in the form of bischophyte, sodium chloride, potassium chloride, magnesium chloride, ferrous chloride, ferric chloride, calcium chloride or through the use of recirculating solutions of the same method containing chloride, iron and copper ions.
  • the metal to be solubilized is copper and the sulphided mineral is a sulphided secondary mineral of copper.
  • step II is carried out in a solid-liquid-solid condition.
  • stages I of wetting and II of drying and supersaturation can be performed at pH between 0.5 and 5.
  • stages I of wetting, II of drying and supersaturation and III of washing can be carried out independent of the potential, below 700 mV or above 700 mV (Eh).
  • washing step III can be carried out with a reused solution with the presence of chloride and iron ions.
  • steps I and II can use chloride salts, which can come from seawater, desalination plant brines, halite, bischophyte, and commercial sodium chloride.
  • steps I, II and III can be carried out at room temperature, preferably between 20 to 40 ° C.
  • the solution obtained from step II can follow the traditional steps of solvent extraction and electrowinning or go directly to electrowinning.
  • Table 1 shows the quantitative mineralogical analysis obtained for four top samples of copper sulphide minerals, named as Mineral 1, 2, 3 and 4.
  • Mineral 1, 2, 3 and 4 used light microscopy and modal analysis, supported by sequential copper chemical analysis.
  • the mineralogical analysis for total copper indicated that there were low and high grade minerals; however, by copper species, the analysis showed that for Minerals 1, 2, 3 and 4, the chalcopyrite percentage is 99.8%, 81.7%, 45% and 11.7% respectively.
  • Example 2 Copper extraction in relation to the acid concentration in the step of
  • the Thermal Drying stage was started, directly on the column, for a period of 45 days.
  • the third stage of washing began, with an irrigation rate of 5 L / h / m for 12 hours, using a sodium chloride solution of 180 g / L at pH 1.
  • Example 3 Copper extraction in relation to the percentage of humidity in the
  • the third stage of Washing began with an irrigation rate of 5 L / h / m for 24 hours, using an artificial refining solution containing 180 g / L chloride. sodium, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid.
  • the Drying and Oversaturation stage began, for a period of 45 days, where there was no irrigation and the columns were covered, to maintain the temperature 25-30 ° C.
  • the third stage of washing began at an irrigation rate of 7 L / h / m for 12 hours, using an artificial refining solution containing 180 g / L sodium chloride, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid.
  • Example 5 Copper extraction in relation to the drying time in the Drying stage
  • the Drying and Oversaturation stage began for different periods of time (5, 15, 30, 45, 60 and 90 days).
  • the third stage of washing began with an irrigation rate of 5 L / h / m for 24 hours with an artificial refining solution containing 180 g / L chloride sodium, 5 g / L ferric, 2 g / L ferrous and 10 g / L acid.
  • Example 6 Copper extraction in relation to the simulation of a continuous regime, using Mineral 1.
  • Example 7 Copper extraction in relation to the first cycle of the Solid-Liquid-Solid method versus Prolonged Curing Times, using Mineral 1. The results of Figure 6 were obtained in column tests, using Mineral 1.
  • the minerals were subjected to a traditional crushing process until reaching a particle size of 100% under 1 ⁇ 2 inch. Subsequently, six loads of said mineral were prepared, immediately the mineral loads were subjected to the Wetting stage, performing the agglomeration and curing process with the addition of water and acid together for the SLS method and separately for the test of prolonged cure.
  • the four long cure tests were fillers, 2 for a 60 day cure and 2 for a 120 day period, as shown in Example 8.
  • the addition of bischophyte and sodium chloride solidly directly onto the mineral was performed with the following concentrations and conditions:
  • Example 8 Copper extraction in relation to two cycles of the Solid-Liquid-Solid method versus Prolonged Curing Times of 120 days, using Mineral 1.
  • the third stage of Washing and Irrigation for all tests was started, at an irrigation rate of 10 L / h / m for 12 hours, using an artificial refining solution that it contained 180 g / L sodium chloride, 5 g / L ferric, 2 g / L ferrous and 10 g / L acid.
  • the minerals were subjected to a traditional crushing process until reaching a particle size of 100% under 1 ⁇ 2 inch. Subsequently, two loads of said mineral were prepared, immediately all the mineral loads were subjected to the Wetting stage, where agglomeration and curing were carried out with the addition of water and acid together. The addition of bischofita and sodium chloride in solid form directly on the mineral was carried out with the following concentrations and conditions:
  • Example 10 Copper extraction in relation to the Solid-Liquid-Solid method versus Prolonged Curing Times, using 1 m columns.
  • the Washing stage was started with an irrigation rate of 5 L / h / m for 24 hours with an artificial refining solution containing 200 g / L sodium chloride, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid and 240 g / L of bischofite, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid.
  • a second drying cycle was started for 60 days.
  • irrigation was started at a rate of 5 L / h / m for 24 hours with an artificial refining solution of 150 g / L sodium chloride, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid.
  • irrigation-rest periods were carried out every 5 days at a rate of 5 L / h / m for 12 hours, until the 120 days of testing were reached.
  • the S-L-S method presents a higher concentration of copper, with respect to total iron, with a copper-iron ratio of approximately 5: 1 for sodium chloride and almost 10: 1 for bischophyte. In contrast, in prolonged curing the copper to iron ratio is approximately 1: 1 for both salts. It can also be seen that the redox potentials are similar and no significant differences are observed indicating that the potential difference may affect the solubilization of copper.
  • Example 11 Irrigation Ratio in relation to the Solid-Liquid-Solid method versus Times
  • Example 12 Copper extraction in relation to the Solid-Liquid-Solid method versus Prolonged Curing Times, using Mineral 2.
  • the Washing stage was started with an irrigation rate of 5 L / h / m for 24 hours with an artificial refining solution containing 200 g / L sodium chloride, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid and 240 g / L of bischofite, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid.
  • a second drying cycle was started for another 60 days.
  • irrigation was started at a rate of 5 L / h / m for 24 hours with an artificial refining solution of 150 g / L chloride. sodium, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid.
  • stand-by irrigation was performed every 5 days at a rate of 5 L / h / m for 12 hours, until reaching 120 test days.
  • Example 13 Copper extraction in relation to the solid-liquid-solid (SLS) method versus Bioleaching and Chlorinated Leaching, using Mineral 3
  • SLS solid-liquid-solid
  • Example 13 Copper extraction in relation to the solid-liquid-solid (SLS) method versus Bioleaching and Chlorinated Leaching, using Mineral 3
  • the results of Figure 12 were obtained in tests in 1 m columns, using Mineral 3, the which has a total copper grade of 0.36% and a percentage by copper species of 45% chalcopyrite (see Table 1).
  • the minerals were subjected to a traditional crushing process until reaching a particle size of 100% under 1 ⁇ 2 inch. Subsequently, 3 loads of said mineral were prepared, immediately the mineral loads were subjected to the Wetting stage, performing the agglomeration and curing process with the addition of water and acid together for the SLS method and separately for the test of Chlorinated leaching and Bioleaching.
  • the addition of chloride Sodium in solid form directly on the mineral was made with the following concentrations and conditions:
  • the chlorinated leaching and bioleaching tests were carried out on lm columns by a metallurgical laboratory expert in this type of tests.
  • the classic secondary sulphide leaching methods were carried out in Mineral 3.
  • the chlorinated leaching was carried out with a concentration of 150 g / L of sodium chloride, 30 kg / t of acid and 10% humidity. The process lasted 90 days, through stages of irrigation and rest.
  • the test was performed with a bacterial consortium composed of oxidizing iron and sulfur microorganisms, 10% humidity and 50 kg / t of acid. The process lasted 90 days through irrigation-rest stages.
  • Example 14 Water supply by use of Bischofita in the wetting stage to achieve a humidity of 6% and 10%.
  • Example 15 Copper extraction using the solid-liquid-solid method in Mineral 4.
  • the results of Figure 14 were obtained from column tests, using Mineral 4, which has a total copper grade of 0, 67% and a percentage by copper species of 76.24% of chalcoxine and 11.7 chalcopyrite (see Table 1).
  • the minerals were subjected to a traditional crushing stage to achieve a 100% particle size under 1 ⁇ 2 inch. Subsequently, 2 loads of said mineral were prepared, immediately the mineral loads were subjected to the SLS method, starting with the Wetting stage, where it agglomerated with the addition of water and acid together, according to the conditions described below :
  • the Washing and rewetting stage began with an irrigation rate of 5 L / h / m for 24 hours with an artificial refining solution containing 200 g / L chloride. sodium, 5 g / L of ferric, 2 g / L of ferrous and 10 g / L of acid. Then a second drying cycle was started for another 15 days. After the time of the second cycle of drying, the second wash was performed with an acidified pH 1 solution at an irrigation rate of 5
  • a high copper extraction is expected to occur during the test on a mineral that has a total copper greater than 70% in the form of chalcosine.
  • the solid-liquid-solid method according to the invention with only two 15-day cycles it is possible to extract the maximum concentration of copper.
  • Example 17 Extraction of copper in a chalcopyrithic concentrate, using the method
  • the second stage of the process began, where the concentrates were stored in a drying chamber at 30 ° C for 25 days.
  • the third stage of the process began, where the concentrate was transferred to the washing pools, carrying out the process with a solution at pH 1 for 30 minutes. Once the washing was carried out, the concentrate was filtered and subsequently dried to start a second cycle of Wetting and Drying.
  • the sample was subjected to the Wetting step, where 100 kg / t of NaCl, 100 kg / t of bischofite and 100 kg / t of FcChx 63 ⁇ 40 were added in solid form to the concentrate.
  • the concentrate was weighed, then the sample was subjected to the Wetting step, which consisted of adding 100 kg / t of ferric sulfate to the concentrate in solid form, and then a solution was added composed of water and acid with 2 g / L of ferrous and 3 g / L of ferric, until reaching a final humidity of 12%.
  • the second stage of the process began, where the concentrates were stored in a drying chamber at 30 ° C for 25 days.
  • the third stage of the process began, where the concentrate was transferred to the washing pools, carrying out the process with a solution at pH 1 for 30 minutes. Once the washing was done, the concentrate was filtered and then dried to start a second cycle of Wetting and Drying.
  • Example 18 SEM microscopy images of Concentrate 1 after the Wetting and Drying step.
  • Image A General image of the concentrate sample, where the precipitates can be identified throughout the sample and that were generated during the second stage of the method.
  • Image B Specific area of general image A (white circle), where you can see in detail the shape of the precipitates and crystals, which correspond to copper and chlorine complexes, presenting a shape defined by the loss of moisture during the drying and supersaturation stage.
  • Image C Specific area of general image A (black circle), where you can see in detail the shape of the precipitates and crystals, which correspond to copper and chlorine complexes, presenting a shape defined by the loss of moisture during the drying and supersaturation stage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La presente invención se refiere a un método hidrometalúrgico sólido-líquido-sólido en presencia de sales hidratadas y/o no hidratadas en una condición de sobresaturación, la cual es lograda por la aplicación intencional y reiterativa de etapas de secado y humectación, potenciando los fenómenos químicos y físicos sobre el mineral o concentrados, provocando así la cristalización, recristalización y liberación del cobre en una descomposición no estequiométrica del sulfuro y posterior precipitación de este con cloruro. La invención está compuesta por 3 etapas denominadas: a) Humectación b) Secado y Sobresaturación c) Lavado y re-humectación y ocurre a temperatura de 20 a 40 °C, independiente del potencial redox, con un mínimo consumo de agua y ácido, sin la necesidad de adicionar oxígeno. El método permite disminuir el consumo de ácido y agua, ya que la transformación del sulfuro se puede realizar sólo con la presencia de sales hidratadas y/o la adición mínima de ácido y agua. Además, la presente invención permite reducir el uso de agua en la etapa de aglomerado y/o aglomerado-curado, debido a qué al mezclarse la sal hidratada con el mineral, las moléculas de agua de la sal hidratada humectan el mineral, reduciendo el volumen de agua que se debe agregar en las etapas de humectación y aglomerado y/o curado. El método de la presente invención también puede ser aplicado a metales base sulfurados tales como níquel, zinc, cobalto, plomo, molibdeno, entre otros, independientemente de impurezas habituales de los minerales sulfurados, como ocurre con la presencia de arsénico.

Description

MÉTODO HIDROMETALÚRGICO SÓLIDO-LÍQUIDO-SÓLIDO PARA LA SOLUBILIZACIÓN DE METALES A PARTIR DE MINERALES Y/O CONCENTRADOS
SULFURADOS DE COBRE
MEMORIA DESCRIPTIVA CAMPO DE LA INVENCIÓN
La presente invención se refiere a un método hidrometalúrgico Sólido-Líquido-Sólido que es capaz de lograr bajo un mismo método, la solubilización de minerales y concentrados, tanto en la forma de óxidos, como de sulfuras secundarios y primarios, principalmente calcopirita, para obtener un metal deseado.
ANTECEDENTES
En las últimas décadas, ha habido un crecimiento importante en la producción y consumo de minerales, debido principalmente a que los países en desarrollo, han ingresado al mercado global. Los recursos minerales y el cambio climático están íntimamente relacionados, no solo porque la minería requiere una gran cantidad de energía y agua, sino también porque el mundo no puede hacer frente al cambio climático, sin un suministro adecuado de materias primas para fabricar tecnologías limpias (Alonso E. et al., 2012; Elshkaki A, et al., 2016/. La industria minera es una de las áreas industriales con elevados consumos de energía y agua, por lo cual, existe una gran preocupación por los requerimientos hídricos, energéticos y por los impactos ambientales que se pueden generar en el futuro. La disponibilidad futura de metales y otros productos de minerales dependerá de los factores económicos y del mercado (precios de los metales, oferta y demanda), desarrollos tecnológicos para mejorar la extracción y de las presiones sociales y ambientales (Lranks D. et al., 2014; Cochilco., 2017; Schipper B., et al., 2018).
i La producción y demanda de cobre en el mundo han aumentado significativamente en los últimos 25 años, debido al aumento de la población mundial, crecimiento económico y la transición de la sociedad, hacía lo sustentable (USGS, 2009). El cobre es un metal ampliamente utilizado y es esencial en varios sectores económicos, como, por ejemplo, infraestructura, cableado, vehículos eléctricos, equipos eléctricos y electrónicos y energías renovables (Elshkaki
A, et al., 2018). Sin embargo, su producción tiene un alto consumo de energía y agua, por ende, un gran impacto ambiental, lo que se agudizará en las próximas décadas, debido a que se proyecta un incremento por sobre un 200% de la demanda de cobre para el 2050 (Elshkaki A.et al., 2016; Kuipers K. et al., 2018). Estudios recientes, sobre la criticidad y la evaluación del riesgo en el corto plazo del suministro de minerales, sugieren que en las próximas dos a tres décadas, la industria del cobre tendrá bastantes dificultades para satisfacer la demanda mundial y sus sustitutos no están fácilmente disponibles (Elshkaki A. et al., 2016; Meinert L. et al., 2016;
Schipper B., et al., 2018). Sin embargo, el reciclaje de este metal puede ayudar a satisfacer en cierta medida la futura demanda.
El cambio climático ha tenido un impacto importante en los cambios de ecosistemas y desertificación; además de generar fenómenos meteorológicos no esperados, como son lluvia en zonas donde no llovía, olas de calor y frío en diferentes partes del mundo. El norte de Chile, zona donde se concentra la mayor producción de cobre del país, ha sido afectada por lluvias que han generado un impacto importante en la producción de cobre en los primeros tres meses del 2019, disminuyendo en 5,1 % la producción en relación al 2018; además de generar daños graves en algunas faenas mineras, ya que algunos yacimientos, no fueron diseñados para enfrentar las fuertes lluvias, provocando una paralización de las faenas mineras, lo que según COCHILCO dejó pérdidas por US$300 millones. Por otra parte, la preocupación se orienta a los tranques de relaves activos e inactivos de la zona norte, ya que el aumento de los caudales de los ríos altiplánicos y las fuertes lluvias podría provocar un colapso de los tranques, generando peligro para la población y el medio ambiente.
La calcopirita es el sulfuro primario de cobre más abundante y representa aproximadamente entre el 70 y 80% de las reservas de cobre mundial (Hall S. et al., 1973; Kaplun et al., 2011). Este mineral es estable y es el sulfuro más refractario a los procesos hidrometalúrgicos. Además, se ha observado la formación de una capa pasivante, cuando es sometido a una variedad de agentes lixiviantes, dificultando aún más su disolución (Dreisinger., 2006; Veloso el al., 2016). La enargita, también es un sulfuro primario de cobre y se encuentra presente principalmente en yacimientos de Perú y Chile, siendo de preocupación ambiental como fuente de arsénico y requiere preocupación especial en las fundiciones. Por lo cual, la mayoría de las fundiciones penalizan el contenido de arsénico en los concentrados. Además, el arsénico es considerado el contaminante inorgánico más peligroso, causando emergencias ambientales y de salud en varias zonas del mundo (Mandal B. et al., 2002).
Los procesos hidrometalúrgicos que se han desarrollado para lixiviar los minerales y/o concentrados de cobre se basan en métodos sólido-líquido, sólido-líquido-gas o sólido-líquido- gas-bacteria, en donde se utilizan diferentes reactivos que actúan principalmente como agentes oxidantes, dichos procesos se podrían dividir en: cloruros, nitratos, sulfatos, amoniacales, yoduros y bacterianos, entre otros. Sin embargo, independiente del agente de lixiviación utilizado, siempre es en un medio acuoso, con altas concentraciones de ácido sulfúrico y normalmente se utiliza como agente oxidante, ion férrico y/o cúprico, además de la presencia de oxígeno y riego constante (Dutrizac, 1991; Habashi L, 1993; Domic E, 2001; Dreisinger, 2006; Senanayake, 2009; Kawashima et al., 2013; Waltling, 2014; Veloso et al., 2016). Para el caso específico de los concentrados calcopiríticos y enargita, se puede agregar que la mayoría de los procesos son a temperatura por sobre los 80 grados Celsius (McDonald et al., 2007 a; Gupta,
2010; Waltling, 2014). El primer uso de iones cloruro en metalurgia, se remonta al XVI en un proceso para amalgamar la plata. El siguiente proceso importante fue en 1860, cuando se utili ó el cloruro cuproso para la descomposición directa del sulfuro de plata, lo cual se puede considerar como el inicio del uso del cloruro en hidrometalurgia (Liddell, 1945). Desde entonces, numerosas investigaciones de lixiviación clorurada fueron desarrollados para la disolución de minerales sulfurados y concentrados de cobre (Dutrizac, 1991). Los procesos desarrollados se basaban principalmente en método sólido-líquido y sólido-líquido-gas con la utilización de cloruro con agentes oxidantes, como el cloruro cúprico (CuCb) y cloruro férrico (FcCh), debido a las ventajas relacionada a la alta solubilidad del cobre y ion férrico, control de azufre, y economía del proceso (Dutrizac y MacDonald, 1974; Dutrizac J., 1981; Dutrizac J., 1991; Habashi F, 1993; fíavlik T. et al., 1995; Domic E, 2001; Dreisinger, 2006; Carneiro, 2007; Nicol et al., 2016). Durante décadas en el primer productor mundial de cobre, la actividad minera ha generado una disminución importante de los niveles de agua dulce en la zona norte del país, lo que ha generado quejas de las comunidades locales sobre la disponibilidad del recurso hídrico. En respuesta tardía ha llevado a la Dirección General de Aguas (DGA) a duplicar las zonas de prohibición en todo Chile, pasando de 30 a 70 zonas de prohibición, dentro de las cuales se encuentran áreas de minería, lo que dificultará a las mineras la extracción de agua dulce. Por otra parte, se espera que la demanda de agua de las mineras aumente en el futuro, debido a la disminución de las leyes de los minerales, lo que obliga a procesar más material para mantener los niveles de producción (Bloomberg, 21 febrero 2019).
Las minas Escondida de BHP y Zaldívar de Antofagasta Minerals son ejemplos claros y complejos sobre el uso de agua dulce en la zona norte de Chile, ya que deberán de ajustar sus niveles de extracción actuales si quieren continuar operando, dado que la disponibilidad de agua en el acuífero no es suficiente para mantener los niveles de extracción. En el caso de minera Zaldívar deberá cerrar si no renueva su licencia de agua, ya que no tiene un plan alternativo. Por el contrario, Escondida inauguró su planta desalinizadora para extraer agua de mar a 3.000 metros sobre el nivel de mar hasta sus operaciones y aspira ambiciosamente a dejar de usar agua dulce para el 2030 (Bloomberg, 21 febrero 2019).
La escasez hídrica en las zonas mineras, como en el norte de Chile y sur de Perú, ha llevado a las operaciones mineras a utilizar agua de mar, ya sea desalinizando o usando directamente en el proceso de lixiviación. La mejor calidad del agua en los procesos de disolución de minerales, no necesariamente es completamente desalinizada, ya que la presencia de algunos iones, como el ion cloruro, pueden ser utilizados en beneficio de la disolución del mineral (Dixon, 2013; Cisternas et al., 2017). El uso de agua de mar en la minería del cobre en Chile, ha aumentado significativamente desde el año 2010 al 2015 y se proyecta que para el 2029 su uso se triplique; pese a eso, el uso de agua dulce en la gran minería del país crecerá un 12% para el 2029 (Cochilco, 2017). La lixiviación de sulfuras de cobre con agua de mar, es asociada al uso del cloruro en la disolución oxidativa de sulfuras secundarios, como la calcosina y covelina. Por el contrario, el uso del cloruro en la disolución de la calcopirita no ha sido efectivo, debido a una lenta cinética e incompleta disolución (Dreisinger, 2006; Al-Harahsheh el al., 2008; Nicol el al., 2016; Lundstrom M. et al., 2016; Velásquez Y. et al., 2018).
Un tercio de la producción de cobre mundial es producida por Chile y se proyecta que habrá un importante cambio en la estructura del producto final de la minería del cobre. Esta proyección indica que la participación hidrometalúrgica pasará de un 30,8% al 12% al año 2027, y la producción de concentrados pasará de un 69,2% al 89,9% hacía el 2027 (Cochilco, 2017). El consumo unitario de agua para una planta concentradora en el 2016 alcanzó los 0,5 (m ton min ); sin embargo, para la hidrometalurgia el consumo llegó a los 0,1 (m ton min ), logrando ser significativamente menor el uso de agua en procesos hidra metalúrgicos (Cochilco, 2017).
La disminución de la participación hidrometalúrgicas en el tipo de mineral extraído, se debe al agotamiento de los recursos lixiviables, a la aparición de minerales primarios refractarios (calcopirita) y por ende el cierre de faenas mineras. Además, la aparición de los sulfuras primarios, conduce a que el mineral de alta ley sea procesado principalmente por flotación, lo que conllevará a una generación de capacidad ociosa en las instalaciones hidrometalúrgicas, debido a que no se ha reportado a nivel industrial una tecnología hidrometalúrgica costo efectiva, para el tratamiento de los sulfuras primarios de cobre de baja ley (Cochilco, 2017). Por otra parte, el aumento de la producción de concentrados llevará a un aumento de los pasivos ambientales (relaves) y de la capacidad de procesamiento de las fundiciones.
En las fundiciones de cobre se pueden identificar tres procesos principales; cómo lo son la fusión, la conversión y la refinación. En todos estos procesos se generan gases, como dióxido de carbono (CO2) y dióxido de azufre (SO2), los cuales, al no ser recuperados en el proceso de las fundiciones, son liberados al ambiente generando un gran impacto ambiental y daño a la salud de las personas.
El estado chileno promulgó en 2013 el decreto supremo 28, en donde presenta la norma de emisiones para las fundiciones de cobre, con el fin de reducir las emisiones de dióxido de azufre (SO2), arsénico (As), mercurio (Hg) y tiene como objeto proteger la salud de las personas y el medio ambiente. El decreto establece que las 7 fundiciones ya existentes deben capturar y fijar más del 95% del azufre y el arsénico del peso que entre al proceso, muy por debajo de fundiciones en Europa y Asía a las cuales se les exige capturar el 99,9% de las emisiones. En el año 2018 cuatro de las siete fundiciones que hay en el país no cumplían con el decreto, principalmente por los altos costos de inversión, adecuación de equipos y construcción de plantas de ácido sulfúrico, todo lo anterior con el fin de actualizar las fundiciones y alcanzar la normativa establecida para los nuevos límites de emisiones (Ramírez J., 2019, Minería Chilena). DESCRIPCIÓN DEL ARTE PREVIO
La hidrometalurgia es una ciencia y tecnología de extracción de metales o materiales mediante métodos acuosos (Habashi F, 1993). En general esta disciplina de la metalurgia extractiva se desarrolla en tres etapas físico-químicas diferentes y secuenciales, denominadas disolución selectiva o lixiviación, purificación/concentración y precipitación (Domic, 2001). Esta ciencia bien establecida a competido enérgicamente con las técnicas pirometalúrgicas, y en algunos casos ha desplazado tales procesos. En el último tiempo, con el agotamiento de los minerales de altas leyes y con abundante mineral primario de baja ley, la hidrometalurgia aparece como una posible opción económicamente viable para tratar los minerales primarios con bajas leyes (Habashi, 2005). La disolución selectiva de un sólido mediante una solución acuosa ha sido aplicada en minerales de cobre en pilas, siendo un proceso bien establecido y exitoso para minerales oxidados y sulfuras secundarios de cobre, como la calcosina y covelina. Por el contrario, para los sulfuras primarios, como la calcopirita, sigue siendo un problema de gran relevancia para la minería del cobre, tanto para minerales y concentrados (Dreisinger, 2006; Nicol et al, 2016; Liu et al., 2017; Velásquez Y. et al., 2018).
La lixiviación química de los minerales, son fenómenos heterogéneos, en donde la reacción se lleva a cabo en la interfase entre un sólido y un líquido, involucrando fenómenos sólido-líquido, sólido-líquido-gas y sólido-líquido-gas-bacteria (Habashi F., 1999; Domic E, 2001; Dixon y Petersen, 2003). En términos generales, se puede decir que la disolución de un mineral en un medio acuoso está gobernada por etapas difusionales (Wen C, 1968; Crest A., 2000; Dixon y Petersen, 2003). Por el contrario, las reacciones heterogéneas que involucran fases sólido-gas y sólido-sólido a temperatura ambiente, sin la intervención de una fase líquida, tienen una velocidad de reacción extremadamente lenta (Lefebvre R., 2001; Evans K., 2006).
La calcopirita (CUFCST), enargita (CU3ASS4) y bornita (CusFeSz son minerales sulfurados y primarios de cobre, refractarios y semiconductores como la gran mayoría de los minerales sulfurados, con una estructura cristalina en donde los iones de hierro y de cobre están en coordinación tetraédrica con el azufre, en el caso de la calcopirita (Hall S. et al., 1973; Nikiforov K.,1999). Mediciones espectro scópicas de la calcopirita y bornita, han identificado que la estructura electrónica de ambos minerales es la misma para el cobre (Cu1+) y el hierro (Fe3+), con un peso molecular para el primero de 183,52 g/mol y para el segundo de 501,8 g/mol, aportando cada átomo en su peso atómico los siguientes porcentajes; Cu 34,6 %; Fe 30,4 %; S 34,9 % y Cu
63,3 %; Fe 11,1 %; S 25,5 % respectivamente (Grguric B. et al., 1998; Mikhlin et al., 2004,
Pearce et al, 2006). La enargita (CU3ASS4) es un sulfuro de cobre con arsénico, al igual que la calcopirita y bornita tiene una valencia +1 para el cobre; sin embargo, tiene un peso molecular de
393,8 g/mol y cada átomo en su peso atómico está dado por los siguientes porcentajes; Cu 48,4
%; As 19,0 %; y S 32,6 % (Li D. et al., 1994; Arribas J. 1995; www.mindat.org).
La baja cinética de extracción de cobre desde sulfuras primarios mediante condiciones oxidativas y/o reductivas en presencia de bajas y altas concentraciones de cloruro ha generado una gran cantidad de trabajos de investigación, con el fin de comprender principalmente la disolución oxidativa de este mineral, dichos trabajos son resumidos en estas publicaciones
(Debernardi y Carlesi, 2013; Kawashima et al., 2013). Por otra parte, se propone que el uso del cloruro en la disolución de la calcopirita, tiene varios desafíos por delante para lograr ser implementado en un proceso de lixiviación en pila. Uno de ellos, es lograr la regeneración de agentes oxidantes como ion cúprico y ion férrico, además de controlar el pH, potencial redox y la pasivación. Este último fenómeno se propone que es generado por la formación de diferentes compuestos, como el dicloruro de disulfuro (S2CI2), azufre elemental, sulfuras secundarios no estequio métricos y complejos clorocuprato I, los cuales son absorbidos por la superficie del mineral (Lu et al., 2000; Carneiro, 2007; Lundstróm et al., 2016; Nicol, 2017; Liu et al., 2017).
Los iones de cobre pueden formar complejos con iones cloruro y la prevalencia del complejo dependerá de la concentración de cloruro y del entorno de la lixiviación. En soluciones con elevada concentración de cloruro hay una prevalencia de los complejos cuprosos [CuCh] ,
[CuCb] 2, [CU2CI4] 2, [CU3Ü6] 3 por sobre los complejos cúpricos [CuCl]+, [CuCh]0, [CuCl·?] ,
[CuCU] los cuales a medida que aumenta la concentración de cloruro, disminuye su solubilidad. Por el contrario, los complejos clorocuprato (I) aumentan su solubilidad a medida que se incrementa la concentración de cloruro (Berger y Winand, 1983; Fritz, 1980, 1981; Lin et al., 1991; Winand, 1991; Yoo et al., 2010). El efecto beneficioso de los complejos clorocuprato I en la disolución de la calcopirita ha sido poco estudiado y son considerados agentes inhibidores de la disolución, por lo cual, se busca maximizar la presencia de los iones cúpricos como agente oxidante, por sobre los complejos clorocuprato I (Winand, 1991; Liu el al., 2017).
El uso de cloruro en la disolución de la calcopirita en un medio oxidativo ha sido aplicado utilizando soluciones saturadas y no saturadas de cloruro, encontrándose, por una parte, que a bajas y altas concentraciones de cloruro se podía evitar la pasivación del mineral, debido a los bajos potenciales REDOX, logrados bajo esas condiciones (Velásquez et al., 2010; 2018). Por el contrario, el uso de soluciones concentradas de cloruro y ácido, han permitido mejorar la disolución de los sulfuras primarios, mediante largos periodos de curado y pre-tratamiento del mineral, el cual posteriormente es sometido a un proceso de lixiviación, en bajos o alto potencial REDOX (Patiño et al., 2014; Velásquez Y. et al., 2018). Estudios recientes de Velásquez (Velásquez Y. et al., 2018), muestran que el aumento de los periodos de curado ayuda a solubilizar los sulfuras primarios; sin embargo, el proceso genera una disolución incompleta de la calcopirita. Por el contrario, a temperaturas de 50°C la solubilización de un concentrado calcopirítico en un medio inundado (reactor) aumenta por sobre el 85%. Por otra parte, estudios derivados de los resultados de Patiño, muestran que la solubilización de un concentrado calcopirítico con soluciones concentradas de cloruro en un medio oxidante sólo alcanzaron una extracción de cobre del 19% (Lundstrom M. et al., 2016). Además, se propone que la calcopirita es oxidada a covelina, diferente a lo propuesto por Pihlaso et al. (2008), quien menciona la formación de calcosina. El uso de concentraciones elevadas de un reactivo puede generar un aumento en la tasa de reacción; sin embargo, también podría generar reacciones secundarias no deseadas y ser económicamente no viable (Habashi F., 1999); además, se hace económicamente no viable al tener que trasportar constantemente grandes cantidades de sales a la operación con el fin de mantener el suministro constante. Por otra parte, algunos trabajos proponen que la calcopirita podría ser reducida por iones cuprosos en un medio acuoso con acetonitrilo y/o cloruro a elevadas temperaturas, reduciendo la calcopirita en calcosina o bornita (Avraamides el al., 1980; Winand, 1991). Además, según estudios termodinámicos, se propone que los complejos clorocuprato I en un medio cloruro aumentan el potencial crítico, lo que generaría un aumento en la extracción de cobre desde la calcopirita, siguiendo el modelo propuesto por Hiroyoshi (Yoo el al., 2010). Sin embargo, existe una cantidad limitada de estudios termodinámicos en soluciones concentradas de cloruro, lo que hace que éste sea un campo poco explorado (Fritz, 1980, 1981; Winand, 1991; Yoo et al., 2010).
Durante el proceso de preparación mecánica del mineral se produce la generación de partículas finas, las cuales pueden afectar la permeabilidad de la pila. La aglomeración es una etapa que se realiza generalmente antes de la lixiviación en pilas de óxido y sulfuras secundarios, y consiste en unir las partículas finas a las más gruesas, con el fin de aumentar el coeficiente de permeabilidad en la pila, y así poder tener condiciones de riego y aireación eficientes para mejorar el proceso de extracción (Bouffard S.C., 2005, 2008). Por lo tanto, la etapa de aglomeración es de vital importancia para mantener una buena hidrodinámica en la pila y evitar apozamientos. La etapa de aglomeración más simple se realiza mediante la adición de agua y ácido, con el fin de humedecer el mineral hasta lograr una tensión superficial óptima. Por lo tanto, la presencia de agua en la etapa de aglomeración es de vital importancia, ya que sin la presencia de agua no hay glómeros, y tampoco una adecuada distribución del ácido, lo que provocaría un curado ineficiente (Domic E., 2001; Lu. J. el al., 2017). Por otra parte, durante esta etapa también se realiza el curado del mineral, mediante la adición de ácido sulfúrico concentrado con el fin de que éste actúe sobre todas las partículas del mineral y genere las mejores condiciones para el proceso de lixiviación. La acidez, de la etapa de curado y de las soluciones de lixiviación es muy importante, ya que interacciona con el mineral y con la ganga, por lo cual, la falta de ácido podría perjudicar la extracción del cobre (Bouffard S.C., 2005; Lu J. et al., 2017). El mecanismo y equipamiento de aglomeración y curado puede realizarse mediante la adición de agua y posteriormente ácido sobre el mineral en una correa transportadora o mediante el uso de un tambor aglomerador que permite que una partícula húmeda gire entorno así mismo, permitiendo una eficiente formación del glómero (Domic E., 2001).
La meteorización se define como la fragmentación o degradación parcial o total de las rocas y los minerales al entrar en contacto con agentes atmosféricos. La meteorización natural de rocas o minerales se lleva acabo por reacciones químicas (meteorización química) y diversos procesos de desintegración mecánica (meteorización física), como el estrés térmico, aumento de volumen de minerales arcillosos y crecimiento de cristales en diaclasas de rocas debido a cambios de fases. Los cambios relevantes que ocurren por soluciones en poros de rocas, se denominan cristalización por solvente y corresponden a un proceso de cristalización por congelación; sin embargo, cuando el proceso ocurre por un soluto, se denomina meteorización por sales o haloclastia, en ambos casos se produce un aumento de la presión en las paredes internas de la roca, lo que promueve el desgate o ruptura de la misma (Wellman H. el al, 1965; Goudies A. el al., 1997; Smith J., 2006). La meteorización física por sales afecta a materiales porosos, tales como afloramientos rocosos y minerales. Las especies químicas (aniones y cationes) son transportados por soluciones acuosas, las cuales se pueden introducir a los minerales por sus poros y/o diaclasas. La concentración de las sales en solución variará durante la circulación por el mineral o la roca, lo cual se puede generar debido a las siguientes condiciones: interacción química con el mineral, evaporación de agua, variaciones de temperatura y variaciones de humedad relativa. El aumento de la concentración de una sal por evaporación del agua y bajo condiciones ambientales dadas, generará la precipitación de la misma, lo cual ocurrirá cuando la concentración de la sal sea tal que el producto de solubilidad sea igual o superior a la constante de equilibrio. Cuando el producto de solubilidad es igual a la constante de equilibrio, la condición es de equilibrio y la solución se denomina saturada, mientras que cuando el producto de solubilidad es mayor a la constante de equilibrio, la condición es de desequilibrio y la solución se denomina sobresaturada (Grossi C. M. et al., 1994; Desarnaud J. et al., 2016).
La meteorización química y la meteorización por sales representan diferentes mecanismos de ruptura de rocas y generalmente operan en conjunto. Sin embargo, es difícil diferenciar sus efectos por separado, ya que son fenómenos que están interrelacionados, debido a que los productos que pueden ser generados por la disolución de minerales, son utilizados para un nuevo proceso de meteorización por sales. Un ejemplo de ello, es la generación de sulfatos, los cuales se pueden producir por el ataque de ácido sulfúrico, que puede ser de origen volcánico, deposición de dióxido de azufre atmosférico o por las reacciones propias de la disolución de una roca. El cloruro de sodio y el cloruro de magnesio hidratado son sales abundantes que se encuentran presentes en la naturaleza, teniendo un rol activo como anticongelantes y controladores de polución de caminos.
El cloruro inorgánico nace a partir de la disolución de compuestos hidrácidos y sales binarias en medios acuosos bajo ciertas condiciones homogéneas de solubilidad. Las fuerzas intermoleculares del disolvente (por ejemplo, el agua) provocan la destrucción total de enlaces iónicos y covalentes permitiendo la disociación de las sales en sus iones polares primitivos, es decir; un catión metálico o no metálico valente (H+, Na+, Mg2+, Fe3+, K+, etc.) y el anión cloruro en cuestión. La bischofita es una sal hidratada cuya fórmula química es MgClixótLO, siendo el compuesto activo de la bischofita el cloruro de magnesio, el cual tiene diversas propiedades físicas, como la delicuescencia, la capacidad de aumentar la tensión superficial del agua y la presión de vapor. Esta sal se obtiene como residuo o descarte del proceso evaporación solar al que se someten las salmueras extraídas de ciertos salares, principalmente en el triangulo del litio, compuesto por Chile, Argentina y Bolivia, necesaria para la extracción de litio y potasio. El cloruro de magnesio hidratado o cristales de bischofita está disponible a nivel mundial. Sin embargo, la bischofita producida en Chile, tiene la ventaja que tiene bajo nivel de impurezas. El principal uso de la bischofita está orientado a la estabilización de caminos; sin embargo, no existen restricciones de capacidad de producción de esta sal, ya que las principales empresas productoras poseen abundantes depósitos de bischofita, los cuales aumentan cada año, con una producción que supera con creces la demanda. Por ejemplo, en el año 2015, la venta de bischofita fue cercana a las 150 mil toneladas, que corresponde a menos del 10% del total producido por las empresas durante ese año, y lo mismo ocurrió para el resto de los años (Fiscalía Nacional Económica, 2017), evidenciando que la oferta sobrepasa enormemente la demanda y que existe una oportunidad de utilizar esta sal.
Las sales de cloruros de sodio y magnesio, son sales solubles con tendencia a la sobresaturación, que en solución son muy móviles y pueden penetrar profundamente en las fracturas o diaclasas de las rocas, generando eflorescencia y cristalización de las sales en la superficie o al interior del mineral o roca, como características especial de estas dos sales. La ubicación de sales solubles de cloruro respecto de la superficie exterior de un mineral depende del mecanismo de saturación o sobresaturación de la solución. En el caso de generarse por un proceso de evaporación, el mecanismo estará controlado por dos procesos que actúan simultáneamente. Por un lado, la tasa de evaporación, y por el otro, la tasa de aporte de solución a través del mineral. Si la velocidad de difusión del vapor es menor que la de migración de la solución, esta última podrá llegar a la superficie externa donde se evaporará y cristalizarán las sales, ésto depende de la forma de transferencia de calor, ya sea por convección o radiación (Gómez-Heras el al., 2016). Este último fenómeno se denomina eflorescencia. Si por el contrario, la tasa de migración de solución es menor que la tasa de difusión del vapor de agua, el equilibrio se alcanzará a una cierta distancia de la superficie, produciéndose la criptoeflorescencia. Cuando las tasas de difusión del vapor de agua sean mayores, generará una mayor precipitación de sales, lo que potenciará dicho fenómeno. La cristalización al interior del mineral fracturado, debido a la evaporación de disoluciones acuosas, producirá el crecimiento de cristales de cloruro, lo cual generará presiones y pérdida de cohesión del mineral (Winkler, 1973; Amoroso et al., 1983; Lewin, 1989; Desarnaud J. el al., 2016). Las variaciones de temperatura y humedad relativa del aire en contacto con las sales precipitadas inducen procesos de dilución y precipitación de sales. Sin embargo, estos procesos están acompañados de fenómenos de hidratación y deshidratación, lo que induce transiciones de fase, generando un aumento del tamaño de los cristales de sales solubles, y por ende, la fragmentación de la roca, fenómeno denominado haloclastia (Gupta el al., 2014; Desarnaud J. et al., 2016).
La evaporación de un líquido en un medio poroso implica fenómenos complejos de transporte de líquido, vapor y cambios de fases. Sin embargo, la determinación de la velocidad de evaporación, junto con la evolución de la distribución del líquido dentro del espacio poroso a medida que la fase líquida es reemplazada por la fase gaseosa, son importantes para la condición de sobresaturación y predecir daños inducidos por la cristalización de las sales. Los procesos de evaporación lenta son bien conocidos y se pueden ejemplificar con el proceso de evaporación de agua desde un sólido a temperatura ambiente, en este caso las velocidades de evaporación son muy pequeñas, por lo cual, las variaciones de temperatura por el cambio de fase son insignificantes (Prat M. et al., 2007). Para el caso del uso de soluciones saturadas de cloruro de sodio la eflorescencia es un factor importante, ya que el proceso de cristalización ocurre principalmente en la superficie del sólido, lo que disminuye significativamente la cinética de evaporación, debido al bloqueo de la superficie del sólido por la eflorescencia (Sghaier N. et al., 2009), provocando un bajo daño físico en el interior del mineral.
El potencial REDOX es un parámetro importante en los métodos y en gran parte de las tecnologías propuestas para la disolución de la calcopirita, ya que se ha propuesto que la formación de productos de lixiviación, considerados agentes pasivantes, son dependientes del potencial del medio, favoreciendo a bajos potenciales una mayor extracción y a altos potenciales una menor extracción de cobre (Elsherief, 2002; Hiroyoshi el al., 2001; Velásquez-Yévenes el al., 2010; 2018). Sin embargo, la ventana de potencial en la cual se logran estas mayores extracciones de cobre es acotada y difícil de controlar, lo que conduce a que una vez que se logra sobrepasar el potencial crítico de disolución, la extracción de la calcopirita se detiene por completo o se logra una extracción incompleta, debido a los productos de la lixiviación que bloquean la superficie del mineral, evitando su disolución (Dixon & Petersen, 2006; Li et al., 2010; Ahmadi et al., 2010; Kaplun et al., 2011; Nicol, 2017; Liu et al., 2017).
Los estudios de los fenómenos y mecanismos de disolución de la calcopirita han sido orientados a los tipos de agentes lixiviantes, parámetros de disolución, potencial redox, tiempos de curado, pre-tratamientos y al fenómeno de pasivación. Por el contrario, el rol del medio acuoso en la superficie del mineral ha sido muy poco estudiado, considerando que el agua y el ácido son las especies químicas más abundantes en los procesos hidrometalúrgicos. Por otra parte, Oliveira C. et al. (2010) y Ferreira de Lima et al. (2011) estudiaron a nivel molecular la adsorción del agua en la superficie de la calcopirita y encontraron la formación de dímeros de azufre y zonas hidrofóbicas. Estos hallazgos son propuestos por los autores como una posible respuesta a la baja cinética de disolución de la calcopirita en medios acuosos.
La publicación US20040060395 (Hamalainen, 2004) divulga un procedimiento oxidativo sólido- líquido-gas, y se relaciona con un proceso que utiliza un ambiente clorurado para la lixiviación de concentrados por acción del cloruro cúprico en presencia de oxígeno a elevadas temperaturas. La publicación US7491372 (Faine, 2005) muestra un procedimiento oxidativo sólido-liquido- gas, y se refiere a un proceso que utiliza cloruro de calcio con el fin de mejorar la calidad de los glómeros y con ello la permeabilidad de una pila. Además, la fenomenología del proceso se basa en favorecer la generación de agentes oxidantes (Fe3+ y Cu2+) por la acción de oxígeno y la dupla redox cobre y hierro, lo que provoca la solubilización de los minerales sulfurados. La publicación W02007134343 (Muller el al., 2007) se refiere a un método hidrometalúrgico compuesto por dos etapas: la primera no-oxidativa en medio ácido; y una segunda etapa oxidativa, que involucra interacción sólido-líquido-gas, para la recuperación de cobre a partir de minerales primarios y secundarios, que comprende lixiviar el material en una solución ácida con cloruro a potenciales redox menores a 600 mV en presencia de oxígeno disuelto y iones cúpricos como agentes oxidantes.
La publicación W02016026062 (Patiño el al., 2016) divulga un procedimiento oxidativo sólido- líquido que involucra la adición de agente oxidante y un pretratamiento del mineral en presencia de elevadas concentraciones de cloruro y mínima presencia de oxígeno, con un potencial redox superior a 700 mV para la solubilización de sulfuras primarios y secundarios de cobre.
La publicación WO2016026062 (Álvarez, 2016) revela un procedimiento químico y bacteriano en un medio sólido-líquido-gas, y se relaciona con un proceso de lixiviación de sulfuras secundarios y primarios de cobre en medio cloruro-férrico-ferroso, con bacterias y arqueas hierro-oxidantes adaptadas a altas concentraciones de iones cloruro. Además, involucra la inyección de aire calentado, para elevar la temperatura y potenciar las reacciones de disolución del mineral.
El documento WO2016179718 (Engdahl el al., 2017) se refiere a un método oxidativo sólido- liquido-gas, que se lleva a cabo en un tambor de aglomeración de mezcla trifásica, y a un procedimiento de aglomeración de mineral realizado en el interior de dicho tambor para el pretratamiento de minerales en presencia de cloruro de sodio, ambos utilizados principalmente en hidrometalurgia. Dicho tambor y procedimiento emplean un sistema y una etapa de recirculación de gas cloro como parte de la invención.
El documento US7749302 (Hyvárinen el al., 2006) se refiere a la tecnología HydroCopper™ desarrollada por Outokumpu, la cual consiste en un método oxidativo en un medio sólido- líquido-gas, para la lixiviación de concentrados de cobre en concentraciones elevadas de cloruro cúprico y cloruro de sodio, con la ayuda de oxígeno y temperatura entre 85-95°C.
La disolución de la calcopirita ha sido extensamente estudiada, tanto por procesos químicos y biotecnológicos durante los últimos 60 años (Watling H. R., 2013; Li Y. el al., 2013; Liu el al., 2017) en donde se han propuesto muchas vías y mecanismos de disolución en presencia de diferentes sales y agentes oxidantes, pero siempre dependiente del método sólido-líquido, sólido- líquido-gas, sólido-líquido-gas-bacteria o etapas de pre-tratamiento con periodos largos de curado y de riego-reposo. Por otra parte, las condiciones tradicionalmente utilizadas en lixiviación son soluciones no saturadas y dependientes de parámetros como el potencial redox, pH y presencia de agentes oxidantes o reductores. Finalmente, la totalidad de los métodos de lixiviación aplicados industrialmente desde la década de los 50 hasta hoy en día, han sido efectivos para un tipo de mineral, como es el caso de minerales oxidados (medio ácido), sulfuros secundarios (medio sulfato y cloruro) o sulfuros primarios, pero no se ha logrado implementar un método transversal y único, que sea capaz de solubilizar, tanto los óxidos, como los sulfuros secundarios y primarios.
La presente invención difiere del estado del arte, ya que se refiere a un método hidrometalúrgico Sólido-Líquido-Sólido (S-L-S) que es capaz de lograr la solubilización de minerales oxidados, sulfuros secundarios y primarios, principalmente sulfuros primarios, como la calcopirita, bajo el mismo método S-L-S; sin depender de parámetros como el potencial redox, oxígeno y concentración de ácido. Por otra parte, el método de la presente solicitud no es pretratamiento o una etapa prolongada de curado y riego-reposo, sino que es un método continuo sólido-líquido- sólido en una condición de sobresaturación de sales de cloruro no hidratadas y/o hidratadas, como por ejemplo cloruro de sodio y/o bischofita, condición que es generada por la aplicación intencional y reiterativa de etapas de secado, etapas de humectación y rehumectación, potenciando los fenómenos químicos y físicos sobre el mineral o concentrados, provocando así la cristalización, recristalización y liberación del cobre y posterior precipitación de éste con el cloro en una descomposición no estequiométrica del sulfuro primario o secundario. El método se lleva a cabo a temperatura 20 a 40°C, con una nula o mínima adición de agua y ácido, sin la necesidad de adicionar agentes oxidantes o reductores, y tampoco oxígeno. Este método en su totalidad, se puede ejecutar independientemente de la presencia de impurezas habituales, tal como es el caso del arsénico, ya que la descomposición del mineral o concentrado ocurre en una relación no estequiométrica. Por su parte, desde el punto de vista ambiental, el método de la presente solicitud tiene los beneficios de la hidrometalurgia, además de disminuir el consumo de ácido y agua, ya que la transformación del sulfuro se puede realizar sólo con la presencia de agua y/o la adición mínima de ácido. Además, este método permite disminuir el uso de agua en la etapa de aglomerado y/o aglomerado-curado, ya que a que al mezclarse una sal de cloruro hidratada (por ejemplo, bischofita) con el mineral, las moléculas de agua de dicha sal hidratada humectan el mineral, reduciendo el volumen de agua que se debe agregar en las etapas de aglomerado y/o curado.
Por otra parte, la presente invención haría disponible los recursos a reservas, lo que permitiría abastecer la demanda futura del cobre, reactivando las plantas hidrometalúrgicas, y cambiaría las proyecciones del producto final del cobre en la próxima década, disminuyendo el uso de la flotación, la cual genera un gran impacto ambiental, debido al alto consumo de energía y agua; además de la generación de pasivos ambientales y contaminantes por el funcionamiento de las fundiciones.
RESUMEN DE LA INVENCIÓN
La presente invención se refiere a un método hidrometalúrgico Sólido-Líquido-Sólido (S-L-S) en presencia de sales de cloruro no hidratadas y/o hidratadas como, por ejemplo, cloruro de sodio y/o bischofita, en una condición de sobresaturación, la cual se logra por la aplicación intencional y reiterada de etapas humectación, rehumectación y secado, potenciando los fenómenos químicos y físicos sobre el mineral o concentrados, provocando así la cristalización, recristalización y liberación del cobre en una descomposición no estequiométrica del sulfuro y posterior precipitación del mismo con cloruro. El método ocurre a temperatura de 20 a 40°C, independiente del potencial redox, con un mínimo consumo de agua y ácido, sin la necesidad de adicionar oxígeno. El método permite disminuir el consumo de ácido y agua, ya que la transformación del sulfuro se puede realizar sólo con la presencia de sales hidratadas y/o la adición mínima de ácido y agua. Además, el método de la presente invención permite reducir el uso de agua en la etapa de aglomerado y/o aglomerado-curado, debido a que cuando se mezcla una sal de cloruro hidratada con el mineral las moléculas de agua de dicha sal hidratada (por ejemplo, bischofita) humectan el mineral, reduciendo el volumen de agua que se debe agregar en las etapas de aglomerado y/o curado.
La presente invención se refiere a un método Sólido-Líquido-Sólido en medio clorurado, gobernado por procesos de meteorización física y química para la solubilización de minerales sulfurados, mediante la sobresaturación y cristalización de sales, utilizando la adición de: a) una sal de cloruro no hidratada, o b) una sal de cloruro hidratada, o c) una mezcla de ambas sales, en una condición de sobresaturación, la cual es alcanzada por etapas reiterativas e intencionales de secado, lo que promueve rápidas cinéticas de evaporación, y en consecuencia la solubilización del mineral, particularmente calcopirita. Este método está compuesto por 3 etapas, denominadas “Etapa de Humectación, “Etapa de Secado y sobresaturación” y “Etapa de Lavado y Rehumectación”. Estas etapas se pueden repetir cuantas veces sea necesario para lograr la máxima solubilización del sulfuro primario y/o secundario de cobre, ya sea en el mineral o concentrado, logrando una mayor extracción del metal deseado.
Estas tres etapas solapadas o secuenciales se rigen por fenómenos físicos y químicos Sólido- Líquido-Sólido independiente del potencial redox y en un amplio rango de pH. Para ello se utiliza sales de cloruro no hidratadas y/o hidratadas, dando como resultados fenómenos de sobresaturación y cristalización de sales y como consecuencia la solubilización selectiva y no estequio métrica del sulfuro de cobre de origen primario y/o secundario.
La primera etapa, denominada de Humectación, corresponde a una etapa de humectación del mineral con agua o agua y ácido, en presencia de sales en una condición de no sobresaturación, no-oxidativo, ni reductivo de aglomeración, pero siempre en presencia de a) una sal de cloruro no hidratada, o b) una sal de cloruro hidratada, o c) una mezcla de ambas sales. En esta etapa puede haber o no la adición de agua, ya que para el caso de la sal de cloruro hidratada es suficiente con la humectación aportada por las moléculas de agua de dicha sal al mezclarla con el mineral, sin la adición de agua o agregando una dosis mínima; sin embargo, para el uso de una sal de cloruro no hidratada (por ejemplo, cloruro de sodio) se necesita la adición de una solución, la adición de líquido en esta etapa genera el proceso de solvatación de las sales, lo que permite dejar activos los iones para reaccionar y migrar a través de las diaclasas del mineral. Todas estas condiciones hacen que se generen condiciones variables de pH y mínima presencia de oxígeno, logrando generar las condiciones óptimas para la segunda etapa del proceso.
La segunda etapa, denominada Etapa de Secado y Sobresaturación, corresponde a un proceso de Secado que promueve la sobresaturación, cristalización, recristalización y precipitación de sales, tanto en el interior, como en el exterior del mineral o concentrado. El secado se puede iniciar en la correa transportadora y continuar en la pila o ser realizado directamente en la pila, mediante la inyección de aire seco o caliente, aumento de temperatura y/o promoviendo bajas humedades relativas. En esta etapa se promueve la meteorización física y química, generada por el uso de sales de cloruro en una condición de sobresaturación. Por otra parte, la disolución del sulfuro primario y/o secundario de cobre, principalmente calcopirita, está gobernada por una condición de sobresaturación y precipitación, lo que provoca una descomposición no estequiométrica del sulfuro, por lo cual, el proceso no depende del potencial redox, pH, presencia de oxigeno o agentes reductores u oxidantes. El tiempo de secado es variable y concluye con el inicio de la etapa de lavado del mineral o concentrado.
La tercera etapa, llamada Etapa de Lavado y Rehumectación corresponde a una etapa de lavado en donde se adiciona una solución acidulada o acidulada no saturada de sales de cloruro para retirar las especies solubles cloradas del metal objetivo (por ejemplo, cobre), generadas en la segunda etapa, además de restituir las concentraciones de sales y humectación del mineral. Una vez que se termina el lavado, comienza una nueva etapa de Secado y Sobresaturación, en donde se vuelve a secar el mineral para fomentar la evaporación y sobresaturación de sales, durante periodos de tiempos variables. El lavado puede ser ácido-clorurado y/o simplemente agua de mar y está orientado a retirar el cobre precipitado en la segunda etapa de proceso.
La aplicación reiterativa de las etapas de Humectación, Secado y Rehumectación potencian la condición de sobresaturación y los fenómenos de cristalización de las sales, potenciando el daño físico sobre el mineral o concentrado.
Las reacciones y mecanismos involucrados en las etapas del método de la presente solicitud pueden ocurrir en cualquier mineral sulfurado que contenga cobre, hierro, azufre y arsénico, aún en cantidades menores, siendo obvio que desarrollaran su efecto sobre la disolución de cualquier otro metal base, como sulfuro metálico. Esto aplica a minerales con contenido de níquel, zinc, cobalto, molibdeno, etc.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1: Gráfico de Extracción de cobre en relación a la concentración de ácido en la etapa de
Humectación utilizando el Mineral 1.
Figura 2: Gráfico de Extracción de cobre en relación al porcentaje de humedad en la etapa de
Humectación utilizando el Mineral 1. Figura 3: Gráfico de Extracción de cobre en relación a la concentración de sales utilizando el
Mineral 1.
Figura 4: Gráfico de Extracción de cobre en relación al tiempo de secado en la etapa de Secado y Sobresaturación, utilizando el Mineral 1.
Figura 5: Gráfico de Extracción de cobre en relación a la simulación de un régimen continuo, utilizando el Mineral 1.
Figura 6: Gráfico de Extracción de cobre en relación al primer ciclo del método Sólido- Líquido-Sólido versus Tiempos Prolongados de Curado, utilizando el Mineral 1. Figura 7: Gráfico de Extracción de cobre en relación a dos ciclos del método Sólido-Líquido- Sólido versus Tiempos Prolongados de Curado de 120 días, utilizando el Mineral 1.
Figura 8: Gráfico de Extracción de cobre en relación a un primer ciclo del método Sólido- Líquido-Sólido, utilizando una mezcla de sales y el Mineral 1.
Figura 9: Gráfico de Extracción de cobre en relación al método Sólido-Líquido-Sólido versus
Tiempos Prolongados de Curado, utilizando columnas de 1 m.
Figura 10: Gráfico de Razón de Riego en relación al método Sólido-Líquido-Sólido versus
Tiempos Prolongados de Curado, utilizando columnas de 1 m.
Figura 11: Gráfico de Extracción de cobre en relación al método Sólido-Líquido-Sólido versus
Tiempos Prolongados de Curado, usando el Mineral 2.
Figura 12: Gráfico de Extracción de cobre en relación al método sólido-líquido-sólido (S-L-S) versus Bio lixiviación y Lixiviación Clorurada, utilizando el Mineral 3.
Figura 13: Gráfico de aporte de agua por uso de bischofita en la etapa de humectación para alcanzar una humedad del 6% y 10%.
Figura 14: Gráfico de extracción de cobre, usando el método sólido-líquido-sólido en el Mineral
4. Figura 15: Gráfico de Extracción de cobre en un concentrado calcopirítico, usando el método
Sólido-Líquido-Sólido versus Lixiviación clorurada, Férrica y tiempo prolongado de curado.
Figura 16: Imágenes de microscopía SEM del Concentrado 1, luego de ser sometido a
la etapa de Humectación y Secado.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un método hidrometalúrgico Sólido-Líquido-Sólido en presencia de una sal de cloruro no hidratada y/o una sal de cloruro hidratada, en una condición de sobresaturación, la cual es lograda por la aplicación intencional y reiterada de etapas de secado y humectación, potenciando los fenómenos químicos y físicos sobre el mineral o concentrados, provocando así la cristalización, recristalización y liberación del cobre en una descomposición no estequiométrica del sulfuro y posterior precipitación de este con cloruro. El método ocurre a temperatura de 20 a 40°C, independiente del potencial redox, con un mínimo consumo de agua y ácido, sin la necesidad de adicionar oxígeno. El método permite disminuir el consumo de ácido y agua, ya que la transformación del sulfuro se puede realizar sólo con la presencia de sales hidratadas y/o por la adición mínima de ácido y agua. Además, el método de la presente invención permite reducir el uso de agua en la etapa de aglomerado y/o aglomerado- curado, debido a qué al mezclarse la sal hidratada con el mineral, las moléculas de agua de la sal de cloruro hidratada humectan el mineral, reduciendo el volumen de agua que se debe agregar en las etapas de aglomerado y/o curado.
La presente invención se refiere a un método hidrometalúrgico Sólido-Líquido-Sólido en medio clorurado, gobernado por procesos de meteorización física y química para la solubilización de minerales sulfurados, mediante la sobresaturación y cristalización de sales, utilizando la adición de: a) una sal de cloruro no hidratada, o b) una sal de cloruro hidratada, o c) una mezcla de ambas sales, en una condición de sobresaturación, la cual es alcanzada por etapas reiterativas e intencionales de secado, lo que genera una rápida cinética de evaporación, y en consecuencia la sobresaturación de las sales, lo que promueve la solubilización del los minerales sulfurados, particularmente calcopirita. Este método está compuesto por 3 etapas, denominadas“Etapa de Humectación,“Etapa de Secado y Sobresaturación” y“Etapa de Lavado y rehumectación”. Estas etapas se pueden repetir cuantas veces sea necesario para lograr la máxima solubilización del sulfuro primario y/o secundario de cobre, ya sea en el mineral o concentrado, logrando una mayor extracción del metal deseado.
Para llevar a cabo el método hidrometalúrgico Sólido-Líquido-Sólido de la presente invención se puede utilizar una sal de cloruro no hidratada seleccionada del grupo que consiste de cloruro de sodio, cloruro de potasio, cloruro de magnesio, cloruro ferroso anhidro, cloruro férrico anhidro, y cloruro de calcio y, la sal de cloruro hidratada se selecciona del grupo que consiste de cloruro de magnesio hexahidratado (bischofita), cloruro ferroso heptahidratado, cloruro férrico hexahidratado, entre otros.
Estas tres etapas solapadas o secuenciales se rigen por fenómenos físicos y químicos sólido- líquido-sólido, independiente del potencial redox y en un amplio rango de pH. Para ello se utilizan sales de cloruro no hidratadas y/o hidratadas, dando como resultados fenómenos de sobresaturación y cristalización de sales y como consecuencia la solubilización selectiva y no estequio métrica del sulfuro de cobre de origen primario y/o secundario.
El procedimiento para minerales de cobre comprende las siguientes etapas detalladas a continuación:
I. Etapa de Humectación Esta etapa se inicia con la exposición del mineral chancado a un paso de aglomerado o aglomerado y curado en un tambor aglomerador o en una correa transportadora, con el fin de humectar, formar glómeros y disolver el cloruro de sodio, o bischofita, usando métodos y procedimientos convencionales. Esta etapa se puede realizar de las siguientes formas:
La primera es que la adición de agua y ácido es conjunta. Por el contrario, en un proceso clásico de aglomerado y curado, el ácido y el agua son agregados por separados.
La segunda es que la bischofita y/o cloruro de sodio pueden ser agregados en forma sólida, dependiendo de las características propias del mineral y la concentración de sales necesarias para la disolución del mineral, las cuales van entre 20 y 80 kg/t.
La tercera es que esta etapa puede ser realizada sólo con la adición de bischofita, sin la adición de agua y ácido, lo que permitiría adicionar la sal directamente en la correa transportadora.
La cuarta es que esta etapa se puede realizar con la adición de una mezcla de sales y agua o con agua y ácido, en el caso de usar sólo agua, no se realizaría la etapa de curado.
En relación a un régimen continuo se usarán las soluciones circulantes o de recirculación para el proceso de humectación y/o aglomerado-curado; además de la reposición de la concentración de sales que fueron retenidas en los ripios del mineral tratado. La reposición de bischofita y/o cloruro de sodio será mediante la adición en sólido en una cantidad de 5 a 15 kg/t, según el contenido de cloruro en la solución de recirculación de proceso. La adición de ácido sulfúrico fresco y/o circulante va de 0 y 30 kg/t de mineral, con una humedad final del mineral aglomerado que varía entre 8 y 15%, dependiendo de las características propias de la ganga, higroscopicidad y granulometría del mineral.
En esta etapa de humectación sólo se requiere bischofita y/o cloruro de sodio, agua o ácido y agua. No se requiere la adición de iones cúpricos, ni tampoco la incorporación de oxígeno. Una vez que el mineral es humectado, aglomerado y/o curado es transportado hacia las canchas de apilamiento, luego que el mineral forma parte de la pila, termina la etapa de Humectación y comienza la segunda etapa de Secado y Sobresaturación.
Condiciones Etapa de Humectación:
a) Concentraciones de bischofita entre 20 y 80 kg/t.
b) Concentraciones de cloruro de sodio entre 20 y 80 kg/t.
c) Mezcla de ambas sales 20 y 80 kg/t.
d) Humedad objetivo entre el 6 y 15%.
e) Concentración de ácido entre 0 y 30 kg/t.
II. Etapa de Secado y Sobresaturación
Esta segunda etapa ocurre en una condición sólido-líquido-sólido (S-L-S) y consiste en promover la sobresaturación de las sales mediante el secado del mineral por métodos de vaporización y/o evaporación, lo que incluye inyección de aire seco y/o caliente, temperatura o humedades relativas bajas. Esta etapa puede comenzar en la correa transportadora disminuyendo parcialmente la humedad superficial del mineral y/o directamente en la pila, mediante el uso de algunos de los métodos de secado que permitan generar y potenciar una cinética constante de secado y a la vez promover la sobresaturación y los fenómenos físicos en el mineral, como la cristalización, precipitación y haloclastia. Durante esta etapa no hay adición de soluciones (riegos) y la pila es cubierta o tapada durante cada ciclo de secado, los cuales van de 15 a 90 días, con el fin de aumentar la temperatura y evaporación, evitar arrastre de sales por acción del viento y proteger las pilas de la lluvia, nieve o bajas temperaturas. El primer ciclo del método culmina cuando la extracción de cobre disminuye significativamente, debido a que la cinética de vaporización o evaporación se detiene, debido a que la superficie del mineral está cubierta por los complejos precipitados de cobre-cloruro y los cristales de las sales, ya que en el caso del cloruro de sodio el proceso de cristalización se lleva a cabo principalmente en la superficie del sólido. Una vez que culmina el primer ciclo se procede a iniciar el primer lavado, con el fin de retirar el cobre extraído. Una vez culminado el primer lavado, se da inicio a un segundo ciclo de secado y sobresaturación, con la finalidad de lograr la máxima sobresaturación y extracción de cobre.
En esta etapa se requiere bischofita y/o cloruro de sodio, agua o ácido y agua. No se necesita de la adición de agentes oxidantes como iones cúpricos, ni tampoco la adición de oxígeno por riego constante. Esta Etapa de Secado y Sobresaturación, finaliza con el inicio del riego continuo o intermitente de duración variable, usando una solución ácida y no saturada de bischofita y/o cloruro de sodio.
Condiciones de Secado y Sobresaturación:
a) Concentraciones de cloruro de sodio, entre 20 y 80 kg/t.
b) Concentraciones de bischofita, entre 20 y 80 kg/t.
c) Tiempo de Secado de 15 a 90 días, o más, según la reactividad de la superficie del mineral o concentrado.
d) Humedad entre el 6 y 10%.
e) Temperatura entre 20 a 35°C.
III. Etapa de Lavado y Re-humectación
Una vez que termina el periodo de secado, comienza la tercera etapa de Lavado y Re humectación, mediante un riego con una solución ácida de cloruro no saturada. El objetivo del Lavado es retirar el cobre y las especies solubles, reponer sales, limpiar la superficie del mineral y re-humectar el lecho. Una vez culminado la etapa de Lavado y Re- humectación se procede a iniciar un segundo ciclo de secado.
Condiciones de Lavado y Re-humectación:
a) Concentraciones de bischofita entre 120 y 200 g/L.
b) Concentraciones de cloruro de sodio entre 120 y 200 g/L.
c) Concentración de cloruro de sodio y bischofita 120 a 200 g/L d) Tasa neta de riego entre 5-10 L/h/m .
e) pH de la solución 0,5 a 6.
Las tres etapas, Humectación, Secado y Sobresaturación y de Lavado, pueden ser repetidas las veces que sea necesario, en tanto se logre promover nuevamente la humectación y las concentraciones de cloruro, para alcanzar la máxima solubilización del cobre contenido en el mineral primario o secundario.
Procedimiento para solubilización de concentrados
El procedimiento para concentrados comprende las siguientes etapas detalladas a continuación:
I. Etapa de Humectación
Esta etapa se inicia con la mezcla del concentrado con la bischofita y/o cloruro de sodio, y posterior a ello, se adiciona agua o agua y ácido, con el fin de lograr la humectación óptima del concentrado y la solvatación. La concentración de bischofita y/o cloruro de sodio que se emplea va de 20 a 120 kg/t en una condición sólido-líquido-sólido. Sin embargo, la concentración de ácido sulfúrico fresco y/o circulante será la necesaria para lograr un pH entre 0,5 y 3. La humedad final varía entre 8 a 20%, dependiendo de las características propias de higroscopicidad de la sal y del concentrado.
En esta etapa sólo se requiere de bischofita y/o cloruro de sodio, agua o ácido y agua para humedecer el concentrado. No se requiere la presencia de agentes oxidantes, temperatura y tampoco la presencia oxígeno. Por otra parte, para el caso de los concentrados que tengan una humedad necesaria para el proceso, sólo se debe adicionar en sólido el cloruro de sodio y/o bischofita.
Una vez que el concentrado se mezcla con sales y se le ha impuesto una humedad óptima, la cual corresponde a la máxima humedad que el concentrado pueda soportar antes de formar una pasta, se transporta a patios de acumulación de concentrado, para dar inicio a la segunda etapa de Secado y Sobresaturación. Condiciones de Humectación (sólido-líquido-sólido):
a) Concentraciones de cloruro de sodio y/o bischofita entre 20 y 120 kg/t. b) Humedad entre el 9 y 20 %.
c) pH entre 0,5 y 7.
d) Tamaño de partícula 100% bajo 150 mieras.
II. Etapa de Secado y Sobresaturación
Esta segunda etapa de Secado y Sobresaturación consiste en realizar el secado del concentrado humectado por tiempo variable, con el fin de generar la condición de sobresaturación de cloruro y la transformación Selectiva del concentrado a especies solubles de cobre cloradas y la precipitación de las especies solubles. Por otra parte, a medida que aumenta el tiempo de secado, disminuye la humedad y se potencia la condición de sobresaturación, debido a la vaporización y/o evaporación del agua. Además, el prolongado periodo de Secado fomenta la cristalización de sales y el fenómeno de criptoeflorescencia en las partículas del concentrado.
El proceso de Secado del concentrado se lleva acabo en invernaderos que tienen temperaturas que van entre los 25 a 40 grados Celsius, promoviendo bajas humedades relativas, que permitan tener una cinética de evaporización constante en las pilas o montones de concentrados, para promover la sobresaturación y extracción del cobre.
En esta etapa sólo se requiere de bischofita y/o cloruro de sodio, agua o ácido y agua. No se requiere la adición de agentes oxidantes como iones cúpricos, ni tampoco la adición de oxígeno. Esta Etapa de Secado y Sobresaturación finaliza cuando el concentrado es trasladado a las piscinas de lavado, para retirar el cobre extraído.
Condiciones de Secado y Sobresaturación (sólido-líquido-sólido):
a) Bischofita y Cloruro de sodio en sobresaturación.
b) Tiempo de secado de 15 a 90 días o más, según la reactividad de la superficie del concentrado. c) Humedad entre el 8 y 15 %.
d) Temperatura 25 a 40°C.
e) pH ácido.
III. Etapa de Lavado y Re-humectación
El concentrado que se sometió a la etapa de Secado y Sobresaturación, se transporta a piscinas de lavado, en donde el concentrado se somete a una etapa de Lavado con una solución acidulada o cloruro y ácido, para obtener el cobre soluble. Posterior el concentrado es filtrado y secado, con el fin de dar inicio a un nuevo ciclo del proceso si la extracción de cobre total es insuficiente. La solución rica en cobre, obtenida del lavado del concentrado, es enviada a una planta de extracción por solvente y posteriormente a una planta de electroobtención. Sin embargo, la solución también puede pasar directo a las nuevas plantas de electroobtención, las cuales pueden generar un cátodo sin una etapa previa de extracción por solvente y tratar directamente las soluciones ricas en cobre.
Condiciones de Lavado Clorurado:
a) Concentraciones de cloruro de sodio y/o bischofita entre 0 y 200 g/L.
b) pH entre 0,5 y 3.
c) Tiempo de lavado entre 2 a 45 minutos.
Las etapas de 1) Humectación, 2) Secado y Sobresaturación y 3) Lavado pueden ser repetidas las veces que sea necesario, en tanto se logre promover nuevamente la humectación en presencia de cloruro, para alcanzar la máxima solubilización del cobre contenido en el concentrado.
MODALIDADES DE LA INVENCIÓN
La presente invención se refiere específicamente a un método hidrometalúrgico Sólido-Líquido- Sólido para la solubilización de metales a partir de minerales y/o concentrados de minerales sulfurados de origen primario y/o secundario que los contienen, que comprende las siguientes etapas secuenciales y/o traslapadas: I. Humectación, en donde el mineral o concentrado se humecta por la adición de agua o agua-ácido y sales de cloruro hidratadas y/o no hidratadas;
II. Secado y Sobresaturación, en donde el mineral humectado se seca mediante vaporización y/o evaporación, el cual secado se puede realizar tanto en la pila, como en la correa transportadora, generándose condiciones de sobresaturación, cristalización y recristalización de las sales, favoreciendo la meteorización química y física sobre el mineral o concentrado, de la concentración de ácido; y
III. Lavado y Re-humectación, en donde se adiciona una solución acidulada con o sin cloruro para retirar las especies del metal objetivo precipitadas en la segunda etapa del proceso, permitiendo además re-humectar el mineral o concentrado con el fin de restablecer la concentración óptima de cloruro y humedad al lecho.
En donde, cuando el método se encuentra en régimen continuo, en la etapa I el contacto del mineral o concentrado se realiza con soluciones recirculantes del mismo proceso que pueden contener iones cloruro, hierro y cobre, en un ambiente no saturado, y en donde las tres etapas se realizan de manera independiente del potencial REDOX que tenga del medio.
En una modalidad preferida la sal de cloruro hidratada se selecciona del grupo que consiste de cloruro de magnesio hexahidratado (bischofita), cloruro ferroso heptahidratado, cloruro férrico hexahidratado, entre otros.
En otra modalidad preferida la sal de cloruro no hidratada se selecciona del grupo que consiste de cloruro de sodio, cloruro de potasio, cloruro de magnesio, cloruro ferroso anhidro, cloruro férrico anhidro, y cloruro de calcio, entre otros.
En una modalidad de la invención, en la etapa I la sal de cloruro no hidratada y/o hidratada es cloruro de sodio y/o bischofita que se agrega en sólido o en solución, preferentemente en una cantidad de cloruro de sodio y/o bischofita que se agrega va entre 20 a 80 kg por tonelada de material, preferiblemente entre 30 y 60 kg/t. En otra modalidad de la invención, las etapas I y II, pueden ser realizadas sólo con la adición de bischofita y/o bischofita y agua y/o soluciones de proceso.
Aun en otra modalidad, en la etapa I, II y III, la adición de sales de cloruro puede incluir una mezcla de sales hidratadas y/o no hidratadas.
En otra modalidad preferida del método, la adición de agua y ácido en la etapa I se realiza por separado o en conjunto, preferiblemente en conjunto. En donde la adición de ácido sulfúrico va de 0 a 30 kg por tonelada de material, preferiblemente entre 5 y 15 kg/t.
En una modalidad preferida de la invención en la etapa I la humedad final del mineral aglomerado puede estar entre 6 y 20%, preferiblemente entre 8 y 10%.
En otra modalidad de la invención, la etapa I se puede realizar en un tambor aglomerador o directamente en la correa transportadora.
En una modalidad preferida, en la etapa II el secado del mineral se realiza con la pila cubierta y protegida para generar el aumento de la temperatura.
En una modalidad aún más preferida de la invención, en la etapa II la condición de sobresaturación de especies y sales, se logra mediante ciclos intencionales y reiterativos de secado y/o mediante el secado del mineral por inyección de aire y/o aumento de temperatura y/o mediante periodos sin adición de soluciones y, en donde en la etapa II la pila puede estar cubierta o tapada durante los ciclos de secado.
En otra modalidad del método en la etapa I, las concentraciones de sales a reponer en el sistema de régimen continuo van entre 5 y 20 kg/t.
En una modalidad preferente las etapas I, II y III del método pueden repetirse una o más veces sucesivas hasta lograr la mayor extracción del metal deseado.
En otra modalidad de la invención porque luego de la etapa I, los minerales y/o concentrados de minerales sulfurados son sometidos a ciclos de secado que van de 15 a 90 días, en donde se genera la condición de sobresaturación y ocurre la cristalización de sales y precipitación de especies solubles de metal clorado.
En una modalidad preferente del método, el mineral sulfurado que puede ser de origen primario, principalmente calcopirita, es sometido a 2 o 3 ciclos de secado que van de 30 a 90 días, preferiblemente ciclos de 60 días.
En otra modalidad preferida luego de la etapa I, el mineral sulfurado que puede ser de origen secundario, principalmente calcosina y covelina, es sometido a 2 o 3 ciclos de secado que van de 15 a 45 días, preferiblemente ciclos de 15 días.
En una modalidad del método, en la etapa III se lava el mineral mediante un riego continuo o intermitente con una solución que contiene agua acidulada, o ácido y cloruro.
En una modalidad preferente de la invención, los metales a solubilizar se seleccionan del grupo que incluye cobre, zinc, níquel, molibdeno, cobalto, plomo, entre otros.
En otra modalidad de la invención, en la etapa III se lava, mediante un riego acotado o prolongado, promoviendo la presencia de Cu (I) o Cu (II), respectivamente.
En una modalidad del método, la solubilización del metal objetivo se puede realizar de igual manera a partir de minerales sulfurados con contenidos arsenicales y/o concentrados de minerales sulfurados arsenicales que lo contienen.
En otra modalidad preferida, las etapas I, II y III pueden ser aplicadas a minerales y/o concentrados de cobre, preferiblemente calcopirita, bornita, tennantita, enargita, calcosina y covelina.
En una modalidad preferida de la invención, la etapa II puede ser aplicada en una cámara de secado o invernadero, que permita generar una cinética constante de evaporación del líquido.
En otra modalidad preferida de la invención, los iones cloruro pueden ser incorporados al método en la forma de bischofita, cloruro de sodio, cloruro de potasio, cloruro de magnesio, cloruro ferroso, cloruro férrico, cloruro de calcio o a través del uso de soluciones de recirculación del mismo método que contienen iones cloruro, hierro y cobre.
En otra modalidad preferida de la invención, el metal a solubilizar es cobre y el mineral sulfurado es un mineral secundario sulfurado de cobre.
En una modalidad preferida de la invención, la etapa II lleva a cabo en una condición sólido- líquido-sólido.
En una modalidad preferida del método, las etapas I de humectación y II de secado y sobresaturación pueden ser realizadas a pH entre 0,5 y 5.
En otra modalidad de la invención, las etapas I de humectación, II de secado y sobresaturación y III de lavado pueden ser realizadas independientes del potencial, bajo 700 mV o sobre 700 mV (Eh).
En una modalidad preferida de la invención, la etapa III de lavado se puede realizar con una solución reutilizada con presencia de iones cloruro y hierro.
En una modalidad aún más preferida, las etapas I y II se puede utilizar sales de cloruro, que puede provenir de agua de mar, salmueras de plantas desalinizadora, halita, bischofita y cloruro de sodio comercial.
En otra modalidad de la invención, las etapas I, II y III pueden realizarse a temperatura ambiente, preferiblemente entre 20 a 40°C.
En una modalidad aún más preferida de la invención la solución obtenida de la etapa II, puede seguir las etapas tradicionales de extracción por solvente y electroobtención o ir directamente a electroobtención.
EJEMPLOS DE APLICACIÓN
Ejemplo 1: Mineralogía de tres minerales de cobre
La Tabla 1 muestra el análisis mineralógico cuantitativo obtenido para cuatro muestras de cabeza de minerales sulfurados de cobre, denominadas como Mineral 1, 2, 3 y 4. Para el análisis se utilizó microscopía óptica y análisis modal, apoyado por análisis químico de cobre secuencial. Para determinar la composición mineralógica se empleó el método estadístico de conteo de puntos. El análisis mineralógico por cobre total indicó que se tenían minerales de baja y alta ley; sin embargo, por especie de cobre el análisis arrojó que para los Minerales 1, 2, 3 y 4 el porcentaje de calcopirita es de 99,8%, 81,7%, 45% y 11,7% respectivamente.
Tabla 1: Análisis mineralógico cuantitativo obtenido para cuatro muestras de cabeza de minerales sulfurados de cobre, denominadas como Mineral 1, 2, 3 y 4
Figure imgf000037_0001
Ejemplo 2: Extracción de cobre en relación a la concentración de ácido en la etapa de
Humectación utilizando el Mineral 1.
Los resultados de la Figura 1 se obtuvieron desde pruebas en columnas, utilizando el Mineral 1, el cual tiene una ley de cobre total de 0,24 % y un porcentaje por especies de cobre del 99,8% de calcopirita (ver Tabla 1).
El Mineral 1 se sometió a una etapa de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon seis cargas de dicho mineral, en seguida todas las cargas de mineral se sometieron a la etapa de Humectación, en donde se realizó la aglomeración y aglomeración y curado con la adición de agua, y agua y ácido juntos. La adición de bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
a) Adición de 60 kg/t cloruro de sodio.
b) Adición de 60 kg/t bischofita.
c) Adición de 0, 15 y 30 kg/t de ácido sulfúrico.
d) Humedad del 10 %.
e) Temperatura de 30°C.
Una vez que concluyó la etapa de Humectación, se inició la etapa de Secado térmico, directamente en la columna, por un periodo de tiempo de 45 días. Una vez que se cumplió el tiempo estipulado de la segunda etapa, se inició la tercera etapa de Lavado, con una tasa de riego de 5 L/h/m por 12 horas, utilizando una solución de cloruro de sodio de 180 g/L a pH 1.
Los resultados se pueden observar en la Figura 1, en donde se puede identificar que el aumento de la concentración de ácido en la etapa de Humectación, no tiene un efecto relevante en la extracción de cobre en la etapa de Secado y Sobresaturación. Además, la prueba que se realizó sólo con la presencia de agua confirma que el método no depende de la concentración de ácido y, por lo tanto, tampoco del curado, lo cual difiere del estado del arte, ya que el método de la presente solicitud depende de la concentración de sales y la cinética de evaporación.
Ejemplo 3: Extracción de cobre en relación al porcentaje de humedad en la etapa de
Humectación utilizando el Mineral 1
Los resultados de la Figura 2, se obtuvieron en pruebas en columnas, utilizando el Mineral 1. Los minerales fueron sometidos a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon cuatro cargas de dicho mineral. En seguida, cada una de las cargas de mineral se aglomeró y curo con la adición de agua y ácido juntos, imponiendo a cada prueba una humedad diferente. La adición de la bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes condiciones: a) Porcentajes de humedad 6 y 10 %.
b) Adición 15 kg/t de ácido sulfúrico.
c) Adición de 60 kg/t bischofita.
d) Adición de 60 kg/t cloruro de sodio.
e) Tiempo de Secado y Sobresaturación fue de 60 días.
f) Temperatura de 30°C.
Una vez que se cumplió el tiempo estipulado de la segunda etapa, se inició la tercera etapa de Lavado con una tasa de riego de 5 L/h/m por 24 horas, utilizando una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Los resultados se muestran en la Figura 2, en donde se puede observar que el porcentaje de humedad impuesto en la etapa de Humectación para las pruebas con cloruro de sodio tiene un efecto importante en el desempeño de la etapa de Secado y Sobresaturación, lográndose una mayor extracción de cobre con una humedad del 10%. Sin embargo, para las pruebas con bischofita la diferencia fue menor, probablemente por la delicuescencia que presenta esta sal, lo que no ocurre con el cloruro de sodio.
Ejemplo 4: Extracción de cobre en relación a la concentración de sales utilizando el
Mineral 1.
Los resultados de la Figura 3 fueron obtenidos en pruebas en columnas, utilizando el Mineral 1. El mineral se sometió a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon doce cargas de dicho mineral, y en seguida las cargas de mineral se sometieron a la etapa de Humectación, con la adición de agua y ácido juntos. La adición de la bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
a) 0, 20, 40, 60, 80 kg/t de NaCl.
b) 0, 20, 40, 60, 80 kg/t de bischofita.
c) Adición de ácido de 15 kg/t.
d) Humedad del 10%.
e) Temperatura de 25-30°C.
Una vez que concluyó la etapa de Humectación, se inició la etapa de Secado y Sobresaturación, por un periodo de 45 días, en donde no hubo riego y las columnas fueron cubiertas, para mantener la temperatura 25-30°C. Una vez concluida la segunda etapa, se inició la tercera etapa de Lavado a una tasa de riego de 7 L/h/m por 12 horas, utilizando una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Lo resultados se pueden observar en la Figura 3, en donde se observa que un aumento en la concentración de las sales, genera una mayor extracción de cobre. Sin embargo, este fenómeno o tendencia para ambas sales, sólo se mantiene hasta los 60 kg/t, debido posiblemente a que el exceso de sales provoca rápidamente la sobresaturación de la superficie del mineral, permitiendo una mínima cinética de evaporación. Para el caso de la bischofita, los resultados muestran que se requieren sólo 40 kg/t para lograr una alta extracción de cobre; sin embargo, para el cloruro de sodio se necesitan 60 kg/t. Pareciera ser que el uso de sales hidratadas tiene un mejor desempeño que las sales no hidratadas en el método Sólido-Líquido-Sólido.
Ejemplo 5: Extracción de cobre en relación al tiempo de secado en la etapa de Secado y
Sobresaturación, utilizando el Mineral 1.
Los resultados de la Figura 4 se obtuvieron en pruebas en columnas, utilizando el Mineral 1. Los minerales se sometieron a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon doce cargas del Mineral 1, en seguida todas las cargas de mineral se sometieron a la etapa de Humectación, en donde se realizó la aglomeración y curado con la adición de agua y ácido juntos. La adición de bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
a) Adición de 60 kg/t de NaCl.
b) Adición de 60 kg/t de bischofita.
c) Adición de ácido de 15 kg/t.
d) Humedad del 10 %.
e) Temperatura de 25-30°C.
Una vez que concluyó la etapa de Humectación, se inició la etapa de Secado y Sobresaturación por diferentes periodos de tiempo (5, 15, 30, 45, 60 y 90 días). Una vez que se cumplió el periodo de tiempo estipulado de la segunda etapa, se inició la tercera etapa de Lavado con una tasa de riego de 5 L/h/m por 24 horas con una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Los resultados se pueden ver en la Figura 4, en donde se observa que hay un incremento de la extracción del cobre a medida que aumenta el tiempo de Secado y Sobresaturación, lo que confirma que el método Sólido-Líquido-Sólido es gobernado por la cinética de evaporación, la cual permite llegar a una sobresaturación y una alta carga iónica, lo que finalmente permite la extracción del cobre.
Ejemplo 6: Extracción de cobre en relación a la simulación de un régimen continuo, utilizando el Mineral 1.
Los resultados de la Figura 5 se obtuvieron en pruebas en columnas, utilizando el Mineral 1. Los minerales se sometieron a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon seis cargas del Mineral 1, en seguida todas las cargas de mineral se sometieron a la etapa de Humectación, en donde se realizó la simulación de un régimen continuo, realizando el proceso de aglomeración y curado con la adición de agua y ácido juntos; además de adición una solución de refino artificial en donde el cloruro estaba en solución. La adición de bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
a) Adición de 5, 10 y 15 kg/t de NaCl.
b) Adición de 5, 10 y 15 kg/t de bischofita.
c) Refino artificial: 80-120 g/L cloruro, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido. d) Humedad del 10 %.
e) Temperatura de 25-30°C.
f) Tiempo de secado 45 días.
Una vez concluida la segunda etapa, se inició la tercera etapa de Lavado a una tasa de riego de 7
L/h/m por 12 horas, utilizando una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Los resultados se pueden ver en la Figura 5, en donde se observa que el efecto de adicionar las sales en solución y en sólido es efectivo, logrando extracciones similares a las obtenidas cuando las sales son agregadas en sólido sobre el mineral. Los resultados demuestran que la reposición de sales en un régimen continuo, puede ser mediante la adición de 5, 10 o 15 kg/t de sales. Está prueba indica que el método Sólido-Líquido-Sólido es factible de aplicar en una operación minera, ya que la cantidad de sales a reponer en el circuito son técnica y económicamente viables.
Ejemplo 7: Extracción de cobre en relación al primer ciclo del método Sólido- Líquido- Sólido versus Tiempos Prolongados de Curado, utilizando el Mineral 1. Los resultados de la Figura 6 se obtuvieron en pruebas en columnas, utilizando el Mineral 1.
Los minerales se sometieron a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon seis cargas de dicho mineral, en seguida las cargas de mineral se sometieron a la etapa de Humectación, realizando el proceso de aglomeración y curado con la adición de agua y ácido juntos para el método S-L-S y por separados para la prueba de curado prolongado.
Las cuatro pruebas de curado prolongado fueron cargas, 2 para un curado de 60 días y 2 para un periodo de 120 días, tal como se muestra en el Ejemplo 8. La adición de bischofita y cloruro de sodio de forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
Método Sólido-Líquido-Sólido (ciclo N°l)
a) Adición de 60 kg/t de NaCl.
b) Adición de 40 kg/t de bischofita.
c) Humedad del 10 %.
d) Ácido 15 kg/t.
e) Secado térmico 25-30°C.
f) Tiempo de secado 60 días.
Tiempo prolongado de curado
a) Adición de 60 kg/t de NaCl.
b) Adición de 60 kg/t de bischofita.
c) Humedad del 10 %.
d) Ácido 40 kg/t.
e) Temperatura ambiente sin secado.
f) Tiempo de curado 60 días. Una vez concluida la segunda etapa y el tiempo de curado prolongado, se inició la tercera etapa de Lavado para las pruebas que tenían 60 días de prueba, a una tasa de riego de 7 L/h/m por 12 horas, utilizando una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Los resultados se pueden ver en la Figura 6, en donde se observa que el método S-L-S es capaz de obtener una extracción muy superior a un proceso de curado prolongado. Aun cuando se emplearon concentraciones de ácido superior a las utilizadas en el método; además se consideraron las mismas concentraciones de sales que el método sólido-líquido-sólido y aun así la extracción fue más del doble que en un proceso de curado prolongado.
Ejemplo 8: Extracción de cobre en relación a dos ciclos del método Sólido-Líquido- Sólido versus Tiempos Prolongados de Curado de 120 días, utilizando el Mineral 1.
Los resultados de la Figura 7 para las pruebas del método S-L-S se obtuvieron de la continuación de las pruebas del Ejemplo 7. Para ello, se realizó un segundo ciclo de Secado y Sobresaturación por un periodo de 60 días. Para el caso de las pruebas de curado prolongado, se continuo con las pruebas que tenían un periodo de curado de los 120 días.
Una vez concluida la segunda etapa y el tiempo de curado prolongado, se inició la tercera etapa de Lavado y riego para todas las pruebas, a una tasa de riego de 10 L/h/m por 12 horas, utilizando una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Los resultados se pueden observar en la Figura 7, en donde el método S-L-S permitió nuevamente una extracción muy superior a la lograda con periodos prolongados de curado. Durante dos ciclos del método S-L-S se logró una extracción del 72,1% y 74,7% para bischofita y cloruro de sodio, respectivamente. Sin embargo, para las pruebas con periodos prolongados de reposo sólo fue de 37,9% y 36,9%, respectivamente. Ejemplo 9: Extracción de cobre en relación a un primer ciclo del método Sólido-Líquido-
Sólido, utilizando una mezcla de sales y el Mineral 1.
Los resultados de la Figura 8 se obtuvieron en pruebas en columnas, utilizando el Mineral 1.
Los minerales se sometieron a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon dos cargas de dicho mineral, en seguida todas las cargas de mineral se sometieron a la etapa de Humectación, en donde se realizó la aglomeración y curado con la adición de agua y ácido juntos. La adición de bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
a) Adición de 40 kg/t de sales (20 kg/t de NaCl y 20 kg/t de bischofita).
b) Adición de 60 kg/t de sales (30 kg/t de NaCl y 30 kg/t de bischofita).
c) Adición de ácido de 15 kg/t.
d) Humedad del 10 %.
e) Temperatura de Secado 25-30°C.
f) 45 días de Secado.
Una vez que se cumplió el tiempo de secado de la segunda etapa, se inició la tercera etapa de
Lavado con una tasa de riego de 5 L/h/m por 24 horas con una solución de refino artificial que contenía 180 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido.
Los resultados se pueden ver en la Figura 8, en donde se observa que, durante 45 días de secado, se lograron extracciones similares a las obtenidas utilizando las sales por separadas. Esto indica que se puede emplear una mezcla de las sales tanto para 40 y 60 kg/t de sales.
Ejemplo 10: Extracción de cobre en relación al método Sólido-Líquido-Sólido versus Tiempos Prolongados de Curado, utilizando columnas de 1 m.
Los resultados de la Figura 9 se obtuvieron en pruebas en columnas de 1 m, utilizando el Mineral 1 (ver Tabla 1). El mineral se sometió a una etapa de chancado tradicional hasta lograr un tamaño de partícula
100% bajo ½ pulgada. Posteriormente, se prepararon cuatro cargas de 30 kg de dicho mineral, en seguida todas las cargas de mineral se sometieron a la etapa de Humectación, en donde se realizó la aglomeración y curado con la adición de agua y ácido juntos para el método S-L-S y por separados para la prueba de curado prolongado. La adición de bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
Método Sólido-Líquido-Sólido (ciclo N°l)
a) Adición de 60 kg/t de NaCl.
b) Adición de 40 kg/t de bischofita.
c) Humedad del 10 %.
d) Ácido 15 kg/t.
e) Secado térmico 25-30°C.
f) Tiempo de secado, dos ciclos de 60 días.
Tiempo prolongado de curado
a) Adición de 60 kg/t de NaCl.
b) Adición de 60 kg/t de bischofita.
c) Humedad del 10 %.
d) Ácido 40 kg/t.
e) Temperatura ambiente.
f) Tiempo de curado 60 días y riego por 60 días.
Una vez que se cumplió el primer ciclo de secado, se inició la etapa de Lavado con una tasa de riego de 5 L/h/m por 24 horas con una solución de refino artificial que contenía 200 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido y 240 g/L de bischofita, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido. Una vez que terminó la etapa de Lavado se procedió a iniciar un segundo ciclo de Secado por 60 días.
Para el caso de las pruebas de curado prolongado, una vez pasados 60 días de curado, se inició el riego a una tasa de 5 L/h/m por 24 horas con una solución de refino artificial de 150 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido. Una vez que termino el primer riego, se realizaron periodos de riego-reposo cada 5 días a una tasa de 5 L/h/m por 12 horas, hasta alcanzar los 120 días de pruebas.
Los resultados se pueden ver en la Figura 9, en donde se observa y confirma que el método S-L- S es más efectivo en la extracción, a partir del mineral que tiene el cobre principalmente en la forma de calcopirita; aun cuando las pruebas del método S-L-S fueron realizadas con una menor concentración de Bischofita y ácido que las pruebas de curado prolongado. La extracción para el método S-L-S alcanzó una extracción para ambas sales superior al 70%; sin embargo, para las pruebas de curado prolongado, fue menor al 33%. Por otra parte, se incluyen en este ejemplo los resultados de potencial REDOX y análisis químico de las soluciones obtenidas del lavado del primer ciclo Humectación y Secado; además del efluente de la prueba de curado prolongado (ver Tabla 2).
Tabla 2. Análisis químico de las soluciones del primer lavado y riego
Figure imgf000047_0001
Figure imgf000048_0001
Como se puede observar en la Tabla N°2 el método S-L-S presenta una mayor concentración de cobre, respecto al hierro total, con una relación cobre y hierro de aproximadamente 5:1 para el cloruro de sodio y casi 10:1 para la bischofita. Por el contrario, en el curado prolongado la relación cobre y hierro es aproximadamente 1:1 para ambas sales. También se puede apreciar que los potenciales redox son similares y no observándose diferencias significativas que indiquen que la diferencia de potencial pueda afectar la solubilización del cobre.
Ejemplo 11: Razón de Riego en relación al método Sólido-Líquido-Sólido versus Tiempos
Prolongados de Curado, utilizando columnas de 1 m.
Los resultados de la Figura 10 para las pruebas del método S-L-S se obtuvieron a partir de las pruebas del Ejemplo 10. Para ello, se procedió a realizar la gráfica que permitiera identificar la razón de riego de ambos procesos. Como se puede observar en la Figura 10, el método Sólido- Líquido-Sólido presenta una menor razón de riego, frente a las pruebas con curado prolongado y riego-reposo. Además, se debe considerar que para ambos casos las pruebas con bischofita tienen una menor razón de riego, debido a su mayor delicuescencia, por lo qué en cada etapa de lavado, la cantidad de solución a utilizar fue menor.
Ejemplo 12: Extracción de cobre en relación al método Sólido-Líquido-Sólido versus Tiempos Prolongados de Curado, usando el Mineral 2.
Los resultados de la Figura 11 se obtuvieron en pruebas en columnas de 1 m, utilizando el Mineral 2, el cual tiene una ley de cobre total de 0,68 % y un porcentaje por especies de cobre del 81,7 % en la forma de calcopirita (ver Tabla 1). Los minerales se sometieron a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon cuatro cargas de 30 kg de dicho mineral, en seguida todas las cargas de mineral se sometieron a la etapa de Humectación, en donde se realizó la aglomeración y curado con la adición de agua y ácido juntos para el método S-L-S y por separados para la prueba de curado prolongado. La adición de bischofita y cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
Método Sólido-Líquido-Sólido (ciclo N°l)
a) Adición de 60 kg/t de NaCl.
b) Adición de 40 kg/t de bischofita.
c) Humedad del 10 %.
d) Ácido 15 kg/t.
e) Secado por inyección de aire.
f) Tiempo de secado, dos ciclos de 60 días.
Tiempo prolongado de curado
a) Adición de 60 kg/t de NaCl.
b) Adición de 40 kg/t de bischofita.
c) Humedad del 10 %.
d) Ácido 40 kg/t.
e) Temperatura ambiente.
f) Tiempo de curado 60 días y riego por 60 días.
Una vez que se cumplió el primer ciclo de secado, se inició la etapa de Lavado con una tasa de riego de 5 L/h/m por 24 horas con una solución de refino artificial que contenía 200 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido y 240 g/L de bischofita, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido. Una vez que terminó la etapa de Lavado se inició un segundo ciclo de Secado por otros 60 días.
Para el caso de las pruebas de curado prolongado, una vez que alcanzó los 60 días de curado, se inició el riego a una tasa de 5 L/h/m por 24 horas con una solución de refino artificial de 150 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido. Una vez que termino el primer riego, se realizaron riegos-reposo cada 5 días a una tasa de 5 L/h/m por 12 horas, hasta alcanzar 120 días de prueba.
Los resultados se pueden ver en la Figura 11, en donde se observa y confirma que el método S- L-S es más efectivo en la extracción del cobre del sulfuro primario, que el proceso de curado prolongado y posterior riego-reposo, ya que la extracción para ambas sales fue por sobre el 80% y menor al 44%, respectivamente. También se puede concluir que el efecto del proceso de curado prolongado se ve potenciado por la mineralogía, ya que el Mineral 2 tiene sólo el 70% de calcopirita y el otro 30% son especies mineralógicas menos refractarias y solubles, debido a que durante el primer riego se obtuvo aproximadamente un 30% del cobre.
Ejemplo 13: Extracción de cobre en relación al método sólido-líquido-sólido (S-L-S) versus Biolixiviación y Lixiviación Clorurada, utilizando el Mineral 3 Los resultados de la Figura 12 se obtuvieron en pruebas en columnas de 1 m, utilizando el Mineral 3, el cual tiene una ley de cobre total de 0,36 % y un porcentaje por especies de cobre del 45% de calcopirita (ver Tabla 1).
Los minerales se sometieron a un proceso de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon 3 cargas de dicho mineral, en seguida las cargas de mineral se sometieron a la etapa de Humectación, realizando el proceso de aglomeración y curado con la adición de agua y ácido juntos para el método S-L-S y por separados para la prueba de Lixiviación clorurada y Biolixiviación. La adición de cloruro de sodio en forma sólida directamente sobre el mineral se realizó con las siguientes concentraciones y condiciones:
Método Sólido-Líquido-Sólido (ciclo N°l)
a) Adición de 60 kg/t de NaCl.
b) Humedad del 10 %.
c) Ácido 15 kg/t.
d) Secado térmico 25-30°C.
e) Tiempo de secado 60 días.
Las pruebas de lixiviación clorurada y bio lixiviación se realizaron en columnas de lm, por un laboratorio metalúrgico experto en este tipo de ensayos. Se realizaron los métodos clásicos de lixiviación de sulfuras secundarios en el Mineral 3. La lixiviación clorurada se realizó con una concentración de 150 g/L de cloruro de sodio, 30 kg/t de ácido y 10% de humedad. El proceso duró 90 días, mediante etapas de riego y reposo.
Para el caso de la biolixiviación la prueba se realizó con un consorcio bacteriano compuestos microorganismos hierro y azufre oxidantes, humedad 10% y 50 kg/t de ácido. El proceso duro 90 días mediante etapas de riego-reposo.
Los resultados se muestran en la Figura 12, en donde se observa que, al utilizar un mineral mixto de sulfuras primario y secundario, el método S-L-S es más eficiente en la extracción del cobre que los métodos tradicionales, ya que permite extraer el cobre, tanto de la calcopirita, como de los sulfuras solubles como la calcosina, covelina y malaquita.
Ejemplo 14: Aporte de agua por uso de Bischofita en la etapa de humectación para alcanzar una humedad del 6% y 10%.
Los resultados de la Figura 13 se obtuvieron en pruebas en columnas descritas en el Ejemplo 3, utilizando el Mineral 1, el cual tiene una ley de cobre total de 0,24 % y un porcentaje por especies de cobre del 99,8% de calcopirita (ver Tabla 1). Para graficar los datos obtenidos se determinó la cantidad de agua que aportaba la masa de bischofita utilizada para humectar el mineral y alcanzar una humedad del 6 y 10%.
Los resultados se pueden observar en la Figuras 13A y 13B, en donde se determinó para una humedad del 6%, la bischofita aporta el 47% del agua requerida para la humectación. Sin embargo, para alcanzar una humedad del 10% el aporte de agua de la bischofita es del 27%. Ejemplo 15: Extracción de cobre usando el método sólido-líquido-sólido en el Mineral 4. Los resultados de la Figura 14 se obtuvieron a partir de pruebas en columnas, utilizando el Mineral 4, el cual tiene una ley de cobre total de 0,67 % y un porcentaje por especies de cobre del 76,24 % de calcosina y un 11,7 calcopirita (ver Tabla 1).
Los minerales se sometieron a una etapa de chancado tradicional hasta lograr un tamaño de partícula 100% bajo ½ pulgada. Posteriormente, se prepararon 2 cargas de dicho mineral, en seguida las cargas de mineral se sometieron al método S-L-S, iniciando con la etapa de Humectación, en donde se aglomeró con la adición del agua y ácido juntos, según las condiciones que se describen a continuación:
Método Sólido-Líquido-Sólido (ciclo N°l)
a) Adición de 40 kg/t de NaCl.
b) Humedad del 10 %.
c) Ácido 15 kg/t.
d) Secado térmico 25-30°C.
e) Tiempo de secado 15 días.
Una vez que se cumplió el primer ciclo de secado, se inició la etapa de Lavado y re-humectación con una tasa de riego de 5 L/h/m por 24 horas con una solución de refino artificial que contenía 200 g/L cloruro de sodio, 5 g/L de férrico, 2 g/L de ferroso y 10 g/L de ácido. Luego se inició un segundo ciclo de Secado por otros 15 días. Una vez transcurrido el tiempo del segundo ciclo de secado, se realizó el segundo lavado con una solución acidulada pH 1 a una tasa de riego de 5
L/h/m por 24 horas. Finalmente, se dio termino a la prueba.
Los resultados de extracción se pueden apreciar en la Figura 14, que muestra que bajo el primer ciclo del método Sólido-Líquido-Sólido, el Mineral 4 se solubiliza en un alto grado en tan sólo 15 días de secado. Sin embargo, durante el segundo ciclo de secado se logró extraer el cobre restante, alcanzando una extracción superior al 80%.
Es esperable que ocurra una alta extracción de cobre durante la prueba sobre un mineral que tiene un cobre total mayor al 70% en forma de calcosina. Sin embargo, bajo el método sólido- líquido-sólido de acuerdo a la invención, con tan sólo dos ciclos de 15 días se logra extraer la máxima concentración de cobre.
Ejemplo 16: Mineralogía del Concentrado 1.
Los resultados de la Tabla 3 se obtuvieron mediante análisis mineralógico cuantitativo de una muestra representativa de concentrados primarios de cobre, denominados Conc. 1. Para el análisis se utilizó microscopía óptica, apoyado por análisis químico de cobre secuencial.
Para determinar la composición mineralógica se empleó el método estadístico de conteo de puntos. El análisis mineralógico indicó que la ley de cobre total para el Conc. 1 es 25,57%; sin embargo, el análisis por especie de cobre arrojo que principalmente el Conc. 1 contiene un 80,03 % de calcopirita y un 12,14 % de tennantita.
Tabla 3: Análisis mineralógico cuantitativo de una muestra representativa de concentrados primarios de cobre
Figure imgf000053_0001
Figure imgf000054_0001
Ejemplo 17: Extracción de cobre en un concentrado calcopiritico, usando el método
Sólido-Líquido-Sólido versus Lixiviación clorurada, Férrica y tiempo prolongado de curado.
Los resultados de la Figura 15 se obtuvieron utilizando un concentrado rico en calcopirita el cual tenía una distribución de tamaño de partícula 100% entre 75-106 mieras y un porcentaje de cobre total de 25,57% (ver Tabla 3). Posteriormente, se pesaron las masas de concentrados para las pruebas bajo 3 tipos de reacción, como se describe a continuación:
A. Reacción sólido-líquido-sólido (agua y ácido)
Para la realización de las pruebas se pesaron 200 gramos del concentrado para cada sal, posteriormente la muestra fue sometida a la etapa de Humectación, la cual consistió en la adición en sólido de 100 kg/t de NaCl, 100 kg/t de bischofita y 100 kg/t de FcChx 6¾0 sobre el concentrado, en seguida se agregó una solución compuesta por agua y ácido con 2 g/L de ferroso y 3 g/L de férrico, alcanzando una humedad final del 12%.
Una vez que el concentrado se humectó comenzó la segunda etapa del proceso, en donde los concentrados se almacenaron en una cámara de secado a 30°C por 25 días. Posteriormente, se inició la tercera etapa del proceso, en donde el concentrado se trasladó a las piscinas de lavado, realizando el proceso con una solución a pH 1 por 30 minutos. Una vez que se realizó el lavado, el concentrado fue filtrado y posteriormente secado para iniciar un segundo ciclo de Humectación y Secado.
B. Reacción Sólido-Líquido-Sólido (agua) Para la realización de las pruebas se pesaron 200 gramos del concentrado para cada sal.
Posteriormente, la muestra se sometió a la etapa de Humectación, en donde se agregó en forma sólida 100 kg/t de NaCl, 100 kg/t de bischofita y 100 kg/t de FcChx 6¾0 sobre el concentrado.
En seguida para la prueba con cloruro de sodio, se agregó una solución compuesta por agua con 2 g/L de ferroso y 3 g/L de férrico, hasta alcanzar una humedad final del 13%. Sin embargo, para la prueba con bischofita y FcChx 6¾0 sólo se realizó con la adición de la sal. Una vez que el concentrado se humectó, se inició la segunda etapa del proceso, en donde los concentrados se almacenaron en una cámara de secado a 30°C por 25 días. Culminado el periodo de secado y sobresaturación, se inició la tercera etapa del proceso, en donde el concentrado se trasladó a las piscinas de lavado, realizando el proceso con una solución a pH 1 por 30 minutos. Una vez que se realizó el lavado, el concentrado se filtró y posteriormente secó para iniciar un segundo ciclo de Humectación y Secado.
C. Reacción Sólido-Líquido-Sólido (Sulfato férrico)
Para la realización de estas pruebas se pesaron 200 gramos del concentrado, posteriormente la muestra se sometió a la etapa de Humectación, la cual consistió en la adición en sólido de 100 kg/t de sulfato férrico sobre el concentrado, en seguida se agregó una solución compuesta por agua y ácido con 2 g/L de ferroso y 3 g/L de férrico, hasta alcanzar una humedad final del 12%. Una vez que el concentrado fue humectado, se inició la segunda etapa del proceso, en donde los concentrados se almacenaron en una cámara de secado a 30°C por 25 días. Culminado el periodo de secado y sobresaturación, se inició la tercera etapa del proceso, en donde el concentrado fue trasladado a las piscinas de lavado, realizando el proceso con una solución a pH 1 por 30 minutos. Una vez que se realizó el lavado, el concentrado se filtró y posteriormente secado para iniciar un segundo ciclo de Humectación y Secado.
D. Reacción sólido-líquido Lixiviación clorurada Para la realización de las pruebas se pesaron 50 gramos de cada concentrado, posteriormente, el concentrado se llevó a un matraz Erlenmeyer de 1.000 mL y en seguida se adicionaron 500 mi de solución acidulada a pH 1, con una concentración 200 g/L de cloruro de sodio. Cada prueba se realizó por duplicado y puesta en agitación a 120 rpm por 45 días a temperatura ambiente. Por otra parte, durante ese periodo no hubo ajuste de pH y tampoco reposición de solución, la cual se perdió por evaporación.
Una vez que se cumplió el tiempo de la prueba, se procedió a filtrar la solución y separar el sólido del líquido, con el fin de realizar los análisis químicos correspondientes y determinar la extracción de cobre, como se muestra en la Figura 15.
E. Curado prolongado en presencia de sales
Para la realización de las pruebas se pesaron 200 gramos del concentrado para cada sal, posteriormente la muestra se sometió a la etapa de curado, la cual consistió en la adición de una solución a pH 0,5 que contenía 150 g/L de cloruro de sodio, 2 g/L de ferroso y 3 g/L de férrico, la misma condición fue utilizada para la prueba con bischofita, alcanzando una humedad final del 13%. Una vez que el concentrado se curó se dejó en reposo por 50 días. Culminado el periodo de curado, se inició el lavado del concentrado, realizando el proceso con una solución a pH 1 por 30 minutos. La solución obtenida se analizó para determinar la cantidad de cobre obtenida.
Los resultados de extracción se pueden observar en la Figura 15, en donde se puede observar que bajo las condiciones Sólido-Líquido-Sólido se logra una extracción elevada para ambas sales en tan solo 25 días; por el contrario, la condición de curado prolongado no superó el 30% de extracción en 50 días. Sin embargo, para las pruebas de lixiviación clorurada y sulfato férrico la extracción no superó el 37% y 26%, respectivamente. En la Tabla 4 se muestra la concentración de iones, pH y potencial redox de los primeros lavados de las pruebas S-L-S y sulfato férrico, para las demás pruebas corresponde al efluente obtenido de sus únicos lavados.
Tabla 4: Concentración de iones, pH y potencial redox de los primeros lavados de las pruebas S-L-S
Figure imgf000057_0001
Se puede observar en las pruebas realizadas con el método S-L-S usando cloruro de sodio y bischofita, que la relación cobre y hierro es mayor para el cobre. Sin embargo, para las pruebas de lixiviación clorurada y curado prolongado, la relación cobre y hierro es similar. Para el caso del potencial redox, no hay una tendencia que indique que por sobre o bajo los 700 mV se logré una mayor o menor extracción de cobre. Ejemplo 18: Imágenes de microscopía SEM del Concentrado 1 posterior a la etapa de Humectación y Secado.
Los resultados de la Figura 16 se obtuvieron a partir de realizar una prueba con el método Sólido-Líquido-Sólido en presencia de cloruro de sodio. La prueba consistió en pesar 200 gramos del concentrado, posteriormente la muestra se sometió a la etapa de Humectación, la cual consistió en la adición en sólido de 100 kg/t de NaCl, en seguida se agregó una solución compuesta por agua y ácido con 2 g/L de ferroso y 3 g/L de férrico, alcanzando una humedad final del 12%. Una vez que el concentrado fue humectado, se inició la segunda etapa del proceso, en donde el concentrado fue almacenado en una cámara de secado a 30°C por 25 días. Culminado el periodo de secado y sobresaturación, se tomó una muestra representativa del concentrado para realizar un análisis de microscopía, mediante un microscopio Electrónico de Barrido marca TESCAN modelo Vega 3, con detector EDS sonda Bruker modelo Quantax, serie 400, con el fin de vizualizar los procesos de cristalización y precipitación.
Imagen A: Imagen general de la muestra de concentrado, en donde se puede identificar los precipitados por toda la muestra y que se generaron durante la segunda etapa del método.
Imagen B: Área específica de la imagen A general (circulo blanco), en donde se puede ver en detalle la forma de los precipitados y cristales, los cuales corresponden a complejos de cobre y cloro, presentando una forma definida por la pérdida de humedad durante la etapa de secado y sobresaturación.
Imagen C: Área específica de la imagen A general (circulo negro), en donde se puede ver en detalle la forma de los precipitados y cristales, los cuales corresponden a complejos de cobre y cloro, presentando una forma definida por la pérdida de humedad durante la etapa de secado y sobresaturación.
La sección anterior se considera únicamente ilustrativa de los principios de la invención. El alcance de las reivindicaciones no debe estar limitado por las realizaciones a modo de ejemplo expuestas en la sección anterior, sino que se les debe dar la interpretación más amplia congruente con la memoria descriptiva como un todo.

Claims

REIVINDICACIONES
1. Método hidrometalúrgico Sólido-Líquido-Sólido para la solubilización de metales a partir de minerales y/o concentrados de minerales sulfurados de origen primario y/o secundario que los contienen, CARACTERIZADO porque comprende las siguientes etapas secuenciales y/o traslapadas:
I. Humectación, en donde el mineral o concentrado se humecta por la adición de agua o agua-ácido y sales de cloruro hidratadas y/o no hidratadas;
II. Secado y Sobresaturación, en donde el mineral humectado se seca mediante vaporización y/o evaporación, el cual se puede realizar tanto en la pila, como en la correa transportadora, generándose condiciones de sobresaturación, cristalización y recristalización de las sales, favoreciendo los fenómenos de meteorización química y física y haloclastia sobre el mineral o concentrado; y
III. Lavado y Re-humectación, en donde se adiciona una solución acidulada con o sin cloruro para retirar las especies del metal objetivo precipitadas en la segunda etapa del proceso, permitiendo además re-humectar el mineral o concentrado con el fin de restablecer la concentración óptima de cloruro y humedad al lecho, en donde si el método se encuentra en régimen continuo, en la etapa I el mineral o concentrado se contacta con soluciones recirculantes del mismo proceso que pueden contener iones cloruro, hierro y cobre, en un ambiente no saturado, y en donde las tres etapas se realizan de manera independiente del potencial REDOX que tenga del medio.
2. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque la sal de cloruro hidratada se selecciona del grupo que consiste de cloruro de magnesio hexahidratado (bischofita), cloruro ferroso heptahidratado, cloruro férrico hexahidratado, entre otros.
3. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque la sal de cloruro no hidratada se selecciona del grupo que consiste de cloruro de sodio, cloruro de potasio, cloruro de magnesio, cloruro ferroso anhidro, cloruro férrico anhidro, y cloruro de calcio, entre otros.
4. El método de acuerdo con las reivindicaciones 1-3, CARACTERIZADO porque en la etapa I la sal de cloruro no hidratada y/o hidratada es cloruro de sodio y/o bischofita que se agrega en sólido o en solución.
5. El método de acuerdo con la reivindicación 4, CARACTERIZADO porque en la etapa I la cantidad de cloruro de sodio y/o bischofita que se agrega va entre 20 a 80 kg por tonelada de material, preferiblemente entre 30 y 60 kg/t.
6. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque las etapas I y II, pueden ser realizadas sólo con la adición de bischofita y/o bischofita y agua y/o soluciones de proceso.
7. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa I, II y III, la adición de sales de cloruro puede incluir una mezcla de sales hidratadas y/o no hidratadas.
8. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque la adición de agua y ácido en la etapa I se realiza por separado o en conjunto, preferiblemente en conjunto.
9. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa I la adición de ácido sulfúrico va de 0 a 40 kg por tonelada de material, preferiblemente entre 10 y 20 kg/t.
10. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa I la humedad final del mineral aglomerado puede estar entre 6 y 20%, preferiblemente entre 8 y 10%.
11. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque la etapa I se puede realizar en un tambor aglomerador o directamente en la correa transportadora.
12. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa II el secado del mineral se realiza con la pila cubierta y protegida para generar el aumento de la temperatura y mantener la cinética de evaporación.
13. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa II la condición de sobresaturación de especies y sales, se logra mediante ciclos intencionales y reiterativos de secado.
14. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa II la condición de sobresaturación de especies y sales, se logra mediante el secado del mineral por inyección de aire y/o aumento de temperatura.
15. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa II la condición de sobresaturación de especies y sales, se logra mediante periodos sin adición de soluciones.
16. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa II, la pila es cubierta o tapada durante los ciclos de secado.
17. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa I, las concentraciones de sales a reponer en el sistema de régimen continuo van entre 5 y 20 kg/t.
18. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque las etapas I, II y III pueden repetirse una o más veces sucesivas hasta lograr la mayor extracción del metal deseado.
19. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque luego de la etapa I, los minerales y/o concentrados de minerales sulfurados son sometidos a ciclos de secado que van de 15 a 90 días, en donde se genera la condición de sobresaturación y ocurre la cristalización de sales y precipitación de especies solubles de metal clorado.
20. El método de acuerdo con la reivindicación 19, CARACTERIZADO porque luego de la etapa I, el mineral sulfurado que puede ser de origen primario, principalmente calcopirita, es sometido a 2 o 3 ciclos de secado que van de 30 a 90 días, preferiblemente ciclos de 60 días.
21. El método de acuerdo con la reivindicación 19, CARACTERIZADO porque luego de la etapa I, el mineral sulfurado que puede ser de origen secundario, principalmente calcosina y covelina, es sometido a 2 o 3 ciclos de secado que van de 15 a 45 días, preferiblemente ciclos de 15 días.
22. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque en la etapa III se lava el mineral mediante un riego continuo o intermitente con una solución que contiene agua acidulada, o ácido y cloruro.
23. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque los metales a solubilizar se seleccionan del grupo que incluye cobre, zinc, níquel, molibdeno, cobalto, plomo, entre otros.
24. El método de acuerdo con la reivindicación 1 y 23, CARACTERIZADO porque en la etapa III se lava, mediante un riego acotado o prolongado, promoviendo la presencia de Cu (I) o Cu (II), respectivamente.
25. El método de acuerdo con las reivindicaciones anteriores, CARACTERIZADO porque la solubilización del metal objetivo se puede realizar de igual manera a partir de minerales sulfurados con contenidos arsenicales y/o concentrados de minerales sulfurados arsenicales que lo contienen.
26. El método de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque las etapas I, II y III pueden ser aplicadas a minerales y/o concentrados de cobre, preferiblemente calcopirita, bornita, tennantita, enargita, calcosina y covelina.
27. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque la etapa II puede ser aplicada en una cámara de secado o invernadero, que permita generar una cinética constante de evaporación del líquido.
28. El método de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque los iones cloruro pueden ser incorporados al método en la forma de bischofita, cloruro de sodio, cloruro de potasio, cloruro de magnesio, cloruro ferroso anhídrido, cloruro férrico anhídrido, cloruro de calcio o a través del uso de soluciones de recirculación del mismo método que contienen iones cloruro, hierro y cobre.
29. El método de acuerdo con la reivindicación 1, CARACTERIZADO porque el metal a solubilizar es cobre y el mineral sulfurado es un mineral primario y/o secundario de cobre.
30. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque la etapa II lleva a cabo en una condición sólido-líquido-sólido.
31. El método de acuerdo con cualquiera de las reivindicaciones, CARACTERIZADO porque las etapas I de humectación y II de secado y sobresaturación pueden ser realizadas a pH entre 0,5 y 5.
32. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque las etapas I de humectación, II de secado y sobresaturación y III de lavado pueden ser realizadas independientes del potencial, bajo 700 mV o sobre 700 mV (Eh).
33. El método de acuerdo con cualquiera de las reivindicaciones anteriores,
CARACTERIZADO porque la etapa III de lavado se puede realizar con una solución reutilizada con presencia de iones cloruro y hierro.
34. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque las etapas I y II se puede utilizar sales de cloruro, que pueden provenir de agua de mar, salmueras de plantas desalinizadora, halita, bischofita y cloruro de sodio comercial.
35. El método de acuerdo con cualquiera de las reivindicaciones anteriores,
CARACTERIZADO porque las etapas I, II y III pueden realizarse a temperatura ambiente, preferiblemente entre 20 a 40°C.
36. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque la solución obtenida de la etapa II, puede seguir las etapas tradicionales de extracción por solvente y electroobtención o ir directamente a electroobtención.
37. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque el método Sólido-
Líquido-Sólido puede ser utilizado en lixiviación in-situ.
PCT/IB2019/059258 2018-11-14 2019-10-29 Método hidrometalúrgico sólido-líquido-sólido para la solubilización de metales a partir de minerales y/o concentrados sulfurados de cobre WO2020099966A1 (es)

Priority Applications (18)

Application Number Priority Date Filing Date Title
MX2021005466A MX2021005466A (es) 2018-11-14 2019-10-29 Metodo hidrometalurgico solido-liquido-solido para la solubilizacion de metales a partir de minerales y/o concentrados sulfurados de cobre.
BR112021009356-7A BR112021009356A2 (pt) 2018-11-14 2019-10-29 Método hidrometalúrgico sólido-líquido-sólido para a solubilização de metais a partir de minerais e/ou concentrados de sulfeto de cobre
PE2021000715A PE20211766A1 (es) 2018-11-14 2019-10-29 Metodo hidrometalurgico solido-liquido-solido para la solubilizacion de metales a partir de minerales y/o concentrados sulfurados de cobre
CN201980080843.8A CN113166845B (zh) 2018-11-14 2019-10-29 用于从硫化铜矿物和/或精矿溶解金属的固-液-固湿法冶金方法
CA3120395A CA3120395C (en) 2018-11-14 2019-10-29 Solid-liquid-solid hydrometallurgical method for the solubilization of metals from sulfide copper minerals and/or concentrates
US17/292,585 US20220002838A1 (en) 2018-11-14 2019-10-29 Solid-liquid-solid hydrometallurgical method for the solubilization of metals from sulfide copper minerals and/or concentrates
EP19809914.5A EP3882366A1 (en) 2018-11-14 2019-10-29 Solid-liquid-solid hydrometallurgical method for the solubilization of metals from sulfide copper minerals and/or concentrates
MX2022005072A MX2022005072A (es) 2018-11-14 2020-10-01 Procedimiento hidrometalurgico solido-liquido-solido optimizado para aumentar la solubilizacion de metales a partir de minerales y/o concentrados en medio acido-clorurado.
BR112022008222A BR112022008222A2 (pt) 2018-11-14 2020-10-01 Processo hidrometalúrgico sólido-líquido-sólido otimizado para aumentar a solubilização de metais a partir de minérios e/ou concentrados em meio de cloreto de ácido
EP20800781.5A EP4053297A1 (en) 2018-11-14 2020-10-01 Solid-liquid-solid hydrometallurgical process optimized to increase the solubilization of metals from ores and/or concentrates in acid-chloride medium
US17/772,470 US20220356544A1 (en) 2018-11-14 2020-10-01 Solid-Liquid-Solid Hydrometallurgical Process Optimized to Increase the Solubilization of Metals from Ores and/or Concentrates in Acid-Chloride Medium
PCT/CL2020/050110 WO2021081679A1 (es) 2018-11-14 2020-10-01 Procedimiento hidrometalúrgico sólido-líquido-sólido optimizado para aumentar la solubilización de metales a partir de minerales y/o concentrados en medio ácido-clorurado
CN202080082881.XA CN114761586A (zh) 2018-11-14 2020-10-01 经优化以提高在酸-氯化物介质中从矿石和/或精矿溶解金属的固-液-固湿法冶金方法
CA3159331A CA3159331A1 (en) 2018-11-14 2020-10-01 Solid-liquid-solid hydrometallurgical process optimized to increase the solubilization of metals from ores and/or concentrates in acid-chloride medium
PE2022000690A PE20221212A1 (es) 2018-11-14 2020-10-01 Procedimiento hidrometalurgico solido-liquido-solido optimizado para aumentar la solubilizacion de metales a partir de minerales y/o concentrados en medio acidoclorurado
AU2020376989A AU2020376989B2 (en) 2018-11-14 2020-10-01 Solid-liquid-solid hydrometallurgical process optimized to increase the solubilization of metals from ores and/or concentrates in acid-chloride medium
CL2021003432A CL2021003432A1 (es) 2018-11-14 2021-12-21 Procedimiento hidrometalúrgico sólido-líquido-sólido optimizado para umentar la solubilización de metales a partir de minerales y/o concentrados en medio ácido-clorurado
ECSENADI202241277A ECSP22041277A (es) 2018-11-14 2022-05-24 Procedimiento hidrometalúrgico sólido-líquido-sólido optimizado para aumentar la solubilización de metales a partir de minerales y/o concentrados en medio ácido-clorurado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2018/058969 WO2020099912A1 (es) 2018-11-14 2018-11-14 Método sólido-líquido-sólido para la solubilización de minerales y concentrados de cobre, independiente del potencial redox y con bajo consumo de agua y ácido
IBPCT/IB2018/058969 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020099966A1 true WO2020099966A1 (es) 2020-05-22

Family

ID=64959383

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/IB2018/058969 WO2020099912A1 (es) 2018-11-14 2018-11-14 Método sólido-líquido-sólido para la solubilización de minerales y concentrados de cobre, independiente del potencial redox y con bajo consumo de agua y ácido
PCT/IB2019/059258 WO2020099966A1 (es) 2018-11-14 2019-10-29 Método hidrometalúrgico sólido-líquido-sólido para la solubilización de metales a partir de minerales y/o concentrados sulfurados de cobre
PCT/CL2020/050110 WO2021081679A1 (es) 2018-11-14 2020-10-01 Procedimiento hidrometalúrgico sólido-líquido-sólido optimizado para aumentar la solubilización de metales a partir de minerales y/o concentrados en medio ácido-clorurado

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/058969 WO2020099912A1 (es) 2018-11-14 2018-11-14 Método sólido-líquido-sólido para la solubilización de minerales y concentrados de cobre, independiente del potencial redox y con bajo consumo de agua y ácido

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050110 WO2021081679A1 (es) 2018-11-14 2020-10-01 Procedimiento hidrometalúrgico sólido-líquido-sólido optimizado para aumentar la solubilización de metales a partir de minerales y/o concentrados en medio ácido-clorurado

Country Status (11)

Country Link
US (3) US20220042139A1 (es)
EP (3) EP3882365A1 (es)
CN (2) CN113166845B (es)
AU (1) AU2020376989B2 (es)
BR (2) BR112021009356A2 (es)
CA (2) CA3120395C (es)
CL (2) CL2021001218A1 (es)
EC (1) ECSP22041277A (es)
MX (2) MX2021005466A (es)
PE (3) PE20211138A1 (es)
WO (3) WO2020099912A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020099912A1 (es) 2018-11-14 2020-05-22 Nova Mineralis S.A. Método sólido-líquido-sólido para la solubilización de minerales y concentrados de cobre, independiente del potencial redox y con bajo consumo de agua y ácido

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060395A1 (en) 2000-12-20 2004-04-01 Matti Hamalainen Method for leaching copper concentrate
WO2007134343A2 (en) 2006-05-12 2007-11-22 Bhp Billiton Sa Limited Chloride heap leaching
US7491372B2 (en) 2004-01-29 2009-02-17 Minera Michilla S.A. Procedure to leach copper concentrates, under pressure and at ambient temperature, by forming a reactive gel in a sulfate-chloride medium
US7749302B2 (en) 2004-12-28 2010-07-06 Outotec Oyj Method for the hydrometallurgical treatment of sulfide concentrate containing several valuable metals
WO2015059551A1 (en) * 2013-10-23 2015-04-30 Bhp Chile Inc. Heap leaching of copper
WO2016026062A1 (es) 2014-08-22 2016-02-25 Compañía Minera Zaldivar Limitada Lixiviación de sulfuros de cobre en medio cloruro-ferroso con bacterias
WO2016179718A1 (es) 2015-05-13 2016-11-17 K+S Chile S.A. Tambor de aglomeración para el pretratamiento de minerales

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902474A (en) * 1993-07-29 1999-05-11 Cominco Engineering Services Ltd. Chloride assisted hydrometallurgical extraction of metal
US5650057A (en) * 1993-07-29 1997-07-22 Cominco Engineering Services Ltd. Chloride assisted hydrometallurgical extraction of metal
CA2478516C (en) * 2003-09-30 2007-12-11 Jaguar Nickel Inc. A process for the recovery of value metals from base metal sulfide ores
AU2006298627B2 (en) * 2005-10-03 2011-06-30 Metso Outotec Finland Oy Method for processing nickel bearing raw material in chloride-based leaching
JP4468999B2 (ja) * 2008-03-27 2010-05-26 日鉱金属株式会社 鉱物からの金属の回収方法
US9771631B2 (en) * 2009-05-26 2017-09-26 Metaleach Limited Method of oxidative leaching of sulfide ores and/or concentrates
US8173086B2 (en) * 2009-07-14 2012-05-08 Vale S.A. Process of recovery of base metals from oxide ores
US8936770B2 (en) * 2010-01-22 2015-01-20 Molycorp Minerals, Llc Hydrometallurgical process and method for recovering metals
JP5803492B2 (ja) * 2011-09-22 2015-11-04 住友金属鉱山株式会社 金属硫化物の塩素浸出方法
PE20171792A1 (es) * 2014-12-17 2017-12-28 Bhp Billiton Olympic Dam Corp Pty Ltd Metodo de lixiviacion en pilas
CL2016001188A1 (es) * 2016-05-18 2017-02-24 Antofagasta Minerales S A Procedimiento para el mejoramiento de procesos de lixiviación de cobre utilizando cloruro de calcio
HUE058756T2 (hu) * 2016-09-19 2022-09-28 Bhp Olympic Dam Corp Pty Ltd Integrált hidrometallurgiai és pirometallurgiai módszer az ércfeldolgozáshoz
BR112020020448B1 (pt) * 2018-04-06 2023-09-26 Nova Mineralis S.A Processo para a solubilização de metais a partir de minerais e/ou concentrados de minerais de enxofre de origem metalogênica primária contendo os mesmos
WO2020099912A1 (es) 2018-11-14 2020-05-22 Nova Mineralis S.A. Método sólido-líquido-sólido para la solubilización de minerales y concentrados de cobre, independiente del potencial redox y con bajo consumo de agua y ácido

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060395A1 (en) 2000-12-20 2004-04-01 Matti Hamalainen Method for leaching copper concentrate
US7491372B2 (en) 2004-01-29 2009-02-17 Minera Michilla S.A. Procedure to leach copper concentrates, under pressure and at ambient temperature, by forming a reactive gel in a sulfate-chloride medium
US7749302B2 (en) 2004-12-28 2010-07-06 Outotec Oyj Method for the hydrometallurgical treatment of sulfide concentrate containing several valuable metals
WO2007134343A2 (en) 2006-05-12 2007-11-22 Bhp Billiton Sa Limited Chloride heap leaching
WO2015059551A1 (en) * 2013-10-23 2015-04-30 Bhp Chile Inc. Heap leaching of copper
WO2016026062A1 (es) 2014-08-22 2016-02-25 Compañía Minera Zaldivar Limitada Lixiviación de sulfuros de cobre en medio cloruro-ferroso con bacterias
WO2016179718A1 (es) 2015-05-13 2016-11-17 K+S Chile S.A. Tambor de aglomeración para el pretratamiento de minerales

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUTRIZAC J E ED - KAKSONEN ANNA H ET AL: "THE LEACHING OF SULPHIDE MINERALS IN CHLORIDE MEDIA", HYDROMETALLURGY, ELSEVIER SCIENTIFIC PUBLISHING CY. AMSTERDAM, NL, vol. 29, no. 1 / 03, 1 June 1992 (1992-06-01), pages 1 - 45, XP000384543, ISSN: 0304-386X, DOI: 10.1016/0304-386X(92)90004-J *
SKROBIAN M ET AL: "Effect of NaCl concentration and particle size on chalcopyrite leaching in cupric chloride solution", HYDROMETALLURGY, ELSEVIER SCIENTIFIC PUBLISHING CY. AMSTERDAM, NL, vol. 77, no. 1-2, 1 April 2005 (2005-04-01), pages 109 - 114, XP027652493, ISSN: 0304-386X, [retrieved on 20050401] *

Also Published As

Publication number Publication date
PE20211766A1 (es) 2021-09-07
US20220356544A1 (en) 2022-11-10
MX2021005466A (es) 2021-06-18
CN113166845A (zh) 2021-07-23
PE20211138A1 (es) 2021-06-25
US20220042139A1 (en) 2022-02-10
CA3120395A1 (en) 2020-05-22
BR112021009356A2 (pt) 2021-09-28
WO2021081679A1 (es) 2021-05-06
MX2022005072A (es) 2022-05-19
CN113166845B (zh) 2022-10-21
CL2021001218A1 (es) 2021-12-24
AU2020376989A1 (en) 2022-06-09
CA3120395C (en) 2024-01-23
EP3882366A1 (en) 2021-09-22
CL2021003432A1 (es) 2022-10-14
CA3159331A1 (en) 2021-05-06
EP3882365A1 (en) 2021-09-22
PE20221212A1 (es) 2022-08-11
US20220002838A1 (en) 2022-01-06
EP4053297A1 (en) 2022-09-07
ECSP22041277A (es) 2022-06-30
BR112022008222A2 (pt) 2022-07-12
CN114761586A (zh) 2022-07-15
WO2020099912A1 (es) 2020-05-22
AU2020376989B2 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
Simate et al. Acid mine drainage: Challenges and opportunities
ES2329922T3 (es) Proceso de lixiviacion en presencia de acido clorhidrico para la recuperacion de un metal valioso a partir de un mineral.
ES2397786T3 (es) Proceso de cianuración para recuperación de metales preciosos de un mineral o concentrado de sulfuro u otra materia prima que contenga azufre
BRPI0619012A2 (pt) processo de lixiviação na presença de ácido clorìdrico para a recuperação de um metal valioso de minério
CN105874089A (zh) 加工铜的方法
US10669608B2 (en) Process for recovering gold
JP2014193455A5 (es)
BR112013012774B1 (pt) Processo para a recuperação de zinco a partir de um material contendo zinco
AU2023202314A1 (en) Alkaline oxidation methods and systems for recovery of metals from ores
WO2020099966A1 (es) Método hidrometalúrgico sólido-líquido-sólido para la solubilización de metales a partir de minerales y/o concentrados sulfurados de cobre
WO2019193403A1 (es) Procedimiento para la solubilización de metales de cobre metalogénicamente primario a partir de minerales y/o concentrados calcopiríticos que lo contienen
RU2585593C1 (ru) Способ кучного выщелачивания золота из упорных руд и техногенного минерального сырья
ES2748838T3 (es) Proceso para la producción de óxido de zinc a partir de mineral
Danso et al. Ionic liquids for the recovery of rare earth elements from coal combustion products
BR112012002602B1 (pt) Processo para a recuperação de metais a partir de um minério contendo ferro
WO2016026062A1 (es) Lixiviación de sulfuros de cobre en medio cloruro-ferroso con bacterias
JP5790408B2 (ja) ハロゲン化物水溶液から銀を回収する方法
Lorenzo Tallafigo Extraction of base and precious metals and other valuable elements from mining tailings by hydrometallurgical processes
ES2674440B2 (es) Planta hidrometalúrgica para el tratamiento de sulfuros complejos
US11946116B2 (en) Method for recovering Cu and method of preparing electrolytic copper
WO2021116742A1 (es) Un proceso de obtención de un compuesto de metal alcalinotérreo
Burbano Patiño et al. Catalytic Activity of Carbon Materials in the Oxidation of Minerals
WO2024000080A1 (es) Proceso de ciclo termoquímico continuo para producir hidrógeno mediante pre-tratamiento de concentrados de cobre
Swash et al. Aspects of arsenical materials and their long term stability under environment conditions
Vegliò et al. Chlorine and cyanide leaching of gold-bearing refractory ores

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19809914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3120395

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009356

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019809914

Country of ref document: EP

Effective date: 20210614

ENP Entry into the national phase

Ref document number: 112021009356

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210513